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Cuprate high-Tc superconductors exhibit enigmatic behavior in the
nonsuperconducting state. For carrier concentrations near “opti-
mal doping” (with respect to the highest Tcs) the transport and
spectroscopic properties are unlike those of a Landau–Fermi liquid.
On the Mott-insulating side of the optimal carrier concentration,
which corresponds to underdoping, a pseudogap removes quasi-
particle spectral weight from parts of the Fermi surface and causes
a breakup of the Fermi surface into disconnected nodal and anti-
nodal sectors. Here, we show that the near-nodal excitations of
underdoped cuprates obey Fermi liquid behavior. The lifetime τ(ω,
T) of a quasi-particle depends on its energy ω as well as on the
temperature T. For a Fermi liquid, 1/τ(ω, T) is expected to collapse
on a universal function proportional to (h�ω)2 + (pπkBT)

2. Magneto-
transport experiments, which probe the properties in the limit ω =
0, have provided indications for the presence of a T2 dependence
of the dc (ω = 0) resistivity of different cuprate materials. How-
ever, Fermi liquid behavior is very much about the energy depen-
dence of the lifetime, and this can only be addressed by
spectroscopic techniques. Our optical experiments confirm the
aforementioned universal ω- and T dependence of 1/τ(ω, T), with
p∼ 1.5. Our data thus provide a piece of evidence in favor of a Fermi
liquid-like scenario of the pseudogap phase of the cuprates.
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The compound HgBa2CuO4+δ (Hg1201) is the single-layer
cuprate that exhibits the highest Tc (97 K). We therefore

measured the optical conductivity of strongly underdoped single
crystals of Hg1201 ðTc = 67 KÞ. Here we are interested in the
optical conductivity of the CuO2 layers. We therefore express the
optical conductivity as a 2D sheet conductance GðωÞ= dcσðωÞ,
where dc is the interlayer spacing. The real part of the sheet
conductance normalized by the conduction quantum G0 = 2e2=h
is shown in Fig. 1. As seen in the figure, a gap-like suppression
below 140 meV is clearly observable for temperatures below Tc

and remains visible in the normal state up to ∼250 K. This is a
clear optical signature of the pseudogap. We also observe the
zero-energy mode due to the free charge carrier response, which
progressively narrows upon lowering the temperature. In mate-
rials where the charge carrier relaxation is dominated by impu-
rity scattering, the width of this “Drude” peak corresponds to the
relaxation rate of the charge carriers. Relaxation processes
arising from interactions have the effect of replacing the constant
(frequency-independent) relaxation rate with a frequency-
dependent one. The general expression for the optical conduc-
tivity of interacting electrons is then

Gðω;TÞ= iπK
Zω+Mðω;TÞG0: [1]

The spectral weight K corresponds to minus the kinetic en-
ergy if the frequency integration of the experimental data is
restricted to intraband transitions. The effect of electron–electron
interactions and coupling to collective modes is described by
the memory function Mðω;TÞ=M1ðω;TÞ+ iM2ðω;TÞ, where
Z−1M2ðω;TÞ= 1=τðω;TÞ represents the dynamical (or optical) re-
laxation rate in the case of a Fermi liquid.
The zero frequency limit of the optical conductivity of Fig. 1

corroborates the recently reported temperature dependence of the
dc resistivity (1) as shown in Fig. 2. Because K is practically tem-
perature independent in the normal state (2), the low-temperature
T2 dependence of the resistivity is due to the quadratic tempera-
ture variation of M2ð0;TÞ= Z=τð0;TÞ. The infrared data confirm
that Hg1201 exhibits the lowest residual resistance among the
cuprates and a change to a linear temperature dependence above
T* associated with the sudden closing of a pseudogap (3, 4). Fig. 2B
shows this as a clear departure from the T2 curve at ∼5 × 104 K2.
The dc transport data, owing to the higher precision, allow for
Hg1201 crystals of the same composition and doping to identify
T*∼ 350 K as the temperature above which the resistivity has
a linear temperature dependence, and T**∼ 220 K as the tem-
perature below which the temperature dependence is purely qua-
dratic. Finally, superconducting fluctuations become noticeable
at T′∼ 85 K.
The doping dependences of K and of the coherent spectral

