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Abstract. Classically the interaction between light and matter is given by the Maxwell relations.
These are briefly reviewed and will be used as a basis to discuss several techniques that are
used in optical spectroscopy. We then discuss the quantum mechanical description of the optical
conductivity based on the Kubo formalism. This is used as a basis to understand how strong
correlation effects can be observed using optical techniques. We will discuss the use of sum rules
in the interpretation of optical experiments. Finally, we describe the effect of including interactions
between electronic and collective degrees of freedom on optical spectra.
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INTRODUCTION

We will discuss the physics of correlated electron systems from an experimental view-
point, focussing on optical spectroscopy. The interaction of light and matter will be dis-
cussed first from a classical point of view, based on the Maxwell equations. This review
will be the basis for a discussion of optical techniques that are most commonly used.
We will then continue with a discussion of the quantum mechanical description of the
interaction between light and matter, using the Kubo-formalism. We finally discuss the
application of sum rules to correlated systems and what happens when interactions, like
the electron-phonon interaction, become important. The first part of our review is not
meant to be complete. Readers with interest for further details are referred to references
[1] and [2]. In the following all fields, currents, charge densities etc. are implied to be
position and time dependent if not written explicitly. Bold quantities imply vectors or
matrices.



ELECTROMAGNETISM AND MATTER

Maxwell’s equations

We start this review with the microscopic Maxwell equations,

∇ · e = 4πρmicro, (1)

∇× e = −1
c

∂
∂ t

b, (2)

∇ ·b = 0, (3)

∇×b =
1
c

∂
∂ t

e+
4π
c

jmicro. (4)

Here e and b are the microscopic electric and magnetic fields respectively. ρmicro is the
total microscopic charge distribution and jmicro the total microscopic current distribution
(i.e. due to internal and external sources). Note that these equations are written in
the C.G.S. system of units. To convert them to S.I. units, simply replace 4π by 1/ε0.
The charge distribution for a collection of point sources with charge qi can be written
classically,

ρmicro = ∑
i

qiδ (r− ri), (5)

or quantum mechanically as,

ρmicro =−eΨ∗(r)Ψ(r). (6)

Equations (1-4) are not very practical to work with. As a first step we rewrite them in
a more familiar form. To do this we average the fields, charge and current distributions
over a volume ∆V ,

ρtotal(r) =
1

∆V

∫

∆V
ρmicro(r+ r′)d3r′, (7)

Jtotal(r) =
1

∆V

∫

∆V
Jmicro(r+ r′)d3r′, (8)

and similarly for e and b. This is a sensible procedure under the condition that a0 ¿
∆V ¿ (2πc/ω)3 where a0 is the Bohr radius. Using these averaged distributions we
arrive at the standard Maxwell equations in free space,

∇ ·Etotal(r, t) = 4πρtotal(r, t), (9)

∇×Etotal(r, t) = −1
c

∂
∂ t

Btotal(r, t), (10)

∇ ·Btotal(r, t) = 0, (11)

∇×Btotal(r, t) =
1
c

∂
∂ t

Etotal(r, t)+
4π
c

Jtotal(r, t). (12)

In order to see how matter interacts with propagating electromagnetic waves we have
to distinguish between induced and external sources. We write Jtotal ≡ Jext + Jind and



ρtotal ≡ ρext +ρind . Both the induced and external charge and current distributions have
to obey the continuity equations separately,

∇ ·Jind/ext +
∂
∂ t

ρind/ext = 0. (13)

We can distinguish three different types of macroscopic internal sources,

Jind = Jcond +
∂P
∂ t

+ c∇×M. (14)

The first term on the right hand side, Jcond , corresponds to the response of the free
charges. The second term is the current due to changes in the polarization state of the
system. Finally, we include a term representing a current due to magnetization. Note that
this last term is purely transversal (the divergence of a rotation is always zero) and so is
easy to distinguish from the other two terms. Since the induced free charge current due
to photons is necessarily transversal, ∇ ·Jcond = 0, we can use the continuity equations
to show that the induced free charge density has to be zero and as a consequence that the
total induced charge density

ρind =−∇ ·P. (15)

It is convenient to introduce new fields

D(r, t)≡ Eext(r, t)≡ E(r, t)+4πP(r, t), (16)
H(r, t)≡ B(r, t)−4πM(r, t), (17)

so that using equations (14-17) in equations (9) and (12) we find,

∇ ·D(r, t) = 4πρext(r, t), (18)

∇×H(r, t) =
1
c

∂
∂ t

D(r, t)+
4π
c

Jext(r, t)+
4π
c

Jcond(r, t). (19)

Linear Response Theory

In the spirit of linear response theory we assume that the response of polarization,
magnetization or current are linear in the applied fields:

P = χeE, (20)
M = χmH, (21)

J = σE. (22)

The electric and magnetic susceptibilities can be expressed in terms of a dielectric
function ε ′ = 1+4πχe and magnetic permittivity µ ′ = 1+4πχm. The dielectric function
is a response function that connects the external field Eext at position r and time t with
the field E at all other times and positions. So in general,

Eext(r, t) =
∫ t

−∞

∫
ε ′(r,r′, t, t ′)E(r′, t ′)d3r′dt ′. (23)



We will be mainly interested in the Fourier transform of ε ′ ≡ ε(q,ω) however. It is an
easy exercise to express the Maxwell equations in terms of q and ω which we leave to
the reader. We can use these definitions to once again rewrite the Maxwell equations in
the following form,

∇ · (ε ′E) = 4πρext , (24)

∇×E = −1
c

∂
∂ t

(µ ′)H, (25)

∇ ·µ ′H = 0, (26)

∇×H =
1
c

∂
∂ t

(ε ′E)+
4πσ

c
E. (27)

We are now in a position to study the response of a solid to an externally applied field or
light wave. For simplicity we assume that our solid is homogeneous so that ∇ε ′ = 0 and
∇µ ′ = 0. We can describe light waves by plane waves, i.e.

E(r, t) = E0ei(q¦r−ωt), (28)

B(r, t) = B0ei(q¦r−ωt). (29)

Using (29) on the right hand side of Faraday’s equation (10) and rearranging we find,

B =
c

iω
∇×E. (30)

If we now take the curl of this equation and use the fact that we can express M in terms
of B as (see equations (17) and (21)),

M =
µ ′−1−1

4π
B. (31)

we find that

∇×M =
µ ′−1−1

4π
∇×B =

c
iω

µ ′−1−1
4π

∇×∇×E

=
c

iω
µ ′−1−1

4π
(∇2E−∇(∇ ·E) =

cq2

iω
µ ′−1−1

4π
ET . (32)

Note that in this equation we are left with only the transversal field since the curl of a
curl is transverse. We give two further identities for completeness,

∂P
∂ t

=−iω
1− ε ′

4π
E, (33)

and,
Jcond = σE. (34)

Finally, we note that inside the solid ρext = Jext = 0. With this we have all the ingredients
to express equation (19) in terms of E and J. We split this equation in transversal and



longitudinal parts to find,

JT
ind(q,ω)

ET (q,ω)
≡ iω

4π
{1− ε ′(q,ω)− i4π

ω
σ(q,ω)− c2q2

ω2 (1− 1
µ(q,ω)

)}, (35)

JL
ind(q,ω)

EL(q,ω)
≡ iω

4π
{1− ε ′(q,ω)− i4π

ω
σ(q,ω)}. (36)

We can define a new dielectric function with longitudinal and transverse components
and write the previous equation in a more compact form,

JL,T
ind (q,ω)

EL,T (q,ω)
≡ iω

4π
{1− εL,T (q,ω)}. (37)

This new dielectric function ε is now a complex quantity: ε ≡ ε ′+ iε ′′ = ε ′+ i4πσ/ω .
Using the last relation we can also define a complex conductivity σ̂ ≡ σ ′+ iσ ′′ and it is
related to the dielectric function by,

σ̂ =
iω
4π

(1− ε). (38)

The real part of ε is often called the reactive part and the imaginary part the dissipative
part. The real and imaginary parts are also indicated with a subscript 1 and 2 instead of
(’) and (”).

Kramers-Kronig relations

A fundamental principle in physics is the principle of causality: an effect cannot
precede its cause. This principle provides us with a very useful relation between the
real and imaginary parts of a response function like the optical conductivity as we now
show. First we express the induced current due to an electric field in terms of a memory
function,

j(t) =
∫ t

−∞
M(t− t ′)E(t ′)dt ′. (39)

The memory function has the property that M(τ < 0) = 0. This is simply a restatement
of the causality principle: we switch on a driving force at time τ = 0 so before that time
there can be no current. We define the Fourier transform of M in equation (39) as,

σ̂(ω) =
∫ ∞

0
M(τ)eiωτdτ. (40)

To do the integral we change to the complex frequency plane, ω → z = ω1 + iω2. The
exponential in Eq. (40) now splits in a complex and real part,

σ̂(ω) =
∫ ∞

0
M(τ)eiω1τe−ω2τdτ. (41)



FIGURE 1. Contour used to derive the KK-relations.

The second exponent in this integral is bounded in the upper half plane for τ > 0 and
in the lower half plane for τ < 0, so that we can evaluate the integral in the upper half
plane since M(τ < 0) = 0. We use the contour shown in figure 1. Since all poles occur
on the real axis, the complete contour is zero,

∮
dz

σ̂(z)
z−ω

= 0. (42)

The integral along the large semi circle is also zero. So we are left with,

∫ ω−ε

−∞
dz

σ̂(z)
z−ω

+
∫ ∞

ω+ε
dz

σ̂(z)
z−ω

+
∫ 0

π
d(ω + εeiφ )

σ̂(ω + εeiφ )
εeiφ = 0. (43)

The first two integrals give the principle value of the integral for ε → 0,

P
∫ ∞

−∞
dω ′ σ̂(ω ′)

ω ′−ω
−πiσ̂(ω ′) = 0. (44)

From which the Kramers-Kronig relations follow,

σ1(ω) =
1
π

P
∫ ∞

−∞

σ2(ω ′)
ω ′−ω

dω ′, (45)

σ2(ω) = − 1
π

P
∫ ∞

−∞

σ1(ω ′)
ω ′−ω

dω ′. (46)

Using Im(M(τ)) = 0 we see that σ̂(−ω) = σ̂∗(ω), which implies that σ1(−ω) = σ1(ω)
and σ2(−ω) =−σ2(ω). These relations can be used to rewrite equations (45) and (46),

σ1(ω) =
2
π

P
∫ ∞

0

ω ′σ2(ω ′)
ω ′2−ω2 dω ′, (47)

σ2(ω) = −2ω
π

P
∫ ∞

0

σ1(ω ′)
ω ′2−ω2 dω ′. (48)



The relations (45) and (46) between the real and imaginary parts of the optical conduc-
tivity are examples of the general relations between real and imaginary parts of causal
response functions and they are referred to as Kramers-Kronig (KK) relations.

