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We discuss the behaviour near T, of the chemical potential in superconductors with a dilute gas of interacting fermions. It is 

shown that at T, there exists an anomaly in the chemical potential that distinguishes superconductors with A and Er of comparable 

magnitude from ordinary BCS superconductors (A< &). We predict the size of the anomaly for a number of existing supercon- 

ductors and we argue, that if high-T, superconductors are indeed special in the above sense, the anomaly is well in the observable 

range and could be used as an experimental test of the various “exotic” models of the superconducting mechanism. 

1. Introduction 

Following the discovery of high-T, superconduc- 
tivity in a large number of ceramic materials, var- 
ious theoretical models for the mechanism of high 
temperature superconductivity have been proposed 
[ 11. In spite of the large variety of proposed mech- 
anisms, most of these models have in common that 
they deal with dilute gases of strongly interacting 
particles. It is therefore interesting to study the phys- 
ics of strongly interacting dilute fermion systems, 
even without knowing the specific nature of the in- 
teraction. Already long before the discovery of high- 
T, superconductivity the physics of tightly bound 
Cooper pairs in the dilute limit had been studied by 
Eagles [ 21, Leggett [ 3 1, Nozieres and Schmitt-Rink 
[ 41. A very recent discussion was made by Randeria 
et al. [ 5 1. In these papers it has been shown that there 
exists a gradual transition from a ground state with 
large, overlapping Cooper pairs to a Bose condensate 
of composite bosons formed out of tightly bound 
pairs of fermions. One can, for example show that 
the BCS ground state wavefunction and the ground 
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state wavefunction of Bose condensed electron-pairs 
[ 61 have the same mathematical form. 

A key element in the analysis of superconductors 
with a large fraction of Cooper pairs in the ground 
state is the fact that in a dilute system the opening 
of a gap will, in principle, affect the position of the 
Fermi level. As the electron density of a macroscopic 
3D system is a fixed quantity the chemical potential 
will adjust itself to the change in the electron con- 
figuration self-consistently in order to obey macro- 
scopic number conservation [ 7 1. Although this self- 
consistent adjustment has been taken into account in 
several papers, it has not been widely realized that 
this shift in Fermi level is in fact an experimentally 
observable quantity. Although it is not the purpose 
of this paper to explain in detail the various avail- 
able experimental techniques for studying tempera- 
ture dependent changes in the chemical potential, we 
will briefly point out the basic experimental ingre- 
dients. In short one has to measure the workfunction 
of the superconductor as a function of temperature. 
In principle the workfunction is the sum of three 
components: ( 1) the chemical potential of the metal, 
(2) the potential drop at the surface due to the sur- 
face electronic structure and (3) the potential drop 
just outside the surface due to absorbed gas mole- 
cules. Due to the presence of the latter two compo- 
nents a workfunction measurement never gives an 
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absolute value of the chemical potential. However, 
quite often, as in the present case, one is merely in- 
terested in temperature dependent changes of the 
chemical potential. Under proper experimental con- 
ditions contributions (2) and (3) can be made al- 
most temperature independent, so that in principle 
it should be possible to get a proper measurement of 
the temperature induced changes in contribution ( 1 ). 
A summary of the available techniques for work- 
function determinations can be found in a review ar- 
ticle by Cardona [ 8 1. The best resolution (better than 
1 meV) can probably be obtained with either the 
Kelvin probe method [ 81 or the capacitive temper- 
ature modulation technique [ 91. A prerequisite for 
reliable results at low temperatures is true ultra high 
vacuum (better than lo-” Torr), which makes this 
type of experiment far from trivial. An early attempt 
to look experimentally at workfunction changes in 
classical BCS superconductors was made by de Waele 
[ 91, who was in search of the superconducting an- 
alogue of the fountain effect in superfluid He II [ lo]. 

In this paper we will show that in systems with a 
Debye energy comparable to or larger than the Fermi 
energy there is a kink in the chemical potential at T,. 

