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Common Fermi-liquid origin of T 2 resistivity and superconductivity in n-type SrTiO3
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A detailed analysis is given of the T 2 term in the resistivity observed in electron-doped SrTiO3. Band-
structure data are presented that provide values for the bare mass, density of states, and plasma frequency of the
quasiparticles as functions of doping. It is shown that these values are renormalized by approximately a factor
of two due to electron-phonon interaction. It is argued that the quasiparticles are in the antiadiabatic limit with
respect to electron-phonon interaction. The condition of antiadiabatic coupling renders the interaction mediated
through phonons effectively nonretarded. We apply Fermi-liquid theory developed in the 70’s for the T 2 term in
the resistivity of common metals, and combine this with expressions for Tc and with the Brinkman-Platzman-Rice
(BPR) sum rule to obtain Landau parameters of n-type SrTiO3. These parameters are comparable to those of liquid
3He, indicating interesting parallels between these Fermi liquids despite the differences between the composite
fermions from which they are formed.
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I. INTRODUCTION

SrTiO3 is a semiconductor that, when doped with a low
density of electrons, becomes a good conductor with relatively
high mobility and strong temperature dependence of the
electrical resistivity and the infrared optical conductivity. At
low temperatures, the material becomes superconducting1 with
a maximum reported Tc of 1.2 K,2 although superconductivity
is usually reported below 0.7 K with a dome-shaped doping
dependence of Tc.3,4 Superconductivity is also observed below
0.3 K in the two-dimensional electron gas formed at the
interface between SrTiO3 and LaAlO3

5 where the carrier-
concentration dependence of Tc has also a dome shape.6 The
dc resistivity below 100 K has a T 2 temperature dependence,
which has been attributed to electron-electron scattering by
some groups.7–9 On the other hand, resistivity of the form
ρ(T ) ∝ 1/ sinh2 (ω0/2T ), which is almost T 2-like, was found
in La1−xCaxMnO3

10 and in doped LaTiO3
11 in accordance

with the expected behavior of small polarons.12 However,
n-type SrTiO3 appears to be described well by the model
of large polarons with a Fröhlich-type electron-phonon
interaction.13 The conditions in this material are therefore
rather remote from those addressed by the small-polaron
model,12 and the question as to why the T 2 behavior dominates
up to high temperature remains as yet open.

The resistivity near absolute zero has been known to be of
the form ρ = AT 2 in platinum14 and other transition-metal
elements,15–19 with A ranging from 2.5 × 10−6 μ�cmK−2

(osmium) to 3 × 10−5 μ�cmK−2 (palladium). M. J. Rice
has explained these observations in terms of the Baber
mechanism.20,21 T 2 resistivity was subsequently observed
in the alkali metals (see Ref. 22 for a review), with A =
3 × 10−6 μ�cmK−2 for Li,23,24 and an order of magnitude
smaller values for K and Na.22,25,26 Based on the assumption
that the Coulomb repulsion is the only interaction between
electrons, Lawrence and Wilkins27 calculated values in the
range from 10−8 to 10−10 μ�cmK−2 for the alkali metals.
MacDonald obtained similar values, and showed that the
dominant contribution to the T 2 term in the resistivity results
from phonon-mediated interactions.28,29 A value several orders

of magnitude higher, A = 0.02 μ�cmK−2, was observed for
stoichiometric TiS2,30 and the resistivity of Ti1+xS2 as a
function of carrier concentration was observed to follow the
relation n−5/3T 2 in agreement with the theoretical expressions
in Ref. 27.

In 1968, M. J. Rice pointed out21 that the coefficient A

should vary predominantly as the square of the linear electronic
specific heat coefficient γ ; in particular, he showed that the
experimental data of elemental 3d, 4d, and 5d transition metals
satisfy the relation A/γ 2 = 4 × 10−7 μ�cm(moleK/mJ)2.
Heavy-fermion compounds are characterized by very large
values of A and γ . Kadowaki and Woods31 summarized the
situation by showing that A/γ 2 in this group of materials is
a factor ∼25 larger than in aforementioned data of elemental
transition metals. According to the theory of electron-electron
scattering,20,21,27,32 the ratio A/γ 2 contains indeed several
nonuniversal factors, including the square of the strength of
the effective electron-electron interaction. Since, in general,
the interactions differ in nature from one group of materials to
another, the same values of A/γ 2 are only expected within
a particular group. The carrier density constitutes another
nonuniversal factor, which is particularly significant for doped
semiconductors in view of their tunable carrier density.
Hussey9 proposed therefore a rescaling of the Kadowaki-
Woods plot to account for, among other factors, variations in
carrier density, and demonstrated that this notion is supported
by the strong doping dependence of A and γ in hole-doped
LaTiO3.

Here, we return to the possibility that the T 2 resistivity in
n-type SrTiO3 could be a consequence of a quasinonretarded
interaction between dressed quasiparticles. The A coefficients
of SrTi1−xNbxO3, a few examples of which are listed in
Table II, are large. Since, as has been demonstrated by
Thompson,30 A ∝ n−5/3, this is a natural consequence of the
low carrier density. For example, SrTi0.98Nb0.02O3 has a carrier
density n = 3.4 × 1020 cm−1, while lithium n = 4.7 × 1022

cm−1. If we assume that everything else is the same for these
two materials, the A coefficient of SrTi0.98Nb0.02O3 should be
4000 times larger than the one of Li. In reality, they differ by
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a factor of 8000, hence from this perspective, the strength of
the quasiparticle-quasiparticle scattering in SrTi1−xNbxO3 is
not drastically different from that in lithium.

