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A theory for Auger line shapes in alloys is presented and applied to dilute alloys with “free-
electron”-like and “noble-metal”-like hosts. For noble-metal-like hosts, we show that anomalous
impurity Auger line shapes can be expected. The theory is developed for degenerate d states, for
which we determine the conditions under which the atomic-split two-hole terms can be treated in-
dependently. The Auger line shape for more concentrated alloys is discussed qualitatively and is
shown to yield information about the nearest-neighbor surroundings.

I. INTRODUCTION

Several years ago it was pointed out that Auger spec-
troscopy can provide direct evidence for the importance of
electron correlation effects in transition metals.!™3 In
those papers and subsequent reviews*~° it has been shown
that a comparison of the Auger spectrum with the self-
convolution of the one-particle density of states yields a
measure of the hole-hole Coulomb interaction. It has also
been shown that as electron correlation effects become in-
creasingly important the Auger spectrum will evolve into
a quasiatomiclike spectrum from a broad-band-like spec-
trum as would be obtained for negligible correlations.’
The shape as well as the position of the Auger lines pro-
vide valuable information concerning the importance of
electron correlation effects.

The theories mentioned above are applicable to pure
metals for which the valence-band structure is approxi-
mated by a single band which is assumed to be initially
full. Approximate theories for partially filled bands have
also recently been developed.®® Numerous experimental
results have recently been reported on alloys and interme-
tallic compounds!®~!® in which a straightforward applica-
tion of the Cini-Sawatzky theory has been shown to yield
anomalous results not at all in agreement with experiment.
The main problem as pointed out recently' is that there
are several bands of importance in the valence-band region
which can lead to strong broadening effects in the Auger
spectra. In this paper we develop a theory for the Auger
spectra of alloys taking into account the multiple band
structure, but still with the assumption that all relevant
bands are initially full. We show that Auger spectra in
these materials can be strongly distorted by the presence
of other bands and that the spectral shape provides infor-
mation about the interband mixing due to hybridization.

The theory is first developed for dilute impurity sys-
tems and then extended to intermetallic compounds. For
the impurity system we describe first a general theory for
the Auger line shape for orbitally nondegenerate bands
and then apply it to two kinds of impurity systems, name-
ly an impurity in an sp free-electron-like host and an im-
purity in a noble-metal-like host. The Auger line shape
for these two systems differs strongly and provides infor-
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mation on the impurity Coulomb interactions as well as
the impurity-host hybridization. To illustrate the physics
the experimental Cu Auger spectra of Cu-Cd alloys are
presented and discussed. We then develop a general
theory for treating the nondegenerate d impurity Auger
spectra with strong atomic term splittings and show that
in many cases the atomic terms can be treated indepen-
dently. Finally we discuss qualitatively the Auger spectra
of more concentrated alloys and show that the Auger line
shape can provide information about the local surround-
ings of the Auger emitting atom.

II. GENERAL IMPURITY THEORY

For the general theory we consider a Hamiltonian of the
form

H =H, +Udyd{dy,d}, . (1)

Here H, is a one-electron Hamiltonian describing the host
band structure and the impurity-host hybridization as well
as the one-electron part of the impurity. The second term
describes the Coulomb interaction of two holes on the im-
purity. Although we will be interested in transition-metal
impurities, we have, in the above, neglected the d-orbital
degeneracy. Inclusion of the degeneracy will be discussed
in Sec. VI. We have also neglected all host-host and
impurity-host Coulomb interactions. We justify this as
follows: To describe the impurity Auger spectrum we will
want to determine the time development of a state with
two holes created at time zero on the impurity, the
Fourier transform of which yields the Auger spectrum.
The probability amplitude that these holes will land upon
the same host atom, where again the Coulomb interaction
may be large, will be small, and therefore these states can
be neglected. In fact the worst possible case would be that
of the pure metal in which case the two-hole states on
neighboring atoms are degenerate with those on central
atoms. In the Cini approximation' to the Auger line
shape for the pure metal, the Coulomb interaction is also
neglected for two-hole states on atoms other than the one
on which the two holes are initially created. By a compar-
ison with the exact expression in this case,’ we have previ-
ously shown that Cini’s is in fact a good approximation,
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making only small errors in the linewidth. For the alloys
discussed here we expect this approximation to be even
better.
The Auger line shape is given by the impurity two-hole
spectral function
)

o

We consider the case where ¥ (the initial ground-state
wave function) contains no holes of importance to the
Auger spectrum. This, for example, will be the case if the
impurity state is well below the Fermi level. With the use
of the relation G =g +gH,G for the two-hole Green’s
function, with H, =Ud,d ydg,d 2; , we obtain

(E)—Im dmdm dmdm (2)

Go=gX+egXUGY , 3)

v).