The size of this effect depends strongly on the ratio 
of A/p, where A is the superconducting gap at T=O 
and p is the Fermi energy relative to the bandbot- 

tom. To our knowledge the only paper where this ef- 
fect has been displayed is the paper by Robaszkiew- 
icz and coworkers from 1982, on the Hartree theory 
for the negative U Hubbard model [ 111. In the pres- 
ent paper we will consider a more general form of the 
interaction and find qualitative agreement with the 
above mentioned work. For clarity we have to add, 
that in our discussion we reserve the term Debye en- 
ergy for any cutoff energy D due to retardation ef- 
fects, regardless of the microscopic origin of the in- 
teraction (i.e. phonon mediated or other 
mechanisms). We make numerical estimates of the 
size of the anomaly for some existing superconduc- 
tors and show that the kink in the chemical potential 
should be fairly large and well inside the observable 
range. Experimental verification or falsification 
would put a constraint on many of the proposed the- 
ories for the mechanism(s) of high temperature su- 
perconductivity. As a kink in the chemical potential 
is related to a jump in the specific heat on thermo- 
dynamical grounds, we will furthermore derive the 

expressions for the resulting modification of the BCS 
specific heat jump and show that the absolute jump 
is only slightly reduced due to this effect. From nu- 
merical examples we will prove, however, that the 
relative specific heat jump may be enhanced due to 

thermal excitations of the electron gas in the normal 
state. 

2. Solution of the coupled gap equations 

The coupled BCS equations at finite temperature 

are 

24/, = 1 Vky ’ - 2frlpEq)Aq , 
v q 

(2) 

where Ek =dm are the quasiparticle energies 
and ~=4;-- p are the single electron energies rela- 
tive to the Fermi energy. The usual way to decouple 
the gap equation is to replace the interaction term 
Vkq with a separable form I’Y&, resulting in a k-de- 
pendence of A of the form dk=&. To simplify mat- 
ters further we will replace the summation in k-space 
with an energy integration over a constant density of 
states n. In terms of the y’s the gap equation becomes: 

2 m 1-2~(&/ZL? 
--_-II Jt’+d’ 
tZV_ s IY(t)l’dt. 

In the present case, where the Debye energy D is 
no longer small compared to the Fermi energy we 
have to distinguish two different cases: in the first 
case ( 1) we make the usual assumption of a retarded 
potential equal to V in the energy interval [ -D, D] 

around the Fermi level where D is the Debye fre- 
quency. As soon as the Fermi energy becomes smaller 
than D, the lower cutoff in energy space will no longer 
be the Debye frequency but the bottom of the band. 
In the second case (2) we introduce an energy de- 
pendency of y, which is fixed in k-space, i.e. it is in- 
dependent of the position of the Fermi level. This 
corresponds to the following interaction Hamilto- 
nian, using tight-binding notation for the site-pro- 
jected electron creation and annihilation operators: 
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Here 7, is the Fourier transform of 7,‘. We see that 
this interaction Hamiltonian is non-retarded. Note, 
that if we choose Yk to be k-independent, pr is a 6 
function model. An easily solvable model potential 
of type (2) is a potential that is zero above a char- 
acteristic energy D relative to the bottom of the band 
and Vin the interval [ -p, D-p] around the Fermi 
level. We will consider both types of interaction here. 

We introduce the notation d to indicate the upper 
cutoff in energy space of the interaction potential, 
which is D in the retarded case and D-p in the case 
of an instantaneous interaction. From direct inte- 
gration of eq. (2) we find for A? 

+2kBTln (1 +e-flfl) 

+2k,Tln 
(( 

1 + eepd 

>( 

1 +e-BJm 

1 +e-B$%LP 1 +ePflP >> 

(4) 

where ,u,, is the value of the chemical potential at T= 0 

relative to the bandbottom if the system was be in 
the normal state. The chemical potential p has to be 
determined from eqs. (4) and (3) and is a function 
of temperature. The first four terms cause the shift 
in chemical potential due to the opening of the gap. 
The fifth term is the usual term that causes a shift in 
the chemical potential in the normal state of a Fermi 
gas at finite temperatures. The sixth term is a tem- 
perature dependent correction to terms (3) and (4). 
It is of the order of A2/&-flb-A2/pe-8p which is 
small even at elevated temperatures. First we neglect 
the last two terms and solve the coupled equations 
at T=O. The exact solution of the coupled equations 
is for cases (1) and (2): 

fi=j& -E,/2 and E. =d’ 
a” ’ 

(5) 

where E, corresponds to the binding energy in the 
two body problem. For D 3 A, &, reduces to the nor- 
mal state value of the chemical potential ,u,, and our 
result corresponds exactly to the equations given by 
Randeria et al. [ 5 1. This follows immediately from 
the exact expression for pn: 

(6) 

For the instantaneous interaction the above equa- 
tion has still to be solved, asp is implicitly contained 
in d. The solution is most conveniently expressed in 
the following way: 

X 1+ (7) 

At zero temperature the exact expressions for the 
gapfunction are for case ( 1) and (2 ) respectively: 

A(l)= 
JDIUII 

sinh( l/nV) J 

1_D-~n 
7 e- (2/nV, A(2) 

&WA,) 
= sinh( l/nV) . 

