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We present a compelling evidence for the opening of a bandgap in exfoliated bottom-gated bilayer graphene
by fitting the gate-voltage-modulated infrared reflectivity spectra in a large range of doping levels with a
tight-binding model and the Kubo formula. A close quantitative agreement between the experimental and
calculated spectra is achieved, allowing us to determine self-consistently the full set of Slonczewski-Weiss-
McClure tight-binding parameters together with the gate-voltage-dependent bandgap. The doping dependence
of the bandgap shows a good agreement with the existing calculations that take the effects of self-screening
into account. We also identify certain mismatches between the tight-binding model and the data, which can be
related to electron-electron and electron-phonon interactions.
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I. INTRODUCTION

Bilayer graphene has recently attracted much attention
motivated by a broad spectrum of unusual electronic proper-
ties and a number of possibilities for applications. It repre-
sents the simplest system, where the effects caused by a cou-
pling between graphene layers can be studied and exploited.
Although the interlayer coupling is much weaker than the
in-plane chemical bonding, it results in profound differences
between electronic and transport properties of monolayer and
bilayer graphene, as exemplified by the anomalous quantum
Hall effect.1–3 Another notable dissimilarity is related to the
behavior of these systems in a perpendicular electric field.
While in zero field both of them are zero-gap semiconductors
�or zero-overlap semimetals�, in bilayer graphene a bandgap
is generated in the presence of the field, due to an introduced
asymmetry of the electrostatic potential on the two planes.4–7

Importantly, the bandgap can be tuned continuously either by
applying gate voltage8 or chemically,9 which, in combination
with a high mobility of charge carriers, opens new unex-
plored avenues for using bilayer graphene in field-effect
transistors10–12 and other electronic devices.

Using angle-resolved photoemission spectroscopy
�ARPES�, Ohta et al.9 indeed observed a bandgap in bilayer
graphene epitaxially grown on top of silicon carbide and
doped chemically with potassium. A more “clean” way of
introducing charge carriers is by applying electric field using
gate electrodes. This technique can be most easily applied to
exfoliated samples, produced by micromechanical cleavage
of graphite.13 Apart from the bandgap generation, applying a
gate voltage has also the usual doping effect. In order to
control the doping and the bandgap independently, Oostinga
et al.8 fabricated two electrodes on both sides of the sample
and found an insulating state, when gate voltages of opposite
signs were applied to the electrodes. This showed the exis-
tence of the bandgap, although the determination of its exact
value from the dc measurements was not possible.

Infrared spectroscopy, which is one of the most direct
methods to measure the bandgap and other band characteris-

tics in conventional semiconductors, is clearly a technique of
choice also in the case of bilayer graphene. The two dimen-
sionality of this material perfectly matches geometrical re-
quirements of an optical experiment. Moreover, the possibil-
ity of changing the chemical potential and the bandgap with
the gate voltage supplies an unprecedented amount of addi-
tional information14–22 compared to standard optical mea-
surements.

The tight-binding theory is widely used to describe the
low-energy � bands in graphitic materials. In the case of
graphite, a set of tight-binding parameters, known as the
Slonczewski-Weiss-McClure �SWMcC� model,23,24 was very
successful in describing quantitatively the de Haas–van Al-
phen effect and optical spectra.25 Therefore, one can expect
that it will also apply to bilayer graphene if the bandgap is
properly included. It appears that all SWMcC parameters
influence the optical conductivity for photon energies below
1 eV. However, the effects of different parameters are rather
dissimilar and not all of them can be easily extracted from
the spectra.

Several calculations of the optical conductivity of bilayer
graphene within the tight-binding approach were done. Nils-
son et al.26 and Abergel and Fal’ko27 considered the simplest
model, which contains only the nearest-neighbor �NN� in-
plane and interplane hopping terms ��0�3 eV and �1
�0.4 eV, respectively� and found that the optical conduc-
tivity is marked by a profound structure at the photon energy
����1 �we shall refer to this structure as the �1 peak�.
Nicol and Carbotte28 extended this model to include a band-
gap and finite doping. Zhang et al.18 studied the role of ad-
ditional parameters responsible for the electron-hole asym-
metry.