An obvious source of interaction in doped SrTiO3 is
provided by the overlap of the screening clouds surrounding
the electrons provided by the interaction with the lattice. The
main phonons involved in this screening are optical ones,
with the important consequence that their energy exceeds the
Fermi energy for the doping levels where superconductivity is
observed. The polaron-polaron interaction mediated by these
phonons is then effectively nonretarded, an unconventional
aspect, which we consider to be crucial for the observed
T 2 dependence of the relaxation rate. The effective electron-
electron interactions can also lead to the formation of Cooper
pairs. Based on our analysis of the T 2 relaxation rate and
of the superconducting transition temperatures, we obtain an
interaction of weak-to-moderate strength, making implausible
scenarios where a substantial fraction of the charge carriers is
paired in the normal state.

II. TRANSPORT PROPERTIES

In Fig. 1, the transport data of SrTi1−xNbxO3 with
different carrier concentrations are shown as a function of
temperature.33 Hall data are presented as RH,0/RH (T ), where
RH,0 represents the zero-temperature limit, for which the Hall
charge carrier densities per unit cell xH = −a3/(eRH,0) are
0.105, 0.196, 0.870, and 2.00%, which is within 12% of
aforementioned Nb concentrations specified by the supplier. At
4 K, we observe fairly high mobilities in the range from 400 to
6 000 cm2/Vs, which drop gradually as a function of increasing
temperature to approximately 6 cm2/Vs at room temperature.
These high mobilities at cryogenic temperatures constitute
the first indication that n-type SrTiO3 is a clean Fermi
liquid of mobile charge carriers. Concentrating now on the
temperature-dependent properties, we take a closer look at the
inverse Hall constants. First of all, we notice that the sensitivity
to temperature changes diminishes for increasing carrier
concentrations. We consider the possibility that the system has
multiple electron-type bands. The effective Hall density nH =
−e/RH of a multiband-band system with a carrier density n

and fractional occupation of the jth band xj with mobility μj is
given by the expression nH /n = (

∑
j xjμj )2/(

∑
j xjμ

2
j ) � 1.

The limiting case nH /n = 1 occurs when only one band is
occupied, or/and if μj is independent of j . In all other cases,
nH /n < 1. The temperature dependence is well illustrated by
the case where at T = 0 only one band is occupied (x1 = 1).
Increasing temperature makes xj > 0 for j � 2 and x1 < 1,
consequently, nH/n is reduced. When two or more bands
are already occupied at T = 0, the relative change in the
occupation number as a function of temperature is weaker
and consequently nH will be less temperature dependent.
In Ref. 34, a weak temperature-dependent decrease of the
Drude spectral weight, ω2

p, was reported for temperatures
higher than 100 K. A gradual temperature-induced transfer
of part of the electrons to states with a higher effective mass
(and consequently lower mobility) then provides a natural
explanation for both phenomena: the temperature induces a
decrease of ω2

p because it is inversely proportional to the mass,
and an increase of RH .

FIG. 1. (Color online) Temperature dependence of the resistivity,
the inverse Hall constant, and the mobility of SrTi1−xNbxO3 for
different carrier concentrations.

The resistivities have a small residual component. The
values for ρ0 were determined by fitting the data below 15 K
to a constant plus a power law, and these values of ρ0 are used
in the remainder of the analysis. The inset of Fig. 1 shows
the resistivity, from which the residual component has been
subtracted, on a double log scale, indicating a power-law-like
increase as a function of temperature. For further analysis, it is
useful to convert the resistivities to relaxation rates using the
expression

ρ(T ) = 4π

ω2
pτ

. (1)

For ω2
p, we substitute the values measured with time-domain

infrared spectroscopy on the same set of samples.34 The
residual relaxation rate turns out to be proportional to x.
Since x is just the density of Nb4+ ions, and these ions act as
scattering centers, this (near) proportionality of scatttering to
Nb concentration is reasonable. In the following discussion,
we will focus on the behavior of h̄/τ below 100 K, where
both ω2

p and RH are independent of temperature. The
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TABLE I. First column: nominal doping. Second column: Hall
number in the zero-temperature limit. Third column: residual resis-
tivity. Fourth column: Drude plasma frequency. Column 5: residual
relaxation rate. Columns 6 to 8: fitting parameters of the temperature-
dependent relaxation rate fitted to a power law and corresponding
variance.

ρ0 h̄ωp h̄/τ0 αη χ 2

xn xH μ�cm meV meV meV η meV2

0.001 0.0011 62.4 111 0.104 5.56 2.09 0.00044
0.002 0.0020 57.6 157 0.191 7.04 1.94 0.00044
0.010 0.0087 53.0 399 1.135 11.4 2.04 0.0039
0.020 0.020 41.8 562 1.776 10.5 2.25 0.0039

results of least-square fitting to the relation h̄/τ − h̄/τ0 =
αη(T/100K)η, summarized in Table I, clearly demonstrate
that the temperature dependence of the resistivity up to 100 K
follows closely a T 2 power law. With this in mind, we fitted a2

in the expression h̄/τ − h̄/τ0 = a2T
2, which values are listed

in Table II and the corresponding fits are displayed together
with h̄/τ in Fig. 2. Attempts to improve the fit in the 4–100 K
range by adding a T 3 term decreases χ2 and affects a2

somewhat. However, the prefactor of the T 3 term is negative
for x = 0.009, hence a T 3 term below 100 K gives unphysical
results and should be dropped, with only possible exception
the x = 0.02 sample. The difference between the data and
the fit is constant up to 100 K and grows rapidly at higher
temperature, indicating that an additional component to the
resistivity becomes active at that temperature. Such behavior
is consistent with aforementioned interpretation of Hall data
and spectral weight data, namely, if electrons are transferred
to lower mobility states, the resistivity will deflect upward
from the trend observed at lower temperatures. We will return
to this issue in the discussion of the mean free path in Sec. V.