Polaritons

In this section we discuss the properties of electromagnetic waves propagating
through solids. Such a wave is called a polariton. A polariton is a photon dressed up
with the excitations that exist inside solids. For example one can have phonon-polaritons
which are photons dressed up with phonons. Although the solutions of the Maxwell
equations, i.e. the fields E and B, have the same form as before (Eq. (28) and (29))
they obey different dispersion relations as we will now see. As before we assume that
∇ε ′ = ∇µ ′ = 0 and that ρext = Jext = 0. Taking the curl of Eq. (25) we obtain for the
left-hand side,

∇×∇×E =−∇2ET , (49)

where the T indicates that we are left with a purely transverse field. We then use Eq. (27)
to work out the right-hand side of Eq. (25) and we obtain the wave equation,

∇2ET =
ε ′µ
c2

∂ 2ET

∂ t2 +
4πσ µ

c2
∂ET

∂ t
. (50)

From this wave equation we easily obtain the dispersion relation for polaritons travelling
through a solid by substituting Eq. (28),

µ(q,ω){ε ′(q,ω)+ i
4πσ(q,ω)

ω
}ω2 = µεLω2 = q2c2. (51)

The dispersion relation for longitudinal waves can be found by observing that for
longitudinal waves ∇×E = 0 and hence the dispersion relation is simply,

µ(q,ω){ε ′(q,ω)+ i
4πσ(q,ω)

ω
}= 0. (52)

The polariton solutions to Eq. (51) are of the form

E(r, t) = E0ei(q¦r−ωt), (53)

with

|q|=
√µεω

c
. (54)

We now define the refractive index,

n̂(q,ω) = n+ ik ≡√µε. (55)

In all cases considered here n > 0 and k > 0. We also note that Im(ε)≥ 0 but it is possible
to have Re(ε) < 0. If k > 0 the wave travelling through the solid gets attenuated,

E(r, t) = E0eiω(nr/c−t)−r/δ . (56)
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FIGURE 2. Real part of the optical conductivity for parameter values indicated in the graph. The curve
is calculated using equation (58).

The extinction of the wave occurs over a characteristic length scale δ called the skin
depth,

δ =
c

ωk
=

c

ωIm
√

µε1 + i4πµσ1/ω
. (57)

Note that we can have k > 0 if Im(ε) = 0 and Re(ε) < 0 so that the wave gets attenuated
even though there is no absorption. In table 1 we indicate some limits of the skin depth.

TABLE 1. Some limiting cases of the general expression Eq.
(57). λ in the last line is the London penetration depth.

Insulator 4πσ1
ω ¿ ε1 δ ≈ c

2πσ1

√
ε1
µ

Metal 4πσ1
ω À ε1 δ ≈ c√

2πµσ1ω

Superconductor 4πσ1
ω ¿ ε1 =− c2

λ 2ω2 δ ≈ λ√µ

To illustrate some of the previous results we now have a look at the simplest model of
a metal: the Drude-model. The optical conductivity in the Drude model is,

σ̂ =
ne2

m
1

τ−1− iω
. (58)

Often 1/τ , the time in between scattering events, is written as a scattering rate γ . The
plasma frequency is defined as ω2

p ≡ 4πne2/2m. The dielectric function can now be
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FIGURE 3. Dielectric function corresponding to equation (59) with the same parameters as in figure 2.

written as,

ε(ω) = 1+4πχbound− 4πne2

m
1

ω(γ− iω)
= ε∞− 4πne2

m
1

ω(γ− iω)
, (59)

where for completeness we have included the contribution due to the bound charges,
represented by a high energy contribution ε∞. Figure 2 shows the optical conductivity
given by equation (58) for parameter values typical of a metal. Using the same param-
eters we can calculate the dielectric function given by equation (59). The results are
shown in figure 3. We note that the real part of the dielectric function is negative for
ω < ωp/

√
ε∞ and positive for ω > ωp/

√
ε∞. The point where it crosses zero is called

the screened plasma frequency ω∗
p (screened by interband transitions).

We can also easily calculate the optical constants,

n̂ =

√
ε∞−

ω2
p

ω (ω + iτ−1)
. (60)

The real and imaginary part are displayed in figure 4. We see that at the screened plasma
frequency both n and k show a discontinuity.

The polariton dispersion follows from equation (51). Here we assume that µ = 1 and
frequency independent and use Eq. (59) to solve (51) for ω(q). The polariton dispersion
consists of two branches the lowest one for 0 ≤ ω ≤ 1/τ and one for ω ≥ ωp/

√
ε∞.

Finally we show the skin depth in figure 6. We see that for frequencies smaller than
the scattering rate, γ , light waves can enter the material. This is called the classical skin
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FIGURE 4. Optical constants corresponding to equation (59) with the same parameters as in figure 2.
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FIGURE 5. Polariton dispersion calculated with the same parameters as in figure 2.

effect. For frequencies larger than the screened plasma frequency the material becomes
transparent again.
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FIGURE 6. Skin depth calculated with the same parameters as in figure 2.

EXPERIMENTAL TECHNIQUES

The goal of optical spectroscopy is to determine the complex dielectric function or
equivalently the complex optical conductivity. Since electromagnetic waves have small
momenta compared to the typical momenta of a solid, i.e. q ¿ 1/a0, we usually only
probe the q→ 0 limit of the optical constants. In this limit,

lim
q→0

(εT (q,ω)− εL(q,ω)) = 0, (61)

ε(q→ 0,ω) = ε1(ω)+ i
4π
ω

σ1(ω). (62)

In some cases we can directly obtain information on both real and imaginary components
seperately, but more often we obtain information where the contributions are mixed. We
then make use of some form the KK-relations to disentangle the two.

Reflection and Transmission at an interface

When we shine light on an interface between vacuum and a material, part of the
light is reflected and another part is transmitted as in figure 7. At the boundary the
electromagnetic waves have to obey the following boundary conditions,

Ei +Er = Et , (63)
E×H // k. (64)



FIGURE 7. Electromagnetic waves reflecting from a material. The reflected wave has a smaller am-
plitude and is phase shifted with respect to the incoming wave. The transmitted wave is continuously
attenuated inside the material.

From these two equations it follows that the reflected magnetic field suffers a phase shift
at the boundary,

Hi−Hr = Ht . (65)

Using equation (28) in equation (25) we obtain,

iqcET = iωµH. (66)

so that, using the dispersion relation (51),

H
ET =

√
ε
µ

. (67)

From now on we set µ = 1 unless otherwise indicated. In that case H/ET = n̂. Combin-
ing this result with Eq. (65) we get,

Ei−Er = n̂. (68)

Together with Eq. (63) we can now solve for Er/Ei and Et/Ei,

r̂ ≡ Er/Ei =
1− n̂
1+ n̂

, (69)

t̂ ≡ Et/Ei =
2

1+ n̂
. (70)

The two quantities r̂ and t̂ are the complex reflectance and transmittance.



Reflectivity experiments

The real reflection coefficient R(ω) which is measured in a reflection experiment is
related to r̂ via

R = |r̂|2 = |(n−1)2 + k2

(n+1)2 + k2 |. (71)

Note that in this experiment we obtain no information on the phase of r̂. In these
experiments the angle of incidence is as close to normal incidence as possible. To
measure R(ω) one first measures the reflected intensity Is from the sample under study.
To normalize this intensity one then has to take a reference measurement. This can
be done by replacing the sample with a mirror (i.e a piece of aluminum or gold) and
again measure the reflected intensity, Ire f . The reflection coefficient is then R(ω) ≡
Is(ω)/Ire f (ω). A better way is to evaporate a layer of gold or aluminum in-situ and
measure the reflected intensity as a reference. This way one automatically corrects
for surface imperfections and, if done properly, there are no errors due to different
size and shape of the reflecting surface. To obtain the optical constants from such an
experiment we have to make use of KK-relations. If we define, r̂(ω)≡

√
R(ω)eiθ , then

the logarithm of r̂(ω) is
ln r̂(ω) = ln

√
R(ω)+ iθ . (72)

The phase θ in this expression is the unknown we want to determine. If we interpret r̂
as a response function we can use the same arguments as in the section on KK relations
and calculate θ(ω) from,

θ(ω) =−ω
π

P
∫ ∞

0

lnR(ω ′)
ω ′2−ω2 dω ′, (73)

which is just the same as the KK-relation for ε̂ . The complex dielectric function is
calculated from R(ω) and θ(ω) using,

ε̂(ω) =

(
1−

√
R(ω)eiθ(ω)

1+
√

R(ω)eiθ(ω)

)2

. (74)

Although in principle exact, this technique is in practice only approximate. The reason is
that we cannot measure R(ω) from zero to infinite frequency. Most experiments probe a
frequency range between a few meV and a few eV. To do the integral in Eq. (74) one then
has to use extrapolations in the frequency ranges where no data is available. For metals
the low frequency extrapolation which is most often used is the so-called Hagen-Rubens
approximation,

R(ω) = 1−α
√

ω. (75)

For frequencies above the interband transitions one often uses an extrapolation that is
proportional to ω−4. As an example of a possible experimental result we show in figure
8 the reflectivity calculated from the Drude model for the same parameters as in section
on polaritons.
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FIGURE 8. Reflectivity calculated using parameters typical for a metal. The inset shows the low energy
reflectivity on an enhanced scale.