weight, defined as K*=K/(1+M1(ω,T)Zω)jω=0, are summarized
in Fig. 3 for a number of hole-doped cuprates. The theoretical
values of K based on the band parameters obtained from local
density approximation (LDA) ab initio calculations are about
a factor of 2 larger than the measured values, which is due to
strong correlation predicted by the Hubbard model for U=t≥ 4
(6). K decreases when the hole doping decreases, but does not
extrapolate to zero for zero doping in accordance with the
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analysis of Comanac et al. (7). In contrast, the coherent spectral
weight K* is proportional to the hole doping x: K= xK0, where
K0 = 496 meV, in agreement with the trend observed for
La2−xSr2CuO4 (8) and YBa2Cu3O7−δ (9). This provides strong
evidence that a Mott insulator is approached as the doping is re-
duced. It cannot be determined from these data whether this
occurs because (i) the quasi-particle residue is gradually sup-
pressed (10, 11) or (ii) the Fermi surface arcs shrink to zero
without vanishing of the nodal spectral weight (12, 13).
The real and imaginary parts of the memory function of under-

doped Hg1201 with Tc = 67 K are shown in Fig. 4 for temperatures
from 10 to 390 K.M1ðω;TÞ has a linear slope extrapolating to ω =
0, which becomes less steep at higher temperatures. The maximum
at ∼105 meV erodes gradually as temperature increases, but a res-
idue of this structure remains visible even at 390 K. In Fig. 4E we
show a plot of the frequency- and temperature-dependent mass
enhancement factor m*ðω;TÞ=M1ðω;TÞ=Zω+ 1. Above 60 meV

m*ðω;TÞ is a monotonously decreasing function of temperature.
For ω that is not too large,m*ðTÞ is, roughly speaking, a plateau at
low temperature, with a weak maximum at T(max) followed by
a linear-like decrease at higher temperature. T(max) increases
when ω decreases and for ω→ 0 extrapolates to 212 K∼ T**,
indicating another way of identifying T**. The increase ofm*ðω;TÞ
from about 3 at 390 K to 5 at T**, taken together with the strong
temperature dependence of M1ðω;TÞ near its maximum at 105
meV, indicates that the charge carriers become increasingly
renormalized when the temperature decreases. Our results also
corroborate the observation in ref. 14 that the integrated optical
conductivity does not decrease when T decreases, so that no
opening of an optical pseudogap is seen when, at T*, part of the
Fermi surface is removed by a pseudogap, despite the emergence
at this temperature of a novel ordered state with two Ising-like
magnetic collective modes at 54 and 39 meV as observed with
inelastic neutron scattering (15).
Turning now to the dynamical relaxation rate Z−1M2ðω;TÞ=

1=τðω;TÞ, we observe from Fig. 4 that its frequency dependence
exhibits an upward curvature for all temperatures. Also, the
temperature dependence has a T2 component at the lowest fre-
quencies. Earlier indications for T2 dependence of the scattering
rate came from the dc ðω= 0Þ resistivity (1, 16, 17). For fre-
quencies above 50 meV this component is either absent or com-
pletely masked by the onset of superconductivity (gray segments
of the temperature traces). Although M2ðω;TÞ has no maximum
as a function of temperature, the curves have an inflection point
which shifts from roughly 200 to 100 K when the frequency is
raised from 10 to 50 meV. The saturation of m*ðω;TÞ and the
merger of the resistivity with a T2 dependence indicate that the
system enters a Fermi liquid-like state at∼200K.We notice that at
temperatures above Tc the initial rise is given by a linear slope as
a function of ω2 (Fig. 5, Inset). For an ideal Fermi liquid,Mðω;TÞ
in the relevant range of ω and T is, to a good approximation,