III. BAND STRUCTURE

SrTiO3 has a cubic crystal structure at room temperature,
which becomes tetragonal below a structural phase transition
at 105 K. A 3-eV gap separates the filled oxygen 2p bands
from the empty Ti 3d bands.35,36 In Refs. 13,34, and 37,

TABLE II. First column: Hall numbers rounded off to one
significant digit, used in Figs. 2 and 7 to label the samples. Second
and third columns: fitting parameters and variance of the temperature-
dependent relaxation rate to a T 2 law. Fitting curves corresponding
to a2 are compared to the experimental data in Fig. 2. Columns 4
to 6: fitting parameters and variance of the temperature-dependent
relaxation rate to a T 2 + T 3 dependence. Column 7: the A coefficient
in the relation ρ = ρ0 + AT 2. The values of h̄/τ0 are those of
Table I.

a2 χ 2 a′
2 a3 χ 2 A

x μeVK−2 meV2 μeVK−2 neVK−3 meV2 μ�cmK−2

0.001 0.55 0.0020 0.49 0.6 0.0003 0.33
0.002 0.71 0.0019 0.76 −0.6 0.0006 0.21
0.009 1.13 0.0058 1.08 0.6 0.0047 0.053
0.02 1.00 0.0445 0.72 3.3 0.0076 0.024

FIG. 2. (Color online) Temperature-dependent relaxation rates of
SrTi1−xNbxO3 for four different carrier concentrations, using the re-
lation ρ(T ) = 4πω−2

p τ−1. Plasma frequencies, ωp , are obtained from
the Drude spectral weight measured with infrared spectroscopy34

and listed in Table II. Inset: difference between experimental data
and fitted curve, χ (T ) = h̄/τ (T ) − h̄/τfit(T ), demonstrating upward
departure from T 2 behavior of the resistivity above 100 K.

we compared experiments to ab initio band calculations, the
details of which have not been presented in the literature.
In the present article, we make again extensive use of
the same ab initio data. Since there are some differences
compared to previously published band-structure calcula-
tions, the ab initio calculations are presented here in some
detail.

First-principles calculations were performed using the
linear augmented plane wave method as implemented in the
WIEN2K code38 and the generalized gradient approximation
for the exchange-correlation potential in the form proposed
by Perdew and coworkers39 (see Appendix A). A detailed
view of the band structure around the zone center is shown
in Fig. 3. In this limited region of k space, the band structure
can be effectively described by a tight-binding model within
the t2g manifold of the Ti-3d states. The main aspects of the
band structure are described by Bloch waves of dxy , dyz, or
dzx character, each of which has two directions of strong
dispersion (kx and ky for the dxy orbital, etc.) and one slowly-
dispersing direction orthogonal to these. The result is a set
of three degenerate bands. The Fermi surface consists of three
interpenetrating ellipsoids centered at the zone center, with the
ellipsoids oriented along the x, y, and z axes of the reciprocal
lattice of the cubic crystal structure. This zone-center degener-
acy is, however, lifted by the spin-orbit interaction. In the cubic
phase, this results in two degenerate spin-orbit doublets at the
lowest energy and an additional doublet at 29.2 meV higher
energy. This splitting equals 1.5ξ , where ξ = 18.8 meV is
the spin-orbit parameter, somewhat smaller than ξ = 25 meV
used by Mattheiss. In the low-temperature tetragonal phase,
the crystal field D = 2.2 meV lifts the degeneracy between
the two doublets causing a splitting of 4.3 meV. The result
is the following set of bands having their minimum energy at
the zone center: the lowest “heavy-electron” band consists of
states carrying angular momentum mj = ±3/2(1 − δ), where
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FIG. 3. (Color online) Band dispersion of the lowest unoccupied
bands of SrTiO3 in the low-temperature tetragonal phase. The
directions in momentum space are labeled according to the high-
temperature cubic Brillouin zone, so that [1,0,0] corresponds to
momentum along the Ti-O bond direction. The rightmost panel
indicates the position of the Fermi energy as a function of carrier
concentration. xc1 = 4.0 × 10−5 and xc2 = 2.6 × 10−3 are critical
carrier concentrations where the Fermi energy enters the second and
the third bands.

δ ∝ D2/ξ 2. While the band disperses upward rather sharply
at the zone center, it is deflected downward at |�k| ≈ 0.1/a

for momentum along the Ti-O bond. The second band is a
“light-electron” band, which becomes occupied at the critical
carrier concentration xc1 = 4.0 × 10−5. Its dispersion is to a
good approximation an isotropic parabola, and these bands
have the peculiarity that the gyromagnetic factor gj = 0 due a
compensation of orbital (gl = 1,ml = ±1) and spin magnetic
moment (gs = 2,ms = ±1/2). The third band is also a light-
electron band, which becomes occupied at the critical carrier
concentration xc2 = 2.6 × 10−3 (n = 4.4 × 1019cm−3). An
experimental indication for this critical carrier concentration
comes form the observation by Binnig et al.4 of an additional
superconducting gap of smaller size than the main gap for
doping concentrations in excess of 5 × 1019 cm−3, using
tunneling spectroscopy.

The most significant differences between the results pre-
sented here and Matheiss’ results40 are the much smaller
crystal-field parameter D = 2.2 meV obtained here as com-
pared to D = −33 meV obtained from a tight-binding fit to
Matheiss’ bands, and the fact that the sign is opposite. The
resulting Fermi surface of the lowest band is therefore quite
different; in the present calculation, it is in fact similar to
Fermi surface of the cubic phase shown in Fig. 4 (taking
2% doping), and has six arms extending along [100], [010],
and [001] directions. The arms along the z axis are slightly
longer than those along x and y, but on the scale of Fig. 4
this is not a perceptible difference. In contrast, Mattheiss’s
Fermi surfaces (see Fig. 6 of Ref. 40) have four arms along
[100] and [010] and none along [001]. Gregory et al.41 studied
samples with electron density 6 × 1018 cm−3, corresponding
to x = 3.6 × 10−4. Due to the large crystal-field splitting,

FIG. 4. (Color online) Fermi surface of the high-temperature
cubic phase at 2% doping, showing the large anisotropy of the lowest
band. At the critical doping xc = 0.097, a topological transition takes
place where the Fermi surfaces open up along the three axes.