The reflectivity is close to one until just below the plasma frequency. At the zero
crossing of ε1 the reflectivity has a minimum. The inset shows a blow up of the "flat"
region below 50 meV. Here one can clearly see the Hagen-Rubens behavior mentioned
above. If the sample under investigation is anisotropic one has to use polarized light
along one of the principle crystal axes to perform the experiment.

Grazing Incidence Experiments

A closely related technique is to measure reflectance under a grazing angle of inci-
dence. Here one has to distinguish between experiments performed with different in-
coming polarizations as shown in figure 9. We distinguish between p-polarized light and
s-polarized light. For p-polarization the electric field is parallel to the plane of incidence,
whereas for s-polarization it is perpendicular to it (s stands for senkrecht). Since in prin-
cipal the optical constants along the three crystal axes can be different, we use the labels
a, b and c for the optical constants as indicated in figure 9. For p-polarized light the
complex reflectance is,

rp =
n̂cn̂b cosθ −

√
n̂2

c − sin2 θ

n̂cn̂b cosθ +
√

n̂2
c − sin2 θ

. (76)



FIGURE 9. Grazing incidence experiment. The result of the experiment is extremely sensitive to the
precise orientation of the crystal axes with respect to the incoming light.

The angle θ in this equation is the angle relative to the surface normal under which the
experiment is performed. For s-polarized light the complex reflectance is,

rs =
cosθ −

√
n̂2

a− sin2 θ

cosθ +
√

n̂2
a− sin2 θ

. (77)

An example of such an experiment is shown in figure 10. In this example the sam-
ples are from the bismuth based family of cuprates [3]. They have a layered structure
consisting of conducting copper-oxygen sheets, interspersed with insulating bismuth-
oxygen layers. Since the bonding between layers is not very strong it is very difficult to
obtain samples that are sufficiently thick along the insulating c-direction. The grazing
incidence technique is used here to probe the optical constants of the c-axis without the
need of a large ac-face surface area. A disadvantage in this particular experiment is that
it is not possible to determine accurately the absolute value of the optical constants. It is
possible however to determine the so-called loss function Im(−1/ε̂c). The experiment
is performed on the ab-plane of the sample using p-polarized light and we can simplify
the expression for r̂p by using the fact that the a and b direction are almost isotropic.
The resulting expression for r̂p is,

r̂p =

√
ε̂b cosθ −

√
1− sin2 θ

/
ε̂c

√
ε̂b cosθ +

√
1− sin2 θ

/
ε̂c

. (78)

From this equation we can derive the following relation between the grazing incidence
reflectivity and a pseudo loss-function L(ω) [4],

L(ω)≡ (1−Rp)
(1+Rp)

≈ Im
2eiφp

|nb|cosθ

√
1− sin2 θ

ε̂c
. (79)



FIGURE 10. Grazing incidence reflectivity of Bi-2201, Bi-2212, Tl-2201 and Tl-2212. The inset in
panel (b) indicates the measurement geometry. The figure is adapted from ref. [3].

The function
√

1− sin2 θ
ε̂c

has maxima at the same position as the true loss-function. In
this way information was gained on the phonon structure of the c-axis of this material.

Spectroscopic Ellipsometry

The third technique we introduce here is spectroscopic ellipsometry. This relatively
new technique has two major advantages over the previous techniques. Firstly, the
technique is self-normalizing meaning that no reference measurement has to be done
and secondly, it provides directly both the real and imaginary parts of the dielectric
function.

As with the grazing incidence technique we have to distinguish between s- and p-
polarized light and label the crystal axes. Instead of measuring Rp or Rs independently,
we now measure directly the amplitude and phase of the ratio r̂p/r̂s = |r̂p/r̂s|ei(ηp−ηs).
To see how this can be done we first describe the experimental setup. There are a number
of different setups one can use and here we describe the simplest. This setup consists of
a source followed by a polarizer. With this polarizer we can change the orientation of
the polarization impinging on the sample. The light reflected from the sample passes
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FIGURE 11. Result of an ellipsometric measurement. The phase shift A0 and amplitude 2γ are the two
quantities that we are interested in.

through another polarizer (called analyzer) and then hits the detector. Depending on
the orientation of the first polarizer we can change the electric field strength of s- and
p-polarized light according to,

Ep = |Ei|cos(P) , (80)
Es = |Ei|sin(P) . (81)

(82)

From the expressions for r̂p and r̂s, (76) and (77), in the previous section it follows that,

ρ̂ ≡ rp

rs
=

√
n̂2

c − sin2 θ − n̂cn̂b cosθ
√

n̂2
c − sin2 θ + n̂cn̂b cosθ

·

√
n̂2

a− sin2 θ + cosθ
√

n̂2
a− sin2 θ − cosθ

. (83)

Our task is now to invert this equation and express the optical constants in terms of
measured quantities and instrument parameters. For an isotropic sample this can be done
quite easily. We define the pseudodielectric function ε̂ such that:

ρ̂ ≡ sinθ tanθ −
√

ε̃− sin2 θ

sinθ tanθ +
√

ε̃− sin2 θ
, (84)

where we note that ε̂ = εa = εb = εc in an optically isotropic medium. This equation
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FIGURE 12. Dielectric function measured ellipsometrically on a HgBa2CuO4 sample. The true dielec-
tric function is shown in solid lines. The pseudo dielectric function (i.e. actually measured) is shown as a
dashed line. Data taken from ref. [5].

can be inverted to obtain ε̃ ,

ε̃(ω) = sin2 θ

[
1+ tan2 θ

(
1−ρ
1+ρ

)2
]

. (85)

So all that is left to do is to express ρ̂ in terms of experimental parameters. The
experiment is done in the following way: we fix the polarizer at some angle 0 < P < 90
and then we record the intensity while rotating the analyzer 360 degrees. The result is
shown in figure 11. We then measure the amplitude of the resulting sine wave, γ and the
phase offset with respect to zero, A0 (we assume here that for P = 0 the polarizer and
analyzer are aligned parallel to each other). With some goniometry and figure 11 we can
show that,

tanA0 =
2tan(P)

|ρ|2 + tan2 (P)
ρ1, (86)

and √
1− γ2 =

2tan(P)
|ρ|2 + tan2 (P)

ρ2. (87)

Combining these two equations leads to,

ρ =
1±

√
γ2− tan2 A0

tanA0− i
√

1− γ2
tan(P) . (88)



The combination of Eq. (88) with Eq. (85) is all we need to describe an ellipsometric
experiment on an isotropic sample. For an anisotropic sample the problem is slightly
more difficult. However, there exists a theorem due to Aspnes which states that the
inversion of Eq. (83) results in Eq. (85) but now the dielectric function on the left-
hand side is a so-called pseudo-dielectric function. This pseudo-dielectric function is
mainly determined by the component parallel to the intersection of sample surface
and plane of incidence (component along b in figure 9), but still contains a small
contribution of the two other components. If we perform three measurements, each along
a different crystal axis, we can correct the pseudo dielectric functions and obtain the
true dielectric functions. If the sample is isotropic along two directions, as is the case
in high temperature superconductors for example, only two measurements are required.
Figure 12 shows in dashed lines the pseudo dielectric function of HgBa2CuO4. In this
case the a and b axes have the same optical constants. The c-axis dielectric function
was determined from reflectivity measurements and subsequently used to correct the
pseudo dielectric function measured by ellipsometry on the ab-plane. The true dielectric
function after this correction is shown as the solid line.

Transmission Experiments

A technique complementary to the reflection techniques is transmission spectroscopy.
This technique is, obviously, most suitable for transparent samples. In principle the
technique can also be applied to metallic samples but this requires very thin samples
or films. The reflection experiments discussed above are usually good methods to obtain
accurate estimates of the real part of the optical conductivity. In contrast the transmission
experiments discussed below are more sensitive to weak absorptions or, in other words
to the imaginary part of the optical conductivity. Note that the simultaneous knowledge
of reflection and transmission spectra allows one to directly determine the full complex
dielectric function without any further approximations. Examples of weak absorptions
which are better probed in a transmission experiment are multi-phonon or magnon
absorptions. The equations for transmission experiments are slightly more difficult then
those for the reflection experiments. These equations simplify if we do the experiment
on a wedged sample as shown in figure 13. At the boundary between vacuum and the
sample, part of the light is reflected and part transmitted. The part that is transmitted is
given by,

t̂v,s =
2

1+ n̂
. (89)

Inside the wave propagates according to eiψ where,

ψ ≡ n̂dω/c. (90)

At the next boundary again part of the beam is reflected back into the sample and part
is transmitted. Now we can see the advantage of the wedged sample: the part of the
light that is reflected propagates away at an angle and after another reflection the second
transmitted ray is no longer parallel to and spatially separated from the first transmitted



FIGURE 13. Transmission experiment on a wedged sample. After the initial ray is partially reflected
back from the front surface all following rays are no longer parallel to the first transmitted ray.

ray. This means that we only have to care about the first transmitted ray. The transmission
coefficient at the boundary from sample to vacuum is given by,

t̂s,v =
2n̂

n̂+1
, (91)

so that the total transmission coefficient is,

t̂v,seiψ t̂s,v. (92)

Putting Eq.’s (89)-(92) together and taking the absolute value to calculate the transmis-
sion T gives,

T =
|4n̂|2
|1+ n̂|4 exp

{
−2d

δ

}
. (93)

In most transmission experiments ε1 À ε2 and the classical skindepth δ can be approxi-
mated by,

δ (ω)≈ 2πσ1 (ω)
c
√

ε1(ω)
. (94)

Moreover in these cases ε1 is often dispersion-less so that we can use the expression for
δ to invert (93),

σ1 (ω) =

{
− ln(T )+2ln

(
4 |n̂|
|1+ n̂|2

)}
c
√

ε1

4πd
. (95)

As an example of this technique we show in figure 14 a comparison between the reflec-



FIGURE 14. Comparison of reflectivity and transmission measured on the same sample. Note the strong
absorptive features present in the transmission spectrum that are completely invisible in the reflectance
spectra. Figure adapted from [6]

tivity and transmission spectra of undoped YBa2Cu3O7 [6]. This material is an (Mott)
insulator which is clearly visible from the reflectivity spectrum. The large structure at
low energies is an optical phonon. At higher energy the reflectivity spectrum appears to
be rather featureless. Focussing our attention on the transmission spectrum we see that
it is almost zero in the phonon range but then above the phonon range a whole series
of sharp dips shows up. The optical conductivity consists of a set of smaller peaks at
energies between 100 meV and 300 meV which are due to multi-phonon absorptions
whereas the larger peak just above 300 meV is due to a two magnon plus one phonon
absorption (see also the section on spin interactions below).