Mðω;TÞ≅
 
1
~Z
− 1

!
Zω+ iC

h
ðZωÞ2 + ðpπkBTÞ2

i
; [2]

where ~Z is proportional to the quasi-particle residue, C is a con-
stant with units of inverse energy, and p= 2 (ref. 18 and Support-
ing Information). To check possible Fermi liquid characteristics
of the data, we introduce a single parameter ξ defined as
ξ2 = ðZωÞ2 + ðpπkBTÞ2, and we investigate M2 as a function of ξ.
As shown in Fig. 6 for three underdoped cuprate materials
[Hg1201, ortho-II Y Ba2Cu3O6.5 (Y123) (ref. 19), and Bi2201
(ref. 20)] with hole concentration x≈ 0:1, the M2 data of the
normal state collapse in the low-energy range on a single scaling
curve for p= 1:5. This value of p was obtained by searching for
the best scaling collapse for 1≤ p≤ 2 in steps of 0.1 (Supporting
Information). Comparing the functional form of M2ðξÞ for these
three materials, we make the following observations: (i) Going
from Hg1201 to Bi2201 (Fig. 6, Left and Right, respectively) in
this plot, the residual ðξ= 0Þ value of M2ðξÞ increases from 0 to
about 80 meV. Indeed, it is generally thought that the relatively
low values of Tc in single-layer Bi2201 have to do with strong
scattering by disorder (1, 21). (ii) We also notice that in the case
of Bi2201 some negative curvature appears at the lowest ener-
gies, which is an indication that the Fermi liquid characteristics
are affected to some extent, and appear to be relatively fragile
with respect to disorder. (iii) The implications of the loss of
scaling above 100 meV in the Bi2201 data are not entirely clear.
In principle there is no reason to expect scaling, because this is
clearly beyond the range of “universal” Fermi liquid behavior.
However, the single-parameter scaling seems to persist into this
regime for the other two materials (Y123 and Hg1201), leading
to the speculation that impurity scattering also contributes to the
disappearance of scaling above 100 meV for the Bi2201 sample.
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Fig. 1. Optical sheet conductance of underdoped Hg1201 (Tc = 67 K).
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The most important observation borne out by these data is
that the frequency dependence ofM1ðω;TÞ andM2ðω;TÞ follows
by and large the behavior expected for a Fermi liquid: At low
frequencies and temperatures M1ðω;TÞ is indeed a linear func-
tion of ω, and M2ðω;TÞ scales with ðZωÞ2 + ðpπkBTÞ2. Other
hints at possible Fermi liquid behavior came from the recent
discovery of quantum oscillations at low temperature and high
magnetic field in underdoped YBa2Cu3O6+δ (13) and YBa2-
Cu4O8 (22), from the observation of the Fermi–Dirac statistics
underlying the quantum oscillations (23), and from the two-fluid
analysis (24) of NMR data (25). We note that recent theories
(e.g., refs. 26–28) have emphasized the possible relevance of
Fermi liquid concepts––or a hidden form of these in the super-
conducting regime (29)––to the metallic state of hole-doped
cuprates. Our experimental observations provide a strong in-
centive for further theoretical work in this direction. We high-
light two striking aspects of the data: (i) The slope ∂M1ðω;TÞ=∂ω
for ω→ 0 decreases significantly as a function of increasing
temperature; and (ii) p< 2. We speculate that these issues are
related to the progressive filling-in of the pseudogap as a func-
tion of increasing temperature. Already in a two-fluid picture of
a nodal Fermi liquid in parallel to an antinodal liquid, non-
universal features (for Fermi liquids) are introduced in the op-
tical conductivity, because the properties at the Fermi surface
change gradually from Fermi liquid at the nodes (30) to strongly
incoherent and pseudogapped at the hot spots near the antin-
odes (31). In fact, also in other compounds p is found to be
different from 2 (32–34). Recently, Maslov and Chubukov
interpreted this as a combination of Fermi liquid scattering and
an additional source of elastic scattering from magnetic moments
or resonant levels (35).
Theoretically, it is expected that the T2- and ω2 dependence of