It should be noted that g is not diagonal in this representa-
tion, but since H, 1s, only the diagonal components enter
in the relation for G{g. The solution is then

where

g%=<¢ dordm dmdor

00
GHlH=—"" 4)

Since H; contains only one-electron terms
g(e)=2m)~! [ g(eghle —elde’

we end up with the same solution as Cini.
The Auger spectrum is given by

D (e)
[1—UF(e)]>*+D%e)

6% |-
T

where D (¢€) is the self-convolution of the one-particle im-
purity partial density of states and F(¢€) is given by

6)—Pf~w D(a)

The important quantity then is the complete impurity
one-hole Green’s function. The above solution was de-
rived previously by Drchal and Kudrnovsky for a
Clogston-Wolff'* impurity and we repeated it here to em-
phasize that it is a general solution for any Hamiltonian in
which the impurity-host mixing and host band structure is
determined by one-electron (-hole) terms.

Although this solution is essentially the same as that
given by Cini for the pure metal one must apply it with
caution in alloys and compounds. The reason is that the
most important part for the Auger spectrum of the one-
hole impurity Green’s function lies in the energy region
shifted by U from the peak in the one-hole impurity densi-
ty of states. For the cases where U is quite large the most
important part of gJ(e) for the Auger spectrum occurs so
far removed from the peak in the impurity density of
states that it cannot be determined in sufficient detail
from valence-band x-ray-photoemission (XPS) or
ultraviolet-photoemission (UPS) measurements. This, in
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particular, is a problem if the host metal happens to have
a large density of states in that energy region and the XPS
or UPS spectra cannot distinguish the small impurity con-
tribution in this region from that of the host.

III. AN EXAMPLE

To illustrate the importance of the detailed knowledge
of the impurity Green’s functions for energies far removed
from the peaks in the impurity density of states, and to
discuss the physics involved, we studied the alloys Cd;Cu,
CdCu,, and Cu, concentrating on the Cu Auger spectrum.
The reasons for choosing this alloy system are the follow-
ing.

(1) The Cu Auger spectrum is well understood, being
quasiatomiclike in pure Cu.!*16

(2) The Cd 4d band has a high density of states which
happens to lie in an energy region well separated from the
Cu 3d band but in the region where the Cu two-hole state
is expected.

The valence-band spectra are shown in Fig. 1. We see
that the Cu 3d band is considerably narrowed in the alloys
as expected from a simple dilution argument. The Cd 4d
and Cu 3d bands are well separated so we expect so little
mixing between these bands that it would be undetectable
in the one-hole spectra. If we also neglected the mixing
for the self-convolution occurring in the Auger line shape,
the Cu Auger spectra would be expected to be narrowed in
the alloys as compared to Cu, because the linewidth for a
single-band case and for large U is proportional to
W?/U,* where W is the Cu bandwidth.

In Fig. 2 the Cu L3MsM,4s Auger spectra are shown
and some of the data is given in Table I. The Auger spec-
tra of the alloys look very similar to those of pure copper
and can be interpreted in the same way.!>!® The structure
in the shoulder at low kinetic energy is due to Coster-
Kronig—preceeded Auger transitions!® and will not fur-
ther be considered here. The main peak arises from a
3d%!G term and the smaller peak at higher kinetic energy
from a F term. We notice that in the alloy the 'G region
is broadened relative to pure Cu and the °F region is, if
anything, narrowed. In terms of Eq. (4) this broadening is
due to a small amount of mixing of the Cu 3d and Cd 4d
bands.

To understand the physics of this we consider a dif-
ferent approach to the Auger-line-shape problem. The
Auger line shape can also be written as

1(6)22 |<¢n|d01d0¢|¢>|25(€—"6n), (6)

where v, are the two-hole eigenstates with energies ¢,,
and © is the initial ground state. This result is easily ob-
tained from Eq. (2) by writing do,do, = 3,, a,¥, with
a, =1, |dodo, | ¥). We then must obtain the two-hole
eigenstates 1,. We consider as a basis set the following
states Two holes on Cu—Cu(d?®) with diagonal energies
2€$°+ U, one hole on Cu 2nd one on Cd—Cu(d®)Cd(d?)
with diagonal energies €5%+€5"°, and two holes on the
Cd—Cd(d°®)Cd(d®) with diagonal energy 2¢5°. Since we
are interested in the influence of the Cd 4d band on the
Cu Auger spectrum we neglect for now the sp band and
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TABLE 1. Some relevant energies and parameters used to calculate the Auger spectra of Cu-Cd al-
loys. U('$)=11.5 eV, U(!G)=6.7 eV, and U(’P)=5.8 eV. U(!D)=5.6 ¢V and U(*F)=3.7 eV. (BE
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denotes binding energy.)

Cu Cu,Cd Cd;Cu
BE Cu 2p3”? 932.240.2 932.4+0.2 932.5+0.2
BE Cu 3d 3.3+0.2 3.5+0.2 3.7+0.2
BE Cu 4d 10.7 10.7
Width Cd 4d ~1.8° ~2.0°
Eiin('G) 918.8 918.9 918.4
AE('G-*F) 2.7 2.75 2.9

2Full width at half-height.

consider Cu as a dilute impurity so that Cu(d®)Cu(d®)
states also do not contribute. We see from the energies
that if 2€5"+ U~e$"+ €59, the Cu(d®) states fall inside a
continuum of states which is just the Cd 4d density of
states shifted in energy by ef,:“. This condition can also be
written as

€5 +U=¢€3". ¥)