the Fermi level in Mattheiss’s calculation is then still below
the second band. Yet Gregory et al. observed low-frequency
quantum oscillations with frequencies 40 and 45 T. The
weak field-orientation dependence indicated that these are
associated with rather isotropic Fermi surfaces, which they
associated with the light-electron band. To have this band
occupied, they postulated that Mattheiss’ estimate of the
splitting of the two lowest bands introduced by the tetragonal
distortion needed to be revised downward. Looking now at
our calculation, we notice that, since x = 3.6 × 10−4 > xc1,
the light-electron band is indeed occupied for this doping level.
As shown in Fig. 5, the diameter of the second Fermi surface is
practically independent of direction for this low doping range

FIG. 5. (Color online) Enlarged view of Fig. 3 indicating the po-
sition of the Fermi level for x = 3.6 × 10−4 charge carriers. The cor-
responding value ka = 0.134 is in excellent agreement with the
hitherto unexplained de Haas-van Alphen frequency reported by
Gregory et al.41
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with a radius k = 0.134/a = 3.54 × 106 cm−1 and extremal
area A = 3.95 × 1013 cm−2. Using the Onsager relation F =
Ah̄/(2πe), the corresponding quantum oscillation frequency
is 41 T. Since these samples consisted of many domains with
different orientation of the tetragonal axis, a doublet due to the
anisotropy is expected and observed. It thus appears that the
ab initio band structure settles an old conundrum regarding
the quantum oscillations of n-type SrTiO3.

IV. MASS RENORMALIZATION INDUCED BY
ELECTRON-PHONON COUPLING

In Ref. 34, we compared the Drude spectral weight to the
same quantity calculated using LDA. The expression for the
spectral weight along the xj axis is

ω2
p,b,j = 4πe2

h̄2V

∑
kνσ

f (εkνσ )
∂2εk

∂k2
j

, (2)

where the sum is over momentum, band index, and spin and
f (ε) is the Fermi-Dirac distribution. The index b in ωp,b,j

refers to the fact that, since the LDA calculation does not
take into account electron-phonon interaction, it calculates
the bare mass. The ratio ω2

p,b,j /ω
2
p,e,j , where ω2

p,e,j is the
experimental Drude spectral weight, then corresponds to the
mass renormalization factor m∗/mb. This procedure was
followed in Ref. 34. Since the linear term of the specific
heat is a direct measure of the density of states at the Fermi

energy, γ = k2
Bπ2

3 NF , the ratio γe/γb of the experimental over
the LDA value provides a second way to measure the mass
enhancement. In Fig. 6, the LDA calculation of the DOS at εF

is plotted as a function of doping, together with values obtained
from experimental specific heat data. Clearly, the DOS as given
by experiments is about a factor of two higher than the LDA
prediction. The corresponding mass enhancement together
with the results of the other two methods are summarized
in Fig. 6. The verdict is clear: there is a factor of two to three
mass enhancement with a tendency to become smaller for
higher doping. Electron-phonon coupling is the only plausible
suspect for the enhancement. Indeed, recent calculations
confirm this;13 based on the Fröhlich interaction, the essential
characteristics of the observed optical conductivity spectra of
SrTi1−xNbxO3, in particular, intensity, line shape, and energy
of a peak at 130 meV, were explained without any adjustment
of material parameters. The electron-phonon coupling constant
was found to be of intermediate strength.

For the correct understanding of the peculiar temperature
dependence, it is important to find out whether or not the charge
carriers are to a good approximation described by Bloch waves.
This corresponds to the requirement that the mean-free path
at the Fermi-level, l = v∗

F τ is much bigger than the Fermi
wavelength, in other words, v∗

F τ � 2π/kF . Multiplying both
sides of the expression with kF /2, we obtain ε∗

Fh̄−1τ � π ,
where ε∗

F /εF = v∗
F /vF = mb/m∗. In the previous section, we

have obtained the doping dependence of εF . Combining this
with the m∗ of Fig. 6 and h̄/τ of Fig. 2, we obtain kF l as
a function of temperature for different dopings, shown in
Fig. 7. We see from this graph that at 4 K, the electrons
are strongly Bloch like. At low temperatures, the largest kF l

occurs for the lowest carrier concentration. This is expected

FIG. 6. (Color online) Top panel: doping dependence of the
density of states (DOS) at the Fermi energy. The solid curve
corresponds to the tight-binding band structure fitted to the WIEN2K

ab initio band structure, with parameters of the first row of Table IV.
Squares,42 circles,33,43 pentagon:44 density of states obtained from
the linear term in the specific heat. Middle panel: doping dependence
of the Drude spectral weight, ω2

p . The solid curve corresponds to
the band-structure results. Diamonds are the experimental values.34

Bottom panel: (i) ratio of experimental DOS over band structure
DOS (experimental and theoretical values taken from top panel, the
meaning of the symbols is the same). (ii) Ratio of band structure
over experimental ω2

p (values taken from middle panel). (iii) Ratio of
bare and experimental (dressed) Fermi velocity, vF,b/vF,e (triangle,
data from Ref. 37). The grey curve is a smooth interpolation,
m∗/mb = 2.0 + 1.2 exp (−x/0.005).

since in these samples, the number of charge carriers is equal
to the number of Nb ions, which act both as donor atoms
and scattering potentials. The opposite trend occurs above the
isosbestic point (24 K, kF l = 33). While at 4 K we obtain
high values of kF l in the range from 40 to 150, at 100 K
we have kF l of the order 2π implying localization in Fermi-
wavelength-sized wave packets. In the low-temperature range,
it is therefore reasonable to extract interaction parameters
from the coefficients of the T 2 dependence of 1/τ . Above
approximately 100 K, the material enters into a regime of
incoherent transport. We therefore restrict the analysis of 1/τ

in Sec. V to temperatures below 100 K.
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FIG. 7. (Color online) The quantity kF l, where l is the mean free
path, calculated using kF l = 2ε∗

Fh̄−1τ , and using the experimental τ

of Fig. 2 and the calculated Fermi energies corrected by the mass
renormalization of Fig. 6. The high values of kF l below 100 K imply
the itinerant character of the charge carriers.