We can also do the experiment on a sample with two plan-parallel sides as depicted
in figure 15. We can immediately realize that for a given thickness of the sample there
will be interference effects between different transmitted rays for certain frequencies.
These will cause oscillations in the transmission spectra which are called Fabry-Perot
resonances. We now analyze the transmission coefficients for this experiment. The
coefficient for the first ray is off course the same as in Eq. (92). The coefficients for



FIGURE 15. Pictorial of a transmission experiment on a plan parallel sample.

the higher order rays are formed by multiplying t̂v,seiψ on the right with a factor f ,

f ≡ r̂s,vei2ψ r̂s,v, (96)

followed by a factor t̂s,v. So the total transmission coefficient for the second transmitted
ray is given by,

t̂v,seiψ r̂s,veiψ r̂s,veiψ t̂s,v = t̂v,seiψ t̂s,v f . (97)

The coefficients t̂v,s and t̂s,v are given by Eq. (89) and (91). The coefficient for reflection
on a boundary from sample to vacuum is given by,

r̂s,v =
n̂−1
n̂+1

. (98)

It is easy to see that if we sum over all transmitted rays the total transmission coefficient
is given by,

t̂ = t̂v,seiψ t̂s,v
(
1+ f + f 2 + ..

)
=

2n̂
2n̂cosψ− i(1+ n̂2)sinψ

. (99)

For thin films the phase factor ψ ¿ 1 and we can simplify this equation to,

t̂ ≈ 1
1+ 2πd

c σ1− iωd
2c (1+ ε ′)

, (100)

and so,

T (ω)≈ 1
1+4πdc−1σ1 (ω)

. (101)
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FIGURE 16. Left: Far infrared transmission spectrum for SrTiO3. The positions of the peaks determine
the polariton dispersion. The dashed line at low frequency is an extrapolation to zero frequency. Right:
Dispersion relation of polaritons in STO as derived from transmission spectrum in the left panel.

More generally from Eq. (99) we obtain,

TLR =
4 |ε|

|4ε cos2 ψ|+
∣∣∣(1+ ε)2 sin2 ψ

∣∣∣+2Im{(1+ ε)sin2ψ}
. (102)

In the case that the sample under investigation has only weak absorptions, i.e. Im(n̂)≈ 0,
this equation simplifies to,

TLR ≈ 4n2

4n2 +(1−n2)2 sin2 (ndω/c)
. (103)

This equation gives us some insight to the occurrence of Fabry-Perot resonances: if
ω = cmπ/nd with m=0,1,2,... the sinus is equal to zero and the transmission T = 1. In
between these maxima the transmission has minima and T ≈ 4n̂2/(1 + n̂2)2. In reality
the transmission will never reach 1 due to the fact that Im(n̂) 6= 0 in which case our
approximations are no longer valid. As an example we display in the left panel of
figure 16 the transmission spectrum of SrTiO3 [7]. This material is very close to being
ferroelectric and as a result it has a very large dielectric constant. The non-sinusoidal
shape of the peaks is due to this large dielectric constant. One can use the Fabry-Perot
resonances to measure the polariton dispersion as we now show. Note that at each
maximum in the transmission spectrum we know precisely the value of the argument
of the sine function in Eq. (103). We can read off the value of ω from the graph and
using Eq. (51) we can replace the argument in the sine function by nωd/c = qd so the
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momentum at a given maximum is,

qm =
mπ
d

m = 0,1,2, ... (104)

So given the thickness of the sample we can make a plot of ω(q). The result for STO is
shown in the right panel of figure 16. We see that the dispersion is linear, indicating that
n is dispersion-less in this range. The slope of the curve directly gives us n ≈ 20.5.
Another interesting application of this is to superconductors. In figure 17 we show
the transmission spectrum of LSCO at a temperature slightly above Tc and far below
[8]. One can see that the position of the maxima has changed and this shows up in
the polariton dispersion in an interesting way (see right panel figure 17). As in STO
we see that in the normal state the dispersion is linear and extrapolates to zero. In
the superconducting state the dispersion has acquired a q2 dependence and no longer
extrapolates to zero for q → 0. This is the result of the opening of the superconducting
gap and it implies that the polaritons in the superconducting state have acquired a
mass. This is an example of the Anderson-Higgs mechanism[9], the same mechanism
via which the Higgs-field gives a mass to the W and Z bosons in elementary particle
physics. In the superconductor the order parameter plays the role of the Higgs-field and
the spontaneously broken symmetry is that of the U(1) gauge symmetry.

TeraHertz time-domain spectroscopy

This relatively new technique is the last we will discuss here. This technique uses a
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powerful laser pulse and records the detector output as a function of time, more often
expressed in an optical delay distance. The result for an experiment in vacuum is shown
in figure 18 on the left. If we now insert a sample that is transparent to terahertz radiation
in the path of the beam we expect that due to the different optical path length in the
sample the pulse will arrive at a later time. In fact, if we use a sample with to plane
parallel surfaces we expect a series of peaks due to multiple reflections in the sample
(see right panel of figure 18. These peaks are just a different manifestation of the Fabry-
Perot oscillations observed in transmission spectroscopy. By Fourier transforming this
signal to the frequency domain and doing the same for the signal without sample we can
again obtain the transmission spectrum. The frequency domain spectrum corresponding
to the time domain spectra of figure 18 is shown in figure 16.

QUANTUM THEORY

We now move to the quantum theoretical description of the interaction of light and mat-
ter using the Kubo-formalism. So far we have been using a "geometrical" or macroscopic
view of this interaction, but in this section we will consider the effects of the absorption
of photons by electrons. Consider for simplicity a metal. The electronic states of the
system are described by a set of bands, some of which are fully occupied, some partially
and the rest empty, figure 19. When photons interact with these band electrons they can
be absorbed and in this process the electron is excited to a higher lying band leaving



FIGURE 19. The indicated transition is an interband transition. Al states below the dashed line indi-
cated by EF are occupied all states above are empty.

behind a hole. In this way we create electron-hole pairs and this (dipole) transition from
a state |ΨN

ν 〉 to a state |ΨN
µ 〉 is characterized by an optical matrix element,

Mµν(~q) =
〈

ΨN
µ

∣∣v̂q
∣∣ ΨN

ν
〉
. (105)

If the transition is from one band to another band we call the transition an interband
transition and if the transition is within a band we call it a intraband transition.

In figure 20 we show the optical conductivity of KCl. In this compound a strong onset
is seen in the optical conductivity around ≈8.7 eV. This onset is due to the excitation
of electrons from the occupied p-band related to the Cl− ions to the unoccupied s-
band of the K+ ions. Since this particular transition involves moving charge from the
chlorine atoms to the potassium atoms this type of excitation is called a charge transfer
(CT) excitation [10]. Another important feature in figure 20 are the strong peaks seen
around 7.5 eV. Many theories often neglect so-called vertex corrections because these
corrections cancel if the interactions between electrons are isotropic. However in real
materials interactions are more often than not anisotropic and this means that these
corrections have to be taken into account. The peaks seen in figure 20 are due to
transitions from bound states of electron-hole pairs, called excitons, which arise due
to the vertex corrections. Before we start our display of the Kubo-formalism we first
introduce some notation. We introduce the field operators,

ψ†
σ (r) = ∑

k
e−ik·rĉ†

k,σ . (106)



FIGURE 20. Optical conductivity of KCl. The series of strong peaks are due to excitons. The onset in
absorption around 9 eV is the onset of charge transfer excitations.

The density operator is given by,

n̂σ (r) = ψ†
σ (r)ψσ (r). (107)

The Fourier transform of n̂σ (r) is,

n̂σ (r) =
1
V ∑

q
e−iq·rρq, (108)

with
ρq = ∑

k,σ
ĉ†

k−q/2,σ ĉk+q/2,σ . (109)

The velocity operator is defined as,

v̂q =
h̄
m ∑

k,σ
kĉ†

k−q/2,σ ĉk+q/2,σ . (110)

Finally, we note that the operators n̂σ (r) and v̂q satisfy,

i
h̄

[
n̂σ (r), Ĥ

]
+∇ · v̂q = 0. (111)



The Kubo-formalism

To calculate the optical conductivity from a microscopic starting point we have to
add to the Hamiltonian of the system a term that describes the interaction with the
electromagnetic field described by,

ET (r, t) =
iω
c ∑

q
Aqei(q·r−ωt), (112)

Note that we have chosen the transverse gauge which we will use throughout the rest of
the chapter. The interaction Hamiltonian is given by,

H ′ =−eh̄
c ∑

q
ei(q·r−ωt)Aq · v̂−q, (113)

and in the presence of an electromagnetic field we use the minimal coupling,

v̂q → v̂q− eh̄
mc

Aqei(q·r−ωt)ρ̂q. (114)

We now start by examining the current operator J(r, t) = J(1)(r, t)+J(2)(r, t). It consists
of two terms the first of which is called the diamagnetic term,

J(1)(r, t) =−ne2

mc
A(r, t) =

ine2

mω
ET (r, t), (115)

where in the last equality we have used Eq. (112). The second term is more difficult. It
is given by,

J(2)(r, t) =
e2

V

t∫

−∞

〈
eiH ′τe−iHτ v̂(r, t)eiHτe−iH ′τ

〉
eiω(t−τ)dτ. (116)

We make here the approximation of using linear response theory: we expand the ex-
ponentials eiH ′τ to first order in A(r, t) and then stop the series expansion. After some
algebra we arrive at,

J(2)

E(r, t)
=

ie2

ωV ∑
n

vnm
−qvmn

q

[
1

ω−En +Em + i0+ −
1

ω +En−Em + i0+

]
, (117)

where we have defined,
vmn

q ≡ 〈Ψm|v̂q|Ψn〉. (118)

The result we have obtained is for zero temperature but is easily generalized to finite T
if we use the grand canonical ensemble. Combining Eq. (115) and Eq. (117) we find for
the optical conductivity,