(8) 

Note, that for ,u, CK D and nVC 1 these two 
expressions look similar to the standard BCS result, 
with the Debye frequency replaced by the geomet- 
rical mean value of D and p,,. The first expression 

contains a renormalization factor, that reduces to 1 
in the weak coupling limit. As this expression is only 
valid for p < D it should merge into the BCS result 
at p= D. We can check now from eqs. (8) and ( 5 ) 
that this is indeed the case. The equation for case (2) 
is symmetrical for k around D/2. Of course this 
symmetry only holds for our particular choice of the 
interaction potential and it is lost for a more general 
form Of vkV The Symmetry is alS0 1OSt at finite tem- 
perature, due to the fact that the high energy cutoff 
D is only a cutoff in the energy dependence of vkq 
In principle it is not a band edge as long as we take 
the upper band edge at infinity. We will see later that 
the temperature dependence of these gapfunctions is 
very close to the standard BCS behaviour. 

We can now further investigate the behaviour of 
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the gapfunction and the chemical potential by ex- 
ploring the phase diagram in the parameter space 
spanned by the dimensionless parameters p,,/D and 
exp( -2/nV). The phase diagrams indicating con- 
tours for constant ,u and constant A are displayed in 
figs. 1 and 2 for cases ( 1) and (2) respectively. In 
fig. I the region where p,,/D> 1 corresponds to the 

standard BCS case. It merges continuously into the 
region where ,un/Dc 1, where there is an influence 
on p due to the opening of the gap. In case (2) there 
is no normal BCS region. Instead for ,uLn/D> 1 the 
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Fig. 1. (a) Curves of constant p/D for a retarded interaction: 

from left to right: p/D= -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 

0.6, 0.8, 1.0, 1.2. Dashed curve: &D=O.O. Dash-dotted curve: 

1.0. (b) Curves of constant single particle gap (solid curves). 

For p < 0 we indicate both the curves of constant gap parameter 

A/D (dotted) and constant single particle excitation gap E.JD 
(solid ). The values are from top to bottom: 16, 12, 8, 6, 4, 3, 2. 
1.5. 1.0.0.5. 

Fig. 2. (a) Curves of constant p/D for an instantaneous mterac- 

tion:fromlefttoright:p/D=-16,-4,-2,-l, -0.5,0.0,0.25, 

0.5.0.75. 1.0, 1.5, 1.5, 2, 3, 5. 17. Dashedcurves:p/D=Oand 1. 

(b) Curves of constant single particle gap (solid curves). For 

1( < 0 we indicate both the curves of constant gap parameter A/M 
(dotted) and constant single particle excitation gap E,/D (solid). 

The values are from top to bottom: 8, 4, 2, 1.5, 1. 0.75, 0.5. 0.25. 

system is in the normal state for all values of the in- 
teraction parameter. It is important to note that for 
small values of ,uJD both types of interaction (i.e. 
retarded and non-retarded) give the same result: 
there is a depression of the gapfunction, which be- 
comes proportional to 6. Moreover there exists a 
phase boundary separating a region with the chem- 
ical potential situated below the bandbottom from a 
region where it is inside the band. As has been 
pointed out by Randeria et al. [ 51 in this region the 
single particle excitation gap is Eg= ,/m instead 
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of A. Using eqs. (5) we immediately find, that for 
p< 0, the single particle gap is given by ,&, + EJ2. 
For the two types of interaction Eg is respectively: 

E,( 1) =De(-21nV)+~L, 
1 +exp( -4/nV) 

1 -exp( -2/nV) > 

E,(2)= D 
exp(2/nV)-1 +Pll. (9) 