If this is the case, the Cu(d®) state will be “lifetime”
broadened. The Cd-Cu alloys were chosen because as in-
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FIG. 1. Valence-band spectra of Cu, Cu,Cd, and Cd;Cu ob-
tained using monochromatized Al Ko radiation. Indicated are
the relative energies of the °F, !G, and S two-hole states,
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dicated in Fig. 1, the Cu(d®)!G state fulfills the above
condition, it will therefore be broadened while the *F state
falls just outside the Cd band and should remain narrow.
This is exactly what is observed in the spectra of Fig. 2.
From the above argument an approximate Auger line
shape for this case can easily be obtained since we are
dealing with a state Cu(d?®), interacting with a continuum,
Cu(d’)Cd(d®). The Auger line shape neglecting the
much-higher-energy Cd(d’)Cd(d®) states will then be
given by

I(€)~L1Im 1

, (8)

T 0—2e5"—U—=2V23 (1/0—€5"—€5)

INTENSITY {Arb.Units)
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FIG. 2. Auger spectra (L,3MysMys) of Cu, CuCd,, and

Cd;Cu. Solid lines are experimental and dashed and dotted lines
are obtained as explained in the text.
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where V is assumed to be k independent and is the one-
particle Cd(d) Cu(d) mixing matrix element, i.e.,
V= Ycu| H | cq,) and e=0 +€5, is the Auger Kinetic
energy. The factor of 2 multiplying V' arises because we
are dealing with two-hole states, so that each hole can de-
cay into the Cd band. This result, although approximate,
gives a good description of the Cu Auger spectrum in
Cu-Cd alloys. It describes the broadening of a state fal-
ling inside the continuum, such as the Cu (d 8)1G state,
whereas states falling outside the continuum, such as the
Cu(3d®)’F state, suffer only a small shift in energy.

The dashed and dotted lines in Fig. 2 are theoretical
curves obtained as follows. The d® final-state terms are
treated independently each with a Coulomb interaction
given in terms of the Slater integrals F°, F2, and F* ac-
cording to relations given by Slater.” The F? and F* in-
tegrals were taken from recent Auger-photoelectron coin-
cidence data of Haak'® (F?=11.4 eV and F*=8.7 eV).
The intensities of each term is calculated using radial in-
tegrals as given by McGuire.”” The contributions for the
various terms are then added (as justified in Sec. V) and
convoluted with a 1.2-eV full width at half maximum
Lorentzian to account for the core-hole lifetime, instru-
mental broadening, and additional broadening of the two-
hole final state not accounted for by the theory.

For the pure-Cu spectrum the Cini approximation as
given by Eq. (5) was used. Aside from the Coster-
Kronig—preceeded Auger structure on the low-kinetic-
energy side we see that the experimental spectrum is nice-
ly reproduced by theory.

The Cd;Cu spectrum was calculated in two ways. The
dashed curved is obtained using the general expression,
Eq. (4), and taking for the one-particle Green’s function
the result obtained for an Anderson impurity Hamiltonian
as discussed in Sec. IV. The Cu3d—Cd4d one-particle
hybridization interaction [7V?p(€)],,=0.19 eV was a fit-
ting parameter. The Cd 4d band was simulated by a semi-
circular density of states normalized to unit area with a
width of 2 eV. The dotted curve in Fig. 2 was obtained
using the same parameters but now using the approximate
expression for the Auger line shape as given by Eq. (8). In
this case the approximate result is almost indistinguish-
able from the result obtained using the more exact expres-
sion.

As observed experimentally the !G portion of the Cu
Auger spectrum of Cd;Cu is also theoretically found to be
broadened relative to pure Cu. This occurs because
€5+ U('G)=10.4 eV falls energetically inside the Cd 4d
band. The 3F state on the other hand remains narrow be-
cause €5°+ U (PF)=7.4 eV does not fall inside the Cd 4d
band. The *F state does, however, suffer a small shift to
higher kinetic energies because of the interaction with the

Cd 4d band, thereby increasing the apparent !G-*F split- .

ting in Cd;Cu relative to pure Cu. In pure Cu the >F state
is shifted slightly in the opposite direction because of in-
teraction with the Cu d band. This effect is seen from the
1G-3F splitting given in Table I.

The Cu,Cd spectrum displays, as far as the above-
mentioned effects are concerned, an intermediate case.
From the broadening of the !G part relative to Cu we find
that [7¥?p(€)],, for Cu,Cd is about 0.05 eV. Comparing
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this to Cd;Cu we see that the broadening of the 'G is
roughly proportional to the Cd concentration. Actually
we expect [7V?p(€)],, to be proportional to the number of
Cd nearest neighbors, as will be discussed in Sec. VIIL.

IV. ANDERSON IMPURITY

Up to this point we have developed a general equation
describing the Auger line shape for impurity systems and
have used intuitive physical arguments for an approximate
simple relation to describe the Cu-Cd alloy experiments.
The problem remaining is to obtain good approximations
to the one-particle Green’s function appearing in Eq. (4)
and to justify the approximate relation suggested for alloy
systems such as Cu-Cd.