M2ðω;TÞ is limited to Zω and pπkBT lower than some energy
scale ξ0, which in the context of single-parameter scaling be-
havior of a Fermi liquid is proportional to the effective Fermi
energy. Electronic correlations strongly reduce this energy scale
compared with the bare Fermi energy. For most materials the
issue of the Fermi liquid-like frequency dependence of M2ðω;TÞ
has remained largely unexplored. This is related to the difficulty

that in cases such as the heavy fermion materials where this type
of coupling dominates, the range of Fermi liquid behavior is
smaller than 10 meV, making it particularly difficult to obtain the
required measurement accuracy in an infrared experiment.
Clean underdoped cuprates present in this respect a favorable
exception because, as can be seen from Figs. 5 and 6, the relevant
energy scale ξ0 is about 100 meV for a doping level around 10%.
Above this energy, M2ðω;TÞ crosses over to a more linear trend
as a function of both ω and T. This suggests that in cuprates the
range of applicability of Fermi liquid behavior is limited by a
different scattering mechanism that develops at high T and high
ω as the pseudogap gets filled.
The ξ2-dependence of the relaxation rate can be understood as

follows: An electron at a distance ξ above the Fermi energy can,
as a result of electron–electron interactions, decay to a final state
ξ−Ω by creating an electron–hole pair of energy Ω. The density
of states of electron–hole pairs is the spin (charge) susceptibility
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χ″ðΩÞ, where spin (charge) refers to electron–hole pairs carrying
(no) net spin. χ″ðΩÞ can be strongly renormalized, but the
property that χ″ðΩÞ∝Ω in the limit Ω→ 0 is generic for Fermi
liquids (24). Integration of the susceptibility multiplied with the
interaction vertex I2χ″ðΩÞ over all possible decay channels from
zero to ξ leads us to conclude that indeed M2 ∝ ξ2, as reported
experimentally in the present article. In this description the
cross-over ξ0 corresponds to the energy where I2χ″ðΩÞ is trun-
cated, leading to a leveling off of M2 for ξ> ξ0. The strong
temperature dependence of M1ðω;TÞ is also a natural conse-
quence of this description; it was shown in ref. 36 that, in leading
orders of temperature, χ″ðΩÞ of a correlated Fermi liquid
decreases as a function of temperature.
In summary, we have shown from optical spectroscopy meas-

urements that the ungapped near-nodal excitations of underdoped
cuprate superconductors obey Fermi liquid behavior when mate-
rials with reduced amount of disorder are considered. This ob-
servation, which is at variance with some established paradigms,
provides leads toward understanding of themetallic state and high-
temperature superconductivity in these materials.

Materials and Methods
Sample Preparation. Single crystals were grown using a flux method, char-
acterized, and heat treated to the desired doping level as described in refs. 37
and 38. The conductivity data in Fig. 1 are of a sample which has an onset
critical temperature of 67 K and a transition width of 2 K. The crystal surface
is oriented along the a–b plane with a dimension of about 1.51 × 1.22 mm2.
Hg1201 samples are hygroscopic. Therefore, the last stage of the prepara-
tion of the sample surface is done under a continuous flow of nitrogen,
upon which the sample is transferred to a high-vacuum chamber (10−7 mbar)

within a few minutes. Before each measurement the surface is carefully
checked for any evidence of oxidation.