Using infrared techniques, Wang et al.17 observed, in
agreement with the aforementioned predictions, a profound
anomaly in the spectra of gated bilayer graphene at ��
��1. Later on, a clear electron-hole asymmetry was found in
the infrared spectra by Li et al.19 and by Kuzmenko et al.,20

which allowed determining more SWMcC parameters. How-
ever, the presence of the bandgap in these studies, although
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expected, was not evident. In Ref. 19 no experimental signa-
tures of the bandgap were reported and in Ref. 20 only a
partial agreement between the experimental data and a tight-
binding calculation, including a bandgap obtained
theoretically,7 was found. As it will be discussed below, this
is explained by the fact that the manifestation of the bandgap
in doped graphene is more subtle and, therefore, requires
more accurate optical measurements and delicate analysis
than in the case of an undoped sample. In the latter case a
sharp absorption threshold corresponding to the electron-
hole excitations across the gap is expected.

Such a structure was indeed observed by Zhang et al.,22

who measured infrared absorption of double-gated bilayer
graphene, where the electric field and doping could be con-
trolled independently.8 A bandgap of up to 250 meV was
observed in an undoped sample in the presence of the largest
applied fields, which is a rather promising sign for the use of
bilayer graphene in electronics. Although for the large values
of the bandgap the match between the experiment and a
tight-binding calculation was very close, at low gate volt-
ages, where the absorption threshold was beyond the experi-
mentally accessible range, the quantitative agreement be-
tween the experimental and theoretical curves turned out to
be rather poor.

In general, the quantitative agreement between infrared
spectra of bilayer graphene and tight-binding model was up
to now not very good. Apart from the mentioned discrepan-
cies, the measured height of the �1 peak in Ref. 18 was about
two times larger than the calculated value. Mak et al.21 re-
ported the opening of a bandgap in top-gated bilayer
graphene, where a small thickness of the gate insulating
layer allowed a rather efficient doping. The quantitative
agreement with the tight-binding theory, however, was lim-
ited, which the authors attributed to many-body correlation
effects.

A common problem that one encounters when analyzing
infrared spectra of graphene is their sensitivity to several
band parameters, including the bandgap, making their sepa-
rate extractions quite complicated. Another issue is a pos-
sible inhomogeneity of the doping level, which has a similar
effect on the optical spectra as an elevated temperature, as
will be shown below. In the double-gate experiments, the
deposition of the top gate on top of graphene may affect the
band structure and increase electronic scattering, not to men-
tion a more complicated optical multilayer model that has to
be used in order to extract the optical conductivity of
graphene. Therefore, in the present study we fit directly the
measured reflectivity spectra of bottom-gated bilayer
graphene with a tight-binding model that involves the band-
gap, the SWMcC parameters, scattering rate, temperature,
and the impurity doping as adjustable parameters. We find
that a good quantitative agreement can in fact be achieved,
which implies that the band structure of bilayer graphene is
well captured by the tight-binding model. Nevertheless, cer-
tain discrepancies remain that may eventually be related to
many-body effects.

The remaining sections are organized as follows. In Sec.
II we describe the sample preparation, infrared experiment,
and a specially developed technique of direct fitting of the
whole set of reflectivity spectra with a tight-binding model

and the Kubo formula. In Sec. III, the results of the infrared
measurements, their fits, and the doping dependence of the
bandgap and the chemical potential are shown. In Sec. IV we
discuss the reliability of extracting the bandgap and compare
its gate-voltage dependence with the existing theoretical pre-
dictions. We demonstrate a practical way of visualizing im-
portant features of the band structures using the experimental
reflectivity data. We also discuss the advantages and limita-
tions of the tight-binding model in describing infrared spec-
tra.

II. TECHNIQUES

A. Sample

A relatively large ��100 �m� flake of bilayer graphene
produced by micromechanical cleavage13 of graphite single
crystals on top of a SiO2 �300 nm�/n-Si substrate was chosen
for infrared experiments. Lithographically deposited leads to
the flake and the gate �doped silicon� allowed a simultaneous
measurement of the dc conductivity �DC and the infrared
reflectivity R as functions of the gate voltage Vg. By sweep-
ing Vg from the positive to the negative values, one continu-
ously varies the doping from electron to hole type. The
charge concentration can be determined using the relation
n=��Vg−VCN�, where the coefficient �=7.2	1010 cm−2 /V
is given by the electric capacitance of the oxide layer. Usu-
ally the charge neutrality point VCN is related to the mini-
mum Vmin of the �DC�Vg� curve. However, from the fits of
the optical spectra described below we found that VCN
�which is about −22 V for the presented series of measure-
ments� is slightly different from Vmin��−29 V�. It is likely
that this is related to the large flake dimensions and a doping
inhomogeneity near electrical contacts. Note that here we
used devices with only one �bottom� gate for the reasons
discussed in Sec. I.