σα,α(q,ω) =
iNe2

mV ω
+

ie2

V ω ∑
n,m 6=n

eβ (Ω−En)
[

vnm
α,qvmn

α,−q

ω−ωnm + iη
− vnm

α ,−qvmn
α,q

ω +ωnm + iη

]
, (119)



where we have defined ωnm ≡ En−Em. The optical conductivity consists now of three
contributions: the diamagnetic term followed by a contribution to positive frequencies
and a contribution to negative frequencies. We note that in general σα ,α(q,ω) is a tensor
as indicated by the α subscripts. We further note that the diamagnetic term does not give
a real contribution to the conductivity. This term gives a δ -function contribution at zero
frequency and this is exactly cancelled by two delta functions in the second part. This
can be seen by using the fact that for every n we have the following relationship,

∑
n,m 6=n

vnm
α,qvmn

α,−q

ωnm
=

N
2m

. (120)

So we can rewrite Eq. (119) as,

σα,α(q,ω) =
ie2

V ω ∑
n,m 6=n

eβ (Ω−En)
[

vnm
α ,qvmn

α,−q

ω−ωnm + iη
− vnm

α,−qvmn
α,q

ω +ωnm + iη

]
, (121)

From here on we take the limit q → 0 and define a generalized oscillator strength Ωmn
as,

Ω2
nm ≡

8πe2eβ (Ω−En)|vnm
α |2

ωnmV
. (122)

With this definition we are lead to the Drude-Lorentz expansion of the optical conduc-
tivity,

σα ,α(ω) =
iω
4π ∑

n,m 6=n

Ω2
nm

ω(ω + iγnm)−ω2
mn

. (123)

Sum Rules

Sum rules play an important role in optics. Using the equations of the previous section
we derive the Thomas-Reich-Kuhn sum rule also known as the f-sum rule. The f-sum
rule states that, apart from some constants, the area under σ1 is proportional to the
number of electrons and inversely proportional to their mass. This can be shown as
follows: integrating Eq. (123) we have,

Re
∞∫

−∞

σ (ω)dω =
1
4 ∑

n,m 6=n
Ω2

mn
. (124)

Using the expression for Ωmn, Eq. (122), and expression (120) we can rewrite the sum
on the right hand side as,

∑
n,m 6=n

Ω2
mn

=
4πe2N

mV ∑
n

eβ (Ω−En) =
4πe2N

mV
. (125)

So the f-sum rule states that,
∫ ∞

−∞
σ1(ω)dω =

πe2N
mV

, (126)



FIGURE 21. Effective number of carriers ne f f (Ωc) as a function of cutoff frequency Ωc for Al. Figure
adapted from [11].

as promised. This is the full universal sum rule. It is often rewritten as an integral over
positive frequencies only and using the definition of the plasma frequency ωp,

ω2
p ≡

4πe2N
mV

, (127)

as, ∫ ∞

0
σ1(ω)dω =

ω2
p

8
. (128)

We can also define partial sum rules, i.e. sum rules where we integrate up to a certain
frequency cutoff Ωc. In such a case the sum rule is not universal (this means for instance
that the value of this sum rule can depend on temperature) and we can now define a
plasma frequency that depends on the chosen cutoff frequency,

ω2
p,valence ≡

4πe2

m
ne f f (Ωc). (129)

A nice example of the application of the partial sum rule is shown in figure 21. Here
the partial sum rule is applied to the optical conductivity of aluminum [11]. Here the
effective number of carriers contributing to the sum rule is plotted as a function of Ωc.
ne f f (Ωc) slowly increases to a value of roughly three around 50 eV. This means that as
we increase the cutoff from zero to 50 eV we are slowly integrating over the intraband
transitions and when we reach a value of 50 eV we have integrated over all transitions
involving the three valence electrons. For higher energies the interband transitions start
to contribute with a sharp onset near 80 eV. Finally at 104 eV the sum rule saturates at
13 electrons, the total number of electrons of aluminum.
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FIGURE 22. Optical conductivity of Bi-2212 at Tc and below. The difference in area between the two
curves is an estimate of the superfluid density.

Another application of sum rules can be found in superconductors. In a superconduc-
tor the electrons form a superfluid condensate. This condensate shows up in the optical
conductivity as a delta function at zero frequency (it contributes a diamagnetic term as
in Eq. (119)). At the same time a gap opens up in low frequency part of the spectrum
where the optical conductivity is (close to) zero, see figure 22. In the normal state the
system is usually metallic and characterized by a Drude peak. In optical experiments
we cannot measure the zero frequency response and so we cannot directly measure the
spectral weight ω2

p,s of the condensate. However, using sum rules we can estimate its
spectral weight because the total spectral weight has to remain constant. This is summa-
rized in the Ferrel-Glover-Tinkham (FGT) sum rule [12], which states that the difference
in spectral weight between the optical conductivity in the superconducting and normal
state is precisely the spectral weight of the condensate,

ωp,s(T )2 = 8
∞∫

0+

{σ(ω,Tc)−σ(ω,T )}dω. (130)

Note that we integrate here from 0+.
There also exist sum rules for mixtures of different types of particles,

∞∫

0

σ1
(
ω ′)dω ′ = ∑

j

πn jq2
j

2m j
, (131)

here the index j labels the different species. This sum rule can be applied to measure
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FIGURE 23. Optical conductivity due to phonon mode in MgO. The area under the peak is proportional
to the effective charge of the mode. The inset shows the effective charge calculated using (132). Data from
[13].

the charge of ions involved in vibrational modes. If we can separate the contribution to
the optical conductivity due to the optical modes we can invert Eq. (131) to calculate
the effective charge related to the mode. For example, in MgO (figure 23) both ions
contribute an equal charge qMg = −qO. We define the effective mass µ as µ−1 =
m−1

Mg + m−1
O and assume that the density of the two is equal. In that case we can rewrite

Eq. (131) as,

Z(ω)2 ≡
(

q∗T (ω)
e

)2

≡ 2µ
πne2

ωmax∫

ωmin

σph
(
ω ′)dω ′, (132)

where the integral has to be taken in a frequency range such that it includes the spectral
weight of the optical phonon mode but nothing else.

We will now derive expressions for the conductivity sum rule from a more micro-
scopic point of view. To do that we return to the Kubo expression for the optical con-
ductivity,

σ1 (ω) =
πe2

V
Tr 〈Ψn| v̂

{
δ

(
ω− Ĥ +En

)

Ĥ−En
+

δ
(
ω + Ĥ−En

)

Ĥ−En

}
v̂ |Ψn〉 . (133)

The Hamiltonian in this expression is that of the system of interacting electrons without
the interaction of light. It represents the optical conductivity for the system in an arbitrary
(ground or excited) many-body state |Ψ〉. A peculiar point of this expression is that
although the velocity operators create a single electron-hole pair, due to the fact that the



hamiltonian in the denominator of this expression still contains the interactions between
all particles in the system, the optical conductivity represents the response from the full
collective system of electrons. If we integrate this expression over frequency we get,

∞∫

−∞

σ1 (ω)dω =
2πe2

V
Tr 〈Ψn| v̂ 1

Ĥ−En
v̂ |Ψn〉 . (134)

We now take a closer look at the right-hand side of this expression. Remember that,

v̂ =
i
h̄

[
Ĥ, x̂

]
. (135)

Using the commutator we can rewrite,

−2ih̄v̂
1

Ĥ−En
v̂ =

(
Ĥx̂− x̂Ĥ

) 1
Ĥ−En

v̂+ v̂
1

Ĥ−En

(
Ĥx̂− x̂Ĥ

)
. (136)

Inserting this back into Eq. (134) we find after some rearranging

∞∫

−∞

σ1 (ω)dω =
iπe2

h̄V
〈[v̂, x̂]〉 , (137)

where 〈...〉 stands for the trace over all many-body states. Here we have used that,

x̂Ĥ
1

Ĥ−En
v̂ = x̂

(
Ĥ−En

) 1
Ĥ−En

v̂+ x̂En
1

Ĥ−En
v̂ = x̂v̂+ x̂En

1
Ĥ−En

v̂, (138)

and the fact that Ĥ|Ψn〉 = En|Ψn〉. We can now obtain different expressions for the
sum rule by working out the commutator on the right-hand side of Eq. (137) based on
different model assumptions. In table 2 we summarize some results. The sum rule for

TABLE 2. Expressions for the commutator in Eq. (137) for
three different cases. N.N. stands for Nearest Neighbors tight
binding model

Free electrons [v̂, x̂] = h̄
im ∑

kσ
n̂kσ

Band electrons [v̂, x̂] = h̄
im ∑

kσ
n̂kσ [v̂, x̂] = h̄

i ∑
kσ

∂ 2εkσ
∂ k2 n̂kσ

N.N. [v̂, x̂] =− h̄a2

i ∑
kσ

εkσ n̂kσ

band electrons is in practice the most useful. Suppose that we have a system with only a
single reasonably well isolated band around the Fermi level that can be approximated by
a tight binding dispersion εk =−t cos(ka). In that case we find an interesting relation,

Ωc∫

0

σ1(ω,T )dω =−πe2a2

2h̄2V ∑
k,σ
〈n̂kσ εk〉T =−πe2a2

2h̄2V
Ekin(T ). (139)



This sum rule states that by measuring the optical spectral weight we are in fact measur-
ing the kinetic energy of the charge carriers contributing to the optical conductivity. In
real systems this relation only holds approximately: usually there are other bands lying
nearby and the integral on the left contains contributions from these as well. Often the
bands are described by more complicated dispersion relations in which case the relation
∂ 2εk/∂k2 =−εk does not hold. We can make some other observations from the sum rule
for band electrons. Suppose again we have a single empty cosine like band (it is only
necessary that the band is symmetric but it simplifies the discussion) at T = 0. Since
the band is empty, the spectral weight is equal to zero. If we start adding electrons the
spectral weight starts to increase until we reach half-filling. If we add more electrons
the spectral weight will start to decrease again because the second derivative becomes
negative for k > π/2a. If we completely fill the band the contributions from k > π/2a
will precisely cancel the contributions from k < π/2a and the spectral weight is again
zero. Now consider what happens if we have a half-filled band and start to increase the
temperature. Due to the smearing of the Fermi-Dirac distribution higher energy states
will get occupied leaving behind lower energy empty states. The result of this is that the
spectral weight starts to decrease. One can show using the Summerfeld expansion that
the spectral weight follows a T 2 temperature dependence. In the extreme limit of T →∞
something remarkable happens: the Fermi-Dirac distribution is 1/2 everywhere and the
electrons are equally spread out over the band. The metal has become an insulator!