Comparison with dc Resistivity. Transport measurements have been per-
formed using the four-terminal method. Due to the irregular shape of the
cleaved samples the absolute value of the dc resistivity can only be de-
termined with about 20% accuracy. However, we obtained very high relative
accuracy of the temperature dependence of the dc resistivity, as seen from
identical temperature dependences of samples of the same composition and
doping, regardless of having significantly different dimensions and shapes.
An independent check of the dc resistivity was obtained from the ω= 0 limit
of the experimental infrared optical conductivity (Fig. 2). The dc resistivity
had to be scaled by a factor of 0.66 to match the optical data, most likely due
to the aforementioned influence of the irregular shape of the crystals on the
absolute value of the measured dc resistances. The excellent match of the
two temperature dependences demonstrates the high quality of both dc
resistivity and optical conductivity data.
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function of ξ2 ≡ ðZωÞ2 + ðpπkBTÞ2 with p=1:5. (A) Hg1201 ðx ≅ 0:1; Tc = 67  KÞ.
(B) Y123 ðx ≅ 0:1; Tc = 57  KÞ, spectra by Hwang et al. (19) (digitized data of
Fig. 6 represented here as a function of ξ2). (C) Bi2201 ðx ≅ 0:1; Tc = 10  KÞ;
data of van Heumen et al. (20) represented here as a function of ξ2. The data
displayed in A and C are in 10-K intervals with color coding indicated for
temperatures in 40-K steps. In between these steps the color evolves grad-
ually as a function of temperature. In B the color coding is given for all
temperatures displayed.
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I. Optical Spectroscopy
The infrared reflectivity of the a–b plane was measured at near-
normal incidence using a Fourier-transform spectrometer (8
meV–1.24 eV). In addition, ellipsometric measurements were
performed in the near-IR to near-UV using a Woolam variable
angle spectroscopic ellipsometer (0.8–3.7 eV). The procedure of
ref. 1 was used to suppress possible spurious c-axis components in
the reflectance curves. The absolute value of the reflectivity was
obtained by an in situ gold evaporation on the sample. The sample
was mounted in a high-vacuum home-made cryostat designed for
high stability during the thermal cycles, a prerequisite for absolute
temperature dependence of the reflectivity. The operating pressure
was 10−7 mbar. Temperature cool-down sweeps have been per-
formed between 395 and 10 K at a speed of 0.9 K/min, leading to
about one reflectivity spectrum per kelvin. To increase the signal-
to-noise ratio, the data have been binned in 10-K temperature
intervals. The long time-scale drift of the mid-IR detectors has
been calibrated using a flipping mirror placed outside the cryostat
in front of the sample. The absolute reflectivity calibrated for
spectrometer throughput and drift is obtained from the relation

RðωÞ= IsampleðωÞ
IreferenceðωÞ

Ireference−mirrorðωÞ
Isample−mirrorðωÞ : [S1]

The reflectivity spectra for selected temperatures are displayed
in Fig. S1. As discussed in the main text, the consistency of this
procedure is confirmed by the good correlation with the resistivity
measurement shown. In addition, the c-axis reflectivity was
measured at room temperature on a polished edge of the sample
using an IR microscope attached to a conventional Fourier
transform spectrometer. The frequency range of that measure-
ment goes from 68 meV to 1.5 eV.
For frequencies above 0.8 eV we used spectroscopic ellips-

ometry with an angle of incidence set at 61° relative to the surface
normal, providing after inversion of the Fresnel equations the so-
called pseudodielectric function

«psðωÞ= sin2θ

+ sin4θ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«ab − sin2θ

p ffiffiffiffiffiffiffi
«ab

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− «−1c sin2θ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«ab − sin2θ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− «−1c sin2θ

q
− ffiffiffiffiffiffiffi

«ab
p

cos2θ

!2

;

[S2]

where «ab and «c are the dielectric tensor elements in the a–b
plane and along the c axis, respectively. The dashed curves in
Fig. S2 represent the pseudodielectric function measured at
300 K. In the limit of zero anisotropy ð«ab = «cÞ the pseudodi-
electric function becomes the dielectric function ð«ps = «abÞ. We
corrected for the c-axis dielectric function by fitting the pseudo-
dielectric function, the a–b-plane reflectance and the c-axis re-
flectivities to a Drude–Lorentz model. The resulting a–b-plane
dielectric functions are shown in Fig. S2 for a few selected tem-
peratures. The reflectance and phase spectra were calculated in
this data range using the Fresnel expression for normal incidence
reflectivity. A perfect match was obtained in the range of overlap
(0.8–1.2 eV) of ellipsometry and direct normal incidence reflec-
tance data. The complex dielectric constant was obtained by stan-
dard Kramers–Kronig transformation of the reflectance data,
using the reflectance and phase data between 0.8 and 3.7 eV
to fix the high-frequency extrapolation. This procedure anchors

the phase output of the Kramers–Kronig transformation in the
entire frequency range to the experimental data between 0.8 and
3.7 eV.