The negative value of VCN is due to charge transfer by
adsorbed gas molecules �environmental doping�.29 In order
to reduce this effect, the sample was annealed in a H2-N2
atmosphere at 150 °C before each series of measurements.
Although the annealing indeed shifts VCN closer to the zero
bias, we found that, in contrast to the case of monolayer
graphene, it never results in VCN=0. It is possible that the
remaining dopants are located either between the flake and
the substrate or are even intercalated between the carbon
layers. As we will see below, this correlates with the doping
dependence of the bandgap.

B. Optical experiment

Optical reflectivity spectra in the range of photon energies
0.06–1 eV were collected at nearly normal incidence using
an IR microscope Bruker Hyperion 2000 attached to a Fou-
rier transform spectrometer with a standard globar source.
Appreciable signal could be obtained using the beam spot
down to 10–15 �m. However, prior to each series of mea-
surements we optimized in a trial-and-error fashion the spot
size in order to maximize the signal-to-noise ratio while
avoiding unphysical spectral artifacts related to the finite
sample dimensions and apparatus issues. The spectral reso-
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lution was 1 meV. The sample was mounted in a He flow
cryostat; a specially made sample holder allowed us inserting
the sample with a minor delay after the annealing.

Absolute reflectivity spectra of the bare substrate Rsub���
and the flake Rgr��� were obtained using a gold patch depos-
ited near the sample as a reference �Fig. 1�a��. The substrate
and graphene spectra look similar: they all show a prominent
minimum at 0.75 eV due to the Fabry-Perot effect in the
SiO2 layer and intense peaks below 0.15 eV originating from
dipole-active lattice vibrations in silicon oxide. The change
in reflectivity introduced by graphene is better seen in Fig.
1�b�, where Rgr��� is normalized to Rsub���. One can see that
graphene introduces a significant infrared contrast, especially
close to the Fabry-Perot minimum. Notably, the same effect
in the visible range makes graphene detectable by human
eyes.30,31

From Fig. 1�b� it is also clear that varying the gate voltage
has a strong effect on reflectivity. To see it even better, one
can normalize Rgr by its value at Vg=−20 V, which is close
to the charge-neural point �Fig. 1�c��. Note that the SiO2
phonon features do not fully cancel after the normalization
because of a nonlinear character of the contribution of the
substrate to the spectra. At 0.2 eV one can see a sharp struc-
ture related to the infrared-active phonon mode in graphene,
which has a Fano shape and strongly increases as a function
of the gate voltage due to a coupling to electronic interband

transitions, as discussed in detail in Ref. 32. As we shall see
below, the other changes are due to a combination of the
doping effect and the opening of the bandgap.

One should note that the diffraction of electromagnetic
radiation may affect the measured reflectivity at low ener-
gies, where the wavelength becomes comparable to the spot
size. Due to the diffraction and other systematic uncertain-
ties, the absolute accuracy of Rgr and Rgr /Rsub is about 0.01–
0.02 as we determined by varying the position and the size of
the beam spot on the sample. In contrast, the self-normalized
reflectivity Rgr�Vg� /Rgr�−20 V� can be measured much more
accurately �with an uncertainty less than 0.002� since it does
not require any reference measurement and, therefore, does
not involve any mechanical movements. In order to mini-
mize the influence of weak drifts of the signal, taking spec-
trum at each gate voltage was immediately followed by a
separate measurement at the charge-neutral point.

C. Data modeling

For the data analysis we chose the SWMcC �Refs. 23 and
24� tight-binding description of the � bands in bilayer
graphene.33 We begin with considering it simply as a band-
structure parametrization in order to extract information
about the electronic bands from the infrared data. Later on
we shall discuss the limitations of this description as a physi-
cal model based on the quality of the obtained fits.