There are basically two simplified Hamiltonians that
are used to describe impurity systems, namely the Ander-
son?® and Clogston-Wolff?""?2 Hamiltonians. Use of the
Anderson Hamiltonian has been successful in describing
transition-metal impurities in free-electron-like hosts such
as Al, Mg, etc. The Clogston-Wolff Hamiltonian is very
appropriate for describing the impurity d—host d mixing
for impurities in noble metals such as Cu, Ag, and Au, as
we will discuss below.

We start with the Anderson Hamiltonian for which we
need to consider only the one-particle part for g as dis-
cussed above,

Hi= 6.CloCrotes Sdld,+ 3 Vi(Clod,+d}Cro) .
k,o o k,o

9)
The impurity Green’s function has been extensively dis-
cussed?® and has the solution
1

e—eq— 3 | Vi |/ w—e)
k

goe)= (10)

We first consider the case of a constant sp-band density
of states and constant ¥V =¥}, which is an approximation
often used to describe the impurity local density of states.
We show below that this is usually not a good approxima-
tion to describe the Auger spectrum except if U is very
small compared to 7V ?p where p is the density of states,
although it is satisfactory in most cases to describe the
XPS or UPS valence-band spectra. We then obtain

1
T (11)

0
0 €—€g—miVp

which is just a Lorentzian often referred to as a virtual
bound state. The self-convolution is then
1

— (12)
€—2e,—2miVp

goote)=

and

1

Gole)=
oo(€) €—2e;,—U—-2iT

(C=[7V%]y), (13

which is just a Lorentzian with a width of 2 times that of
the local one-particle density of states. The fact that this
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looks much like the intuitive relation used for the Cu-Cd
alloys is purely accidental, because in the Cu-Cd alloys the
one-particle local Cu density of states is determined by a
mixing with an sp band while the two-particle spectrum is
determined by Cu(d)-Cd(4d) mixing.

The above relation is only valid if indeed the host-metal
density of states and V} are constant over an energy range
large compared to U. This is seldom expected to be the
case.

In cases where U is large so that the local two-hole state
falls in a region of lower density of states, the linewidth of
the Auger line will be less than twice that of the virtual
bound state. In fact the two-hole state may even fall out-
side of a continuum in which case it will be a §-function-
like peak. This will occur for 2€;+ U > 2V, where Vi,
is the internal potential describing the zero of the free-
electron-like band. However, even if 2€;+U > Vi, +€4,
the Auger line will already be very narrow—as we will see
in the following example.

We have calculated the impurity Auger spectrum for a
model free-electron-like density of states as shown in Fig.
3, with an impurity-host interaction described by the An-
derson Hamiltonian. The dashed line in Fig. 3 is the local
one-hole impurity density of states for [7V7Zp(€)],,=0.4
eV, €;=3.0 eV below €p, and V,;=8.0 eV. The free-
electron density of states integrated to the cutoff was nor-
malized to 1.

In Fig. 4 (solid lines) we show the Auger spectra calcu-
lated for U =0-—10 eV, showing the change in linewidth
as the two-hole state moves along to a lower density of
host states. These lines are all only slightly distorted
Lorentzians (a distortion which probably would not be ob-
served experimentally) until the local two-hole state falls
outside any continuum, in which case it becomes a very
narrow bound state with some intensity left in the contin-
uum region. In Fig. 5 we show a plot of the linewidth as

DENSITY OF STATES (Arb.Units)

1
-25 1.5 5.5 9.5 135 17.5
BINDING ENERGY (eV)

FIG. 3. Free-electron-like host (solid line) and impurity
(dashed line) densities of states used in a model calculation.
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FIG. 4. Auger line shape calculated for various values of U.
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ted using Eq. (14) in the text.

a function of U for this model calculation (pluses). As ex-
pected we see the linewidth decrease as the two-hole state
moves to a lower-density-of-states region in the host band.
Even if U is so large that €;+ U falls outside of the host
sp band, i.e., €4+ U>8 eV or 2¢;+U>11 eV (in Fig. 4
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this corresponds to U >5), the Auger spectrum still re-
tains some width. This is because the local two-hole state
still falls in a continuum resulting from the self-
convolution of the free-electron density of states. In this
case both holes can simultaneously move into the sp band.

Aside from this small broadening for large U values
these spectra can in fact be well described by a simple re-
lation as used for the Cu-Cd alloys. This expersion de-
rived in the Appendix is of the form

1
€—26,—U—-23 (Vi /lwo—er—€g)
k

GX(e)= (14)

The dotted lines in Fig. 4 and open triangles in Fig. 5 are
the results of using this simple expression. We see that
the only significant differences occur if €5+ U > V;y,, for
which the approximate expression gives a bound state,
whereas the exact line shape has a small width. This can
be understood because in the approximate expression we
have not included the possibility that both holes move
simultaneously from the impurity state to the continuum,
which now involves the self-convolution of the free-
electron-like band. The broadening due to this process
will be small because the convoluted density of states is
lower and can be described as a second-order process.

V. CLOGSTON-WOLFF HAMILTONIAN

More interesting than the free-electron-like hosts are the
noble-metal hosts. The high density of d states in these
hosts can lead to very strong non-Lorentzian-broadening
of the impurity Auger lines especially if €;+ U falls in the
host d-band region. These Auger spectra can again be
described by Eq. (1), but just as in the free-electron-like
hosts we require information about g9(e) far away (U)
from the impurity one-hole peak in the density of states.
In systems such as Pt, Pd, and Ni impurities in Cu, Ag,
and Au the impurity local d density of states exhibits one
or more peaks between the Fermi level and the host d
band.?*?