V. T 2 RELAXATION RATE AND TWO-BODY
INTERACTIONS

The low carrier density leads to a situation where the kinetic
energy of the charge carriers is slaved to the relevant vibrational
energy scale. The usual Migdal-Eliashberg expansion in the
electron-phonon coupling constant is therefore not applicable.
A different approach is required, whereby in first instance,
the electron-phonon coupling is treated for each individual
electron, resulting in charge carriers renormalized by electron-
phonon coupling, which condense into a Fermi-liquid of
“polarons.” The polarons interact with each other via the
Coulomb interaction and by virtual exchange of phonons.
With regards to optical phonons, the hierarchy of energy
scales is inverted as compared to the situation in common
metals, in that h̄ω > ε∗

F , where ω is the optical phonon
frequency and ε∗

F the Fermi energy of the polarons. While
it is clear that the Migdal-Eliashberg expansion can not be
used, the solution of the many-body problem in this limit is
a complicated problem, which we will not attempt to solve
here. Instead, we turn the problem around and anticipate that
the correct solution should share certain properties in common
with the problem of interacting composite fermions such as
3He. The essential properties should then be those of fermions
interacting through some effective interaction mediated by the
optical phonons, which on the scale of ε∗

F can be considered
effectively nonretarded. An immediate consequence is then a
T 2 contribution to the inelastic relaxation rate, resulting from
the phonon-mediated fermion-fermion interaction.27,28,45

The situation in SrTi1−xNbxO3 is more complicated than
in 3He in that the Fermi surface is crossed by three bands
for x > 2.6 × 10−3 and by two bands for 4.0 × 10−5 <

x < 2.6 × 10−3. However, we assume that the transport
and superconducting behavior are dominated by the most
highly occupied band, and use the single-band expressions
in Appendix B to derive the effective coupling constants.

If indeed the temperature dependence of the relaxation rate
is a manifestation of fermion-fermion scattering, it should

be possible to obtain from it a parameter characterizing the
interaction strength. The formalism has been elaborated in
the context of the observation of van Kempen et al. of a T 2

contribution in the resistivity of potassium.25 In particular, the
expression for the relaxation rate is (see Appendix B)

h̄

τ
= a2T

2, a2 = λ2
τ u

π3k2
B

ε∗
F

. (3)

The parameter u � 1 describes the fraction of the momentum
changes that is transferred to the ionic lattice.

The dimensionless parameter λτ represents the interaction
effective in polaron-polaron scattering. Since we have deter-
mined a2 and ε∗

F in the previous sections, we are ready to
calculate λ2

τ u using this expression. The result is shown in the
lower panel of Fig. 8. The trend of λτu

1/2 going to zero in

FIG. 8. (Color online) Top panel: Tc of a large number of samples.
Pentagons: data by Binnig et al.4 Circles: data by Koonce et al.3

Middle panel: coherence volume times the density of Cooper pairs.
The high value indicates that each pair is overlapping with a huge
number of other pairs. Lower panel: doping dependence of the
coupling constants λτ obtained from the T 2 term of the resistivity and
λ0 from Tc. Circles: λτ using a2 listed in the second column of Table II
and Eq. (3). Diamonds: idem using a′

2. Bars: coupling constants λ

from Tc at the corresponding carrier concentration of SrTi1−xNbxO3

using the Tc’s of the top panel and Eq. (C5), ε∗
F = εF mb/m∗ using εF

from Fig. 3 and m∗/mb from Fig. 6. Upper (lower) limits of the bars
indicate the value for g obtained with ωc = 5 meV (80 meV).
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the zero-doping limit may be a consequence of either λτ or
u diminishing in the low-doping limit, or a combination of
these two. As pointed out in Appendix B, several factors make
u 	= 0: (i) Baber scattering involving heavy and light electrons,
(ii) umklapp scattering, and/or (iii) disorder scattering by
donor atoms. Since for u → 0, (i) the mass anisotropy (see
Sec. III), (ii) the probability of intrapocket umklapp, and
(iii) the impurity scattering 1/τ0 (see Table I) all vanish,
we may expect u → 0 in this limit. Since we will see in
the following section that the polaron-polaron interaction
as calculated from Tc is almost independent of doping, we
tentatively attribute the observed doping dependence of λ2

τ u to
a suppression of u for low doping.

VI. SUPERCONDUCTIVITY

Superconductivity is observed in n-type SrTiO3, with a
dome-shaped Tc between 0 and 0.02 electrons per SrTiO3

formula unit,3 with maximum values of about 0.7 K when
doped with Nb.4 This doping dependence and the Tc itself
are relatively robust features of the doped three-dimensional
bulk materials as well as the two-dimensional SrTiO3/LaAlO3

interfaces.5,6 Superconductivity in doped bulk SrTiO3 has been
anticipated by M. L. Cohen on the basis of an attractive
electron-electron interaction arising from the exchange of
intravalley and intervalley phonons46 and motivated by early
band calculations47 indicating a many-valley band structure
in SrTiO3. The intervalley mechanism has been further
elaborated in the context of SrTiO3 in a number of papers.48–50

However, over the years, evidence has been accumulating that
all bands are at the center of the Brillouin zone. Several
alternative mechanisms not involving a multivalley band
structure have been proposed, to mention a few: (i) J. Appel51

noticed that the Brillouin-zone folding associated with the
tetragonal distortion creates two bands of zone-folded optical
phonons with a quasiaccoustic dispersion at the zone center.
One of these bands has a finite matrix element for intravalley
scattering and can therefore, in principle, mediate supercon-
ducting pairing. (ii) Z. Zinamon, while maintaining Appel’s
idea of soft phonon exchange, argued that the relevant charge
carriers are small polarons, and proposed a theoretical model
relevant for this limit.52 (iii) T. Jarlborg has demonstrated
by electronic structure calculations that the electron-phonon
coupling is enhanced for long-wavelength phonon mode
despite the low density of states, which is consistent with
the appearance of superconductivity at low doping.53 We see
that the mechanism for pairing in this material is far from
clear. We therefore adopt here a phenomenological approach,
whereby we deduct the coupling constant characterizing
pairing interaction from the experimental Tc’s and compare
it to the coupling constant obtained from the transport data.
While this approach does not solve the question as to the exact
nature of the phonon-mediated interaction, it does allow to
establish whether superconductivity and transport properties
can be treated in a unified approach of an interacting Fermi
liquid.