Applications of sum rules to superconductors

Before we have a look at some applications of sum rules to superconductors we
first summarize some results from BCS theory. We want to apply our ideas to cuprate
superconductors so we use a modified version from the original theory to include the
possibility of d-wave superconductivity. In other words we suppose that there is some
attractive interaction between the electrons that has a momentum dependence. The
energy difference between the normal and superconducting state due to interactions can
be written as [14],

〈Ĥ int
s 〉−〈Ĥ int

s 〉=
∫

d3rg(r)V (r) = ∑
k

gkVk, (140)

where g(r) and gk are the pair correlation function and its fourier transform respectively.
We can find an expression for gk,

gk = ∑
q

∆q+k∆∗q
4Eq+kEq

. (141)

As usual,

Ek =
√

(εk−µ)2 +∆2, (142)



FIGURE 24. Real and momentum space picture of the correlation functions g(r) and gk. Figure adapted
from [14].

and the temperature dependence of ∆k is given by,

∆k = ∑
q

Vq∆q

2Eq
tanh

(
Ek

2kbT

)
. (143)

We now use a set of parameters extracted from ARPES measurements to do some
numerical simulations. First of all we calculate gk and fourier transform it to obtain
g(r). The results are shown in figure 24.

Although gk is not so illuminating g(r) is. This function is zero at the origin and
strongly peaked at the nearest neighbor sites. This is a manifestation of the d-wave sym-
metry. We also note that the correlation function drops off very fast for sites removed
further from the origin. In figure 25 we show the results for a calculation of the corre-
lation and kinetic energy using the parameters extracted from ARPES measurements on
Bi-2212. The kinetic energy is calculated from,

〈Ĥkin〉= ∑
k

εk{1− εk−µ
Ek

tanh
(

Ek

2kbT

)
}. (144)

We see that the kinetic energy increases in the superconducting state. This can be easily
understood by looking at what happens to the particle distribution function below Tc, as
indicated in the left panel of figure 26: when the system enters the superconducting state
the area below the Fermi energy decreases and the area above the Fermi energy increases
thereby increasing the total kinetic energy of the system. Nevertheless the total internal
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FIGURE 26. Left: Distribution function for the normal (Fermi liquid like) state and the superconducting
state. Right: Distribution function for a non-Fermi Liquid like state and the superconducting state.

energy, which is the sum of the interaction energy and the kinetic energy, decreases
and this is of course why the system becomes superconducting. Now let us take a look
at what happens in the cuprates. In figure 27 we display the optical spectral weight
W (Ωc,T ) as a function of T 2 for Bi-2223. To compare this to the BCS kinetic energy we
have plotted here −W (Ωc,T ). This result is contrary to the result from our calculation:
the kinetic energy decreases in the superconducting state. This experimental result,
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observed first by Molegraaf et al. [15], has sparked a lot of interest both experimentally
[5, 16, 17, 18, 19] and theoretically [20, 21, 22, 23, 24, 25, 26, 27, 28]. We note that
DMFT calculations with the Hubbard model as starting point have shown the same
effect as observed here [27]. Roughly speaking the effect is believed to be due to the
"strangeness" of the normal state (right panel figure 26). It is well known that the normal
state of the cuprates shows non Fermi-liquid behavior. So if the distribution function in
the normal state does not show the characteristic step of the Fermi liquid at the Fermi
energy but is rather a broadened function of momentum it is very well possible that the
argument we made for the increase of the kinetic energy (see above) is reversed.

Applications of sum rules: the Heitler-London model

Another interesting application of sum rules is that we can use them in some cases to
extract the hopping parameters of a system. In order to see how this works we express
the optical conductivity at zero temperature,

σ1 (ω) =
πe2

V

〈
Ψg

∣∣ v̂
δ

(
ω− Ĥ +Eg

)

Ĥ−Eg
v̂
∣∣Ψg

〉
, (145)



in terms of the dipole operator. Here |Ψg〉 is the groundstate of the system. To do this
we make use of the commutator Eq. (135) and the insertion of a complete set of states.
After integrating over frequency we get

∞∫

0

σ1 (ω)dω =
πe2

h̄2V ∑
n

(En−Eg) |〈n| x̂ |g〉|2. (146)

We note that this can be done only for finite system sizes. Now consider the special
case of a diatomic molecule with two energy levels, one on each atom and a hopping
parameter t and distance d between the two atoms. We also assume that there is a
splitting ∆ between the two levels. The hamiltonian for such a system is,

H = t ∑
σ

(
ψ t

L,σ ψR,σ +ψ t
R,σ ψL,σ

)
+

∆
2

(n̂R− n̂L)+U
(
n̂L↑n̂L↓+ n̂R↑n̂R↓

)
. (147)

The indices L and R indicate the left and right atom respectively. If we now put 1 electron
in this system we have a two-level problem that is easily diagonalized. As usual we make
bonding and anti-bonding states,

∣∣ψg,σ
〉

= u
∣∣ψl,σ

〉
+ v |ψR,σ 〉 , (148)

|ψe,σ 〉= v
∣∣ψl,σ

〉−u |ψR,σ 〉 . (149)

The coefficients u and v are given by,

u =
1√
2

√
1+

∆
ECT

; v =
1√
2

√
1− ∆

ECT
. (150)

The bonding and anti-bonding states are split by an energy ECT ,

ECT =
√

∆2 +4t2. (151)

We are now in position to calculate the transition matrix element appearing in Eq. (146).
The position operator can be represented by,

x̂ =
d
2

(n̂R− n̂L.) . (152)

So the matrix element is,

〈
ψg,σ

∣∣ x̂ |ψe,σ 〉= (u〈ΨL|+ v〈ΨR|) d
2

(n̂R− n̂L)(u|ΨL〉− v|ΨR〉)

=−d
2
(uv) =− t

ECT
d (153)

Using this in the sum rule Eq. (146) finally gives us the spectral weight of this model,
∞∫

0

σ1 (ω)dω =
e2πd2

h̄2V
t2

√
∆2 +4t2

. (154)
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We see that there is a very simple relation between the spectral weight of this model
and the hopping parameter. This sumrule has been applied to α-NaV2O5 [29]. This
compound is a so-called ladder compound. It consists of double chains of vanadium
atoms forming ladders which are weakly coupled to each other. Each unit cell contains
4 V atoms and 2 valence electrons. The vanadiums on the rungs of the ladder are more
strongly coupled than those along the legs, i.e. t⊥À t‖. The Heitler-London model we
have discussed above can be applied to this system since each rung forms precisely a two
level system with different levels. The only difference that we have to take into account
is that this is a crystal consisting of N independent two level systems. Figure 28 shows
the optical conductivity of α-NaV2O5.

There are two measurements shown: one with light polarized parallel to the chains
and one with light polarized perpendicular to the chains. We can immediately read of
ECT ≈ 1 eV. Integrating the contribution to the optical conductivity of the peaks we find
that the spectral weight perpendicular to the chains is roughly 4 times larger then the
spectral weight parallel to the chains, so t⊥ ≈ 4t‖. Inverting Eq. (154) we can calculate
t⊥ and we find t⊥ ≈ 0.3 eV. The second strong peak at approximately 3.2 eV is a charge
transfer peak from vanadium to oxygen. We will come back to this example in the last
section on spin interactions.



Generalized Drude formalism

We have already encountered the Drude formula for the optical conductivity of a
metal (see the section on polaritons). Even though this model is based on a classical
gas of non-interacting particles it describes amazingly well the optical properties of
a good metal. This is even more surprising if one realizes that in a metal electrons
reside in bands and that the transitions we are making with photons are vertical due
to the negligible photon momentum. So from the band picture point of view, when we
consider a single band of electrons interacting with photons we should expect a single
delta function at the origin. The reason that this is not what is observed is because we
have neglected the other interactions in the system. Electrons in solids interact with the
lattice vibrations, impurities and/or other collective modes. Due to the electron-phonon
interaction for instance we can have processes where a photon creates an electron-hole
pair in which the electron "shakes off" a phonon. In this process the phonon can carry
away a much larger momentum then originally provided by the photon. Due to this
effect we can have phonon-assisted transitions which give a width 1/τ to the delta
function. This width is called the scattering rate. If the interactions are inelastic, as in
the interactions with impurities, this scattering rate is just a constant. Otherwise, this
scattering rate can depend on frequency. However, if we define the scattering rate in Eq.
(58) to be frequency dependent, 1/τ ≡ 1/τ(ω), the KK-relations force us to introduce
a frequency dependent effective mass as well. This is what is done in the generalized
Drude formalism [30]. The optical conductivity is written as,

σ (ω) =
ne2/m

τ−1(ω)−iωm∗ (ω)/m
. (155)

Having measured a conductivity spectrum we can invert these equations to calculate
1/τ(ω) or m∗(ω)/m via,

τ−1(ω)≡ Re
ne2/m
σ (ω)

= Σ′′(ω), (156)

and
m∗(ω)

m
≡ Im

−ne2/m
ωσ (ω)

= 1+
Σ′(ω)

ω
. (157)

In the last equality of these equations we have defined an optical self-energy. Note that
this quantity is not equivalent to the self-energy used in the context of Green’s functions.
We can rewrite the optical conductivity in terms of Σ(ω) as,

σ (ω) =
ne2

m
i

ω +Σ(ω)
. (158)

In the case of impurity scattering Σ(ω) is simply given by

Σ(ω) = i/τ0, (159)

so that 1/τ(ω) = 1/τ0 and m ∗ (ω)/m = 1. We can also capture the effect of the
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interaction of the electrons with the static lattice potential in a self-energy,

Σ(ω) = λω, (160)

which gives τ−1(ω) = 0 and m∗(ω)/m = 1+λ . This is also called static mass renormal-
ization. Finally we consider dynamical mass renormalization where the electrons couple
to a spectrum of bosons,