II. Drude–Lorentz Analysis
To characterize the oscillator strengths and frequencies corre-
sponding to the interband transitions, we have fitted to the ex-
perimental conductivities a linear superposition of Drude and
Lorentz oscillators

«ðωÞ= 1+ Sh +
XN
j= 0

ω2
pj

ω2
j −ω

�
ω+ iγj

�; [S3]

where Sh summarizes the dielectric polarizability originating in
oscillators at frequencies higher than the j = 7 mode at 5.2 eV.
The dielectric function is understood to represent the superpo-
sition of the conduction electron (or hole) optical conductivity
and the “bound charge” response

«ðωÞ= 4πi
ω

σf ðωÞ+ «bðωÞ: [S4]

The optical conductivity is shown in Fig. S3, together with the
Drude–Lorentz fit. The corresponding parameters are summa-
rized in Table S1.

III. Conduction Band and Bound Charge Contributions
Here we will interpret all oscillators below 1.2 eV as an intrinsic part
of the conduction band response. The interpretation of the weak
green peak at 1.4 eV is uncertain. Because the spectral weight is very
small, it makes little difference for the discussion in the present
paper whether or not we assume it to be part of the conduction band
response. A reasonable approximation for the total (coherent +
incoherent) conduction band spectral weight is therefore

ω2
p =

X
Zωj   <  1:2  eV

ω2
pj: [S5]

The resulting value for h�ωp is indicated in Table S1. An alterna-
tive scheme for determining the conduction band spectral weight
consists of fitting the dielectric function in the full frequency
range to a sum of bound charge oscillators above 1.2 eV and
to use Allen’s formula for the conduction band conductivity of
electrons coupled to bosons (2–4), where in the latter the am-
plitudes of the blocks of a histogram representation of the elec-
tron–boson coupling function are adjusted to obtain the best fit.
The rise in optical conductivity above 1.8 eV is due to the onset

of O2p→Cu3d charge-transfer transitions. The dielectric re-
sponse described by the oscillators above 1.2 eV is therefore
interpreted as bound charge response. The bound charge com-
ponent of the dielectric function is

«bðωÞ= 1+ Sh +
P

Zωj>1:2  eV

ω2
pj

ω2
j −ω

�
ω+ iγj

�
≅1+ Sh +

P
Zωj>1:2  eV

ω2
pj

ω2
j
:

[S6]

The right-hand side of the expression is a valid approximation
for the present set of data. This is demonstrated in Fig. S4,
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showing Re    «bðωÞ and Im    «bðωÞ using the parameters in
Table S1, together with the total dielectric function. We see that
«bðωÞ= 4:3± 0:1 everywhere in the frequency range shown.

IV. Sheet Conductance and Spectral Weight
We consider a cuprate with NL conducting CuO2 sheets per unit
cell, having c-axis lattice parameter dc. This corresponds to an
average spacing dc = c=NL between the CuO2 sheets. The re-
lation between sheet conductance and bulk conductivity is

GðωÞ= dcσðωÞ: [S7]

The general expression for spectral weight of the sheet con-
ductance along the xj axis is (4)

K =
dc
V

X
k;σ

nk;σ
∂2«k;σ
∂k2j

; [S8]

where nkσ is the average occupation of the state with momentum
k and spin σ; V is the sample volume. For a parabolic dispersion
relation ð«k = Z2k2=2mÞ the Fermi energy is πK. Ab initio local
density approximation (LDA) band calculations for the cuprates
can be accurately represented by the tight-binding expression

«k = − 2t
�
cosðkxaÞ+ cos

�
kya
��

+ 4t′cosðkxaÞcos
�
kya
�
− 2t″cosð2kxaÞcos

�
2kya

�
:

[S9]

We calculated K numerically as a function of hole density,
inserting Eq. S9 into Eq. S8, and adopting the parameter set
appropriate to the case of Hg1201 (5): t= 0:45 eV, t′=t= 0:35,
t″=t′= 0:5. The parametric plot of K versus hole density is pre-
sented in Fig. 3 of the main text (black solid curve).