Note, that in the empty band limit &-+O) this be- 
comes equal to half the binding energy of an isolated 
pair of electrons EJ2 rather than 0 [ 21. We also in- 
dicate the contours of constant Eg in both figures by 
solid curves. We see that there is a weak singularity 
at the phase boundary for this parameter. It has been 
pointed out by Nozieres and Schmitt-Rink [4] and 
especially by Randeria et al. [ 51, that this phase 
boundary may mark the border between a Bose con- 
densate of paired electrons and the BCS ground state. 
Although we also believe that a boundary of this type 
may exist, we think that in order to make a distinc- 
tion between Bose condensation and BCS supercon- 
ductivity an analysis of the ground state wavefunc- 
tion could, at least in principle, be insufficient. In 
this context it is perhaps interesting to point out that 
the p = 0 border can also be regarded as a manifes- 
tation of an effect that likewise exists in non-super- 
conducting Fermi gases at elevated temperatures: the 
superconducting ground state wavefunction at T= 0 

is a coherent superposition of Slater determinants 
characterized by an electron distribution function 
Iz+12=(Ek-tk)/(2Ek) which is similar (but not 
equivalent) to a Fermi-Dirac distribution at finite 
temperature. Even if p is at the bottom of the band 
this distribution function will mix a finite number of 
electrons into the superconducting ground state. This 
is precisely represented by the first term in eq. (2 ), 
apart from a factor of 2 due to spin degeneracy. Note 
that this term gives a non-zero contribution to the 
number of electrons, even if p is at the bottom of the 
band. If the constraint on macroscopic number den- 
sity requires a lower number of electrons, the chem- 
ical potential must drop below the bottom of the 
band, resulting in an enlarged gap. A similar situa- 
tion exists in a (non-superconducting) Fermi gas in 
the absence of interactions, where the chemical po- 
tential drops below the bottom of the band above 
T= EF/ (2/c, In 2 ), again due to the constraint on 

macroscopic number density. This follows directly 
from eq. (4) if we put A equal to zero. Note that also 
in the latter case there is a gap in the single particle 
excitation spectrum, which is however related to the 
formation of an incoherent state, rather than a co- 
herent one. The discontinuous behaviour at ,uu, = D in 
both plots is due to the choice of a sharp cutoff in 

the energy dependence of Vkq and is absent if one 
chooses a more realistic interaction potential. In our 

numerical procedures we tried a few interaction po- 
tentials that varied smoothly around ,uL,/D= 1 and 
found similar results as discussed above in the left 

side of the plots and a smooth cross-over on the right 
side. Estimates for the ceramic high-T, supercon- 
ductors put the Fermi energy in the range of 50 to 
100 meV [ 12,13 1, with a gap parameter of 14 to 40 
meV and a Debye energy scale of 50 meV or higher. 
This puts this class of materials in the region where 
,u,/D is of the order 1, or smaller. This is still far re- 
moved from the region where we have y<O. Never- 
theless, as the gap parameter is quite large, a distinct 
shift of the chemical potential due to the opening of 
the gap has to be expected. There are other examples 
of materials with a small pJD ratio, like the In/InO, 
system, Bi, SrTi03 and also the heavy fermion su- 
perconductors. However, in all these cases the gap 
parameter is small compared to both D and &, so 
that the shift of the chemical potential is probably 
difficult to detect experimentally. 

3. Temperature dependence of p and A 

We can get a qualitative understanding of what 
happens at finite temperatures by extending the use 
of figs. 1 and 2 somewhat beyond the T=O limit, 
where they are strictly applicable. Suppose we have 
an electron gas with a low density of electrons, e.g. 
p,,/D=O.25. We now turn on the interaction at zero 
temperature and constant electron density. As a re- 
sult we move upward in figs. 1 and 2 and two things 
happen: in the first place we move toward lower val- 

ues of p (figs. 1 a and 2a) and in the second place the 
gap increases (figs. lb and 2b). On further increas- 
ing the interaction we cross the p=O border and the 
chemical potential drops below the bottom of the 
band. In the case of the retarded interaction (fig. 1) 
there is a critical value of the electron density (& 
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D=O.5) above which the chemical potential never 
becomes negative at T=O. Suppose that the inter- 
action is small, so that we are in the region where 

,DuO. If we now increase the temperature the main 
effect of this will be that the gap decreases. Effec- 
tively this means that we move vertically down in 
figs. 1 and 2, until we reach the point where A=O, so 
that we are back at the normal state chemical 
potential. 