The local impurity partial density of states in the host d
region is difficult to obtain accurately from XPS or UPS
data because of the large contribution from the host d
band.** The d-d mixing, however, can be quite accurately
described by a Clogston-Wolff?!22 Hamiltonian, especially
for CuNi, AgPd, and AuPt, since here the d wave func-
tions of host and impurity have almost the same radial ex-
tent. The Clogston-Wolff Hamiltonian reads

H = %edkcdkcdk%—AC;oCdo N (15)
where C;rk are creation operators for the host d band and
the last term describes a shift of the d-electron energy if it
is on the impurity site (site 0). The one-particle impurity
Green’s function is then given by

o

_, (16)
1—ATY

go=

where T is the local host Green’s function in the absence
of the impurity. We have
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1
k w—fdk

o= (17)

The details of T’y are determined by the host-metal d-band
structure. In the Auger-line-shape equation we require the
self-convolution of gg, which in general must be deter-
mined numerically. To show what happens to the Auger
line shape we considered the host d band to be semicircu-
lar and calculated the Auger line shape for various values
of U, taking A so that the impurity one-hole d state lies
between the semicircular host band and the Fermi level.
For the calculation the host bandwidth is taken to be 3 eV
starting at 3.5 eV below €z, which is characteristic of Ag.
To show only the influence of the host d band we have
neglected the sp-band mixing resulting in a 8-function
peak for the impurity state outside of the host d band.
The influence of the sp band will be discussed below. In
Fig. 6 we show the host-model density of states as used
(solid line) and the impurity partial density of states
(dashed line) displaying the sharp bound state and the im-
purity partial density of states in the host d band. In Fig.
7 we show the resulting Auger spectra. Here we see that
as soon as A+ U is such that the two-hole state falls inside
the host d band, it is strongly broadened and then narrows
again as soon as A+ U is outside the host d band.

The strong variation of the Auger line shape with U can
result in rather anomalous line shapes for d impurities.
Because of the d degeneracy the final two-hole states are
strongly split into terms because of the d-d Coulomb in-
tegrals F2 and F*. For a d® configuration in LS coupling
we have the states 'S, 'G, 3P, 'D, 3F with energy splittings
of the order of 5—8 eV for Ni and Pd. Treating each of
the terms separately with the above theory results in.a dif-

DENSITY OF STATES

-2.0 2.0 6.0
BINDING ENERGY (eV)

FIG. 6. Model host (solid line) and impurity partial (dashed
line) densities of states used for the Clogston-Wolff calculation.
The impurity energy was taken at 2 eV.
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FIG. 7. Auger spectra calculated for the impurity density of
states shown in Fig. 6 as a function of the correlation energy U.

ferent Uy for each term so that some terms can fall in-
side the host d band and others outside the host d band.
This is the case for Pd in Ag leading to the anomalous
line shape.!! In a subsequent paper we show that the
Auger line shape for Pd in Cu, Ag, and Au can be
described in surprising detail with the above theory.?®

The inclusion of the sp band presents a bit of a problem
and is certainly necessary to describe the one-hole spec-
trum within the same model as the Auger spectrum. In
principle, of course, the d-s hybridization is included in
the Clogston-Wolff Hamiltonian in its most general form,
which is

H=H,+AC}Cy ,

—_

(18)

where H, contains the host d band and sp-band disper-
sion as well as the d-sp hybridization.
In this case, ['§ in Eq. (17) will be replaced by

2dn)2

®—E€,

(19)

n

where the n’s are the eigenstates of the pure host with en-

ergies €,, and the overlap integral yields the amount of d

character at site O in each eigenstate for the pure host.
ImF8=pd0( €) is just the local d partial density of states

for the pure host. In principle, this can be obtained from
band-structure calculations of the pure host. The d-sp hy-
bridization leads to some d density of states in the sp
band which will be slowly varying with energy. In g{ this
will result in a weak Lorentzian-type broadening of the
one-hole impurity local density in the bound-state region
of the above model. This lifetime-broadened state is often
referred to as a virtual bound state.
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This method of including the sp band is rather tedious
and relies on the accuracy of band-structure calculations.
Because of this we used an approximate method which de-
scribes both the one- and two-hole impurity states rather
accurately. Since the most important hybridization for
the local one- and two-hole impurity density of states is
that of the impurity itself we proceed as follows with the
sp band. The local impurity one-hole Green’s function
can be written as

go=T0+T0Ago+T§ E Vi, 8k » (20
ge=0kVi 80 , 21)
or
rO
go= ‘ 22)
1—-19

A+ 3 $iVE,
k

Here I') is the pure host d-band Green’s function in which
we have neglected the host d-sp hybridization. The last
term in Eq. (20) is a result of the impurity d-band host sp
hybridization described in an Anderson manner. ¢k is
then the Green’s function of the sp band of the pure host
neglecting the host d-sp hybridization. Within these ap-
proximations,