V. Generalized Drude Analysis
The real part of the optical conductivity is shown in Fig. 1 of the
main text for different temperatures. There is a clear signature of
a pseudogap above Tc, with a maximum at ∼0.15 eV. The phase
of conduction band optical conductivity, shown in Fig. S5, has
a gradual rise of phase as a function of frequency, in agreement
with the behavior of underdoped Bi2212 pointed out in ref. 6,
and distinctly different from σðωÞ=CðiωÞ−2=3 observed in opti-
mally doped cuprates.
A generally used expression for the optical conductivity of

a liquid of interacting electrons is the so-called extended Drude
formula, expressed in the context of this article as a sheet con-
ductance in units of G0 = 2e2=h:

GðωÞ= iπK
Zω+MðωÞG0; [S10]

where Mðω;TÞ is defined as a “memory function” (7) encoding
the departure from standard Drude behavior caused, for instance,
by electron–electron interactions or electron–phonon coupling. For
a Fermi liquid, the imaginary part of Mðω;TÞ has a simple inter-
pretation as the relaxation rate of the unrenormalized electrons,
Im    Mðω;TÞ= Z=τðω;TÞ, and Re  Mðω;TÞ=Zω+ 1=m*ðω;TÞ=m
is the frequency-dependent mass renormalization.
The spectral weight factor K is related to the plasma frequency

through the relation

Z2ω2
p =

4πe2

dc
K : [S11]

With Zωp = 2:053      eV (Table S1) and the c-axis parameter
dc = 0:952      nm we obtain K = 222     meV. The memory func-
tions in Fig. 4 of the main text have been calculated from the

optical conductivity using Eq. S10. The sharp features at 30, 40, 55,
70, 80, and 90 meV of the Hg1201 data are due to dipole active
optical phonons. Although in principle these could be subtracted
from the optical conductivity before calculating Mðω;TÞ, this kind
of subtraction procedure contains some ambiguities due to Fano-
like phonon asymmetries. Because after subtraction these ambi-
guities are imported into the resulting memory function, we have
refrained from subtracting the phonons. Instead, to facilitate
comparison of different temperatures, in Figs. 5 and 6 of the main
text narrow bands corresponding to the prominent sharp features
at 80 and 90 meV of the UD Hg1201 data have been left open, as
can be seen in Fig. 5 of the main text.

VI. Memory Function of a Local Fermi Liquid
For a system whose carriers can be well described by a local (i.e.,
momentum-independent) scattering rate, the optical conductivity
can be expressed entirely in terms of the complex electronic self-
energy Σð«Þ≡Σ1ð«Þ+ iΣ2ð«Þ. The scattering rate is −Σ2, and Σ1 is
linked to Σ2 by a Kramers–Kronig transformation. This happens
because, for a local self-energy, the vertex corrections vanish in
the Kubo formula for the conductivity σðωÞ. As a result,

σðω;TÞ=
Z

d«
iΦð0Þ
ω

f ð«Þ− f ð«+ ZωÞ
Zω+Σ*ð«Þ−Σð«+ ZωÞ: [S12]

Here, f ð«Þ= ½expð«=kBTÞ+1�−1, and Φ(0) is proportional to the
Fermi surface average of the square of the bare electronic group
velocity. In a Fermi liquid, the quasi-particles are well-defined at
low temperature close to the Fermi surface, because in this limit
the scattering rate vanishes with a characteristic energy and tem-
perature dependence proportional to «2 + ðπkBTÞ2. The quasi-
particle spectral weight Z is smaller than unity, as reflected by
the fact that Σ1ð«Þ has a finite negative slope 1 − 1/Z at «= 0.
This leads to the following low-energy model for the self-energy
of a local Fermi liquid:

Σð«Þ=
�
1−

1
Z

�
«−

3
2
iC
h
«2 + π2ðkBTÞ2

i
: [S13]