One of the consequences of the Fermi energy being smaller
than the relevant phonon energy ωc is that the energy cutoff of
the pairing interaction is given by ε∗

F on the occupied side of
the Fermi level, while it is given by ωc on the unoccupied side.

This introduces a dependence of Tc on ε∗
F , which may in part be

responsible for the decrease of Tc for x → 0. A more detailed
discussion of the consequences in the limit of weak coupling
(Tc � TF , as is the case in all samples that we discuss here) is
provided in Appendix C. Before we set out to discuss this, it is
important to establish whether the superconductivity is closer
to the BCS limit, or to the limit of Bose-Einstein condensation
of bipolarons. The latter has been proposed for low carrier
concentrations (n < 1018 cm−3) in Zr-doped SrTiO3

49 and for
the high-Tc cuprates.55 One way to investigate this question
is by estimating with how many other pairs each Cooper pair
overlaps. In the Bose-Einstein condensate (BEC) limit, there is
essentially no overlap, whereas in a BCS superconductor it is
given by the volume occupied by a pair divided by the available
volume. The former is just (4π/3)ξ 3

0 , where ξ0 = h̄vF /π�0,
and the latter is 2/n, where n is the electron density. Using
standard relations between density and Fermi energy we obtain

V (occupied)

V (available)
= 4

9π4

(
ε∗
F

�0

)3

. (4)

Binnig et al.4 have observed gap values close to �0/kBTc =
1.76 in their tunneling spectra for exactly the data in Fig. 8,
hence we can use this substitution for �0. The result is
shown in the middle panel of Fig. 8 in a broad doping
range using data collected by Koonce et al.3 and Binnig
et al.4 Ipso facto, each Cooper pair overlaps with 105 to 1010

others, which places these superconductors clearly outside the
realm of Bose-Einstein condensation for the range of carrier
concentrations considered here. Substituting in Eq. (C5) of
Appendix C, the values of Tc and the value of ε∗

F discussed
in Sec. IV, we calculate the corresponding coupling constant
λ0 for the pairing interaction. Since we lack certainty about
the nature and frequency of the phonons causing the pairing
interaction, we have substituted two extremal values for the
vibrational cutof energy in the gap equation: ωc = 5 and
80 meV. The resulting uncertainty of λ0 is not very large; for
all dopings, we find 0.1 < λ0 < 0.2 with negligible doping
dependence. The results are shown in Fig. 8 together with
λτu

1/2. The different doping dependence of λ0 and λτu
1/2 has

a simple explanation in that we expect the parameter u to
vanish for x → 0.

VII. LANDAU PARAMETERS

In principle, we want to determine the full set of relevant
Landau parameters, either in the form A

j

l or as F
j

l . However,
even while we have assumed that the only relevant angular
momentum values are l = 0,1, there are still four parameters.
Until now, we have determined two quantities that depend
on them, namely, λ0 and λτu

1/2. The first question concerns
the symmetry of the pairing itself: the expression relating the
superconducting coupling constant to the Landau parameters
is different for singlet and triplet pairings, so one has to
make a choice as to whether one assumes triplet or singlet
superconductivity. Triplet pairing can be excluded because
the only available mechanism in the present case is electron-
phonon coupling. The second question concerns the value of
u. In the previous section, we attributed the suppression of
λτu

1/2 as x → 0 to the suppression of the momentum transfer
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to the ionic lattice. Vice versa, in Fig. 8, we see that λτu
1/2 has

saturated for x > 0.2. The accuracy with which the Umklapp
fraction can be calculated is probably within a factor of two,
even in the alkali metals, which are relatively simple due to
the nearly free electron character.22,56 We make the simplest
possible assumption that u ≈ 1, implying that for the higher
doping levels λτ ≈ 0.4. We will base the analysis of the Landau
parameters on this value. With four parameters to determine
and two experimental constraints, we need two additional
pieces of information. One of them is supplied by the sum rule
for the Landau parameters derived by Brinkman, Platzman,
and Rice57 (BPR sum rule) for charged fermions, which for
the sp model implies

As
1 + Aa

0 + Aa
1 = −1. (5)

We are still one constraint short. One might hope to find
such a constraint in, for example, the mass enhancement
measured with specific heat. The problem is, however, that
one needs to compare the values of the electronic specific
heat with and without polaron-polaron interactions. Since the
mass of a polaron is already enhanced compared to the bare
band mass by a factor of two approximately, to extract the
contribution of polaron-polaron interactions, especially if it is
much smaller than one as it turns out to be the case here,
is difficult and at the present state of affairs not feasible.
We therefore calculated Aa

0, As
1, and Aa

1 as a function of As
0

FIG. 9. (Color online) Solutions for As
1, Aa

0, Aa
1, the triplet

superconducting coupling constant, and the mass enhancement as a
function of As

0 when taking the experimentally determined λτ = 0.38,
λ0 = 0.15, and the BPR sum rule as constraints assuming singlet
pairing for the ground state.

TABLE III. Ranges of the Landau parameters of SrTiO3 allowed
by the constraints imposed by the experimental data combined with
the BPR sum rule (2nd column, this work) and values of the same of
3He (3rd column, see Ref. 58, original data in Refs. 59 and 60).