The structure of the Bernal-stacked bilayer graphene is
shown in Fig. 2. Each layer has two sublattices: A1 and B1
�bottom layer� and A2 and B2 �top layer�. Atoms A1 and A2
are on top of each other, while the atoms B1 and B2 are
shifted horizontally by the vectors 
�1,2,3 connecting nearest
neighbors within one layer. The SWMcC Hamiltonian in-
volves the in-layer nearest-neighbor hopping �0 and three
interlayer hopping terms: �1 �between A1 and A2�, �3 �be-
tween B1 and B2� and �4 �between A1 and B2 or between
B1 and A2�. In addition, the on-site energy difference � be-
tween the positions A1 and B1 �A2 and B2� is introduced.
Following the standard procedure,4–7,34 we add to the
SWMcC model an extra parameter U in order to describe the
difference between the �screened� electrostatic potential of
the top and the bottom layers in the external field. Note that
U gives exactly the separation between the electron and hole
bands at the K point and is slightly larger than the true band-
gap �g��U��1 / �U2+�1

2�1/2. The exact relation between the
gate voltage and the bandgap involves a certain model for
the screening, which has been addressed in details, for ex-
ample, in Refs. 4–7. In the basis �B1�, �A1�, �A2�, and �B2�
the present Hamiltonian reads as follows:
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FIG. 1. �Color online� �a� Absolute �gold-normalized� reflectiv-
ity of bare oxide and graphene at Vg=+100, −20, and −100 V. The
substrate temperature is 10 K. �b� Reflectivity of graphene normal-
ized to bare oxide. �c� Self-normalized reflectivity of graphene
Rgr�Vg� /Rgr�−20 V�.
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FIG. 2. �Color online� Crystal structure of Bernal-stacked bi-
layer graphene and the considered tight-binding parameters.
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H�q�� =	
0 �0� − �4� �3��

�0�� � �1 − �4�

− �4�� �1 � + U �0�

�3� − �4�� �0�� U

 , �1�

where �=eiq�
�1 +eiq�
�2 +eiq�
�3 and q� is the electronic momen-
tum.

Within the linear-response theory, the Kubo formula can
be used to calculate the complex optical conductivity ����.
In the case of a thin layer, a physically more relevant quan-
tity is the optical sheet conductance G���=����d, where d
is the layer thickness. The total conductance consists of the
Drude, the interband, and the high-frequency terms

G��� = GD��� + GIB��� + G
��� . �2�

The first two terms can be obtained using the expressions

GD��� =
2G0

�2 �
i
� d2q�
�q� ,i�

�H

�qx
�q� ,i�
2

	 �− � f��q� ,i�

��
� i

�� + i�D
, �3�

GIB��� =
2G0

�2 �
i,j�i

� d2q�
�q� ,i�
�H

�qx
�q� , j�
2

	
f��q� ,i� − f��q� ,j�

�q� ,j − �q� ,i

i

�� − �q� ,j + �q� ,i + i�
, �4�

where G0=e2 /4��6.08	10−5 �−1 is the universal ac con-
ductance of monolayer graphene35–38 and graphite,39 �q� ,i are
the electronic band energies, � is the electronic broadening
parameter and f���= �1+exp �−�

kBT �−1 is the Fermi-Dirac distri-
bution. The indices i and j count the four bands in bilayer
graphene. For the derivation of these formulas we can refer,
for example, to Ref. 37, where it was done in the case of
monolayer graphene.

The term G
���, which is purely imaginary in the consid-
ered spectral range, absorbs contributions from all high-
frequency core-level and valence-band electronic transitions,
in particular, the ones involving � bands. We assume that it
does not contribute to the doping dependence of the optical
spectra.

The chemical potential � is determined implicitly by the
doping level via equation

1

2�2�
i
� d2q�� f��q� ,i� −

1

2
� = n = ��Vg − VCN� . �5�

We subtract 1/2 in the brackets because the doping level is
counted relative to half-filling of the � bands. The spin de-
generacy is already included in Eqs. �3�–�5� but the valley
degeneracy is not. It appears that for the considered range of
energies and temperatures it is sufficient to perform the mo-
mentum integration only in a circle of about 1% of the total
two-dimensional Brillouin zone around the K point �and
multiply by 2 to account for the valley degeneracy�. In prac-

tical implementation, we replace the integration with a sum-
mation over �105 q points.

In Eqs. �3� and �4� we introduced two different scattering
rates for the Drude and the interband components. Above 0.1
eV, the real part of the Drude conductance is much smaller
than the imaginary part, and the latter is only very weakly
affected by the Drude scattering in this range. Since the data
are not sensitive to the Drude scattering rate, we adopted
�D=5 meV, which corresponds to the value found in
graphite.39 We assume that the interband scattering � is con-
stant, i.e., it is independent of energy, momentum, and band
index. By doing this, we neglected the energy-dependent
electron-phonon and electron-electron-scattering processes,
which is perhaps the most serious limitation of the present
model. We will see that it is likely in the origin of some
deviations of the model curves from the experimental ones.