Σ(ω) =
λω

1− iω/T ∗
, (161)

Here λ is a coupling constant and T ∗ is a characteristic temperature scale related to the
bosons. In this case we find,

τ−1(ω) = λT ∗
ω2

T ∗2 +ω2 , (162)

and
m∗(ω)

m
= 1+λ

T ∗2

T ∗2 +ω2 . (163)

As an example we will discuss the α-phase to γ-phase transition in pure Cerium.
When Cerium is grown at elevated temperatures it forms in the so called γ-phase. At
low temperatures a volume collapse occurs and the resulting phase is called the α-
phase. This iso-structural transition is first order. The reduction in volume can be as
much as 20 to 30 %. Ce has 4 valence electrons and these can be distributed between
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localized 4 f states and the 5d states that form the conduction band. If occupied, the 4f
states will act as paramagnetic impurities. In the γ-phase the Kondo temperature TK ≈
100 K whereas in the α-phase TK ≈ 2000 K. This difference can be understood to be
simply due to the larger lattice spacing in the γ-phase: the hopping integral t is smaller
and hence TK is smaller. Figure 29 shows the optical conductivity of α- and γ-Cerium.
These measurements were done by depositing Ce films on a substrate at high and low
temperature to form either the α or γ phase. We see that γ-Cerium is less metallic than
α-Cerium. In the γ-phase there is only a weak Kondo screening of the impurity magnetic
moments and this gives rise to spin flip scattering, which is the main source of scattering.
In the α-phase the moments are screened and form renormalized band electrons in a very
narrow band. This suppresses the scattering. The difference in scattering rates shows
up in the optical conductivity as a narrower Drude peak for the α-phase (see figure
29). Figure 30 displays the scattering rate and effective mass extracted from the optical
conductivity in figure 29 using Eq. (156) and (157). In the γ-phase 1/τ(ω) extrapolates
to a finite value due to local moment or spin-flip scattering. We can rewrite the real part
of the optical conductivity in Eq. (158) with the self-energy of Eq. (161) as follows,

4π
ω∗2

p

σ (ω) =
i
ω

1

1+ λ
1−iω/T ∗

. (164)



Note that we have defined a renormalized plasma frequency, ω∗
p, since the spectral

weight is not conserved when adding Σ(ω) to σ(ω). With some simple algebra this
can be rewritten as,

4π
ω∗2

p

σ (ω) =
i
ω

+λ
T ∗

ω2 + iω(1+λ )T ∗
. (165)

It follows that the real part of this expression is then,

4π
ω∗2

p

Reσ (ω) =
π
2

δ (ω)+λ
T ∗

ω2 +(1+λ )2T ∗2 . (166)

We see that the optical conductivity is split into two contributions: a δ -function which
represents the coherent part of the charge response and an incoherent contribution. The
δ -function is usually broadened due to other scattering channels present in the system.
In this case the δ -function represents the contribution due to the Kondo-peak whereas
the incoherent contribution is due to the side-bands. This splitting of the conductivity in
a coherent and incoherent contribution is nicely observed in the α-phase of Cerium
as indicated in figure 29. This splitting of the optical conductivity in coherent and
incoherent contributions is much more general however and is frequently observed in
correlated electron systems.

ELECTRON-PHONON COUPLING

Electron-phonon coupling is most easily described in the framework of Migdal-
Eliashberg theory. The application of the theory to optics can be found in the papers
by Allen [30]. In the so-called Allen approximation the self-energy in Eq. (158) is
calculated using,

Σ(ω) =−2i
∞∫

0

dΩα2
trF(Ω)K(

ω
2πT

,
Ω

2πT
). (167)

Here the kernel K( ω
2πT , Ω

2πT ) is given by,

K(x,y) =
i
y

+
y− x

x
[Ψ(1− ix+ iy)−Ψ(1+ iy)]+

y+ x
x

[Ψ(1− ix− iy)+Ψ(1− iy)] .

(168)
where the Ψ(x) are Digamma functions. The function α2

trF(Ω) appearing in Eq. (167)
is the phonon spectral function. The label "tr" stands for transport indicating that the
spectral function is related to a transport property. This function is different by a mul-
tiplicative factor from the true α2F(Ω) as measured by for instance tunnelling. The
electron-phonon coupling strength is easily calculated from α2

trF(Ω) by integration,

λtr = 2
∫ ∞

0

α2
trF(Ω)

Ω
dΩ. (169)

This approach was first applied by Timusk and Farnworth in a comparison of tunnelling
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FIGURE 31. Left: Optical conductivity of ZrB12 at selected temperatures. Right: 1/τ and m∗/mb for
several temperatures. Data taken from ref. [33].

and optical measurements on the superconducting properties of Pb [32]. As an example
we discuss the application of this formalism to the optical properties of ZrB12 [33].
Figure 31 shows the optical conductivity of ZrB12. The spectrum consists of what
appears to be a Drude peak and some interband contributions. Also shown are the
calculated 1/τ(ω) and m∗(ω)/mb. The temperature dependence of 1/τ(ω) is what
is usually observed for a narrowing of the Drude peak with decreasing temperature
whereas the strong frequency dependence is suggestive of electron-phonon interaction.
Using the McMillan formula (169) the coupling strength was estimated to be λtr ≈ 0.7.
In figure 32 the reflectivity of ZrB12 together with calculations based on Eq. (158) and
(167) is shown. It is clear that a simple Drude form is not capable of describing the
observed reflectivity. The first fit (fit 1) is a fit where the α2

trF(Ω) that was used as input
was derived from specific heat measurements [34]. Although it gives an improvement
over the standard Drude fit there is still some discrepancy between the data and the fit.
To make further improvements α2

trF(Ω) was modelled using a sum of δ -functions. The
results of this modelling are indicated as fit 2 and fit 3. Using Eq. (169) we find coupling
strengths λtr ≈ 1 - 1.3. Another method to roughly estimate α2

trF(Ω) is due to Marsiglio
[35, 36]. It states that a rough estimate of the shape of α2

trF(Ω) can be found by simply
differentiating the optical data,

α2
trF(Ω) =

1
2π

Ω2
p

4π
d2

dω2 Re(
1

σ(ω)
), (170)
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Figure adapted from ref. [33].

where Ωp is the plasma frequency. The obvious problem with this method is that it
requires the double derivative of the data. Because of the inevitable noise in the data
usually some form of smoothing is required. Applied to ZrB12 the extracted α2

trF(Ω)
shows peaks at the same positions as the ones extracted before and a coupling strength
λtr ≈ 1.1. These results indicate a medium to strong electron-phonon coupling for ZrB12.

POLARONS

There exist many definitions of what is a polaron. Electrons coupled to a phonon have
been called polaron as have free electrons moving around in an insulator. Here we
will consider the Landau-Pekar approximation for a polaron [37, 38]. The idea is that
when an electron moves about the crystal it polarizes the surrounding lattice and this in
turn leads to an attractive potential for the electron. If the interaction between electron
and lattice is sufficiently strong this potential is capable of trapping the electron and
it becomes more or less localized. The new object, electron plus polarization cloud
is called polaron. This self-trapping of electrons can occur in a number of different
situations and different names are used. For instance, one talks about small polarons
in models where only short range interactions are considered, because this typically
leads to polaron formation with polarons occupying a single lattice site. From the
Landau-Pekar formalism we can get some feeling of when polarons form and what their
properties will be. First of all, the coupling constant α is given by,



FIGURE 33. Schematic of the optical conductivity of electrons interacting with a single Einstein mode.

α2 =
Ry

h̄ω0ε̃2
∞

mb

me
, (171)

where Ry stands for the unit Rydberg (1 Rydberg = mee4/2h̄2 = 13.6 eV), ω0 is the
oscillator frequency of the (Einstein) phonon mode involved mb and me are the band and
free electron mass respectively and ε̃ is given by,

1
ε̃

=
1

ε∞,IR
− 1

ε(0)
. (172)

For strong coupling (small polarons) the polaron mass is expressed in terms of the
coupling constant as,

mpol = mb(1+0.02α4), (173)

with the polaron binding energy given by,

Epol = 0.1
Ry
ε̃2

∞

mb

me
. (174)

The polaron binding energy typically is of the order of a few 100 meV. The polaron
mass is typically of the order of 50-100 times the electron mass. The effect of polaron
formation on the optical conductivity can be described by assuming a gas of non-
interacting polarons (i.e. low polaron density). This results in a spectrum that can be
described by a Drude peak and a so-called Holstein side-band. If we assume that the
electrons interact with a single Einstein mode the spectrum will look as in figure 33.
The spectrum consists of a zero-phonon, coherent part (n = 0) with a spectral weight
1/(1+0.02α4) followed by a series of peaks that describe the incoherent movement of
polarons assisted by n=1,2,3.. phonons. In real solids the peaks are smeared out due to
the fact that phonons form bands. The real part of the optical conductivity can thus be



FIGURE 34. Doping dependence of the room temperature optical conductivity of La2−xSrxCuO4.
Figure adapted from Uchida et al., ref. [39].

described as,

Re
4π
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The first term in this expression describes the coherent part of the spectrum, which in
real solids will also be smeared out to finite frequency by other forms of scattering,
and an incoherent term given by the second term which is called the Holstein band.
The shape of the side-band can be qualitatively understood by imagining how a polaron
has to move through the lattice. In order to move from one site to another the lattice
deformation around the original site has to relax and be adjusted on the new site. This
relaxation process results in the multi-phonon side-bands of the Drude peak.