SrTiO3
3He (1 atm)

Parameter singlet triplet

As
0 {−1.27; 1.0} 0.91

As
1 0.45 ± 0.25 2.0

Aa
0 −0.67 ± 0.22 −2.03

Aa
1 −0.62 ± 0.28 −0.55

while fixing the constraints imposed by λ0 = 0.15 through
Eq. (C4) by λτ = 0.4 through Eq. (B7) and the sum rule (5).
The parameter As

0 is varied in the range of positive mass
enhancement (m∗/m − 1 = F s

1 /3 > 0), and positive com-
pressibility [κb/κ = (1 − As

0)m∗/m > 0, where κb is the bare
value]. Since we assume that the pairing symmetry is of the
singlet variety, we only consider the solutions for λ0 > λ1. The
result shown in Fig. 9 allows to determine all parameters once
the value of As

0 has been set. The difference Aa
1 − Aa

0 represents
an exchange interaction, which tends to align spins parallel
for positive values. Its value increases for As

0 → −1.27.
Correspondingly, for −1.27 < As

0 < −1.15, an alternative set
of solutions is obtained corresponding to triplet pairing (not
displayed in the figure), which, as already pointed out above,
we reject on theoretical grounds.

Even with this broad range of possibilities for As
0 allowed by

the experimental constraints, the windows for Aa
0, As

1, and Aa
1

are limited. In Table III, we compare all parameters discussed
here to the case of 3He at ambient pressure. We see that the
values for SrTiO3 are of the same order but smaller than in
liquid 3He. The fact that we obtain “reasonable,” i.e., not
excessively large or small numbers, of the Landau parameters
gives further support to the notion that that n-type SrTiO3

is a Landau Fermi liquid, and superconductivity and the T 2

resistivity in this compound have a common origin.

VIII. CONCLUSIONS

We have performed a detailed analysis of the T 2 behavior
of the resistivity of n-type SrTiO3. Band-structure data are
presented, and it is shown that the band structure solves
an old conundrum of the de Haas-van Alphen frequencies
dating from 1977. The mass, density of states, and plasma
frequency of the quasiparticles are found to be renormalized
by approximately a factor of two due to electron-phonon
interaction. The quasiparticles turn out to be in the antiadi-
abatic limit with respect to electron-phonon interaction with
a quasi-instantaneous interaction mediated through phonons.
Analysis of the T 2 resistivity and Tc provides values of the
Landau parameters of n-type SrTiO3 that are comparable in
size to those of liquid 3He.
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APPENDIX A: BAND STRUCTURE

Calculations have been performed in the high-temperature
perovskite (HTP) structure (a = 3.905 Å) as well as in the
low-temperature tetragonal (LTT) structure (group No. 140,
I4/mcm, a = 5.529 Å, c = 7.824 Å, Ox = 0.244); optimiz-
ing the O position in the calculations yields Ox = 0.223,

indicating, not surprisingly, that even zero-point fluctuations
substantially reduce the average distortion. Nb doping was
simulated in the virtual crystal approximation, changing the
nuclear charge of Ti from 22 to 22 + x, or that of Sr from 38
to 38 + x (the results did not change, proving that this is a
good approximation in the considered range of dopings).

Most calculations were performed with RKmax = 7 for the
wave-function expansion, and RGmax = 14 for the charge-
density expansion; calculations with RKmax = 8 and RGmax =
16 did not show a discernible difference. Fermi-surface
integrals were evaluated using the k-point meshes up to
28 × 28 × 28. The plasma frequencies were evaluated as the
Fermi-surface averages of the squared Fermi velocities. The
Fermi velocities were calculated using the WIEN2K optics
package; accuracy of the Fermi velocities was tested (in
the cubic case) by numerical differentiation of the energy
eigenvalues.

For many calculations of physical properties it is useful to
have an integration in momentum space, which is rapid. We
therefore used a parametrization of the ab initio band structure
of the t2g manifold in the region around the zone center, based
on the following tight-binding model:

ε�k,j = 4tπ
∑
i 	=j

sin2

(
kia

2

)
+ 4tδ sin2

(
kja

2

)
,

(A1)

Hk =
⎛
⎝ε�k,1 0 0

0 ε�k,2 0
0 0 ε�k,3

⎞
⎠ + 1

2

⎛
⎝2D ξ ξ

ξ 2D ξ

ξ ξ −4D

⎞
⎠ ,

with the corresponding parameters given in Table IV.

APPENDIX B: LANDAU PARAMETERS

In the Landau-Fermi liquid theory of interacting fermions,
the bare interaction is expressed in terms of the dimensionless

Landau parameters F
j

l , where the index l indicates the angular
momentum and j the parity of the scattering process. The mass
renormalization depends only on F s

1 :

λγ = m∗

m
− 1 = F s

1

3
. (B1)

The specific heat is renormalized by the same factor as the
effective mass. The interaction between dressed quasiparticles,

A
j

l = F
j

l

1 + F
j

l /(2l + 1)
, (B2)

is important for scattering between quasiparticles and consti-
tutes the pairing interaction for superconductivity. Following
Dy and Pethick,61 we limit the scattering processes to the
l = 0 and 1 values in the spherical expansion of the scattering
amplitudes (the so-called s-p approximation):

As(θ,φ) = 1

NF

[(
As

0 − 3Aa
0

) + (
As

1 − 3Aa
1

)
cos θ

]
,

(B3)

At (θ,φ) = 1

NF

[(
As

0 + Aa
0

) + (
As

1 + Aa
1

)
cos θ

]
cos φ,

where NF = m∗kF /(π2h̄2) is the density of states at the Fermi
level and the angles θ and φ represent the kinematics of
the scattering events. The relevant quantity in the theory of
inelastic scattering is the transition probability W (θ,φ),32,58

W (θ,φ) = π

4h̄
[As(θ,φ) + At (θ,φ)]2 + π

2h̄
At (θ,φ)2. (B4)