We now turn to the solution of the temperature 
dependent coupled gap equations. We have to con- 
sider the effect of a finite value of A on eq. (4), which 
modifies the value of p. This modification of p has 
again to be included in eq. (3), but usually (and es- 
pecially close to T,) the change in chemical potential 
is small enough in order to make the influence hereof 
on the gap equation neglegible. Also if we are in the 
parameter range where p and A are of comparable 
size, some insight can be gained from considering the 
effect of A on ,U at T=O. Just below T, the gap is small 
and we can neglect the sixth term in eq. (4), so that 
eqs. (5) are again applicable, with p(n now the nor- 
mal state chemical potential at finite temperature. 
Adopting the standard BCS form for the tempera- 
ture dependence of A we obtain 

P(T)=~,(T)- 
A;( 1 -T/T,) 

4~,( T) 
(10) 

i.e., there is a discontinuity in the first derivative of 
p( T) at T,. In fig. 3 we give numerical examples of 
the solution of the full temperature dependent cou- 
pled gap equations (eqs. (3) and (4)), where the 
interaction parameters were chosen such as to give 
a critical temperature in the range of values of high- 
T, superconductors. We see that there is a kink at T, 
in the meV range. In spite of its smallness this is a 
value, that is in principle experimentally accessible. 
In this particular example we display the result for 
a retarded interaction of the type discussed above 
(i.e. with a sharp cutoff in the range [ -,u, D] around 
the Fermi level, where Jo< D). We also tried some 
other choices for the function y(e), in particular the 
retarded form y= ( 1 + ( c/D)~)-‘, the non-retarded 
form discussed in relation to fig. 2 and the non-re- 
tarded form ~=exp( - (t+p)/D). The behaviourof 
both the gapfunction and the chemical potential 
turned out to be more or less universal functions of 
,un, T, and temperature. As a consequence the 241 

I- \ 
-1 

Fig. 3. Temperature dependence of the chemical potential for a 

superconductor with exp( -2/nV) ~0.0183, where V is a re- 

tarded potential with a Debye cutoff of 0.05 (eV). The Fermi 

energy at zero temperature is from top to bottom: 0.05 (eV), 0.04 

(eV), 0.03 (eV), 0.02 (eV), 0.01 (eV) and 0.005 (eV). We as- 

sumed a band with constant density of states and with a band- 

width of 0.2 (eV). 

ksTc ratio is quite generally equal to 3.5, at least in 
the limit of a weak interaction. In the region where 
,u<O there is a reduction of the 2A/T, ratio. On the 
other hand, in those case the ratio 2Eg/kBTc, is larger 
than 3.5. Of course it is the latter quasiparticle gap 
and not the gapfunction A that is determined exper- 
imentally, so that an enhanced gap over kBTc ratio 
is to be expected for superconductors in the ex- 
tremely dilute limit. The top curve in fig. 3 corre- 
sponds to p,/D= 1. From fig. 1 a we already know 
that this is just inside the region of standard BCS be- 
haviour, where there is no kink in the chemical po- 
tential at T,. As can be seen in fig. 3 the critical tem- 
perature decreases on decreasing the density of 
electrons and a pronounced kink in ,u occurs at T,. 
One should not conclude from this result that the size 
of the kink in p is a decreasing function of T,: if we 
had chosen to vary the interaction parameters n v/in- 
stead of the density of charge carriers, we would have 
found that the size of the kink increases with in- 
creasing T,. Even for the lowest density of electrons 
in fig. 3 we still have PL> 0 at all temperatures. So the 
examples in fig. 3 are all in the middle section of fig. 
1. 

We need a few words of caution at this point: so 
far we have restricted the discussion to a mean field 
description of the interaction particle system. This 
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may be inappropriate at finite temperatures in the 

the very dilute limit, even though the ground state 
wavefunction is still correct. In particular we have to 

realize that the thermodynamics of an extremely di- 
lute superconductor may no longer be dominated by 
the quasiparticle degrees of freedom, especially near 
T,. A quite extreme example of this would be if we 
have pre-existing Cooper pairs above T,, that Bose- 
condense at the superconducting transition. This no- 
tion has been widely discussed, in particular by Ro- 
baszkiewicz, Micnas and Ranninger [ 141 in the con- 
text of the bipolaron model for superconductivity, 
and in their treatment of the negative U Hubbard 
model. In the extreme case of pure Bose condensa- 
tion of non-interaction bosons the behaviour of the 
chemical potential is somewhat similar to our results 
shown in fig. 3. As is treated in many textbooks on 
statistical mechanics (e.g. ref. [ 151) one can easily 
show, that in a boson gas above T,, p lies below the 