The observation of the Holstein side-band is somewhat complicated because it is
not possible to distinguish between normal interband transitions and the effects due to
polaron formation. There have been some claims that a band observed in the mid infrared
region (≈ 100 - 500 meV) of the spectrum of high-Tc superconductors is due to polaron
formation but many other interpretations exist. Figure 34 shows the doping dependence
of La2−xSrxCuO4. The peak that occurs around 0.5 eV for the 0.02 doped sample has
been interpreted as the Holstein side-band. Another example where polarons could play
a role is in LaTiO3.41 [40]. In this material the resistivity (figure 35) shows a quasi one
dimensional behavior with an upturn of the resistivity at lower temperatures. This could



FIGURE 35. Left panel: temperature dependent resistivity of LaTiO3.41. Right panel: Optical conduc-
tivity for selected temperatures. Figure adapted from ref. [40].

be due to polaron formation but it has also been interpreted as due to a charge density
wave. The optical conductivity at low temperatures shows that a large part of the spectral
weight is contained in a side-band around 300 meV (see figure 35). If this peak would be
due to polarons we expect that when we warm up the system to higher temperatures its
spectral weight should be diminished. This is because the increased temperature unbinds
electrons from their self-trapping potential and therefore shifts spectral weight from the
Holstein band to the Drude peak. This is also what is observed and at the same time
explains the decrease of resistivity with increasing temperature.

The last example we will discuss is NaV6O15. The structure of this compound is build
up out off octahedra and

FIGURE 36. Crystal structure of NaV6O15.



FIGURE 37. Optical conductivity of β -NaV6O15 for light polarized along and perpendicular to the
b-axis. Figure adapted from [41]

tetrahedra of vanadium and oxygen atoms where the tetrahedra form quasi 1-
dimensional zig-zag chains (see figure 36). There are 3 different types of vanadium
sites in this structure: 2 of them are ionic with a charge 5+ on the vanadium which has
then a 3d0 configuration. The third site has half an electron more leading to a charge
of 4.5+ on the vanadium atom in a 3d1/2 configuration. Because of this we expect a
quarter filled band and metallic behavior. Figure 37 shows the optical conductivity of β -
NaV6O15. The chains are along the direction labelled b. At energies around 3000 cm−1

we observe a broad peak for light polarized along the b-direction which could be due to
polarons although these transitions also correspond well with the energies predicted by
the Hubbard model for d-d transitions. If we compare the conductivity with polarization
parallel and perpendicular to the b-axis, we see that the conductivity perpendicular to
the b-axis is insulating whereas the one along the b-axis is conducting. This conducting
behavior is due to the quarter filled bands.

Are polarons playing an important role in the above examples ? It is nearly impossi-
ble to answer this question experimentally due to the above mentioned difficulty in sep-
arating polaronic behavior from normal interband transitions. Moreover, in most cases
where polarons are invoked, other theories are also able to reproduce the experimental



results. To close this section we briefly discuss what happens if the density of polarons
becomes larger. Imagine what happens if we increase the density of polarons such that
we are getting close to a system with one polaron on each site. In that case the original
lattice will almost be completely deformed and one can wonder wether the electrons
are still capable to self-trap. It seems reasonable that in this limit the polaron picture no
longer applies. Another possibility is the formation of bipolarons. Since the deformation
energy of the lattice is proportional to the electron charge Epol ∝−1/2Cq2, the binding
energy of two polarons is ∝ −Cq2. The binding energy of a bipolaron (two electrons
trapped by the same polarization cloud) is twice as large however Ebipol ∝−1/2C(2q)2.
This binding energy is usually not enough to overcome the Coulomb repulsion between
the electrons.

SPIN INTERACTIONS

As mentioned in the previous section the signatures for the presence of polarons can
often be interpreted with different ideas. Most often these models are based on coupling
to magnetic interactions. Consider for example the spectrum of the parent (undoped)
compound YBa2Cu3O6 which is a Mott insulator (see bottom panel of figure 14). Below
100 meV we see a series of peaks which are due to phonons. But what about the structure
between 100 meV and 1 eV ? One of the difficulties in explaining this structure is
that light does not directly couple to spin degrees of freedom. It is however possible
to indirectly make spin flips with photons (see figure 38).

FIGURE 38. Interaction diagram for the indirect interaction of light with spin degrees of freedom.

For this process to occur we have to include phonon-magnon interaction. When a
photon enters the material it gets dressed with phonons forming a polariton which
is then coupled to the spin degrees by the phonon-magnon interaction. This leads to
the possibility of so-called phonon assisted absorption of spin-flip excitations [42].
We see from figure 38 that the polariton creates a bi-magnon. This is because the
intermediate state has to have spin S = 0. The dashed square represents all magnon-
magnon interactions. The coupling constant for this process was first calculated by
Lorenzana and Sawatzky and is

Jph−mag =
1
2J

<
d2J
du2 >< u2 >, (176)

where J is the superexchange constant and u is the atomic displacement vector. In the



FIGURE 39. Optical conductivity of (a): La2CuO4, (b): La2NiO4 and (c): Sr2CuO4. Dashed lines are
fits using the Lorenzana-Sawatzky model.

process momentum and energy have to be conserved and this leads to

kmagnon 1 + kmagnon 2 + kphonon = kphoton ≈ 0. (177)

and
ωmagnon 1 +ωmagnon 2 +ωphonon = ωphoton. (178)

for the process in figure 38. This gives constraints on the possible absorptions. In
figure 39 some examples are shown of materials in which we believe this process to
play a role. One of the compounds where the predicted optical conductivity fits the
spectrum very well is in the case of Sr2CuO3. To make the fit the magnon dispersion
as measured with neutron scattering was used. The reason that this theory works so
well for Sr2CuO3 is that the conduction is nearly one dimensional. This gives a good
starting point because the magnon spectrum is completely understood. On the contrary,
the theory is not completely capable of predicting the spectrum of La2CuO4. Most likely
the peaks around 0.6 and 0.75 eV are due to 4 and 6 magnon absorption. In the case of
YBa2Cu3O6 the situation gets even more complicated due to the presence of two layers
per unit cell. Because of the doubling of the unit cell, there are now acoustic and optical
magnon branches just as what would happen in the case of phonons. The effect of this
on the optical conductivity was first discussed by Grueninger et al. [6, 43].

Another example of probing of spin excitations occurs in NaV2O5. As already dis-
cussed in the previous section this compound has quasi one dimensional chains as shown
in figure 36. These chains can be seen to form a so-called ladder structure, with the



FIGURE 40. Schematic of the ladder structure of α- NaV2O5. Arrows indicate the position of the
lectrons and their spin orientation.

ladders parallel to the b direction. Each adjacent ladder is shifted with respect to the
previous such that the rungs of one ladder fall in between those of the next (figure 40).
The vanadium atoms that form the ladders have an average charge of +4.5. It has been
claimed [44] that the charge distribution is inhomogeneous with most of the charge on
one side of the ladder as indicated in figure 40. The temperature dependence of the
magnetic susceptibility can be modelled pretty well using a Bonner-Fischer model for
a spin-1/2 Heisenberg chain [45] for temperatures higher then 34 K (see figure 41). Be-
low 34 K, X-ray analysis shows a doubling of the a- and b- axes and a quadrupling of
the c-axis. It indicates that the new unit cell consists of 64 vanadium atoms and 32 va-
lence electrons. At the same temperature the susceptibility shows an abrupt drop. An
explanation for this transition is in terms of a spin-Peierls transition. In the high tem-
perature phase (T > TSP) the left side of the ladder has a uniform spin distribution,

FIGURE 41. Magnetization of α- NaV2O5. Figure adapted from ref. [45].



FIGURE 42. Schematic representation of the low and high temperature phase of α- NaV2O5.

as indicated in the left panel of figure 42, which is reasonably well described with an
anti-ferromagnetic (AF) S = 1/2 Heisenberg spin chain with uniform exchange coupling
J. For T < TSP the system dimerises due to a deformation of the lattice, leading to an
alternation of exchange couplings (see right panel figure 42). Here we focus on the high
temperature phase. If the charge inhomogeneity is present it would lead to a breaking
of the inversion symmetry which in turn leads to a non-zero optical matrix element for
two magnon absorption [46]. The idea is similar to the Lorenzana-Sawatzky model dis-
cussed above. In the latter case the phonon effectively lowers the symmetry making the
process optically allowed. The optical conductivity of α- NaV2O5 is shown in figure
43. We can model α- NaV2O5 with independent ladders where the hopping probability
along a rung (t⊥) is much larger than that along the ladder (t‖). Furthermore we assume a
large on-site repulsion U. We can then model a ladder by independent rungs. Assuming a
quarter filled ladder (one electron per rung) we have a simple two level problem leading
to bonding and anti-bonding levels (see also the discussion in the section on applications
of sum rules). If we also include a potential energy difference ∆ between the sites the
wavefunctions become asymmetric with higher probability on the low potential site and
one can show that this again leads to bonding and anti-bonding solutions which are split
by an energy [46],

ECT =
√

∆2 +4t2
⊥. (179)

Transitions from the bonding to anti-bonding band are optically active and involve
charge transfer (CT) from the left side of the ladder to the right. The large peak seen
in figure 43 around 1 eV is due to these transitions. The energy position of the peak
indirectly gives evidence for the charge inhomogeneity: band structure calculations and



FIGURE 43. Optical conductivity of α- NaV2O5. Inset (a) shows the low energy continuum attributed
to charged bi-magnon excitations and inset (b) shows the temperature dependence of the spectral weight
of this continuum. Figure adapted from ref. [46].

exact diagonalization of finite clusters give t⊥ ≈ 0.35 eV, which would put the charge
transfer peak around 0.7 eV. The observed value of 1 eV thus indicates ∆ 6= 0. The
spectral weight of the peak allows us to make an estimate for ∆. One can show that,

∫

peak
σ1(ω) = πe2Nd2

⊥t2
⊥h̄−2E−1

CT . (180)

Using Eq. (179) we find t⊥ ≈ 0.3 eV and ∆ ≈ 0.8 eV. Besides the large CT peak seen
in figure 43 there is also a broad continuum in the infrared region of the spectrum for
E ‖ a (see inset). This part of the spectrum can be understood if we include the coupling
between rungs of the ladder. For parallel spins on different rungs this coupling would
have no effect since the Pauli principle would forbid hopping between the sites. For an
anti-parallel spin configuration the system can gain some kinetic energy from virtual
hopping of an electron from one rung to the next, putting two electrons on one rung. For
very large U this electron would occupy the righthand side of the rung. Staring from an
anti-parallel configuration a spin-flip transition on one rung thus leads to a net dipole
displacement which leads to optical activity of this transition. We note that because of
spin conservation rules we have to make two spin-flips. These excitations have been
dubbed charged bi-magnon excitations.
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