Once the conductance of graphene is computed, the
curves Rgr��� can be calculated via the Fresnel equations
using the known optical constants of SiO2 and Si, as speci-
fied in the Appendix. The latter values are well known and
can be further refined by the fitting of the reflectivity of the
bare substrate Rsub���.

To summarize, the conductance G�� ,Vg� and the reflec-
tivity Rgr�� ,Vg� within the presented approach depend on
nine parameters: �0, �1, �3, �4, �, U, �, T, and VCN. We
applied the nonlinear Levenberg-Marquardt modeling
routine40 to directly fit the experimental spectra. In order to
speed up the iterations and improve the convergence, the
derivatives of the reflectivity with respect to all adjustable
parameters were calculated explicitly using analytical formu-
las. One obstacle to this approach is that the chemical poten-
tial should be determined from Eq. �5�, which in general can
be done only numerically. Therefore, we treated � as a fitting
parameter and used Eq. �5� as a rigid constraint of the least-
square minimization.

III. RESULTS

A. Reflectivity spectra and their tight-binding modeling

As it was discussed in the Sec. II A, the self-normalized
reflectivity R�Vg� /R�−20 V� �from now on we omit the in-
dex “gr” for brevity� is the most accurately determined quan-
tity, which is, therefore, the best suitable for quantitative
analysis. These spectra, taken at the substrate temperature of
10 K, are presented in Fig. 3�a� for the whole span of gate
voltages used �from −100 V to +100 V with a step of 10
V�. As compared to Fig. 1�c�, the spectral resolution in this
figure is diminished to 5 meV. The spectra contain rich struc-
ture that evolves in a peculiar fashion as a function of the
gate voltage. Such a complicated behavior is due to the fact
that all four bands are involved into the electronic transitions
that affect optical properties in the considered energy range.

The amplitude of the structures of R�Vg� /R�−20 V� in-
creases as the difference between Vg and −20 V grows.
Therefore, it is useful to also plot the differential reflectivity
spectra �Fig. 3�b�� defined as follows:

�R

R
��,Vg� � 2

R��,Vg + 5 V� − R��,Vg − 5 V�
R��,Vg + 5 V� + R��,Vg − 5 V�

. �6�

Such a way of showing data emphasizes certain structures
such as those indicated with dashed lines, and their gate-
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voltage dependence. Another advantage of this representa-
tion is that it does not require a priori the knowledge of the
gate voltage corresponding to the charge-neutral state.

We fitted the whole set of the �R /R spectra simulta-
neously using the tight-binding parametrization, described in
Sec. II C. We assumed that the �0, �1, �3, �4, �, �, T, and
VCN do not depend on Vg. Since one of our main goals is to
detect and measure the bandgap, we performed fits in two
different ways. First, we set the parameter U to zero at all
gate voltages �fit 1� so that the difference between the spectra
is only due to a variation in the chemical potential. In the
second run �fit 2�, the bandgap was allowed to vary as a
function of Vg in such a way that U at each value of the gate
voltage was treated as an independent parameter. In each
case, we tried different sets of initial parameters �within the
scope of physically reasonable values� and checked that the
fitting routine converges to the same result. The parameter
confidence limits were estimated based on the correlation
analysis40 and by repeating the process after varying data
points within their error bars.

The model curves corresponding to fits 1 and 2 are shown
in Figs. 3�a� and 3�b� �solid green and dashed red lines, re-
spectively�. Both fits show almost the same match to the data
outside the region around 0.4 eV. However, within this re-
gion fit 1, which does not involve the bandgap, is qualita-

tively worse. It fails to reproduce some strong structures, in
particular, the ones marked with the circle. As discussed in
Refs. 18, 20, and 28, this is exactly the region, where the
bandgap is expected to affect the spectra. At the same time,
the quality of fit 2 is remarkably good. Thus our data un-
equivocally show the presence of the bandgap. There are still
some mismatches that we shall address separately.

The parameters of fit 2, apart from U, which depends on
the gate voltage, are given in the Table I. One can see that the
SWMcC parameters can be determined from the infrared
spectra. Except �3, these parameters were already deter-
mined in previous infrared studies,17–20 by monitoring the
gate-voltage dependence of easily recognizable spectral fea-
tures such as the maximum of the �1 peak. Using the least-
square fitting method, the parameter �3 can now also be es-
timated. This term results in a deformation of the �1 peak,
but its effect on the spectra is more complicated than just a
broadening produced by � �that we find to be about 18
meV�. One should mention, that in fit 1 �where the bandgap
was not included� this parameter relaxed to an artificially
large value �about 0.5 eV�, in order to mimic somehow the
bandgap induced smearing of the �1 peak.