bottom of the boson band. The chemical potential 
increases on decreasing the temperature, until it 
reaches the bandbottom at T,. Below T,, p remains 
pinned to the bottom of the band due to macro- 
scopic occupation of the lowest boson state. It is not 
our aim at this stage to calculate the behaviour of the 
chemical potential beyond the mean field approach 
given above, despite of its likely inappropriateness 
in the very dilute limit. 

4. Effect on the specific heat 

In principle one might expect a contribution to the 
step in the specific heat at T, due to the presence of 
a kink in p. We can see this by considering the fact 
that the C,, can be expressed as kBT times the tem- 
perature derivative of the entropy at constant vol- 
ume and constant particle number: 

(11) 

Normally the entropy is obtained by differentiat- 
ing the thermodynamic potential at constant V and 
p, so that the entropy is an explicit function of p. 
Hence differentiation at constant N involves two 
terms: 

(12) 

Clearly, a kink in p results in a step in the tem- 
perature derivative of p in the above expression. 
From differentiation of the thermodynamical poten- 
tial with respect to T [ 61, we obtain the standard 
expression for the entropy of a non-interacting gas of 
quasiparticles obeying Fermi statistics: 

S= -( aQ;;T))P 

=-k”T [(l-f(BEk))ln (1-f(PEk)) 

+f(PEk) ln UVEk) ) 1 . (13) 

Combining eqs. ( 1 1 ), ( 12) and ( 13) we obtain the 
final expression for the specific heat: 

(14) 

In the standard analysis of the specific heat jump, 
only the first and second term are present, and the 
jump is due to the second term. The fourth term has 
zero contribution at T,, whereas the third term is 
small due to the fact that af/aE is non-zero in the 
region where tr0. Again we have to take into ac- 
count the proximity of the bandbottom, which in- 
fluences the third and second terms. The result for 
the jump in the specific heat is for D/A-co: 

C,v(S)-C&N)=? 
c 

1 

+ 284” 
-1n (l+emaPn) 

> 
(15) 

where we used eq. ( 10) for ,u. So we see that there 
is indeed a small reduction of the specific heat jump, 
due to the fact that there is a kink in the chemical 
potential at T,. In fig. 4 we display a few numerical 
examples of CN,/ T, using the same parameters as in 
fig. 3. It is evident from this figure, that the most 
drastic change is not in the specific heat jump, but 
in the specific heat of the normal phase, resulting in 
an enhanced value of ( C&S) - CNv( N) ) /C,,(N). 



42 D. van der Mare1 /Anomalous behaviour qfp in high-T, superconducrors 

Fig. 4. Temperature dependance of the specific heat divided by 

temperature for the same parameters as in fig. 3. 

This is also a direct consequence of the low density 
of charge carriers: at elevated temperatures the sta- 
tistics of the electron gas crosses over from Fermi 
statistics to the classical Boltzmann distribution, so 
that the specific heat saturates at k, per electron. This 
behaviour of the normal state specific heat is not un- 
expected in view of the fact that high-T, supercon- 
ductors are often regarded as heavily doped semi- 
conductors. An experimental study of the deviations 
in the normal state specific heat would be quite in- 
teresting, although it is probably very difficult to dis- 
tinguish these rather small deviations from the large 
phonon background in the specific heat. 

5. Conclusions 

We conclude, that in superconductors with a large 
Debye energy relative to the Fermi energy, there ex- 
ists a kink at T, in the temperature dependence of 
the chemical potential. This kink can in principle be 
observed experimentally, especially if the gap and the 
Fermi energy are of comparable magnitude. In this 
parameter range our result is insensitive as to whether 
one considers a retarded or an instantaneous inter- 
action. Our analysis is not restricted to a particular 
type of pairing interaction. In the parameter range of 
the recently found ceramic high-T, superconductors 
we calculate shifts in ,U due to the opening of the gap, 

which are of the order of 0.1 to I meV. 
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