1
or= 23)
k ©—Nk
and
0 1
l—‘0 = ’ (24)
k w— Edk

where 7, describes the sp dispersion. Equation (22) in
fact describes, in limiting situations, the Anderson or the
above-discussed Clogston-Wolff solution. For Vi, =0 we
obtain Eq. (16), and for rd=1/(w— €4) we obtain Eq. (9)
with e;=€;+A. If the sp density of states and V; g

is constant over the whole energy region of interest, we
obtain

)
(A+I7TV )FO

g0= (25)

Since this is a more realistic case than that shown in
Fig. 6 and 7 we also show the results of this calculation.
For the calculation we used Eq. (25) with [7V?p],,=0.25
eV, which is typical of Pt, Pd, and Ni in the noble-metal
hosts. In Fig. 8 we show the host and impurity partial
density of states displaying the virtual-bound-state charac-
ter of the impurity state. Comparing Fig. 8 to Fig. 7 we
now see that the amount of impurity character in the host
band has increased considerably, which is a result of the
broadening introduced. The resulting Auger spectra are
shown in Fig. 9. The spectra show the same trends as
those in Fig. 7, but now the amount of “band” character
in the impurity Auger spectrum is considerably enhanced
even for conditions such that the impurity state is well re-
moved from the host band.
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FIG. 8. Same as Fig. 6 except that now we include the in-
teraction with the host sp band in an Anderson-type manner
[Eq. (25)].

VI. DEGENERACY

Alloys for which the above analysis is particularly appl-
icable are those in which the impurity has a full or nearly
full valence d shell, such as Ni, Cu, Pd, Ag, etc., in vari-
ous hosts. The interesting Auger spectra are the
LysMysMys and M4sN 45N s spectra involving two holes
in the valence d shell. Because of the orbital degeneracy
Coulomb and spin-orbit interactions there are a large
number of two-hole final states. For example, in Ni and
Cu the 3d8 states reached are well described in LS cou-
pling, resulting in the terms 'S, 'G, 3P, D, and *F. These
terms are spread over a large energy range (7 €V in Cu).

Up to this point we have neglected the d-orbital degen-
eracy and subsequent multiplet structure. To take this
into account rigorously presents quite a problem, since, al-
though for the local two-hole state (d®) in LS coupling, J,
L, S, and M; are good quantum numbers as the crystal-
field splitting in metals is generally small.?’ This need not
be true for the uncorrelated two-hole states. For small
spin-orbit coupling the local and translational symmetry
will not cause mixing of different spin states. So the sing-
lets and triplets can be treated separately. To treat this
problem we consider a d impurity state in cubic symme-
try.

Since we are interested in the local two-particle density
of states we can separate this into the contributions from
the irreducible representations of the point group. In cu-
bic point symmetry the d states transform as t,, and e,
and the two- partlcle states span the representations Azg,

ng, Tlg, Alg, Tlg, and E In Table II we show how
the atomic LS states transform in cubic symmetry.

We see that it is, in fact, not rigorously correct to treat
the terms independently since terms containing the same
irreducible representation (IR) will mix. We can write the
atomic LS wave functions in terms of the crystal-field
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FIG. 9. Resulting Auger spectra for the local impurity densi-
ty of states shown in Fig. 8.

states as given in Table III, from which we see that we
must deal with at most 2X2 matrices which make the
problem relatively simple. Using the same procedure as
for the nondegenerate case, we can now write the two-
particle function for each term as follows:

G/(IR)=g{(IR)+ 3 ¢/(IR)U;G], (26)
JjUR)
G/(IR)=g/(IR)+ 3 gHIR)UyG} , @7

k(IR)

where the indices refer to particular LS states and IR
refers to a particular irreducible representation of the
point group. The sum over j and k are sums over the LS
terms, containing the same IR’s. In this way the Coulomb
interactions Uj; remain diagonal and the mixing of terms
is caused by the noninteracting two-particle Green’s func-
tions g/ which is not diagonal in LS coupling. These,
however, will be diagonal in the crystal-field representa-
tion. As an example we consider the lEg IR. We have

16(E,) =g13('E,) +818('E,)U G 1E('E,)

+g16('E) U pG I3 ('E,) , (28)
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TABLE II. Crosses indicate the IR’s spanned by the two-hole states in LS coupling.
IA 18 1T18 ng lEg 3A 2 3T23 3T1g
'S X
D X X
'G X X X X
3P X
’F X X X
Gi5('Ey)=gl5('Ey) g13('Ey)U GG ('Ey) with o
1D/ 1 1G,1 grs 8rsUrs
+g 1D Eg)UlpGlp( Eg) , (29) ¢LS:gl[:SS+1Lfo$ . (35)
resulting in 8Ls'PLs
@ 16 To determine the Auger spectrum we must include the
Glgp y____ TG 16 _ gip Auger transition matrix elements. Denoting the transition
G IG( Eg) ’ G 1D 1D ) A
1-Uség (1—g1pUp)1—Ugédg) amplitude for an LS term by 4;, the total Auger spectrum
(30) is given by
. 1 _
with . Io=— 3 My | 3 3 AidImG/IR) |, (36)
¢ . 810815Up 31) IR i
$6¢=86+7T _1p;; - : i i
1—gipUip where My, is the total degeneracy of the irreducible repre-

The noninteracting two-particle Green’s functions are di-
agonal in the crystal-field representation so that from
Table III we see that

816 Eg) =781, ®8, + 78 88, » (32)
1D (1 —2v73
gic(Ey)= 7 (81,81, — 8, ®8e,) - (33)

Here 81, and &, refer to the one-particle Green’s func-

tions, the imaginary part being the partial one-particle
density of states. The symbol & refers to a convolution.