The added factor 3/2 anticipates the formula for thememory func-
tion. In systems where all properties are set by a single character-
istic energy D, as in isotropic doped Mott insulators where D is
typically the half bandwidth, the coefficient C would be propor-
tional to 1/(Z2D). Indeed, in such cases the scattering rate −Σ2ð0Þ
scales with renormalized electronic energies as DðkBT=ZDÞ2. The
quasi-particle lifetime controls the Drude response at very low
frequencies. On the Fermi surface, it can be computed from the
self-energy as τqp = Z=ð2ZjΣ2ð0ÞjÞ. We are interested in the regime
of frequenciesmuch larger than 1=τqp: introducing Eq. S13 into Eq.
S12, and expanding for large ωτqp, we get (8)

σðω;TÞ=Φð0ÞZτqp
(

i
ωτqp

+
4

3
�
ωτqp

�2
	
1+
�

Zω

2πkBT

�2
)

+O
h
1=
�
ωτqp

�3i
:

[S14]

Comparing this with Eq. 1 of the main text, we obtain Eq. 2 of
the main text in the regime ωτqp � 1, where ~Z∼ZΦð0Þ=K .

VII. Scaling Collapse
We tested the frequency and temperature dependence of the
imaginary part of the memory function for scaling collapse of the
form of Eq. 2 of the main text by plotting of the data in the normal
state as a function of ξ2 = ðZωÞ2 + ðpπkBTÞ2, and searching for the
value of p that provides the best overlap of the low-ξ data for the
spectra taken at different temperatures. As we see in Fig. S6,
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neither for p= 1 nor for p= 2 do the data collapse on a single curve.
The optimal value where the data does collapse, p= 1:5, is used in
Fig. 5 of the main text. Note that the data above 320 K correspond
to the plateau at high frequencies, which is clearly outside the range
of validity of single-parameter scaling. For this reason the data
shown in Fig. 5 of the main text were restricted to the temperatures
below 320 K. In ref. 6 a different scaling relation––pertaining to the
real part of the optical conductivity––was reported:

Z

kBTσ1ðω;TÞ=
4π
ω2
p

�
1+A2

�
Zω

kBT

�2�
; [S15]

where A is a number of order 1. This is the classical relaxation
dynamics expected near a quantum critical point (9). One may
wonder whether this behavior can occur together with single-
parameter scaling of the form M2ðω;TÞ=M2ðξÞ, i.e., similar to
Eq. 2 of the main text but not necessarily corresponding to a ξ2-
dependence of M2. The aforementioned scaling relation of
Tσ1ðω;TÞ can be obtained if M2ðω;TÞ= iA−1kBT for ω=T→ 0.
Because in this limit ξ= kBT, consequently M2 has a linear depen-
dence on ξ, at least for not too large ξ. However, lacking a theoret-
ical justification for scaling of the form M2ðω;TÞ=M2ðξÞ for
systems which are not a Fermi liquid, we restrict the present dis-
cussion to the underdoped cuprates in the pseudogap phase.
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Fig. S1. Optical reflectivity of HgBa2CuO4+δ UD67 along the a- (solid lines) and c (dashed line) axes at selected temperatures. A strong phonon mode is
observed in both a and c axes at 82 meV. (Inset) Far infrared reflectivity; it is also possible to see the remainder of a suppressed c-axis phonon at 70 meV.
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Fig. S2. Real and imaginary parts of the pseudodielectric function (dashed curves) obtained from ellipsometry at room temperature, and a–b-plane dielectric
function at selected temperatures corrected using the method explained in the text.
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ðTc = 67  KÞ. The data correspond to the normal state.

Table S1. Parameters of the Drude–Lorentz oscillators displayed in Fig. S3

Parameters j = 0 j = 1 j = 2 j = 3 Zωp j = 4 j = 5 j = 6 j = 7 Sh

Zω0,j 0 0.116 0.542 0.908 –– 1.443 2.430 2.939 5.204 ––

Zωp,j 0.857 1.461 0.969 0.638 2.053 0.444 0.947 0.510 4.390 2.2
Zγ0,j 0.046 0.337 0.747 0.805 –– 0.598 1.126 0.636 2.723 ––

Sh is dimensionless. Parameter values corresponding to Zωp, Zω0, and h�γ are in units of electronvolts.
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