Due to collisions between quasiparticles, the relaxation rate of
the dressed quasiparticles has a T 2 temperature dependence,
which is the most characteristic property of a Landau Fermi
liquid. We will follow here the approach of Lawrence and
Wilkins.27,28,45 These authors define a surface-averaged relax-
ation rate for an electron at the Fermi surface,63 and derive the
relation between τ and W (θ,φ):

1

τ
= (m∗)3(kBT )2u

12π2h̄6

〈
W (θ,φ)

cos (θ/2)

〉
, (B5)

where the dimensionless coefficient u < 1 represents the
efficiency of momentum transfer to the ionic lattice of the
relaxation process. In a translationally invariant system of
interacting electrons, u = 0 because the current operator com-
mutes with the Hamiltonian of such a system. However, the fact
that a solid does not possess full translational symmetry has
important consequences. Already in 1937, Baber demonstrated
a mechanism for finite resistivity in a two-band model in which
s electrons are scattered from heavier d holes by a screened
Coulomb interaction.20 The Baber mechanism works more
generally for a system of light and heavy electrons with the
heavy particles acting as momentum sinks, and, as pointed
out by Giamarchi and Shastry, similar results are expected
for typical, noncircular bands.62 This last point is relevant to
the case of SrTiO3 in view of the strong k dependence of the
mass across the Fermi surface (see Fig. 4). In single band
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metals, umklapp processes allow momentum transfer to the
crystal coordinate system.27 Likewise, the potential landscape
caused by impurities (for example, the donor and/or acceptor
atoms in doped semiconductors) provides a channel by which
momentum gets transferred to the ionic lattice in electron-
electron collisions. References, 27,45 and 28 concentrated on
alkali metals, and therefore did not take into account Baber
scattering. They used the symbol � for the umklapp fraction.
To avoid confusion with the superconducting gap, we indicate
here the fraction of momentum in electron-electron collisions
transferred to the ionic lattice due to umklapp and other
mechanisms with the character u. Integration of the angular
integrals in Eq. (B5) is straightforward though tedious, with
the result 〈

W (θ,φ)

cos (θ/2)

〉
= 12λ2

τ

π5h̄5

(m∗)3ε∗
F

, (B6)

where

12λ2
τ = 7

24

(
As

1

)2 + 49

40

(
Aa

1

)2 − 7

20
As

1A
a
1 + 5

8

(
As

0

)2

+ 21

8

(
Aa

0

)2 − 3

4
As

0A
a
0 − 5

12
As

0A
s
1 − 7

4
Aa

0A
a
1

+ 1

4
As

0A
a
1 + 1

4
Aa

0A
s
1. (B7)

If As
1 is the only nonzero parameter, we obtain λγ /(1 +

λγ ) = 4/3λ0 = 4
√

2/7λτ . Finally, by substituting Eq. (B6)
in Eq. (B5), we obtain

h̄

τ
= π

ε∗
F

λ2
τ u(πkBT )2. (B8)

This is the central expression enabling extraction of λ2
τ u from

the experimental values of the amplitude of the T 2 term in the
resistivity.

APPENDIX C: Tc EQUATION

The gap equation for an isotropic gap is

1 =
∫ ∞

−∞
dε

N (ε)V (ε)

2
√

(ε − μ)2 + �2
tanh

[
(ε − μ)2 + �2

2kBT

]
. (C1)

The chemical potential μ(Tc) is to be determined at the critical
temperature by adjusting it such as to fix the number of
electrons:∫ ∞

0
N (ε)

1

1 + eβc(ε−μ)
dε =

∫ ε∗
F

0
N (ε)dε.

As it turns out to be the case for the data considered in the
present paper, kBTc � ε∗

F ; consequently, the output of the self-
consistent solution is μ(Tc) ≈ ε∗

F . The critical temperature is
obtained by solving the gap equation for � = 0. In the present
case, the bottom of the band constitutes the lower limit of the
integral over the density of states. We define it as the zero of
energy, so that

1 =
∫ ∞

0
dεN (ε)V (ε)

tanh[βc(ε − μ)/2]

2(ε − μ)
dε, (C2)

where kBTc = 1/βc. The usual approximation for the retarded
interaction consists of substituting N (ε)V (ε) = λ for |ε −
μ| < ωc, where ωc is cutoff energy of the pairing interaction,
and taking λ = 0 for |ε − μ| > ωc. The expression for Tc is
then

kBTc,j = 1.13ωc exp

(−1

λj

)
, (C3)

where ωc is the cutoff energy of the pairing interaction, and
the coupling constants for the l = 0 (singlet) and l = 1 (triplet)
pairing channels are64

λ0 = 1

4

(
As

1 − As
0

) + 3

4

(
Aa

0 − Aa
1

)
,

(C4)

λ1 = 1

12

(
As

1 − As
0

) − 1

12

(
Aa

0 − Aa
1

)
.

In the case of n-type SrTiO3, an interesting asymmetry is
introduced by the condition that the energy scale of the
phonons mediating the interaction is in the antiadiabatic limit:
we have μ < ωc. Since on the occupied side N (ε) = 0 for
−ωc < ε − μ < −μ, the region of finite N (ε)V (ε) is limited
to −μ < ε − μ < ωc. Another aspect to take into account is
that N (ε) = c

√
ε. We therefore define the dimensionless cou-

pling constant λ at μ through the relation N (ε)V (ε) = λ
√

ε/μ

and we make a transformation of variables x = βc(ε − μ). The
equation for Tc then becomes

1

λ
= 1√

βcμ

∫ βcωc

−βcμ

√
x + βcμ

tanh(x/2)

2x
dx, (C5)

which has the following solution in the weak-coupling limit
(λ < 1)

Tc = 0.612μ exp

(√
ωc

μ

)
exp

(−1

λ

)
. (C6)

The values for λ0 shown in Fig. 8 were obtained by solving
Eq. (C5) numerically, and agree within a 3% accuracy with
the weak-coupling expression (C6) for ωc = 80 meV.
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