We see from the above that if the ¢,, and e, density of
states are equal the terms do not mix and can therefore be
treated separately. Similar relations to the above can be
derived for each of the IR’s with the general result

dLs
1—Upsérs
gts
(1—g{8 Ups)N(1—Upsdys)

GE(IR)=

(34)

GE(IR)=

TABLE III. Crystal-field components in each of the IR’s of
the two-hole wave function in LS coupling.

[224”) | t25e5) leg2)
1S(14,,) V'3/5 0 V'2/5
ID(1T5,) V3/7 —2/V7 0
'D('E,) V'3/1 0 2/V7
1G(4,,) V2/5 0 —V73/5
1G('Tye) 2V V73/7 0
'G('Ey) —2/V7 0 V'3/7
3P(§Tlg) 1/V'5 2/V'5 0
SF(dy,) 0 0 1
SFCTyg) 2/V'5 —1/V'5 0
SF(3Ty,) 0 1 0

sentation.

We now discuss some approximations to this rather
simple but tedious to work with relation. First we note
that if the ¢,, and e, one-particle partial densities of states
are the same we can treat the terms independently since all
of the G/(IR)’s are zero for isj.

If there is a difference in the t,, and e, densities of
states, the 'G intensity, which, for 3d and 4d transition
metals, has the largest transition matrix element, will be
redistributed over the !D and 'S terms. However, since
the 'S-!G splitting is large this redistribution of intensity
will be small. Also since the 'D-!G splitting is small
enough that the !D is not resolved, a redistribution of in-
tensity here will hardly affect the spectrum. Also, the
3F3P splitting intensity will be redistributed, but since the
two representations A4 2 and 3T2g do not appear in any
other term in °F, only = of the 3F intensity will be affect-
ed. Of this, a small amount will appear in the 3P region of
the spectrum which is not resolved from the 'G.

In conclusion we can say that as long as the t,; and e,
components of the density of states are not strongly dif-
ferent, we can treat the terms independently. This is cer-
tainly the case for free-electron-like hosts. Even for the
noble-metal hosts it is found that the projected ¢,, and e,
densities of states show relatively small differences. One
of the real problem cases could be Au because of the large
spin-orbit coupling. This can be treated in an analogous
manner to that for crystal-field effects.

VII. CONCENTRATED ALLOYS

For the more concentrated alloys the situation is more
complicated. Equation (4) still holds, however, so all we
need is the one-hole local density of states of the com-
ponent of interest. One could use the Auger spectra in
these cases to test alloy calculations. For example, in a
random binary alloy such as Pd;_,Ag,, one could try the
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coherent-potential®® approximation with a so-called

single-site approximation for the alloy Hamiltonian. This
approximation is equivalent in the dilute limit to the
Clogston-Wolff Hamiltonian. This has recently been dis-
cussed by Drchal and Kudrnovsky.”> We will not discuss
this here, but rather we will concentrate on some qualita-
tive aspects of the Auger spectra in more concentrated al-
loys. To facilitate the discussion we consider a B;_,A4,
binary alloy, and concern ourselves with the Auger spec-
trum obtained following the core ionization of atom A.
As shown above, the Auger spectrum is given by
A4
He=atm—84

a—— (37)
T 1-Uglyy

where Im(1/7)g44 is the self-convolution of the valence-
band partial density of states of character belonging to
atom A. As pointed out above, the most important part of
this density of states is that in the region of ey -+ U,.
(ey4 is the sole valence-hole energy of atom A4 that
neglects hybridization.) For the Cu-Cd alloys, for exam-
ple, the broadening of the !G Cu Auger line was due to the
fact that €4yt Ut ~€a and the broadening was caused

by a small amount of Cu d one-hole density in the region
of the Cd d band owing to hybridization. The broadening
observed is proportional to the amount of Cu d character
in the Cd d band, which, in turn, is proportional to the
number of Cd neighbors surrounding a Cu atom. This ef-
fect is clearly seen when comparing the Cu Auger spectra
of Cd;Cu and Cu,Cd. This dependence on the nearest-
neighbor coordination is expected because the hybridiza-
tion is caused mainly by nearest-neighbor “hopping” in-
tegrals for d-band metals. This is rather interesting be-
cause Auger spectroscopy could then provide information
about the nearest-neighbor coordination of a component
of the alloy. Clearly this information can only be ob-
tained relatively easy in the so-called split-band alloys of
which alloys such as Ni, Pd, and PT with Cu, Ag, and Au
are reasonable examples. Cu-Zn, Cu-Cd, Ag-Cd, Au-PT,
and Cd-In alloys, just to mention a few, are also good ex-
amples.

In the split-band case we can decompose the density of
states of atom A into two regions,

pal€)~ale)py(e)+Ble)pple) , (38)

as shown pictorially in Fig. 8. Here p); or pj is that por-
tion of the density of states which is mainly of 4 or B
character, respectively. For the case where pj(e) and
pp(€) are well split in energy, B(e) and a(e) are approxi-
mately constant and are a direct measure of the amount of
hybridization. They depend strongly on the nearest-
neighbor coordination. The Auger spectrum can be writ-
ten as

I(€)= p"z(e)®’;"(e) - , (39)
[1—UF () P+ Ups (€)' pale)
where F(e) is given by
Flo—p [ La@®Pal0) (40)

w—€
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The most important part in the self-convolution is, as
pointed out above, that part which is in the energy region
2€ey,4+ U, which for systems such as Ag-Pd (4=Pd), is
that part involving

ale)py(e)®Ble)pp(e) . (41)

Of course, in other systems other regions may be impor-
tant. The densities p; and pjp can be roughly obtained
from UPS or XPS after correcting for matrix-element ef-
fects. If we then normalized both regions to 1, the coeffi-
cients @ and B can be crudely approximated by
B~[N (B)/M]X and a=1—pf3, where N (B)/M is the rela-
tive number of B-types nearest neighors, and X is the
amount of mixing in the dilute B4 alloy.

Although this is a rather crude representation of the
band structure, we present it to emphasize the point that
the Auger spectrum can be very sensitive to the local sur-
roundings of the atom. To display this, in Fig. 10 we

show the calculated Auger spectra of atom 4 for a model

density of states shown on the top of Fig. 10. The
Coulomb interaction U=3 eV is taken so that
2ep 4+ U=~e€pp+e€yy, as is the case for Pd-Ag alloys. The
calculations are done for various values of 8; =0, 4X/12,
6X/12, 8X/12, and 12X/12, with X=0.05 using Egs. (38)
and (39). These calculations show the dependence of the
Auger spectrum on the number of B nearest neighbors
which could represent either various crystal structures of
ordered alloys or the concentration dependence of disor-
dered alloys. Of course, to do this properly we should also

NEIGHBORS =12.00

NEIGHBORS =8.00

NEIGHBORS = 6.00

NEIGHBORS =4,00

LOCAL (A) TWO—HOLE DENSITY OF STATES

NEIGHBORS =0.00

I I 1 I
0.0 L0 8.0 120 16.0
TWO-PARTICLE BINDING ENERGY (eV)

FIG. 10. Model density of states of a binary alloy (top) and
the resulting Auger spectra of component A for various numbers
of nearest neighbors of component B for U=3 eV.
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allow the bandwidths p); and pp to vary. Here, however,
we merely want to point out the strong dependence of the
Auger line shape on the local surroundings.

VIII. CONCLUSIONS

In this paper we have shown how to treat the Auger-
line-shape problem in alloys. We show that the line shape
is strongly affected by the presence of several bands in
which case the spectrum can no longer be described in
terms of U /W limits since the “bandwidth” W to be used
is ill defined. We developed a general theory for the
Auger line shape of filled-band systems and applied it to
dilute alloys with free-electron-like and Noble-metal-like
hosts. Free-electron-like hosts cause a nearly-Lorentzian-
broadened Auger spectrum with a width proportional to
the host density of states at the energy of the impurity
two-hole state. Noble-metal hosts can result in anomalous
impurity Auger line shapes if the impurity fwo-hole state
happens to fall inside the host-metal d band.

We also develop the theory for degenerate d-band
Auger spectra and show that in most cases the Auger
spectrum can be well described by treating the d®
impurity-state terms independently. In cases where
crystal-field effects and/or spin-orbit effects in the host
band structure are important, this simple approximation
breaks down and a theory is developed to treat these.cases.

In addition, a qualitative discussion is given of the
Auger line shape in more concentrated alloys, from which
we conclude that Auger spectral line shapes can provide
information about the nearest-neighbor surroundings of
the Auger emitting atom.
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APPENDIX

In the treatment of an Anderson impurity we have sug-
gested the use of an approximate relation which we derive
here. The Anderson Hamiltonian for an impurity is given
by

H=Y |3 &.CiCi+ed’d + 3 Vi(Cld +dTcy)
I'd k k

+ U(l——ndT)(l—ndl)

for an orbitally nondegenerate level. Here €, is the one-
hole energy of the impurity. With the use of the Zubarev
equations of motion®® for the two-hole—state Green’s
function, we obtain, following Ref. 2,

ded—1+(2€d+U Ggg+ 2 Vk(Gde gzd) ’
deC —(€k+fd)GdC +VkG +2V GC 'mCi ?
with

G,-’;'"Z <Wg Ci1Crm,

—H

a1 1
CiTlew

7).
The approx1mat10n used in the text amounts to neglecting
the term GC Co which describes the time-dependent prob-

ability amphtude that both holes on the impurity have
moved onto host atoms. This term has mainly long-time
components as compared to GdC , in which. only one hole

has moved and can be neglected except for energies close
to the threshold. Neglecting this term we obtain

1
0—264—U—-23 Vi/o—€—eg)
k

GH—

where the factor of 2 is due to the fact that GdC ‘“Gde in
the above approximation.
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