For comparison, we also reproduce the SWMcC param-
eters obtained from a density-functional theory �DFT� calcu-
lation on graphite by Charlier et al.41 �a more complete over-
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FIG. 3. �Color online� �a� Self-normalized and �b� difference reflectivity spectra as a function of Vg. Dots are the experimental data
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view is given, for example in Ref. 18�. The agreement is
good, except for �0, for which the DFT values are somewhat
lower. Nevertheless, �0 deduced from various experiments
on graphite25 is in an excellent agreement with our result.
Based on the obtained value of �0, we find the Fermi velocity
vF= �3 /2�a�0 /� to be 1.02�0.01	106 m /s �a=1.42 Å is
the nearest-neighbor interatomic distance�.

The gate voltage corresponding to zero doping, VCN, can
be determined with a very good accuracy. As it was men-
tioned in Sec. II A, this value is slightly different from the
one extracted from the simultaneous transport measurement.
It is possible that in the case of large flakes and a nonoptimal
geometry of electrical contacts, it gives a more accurate
value than the one given by the maximum of the dc resistiv-
ity as it is not affected by the distribution of the measurement
currents in the flake. Infrared spectroscopy can be used,
therefore, as an independent indicator of the doping level.

We find the broadening � to be about 15–20 meV. This
value is larger than the one reported in Ref. 18 ��0.02�1
=8 meV�, which is perhaps due to a higher concentration of
charging impurities �the ones that shift the charge-neutral
point from the zero bias�. At the same time the value is
considerably smaller than the broadening of about 60 meV
found in Ref. 22 on double-gated graphene, which is prob-
ably related to extra scattering and/or inhomogeneity intro-
duced by the top gate.

At first, surprisingly, the deduced temperature of graphene
T is on the order of 100 K, even though the substrate was
kept at 10 K. Although the true graphene temperature may
indeed be somewhat higher due to a weak thermal contact
between the warped flake and the substrate, another plausible
explanation is that this is an indication of the spatial inho-
mogeneity of the chemical potential. It is easy to see that if
we neglect the change in the bands as a function of � then a
smearing of the chemical potential �→��
� has almost
the same effect in the Kubo formula as increasing the tem-
perature �kBTef f �
��. Thus we get an upper limit of about
10 meV to the inhomogeneity of the chemical potential. It is
worth emphasizing that the thermal and the scattering-
induced broadening given by T and �, respectively, are
clearly distinguishable by the fitting routine.

Figure 4�a� shows the extracted bandgap as a function of
the gate voltage and doping. Here we take �U� as a measure

of the bandgap, since it practically coincides with �g in the
considered doping range. One can see that at small gate volt-
ages the bandgap goes to zero within error bars and it grows
almost linearly for both electron and hole doping, reaching
70–80 meV at the maximum applied gate voltages. Interest-
ingly, the minimum is closer to zero-gate voltage �where n
�2	1012 cm−2� than to Vg=VCN�n=0�. As discussed by
Castro et al.,7 such a shift can be understood by considering
the dopant molecules adsorbed by the surface acting as an
effective top-gate electrode. However, in this case, the zero-
gap point is expected to be at Vg=−VCN. Seeing zero gap at
zero-gate voltage would be expected if the dopants are inter-
calated between the carbon layers, so that they do not intro-
duce an interlayer electrostatic asymmetry, however, we do
not have any independent experimental verification of this
happening. If the dopants were below the flake, in this pic-
ture one expects the gap to vanish at the charge-neutral point.

From Fig. 4�b� one can see that the chemical potential
shows a monotonic, slightly sublinear increase with doping.
In Fig. 5 the calculated band structures corresponding to the
gate voltages −100, −20, 0, and +100 V are presented to-
gether with the position of the chemical potential.

B. Optical conductance

Figure 3�c� shows the real part of the optical conductance
G��� calculated using the obtained tight-binding parameters
as described above. As in Fig. 3�a�, green solid and red
dashed lines correspond to the fits 1 and 2, respectively. The
conductance is normalized by 2G0, which is the theoretical
asymptotic value for bilayer graphene at high
frequencies.27,28 One can see that the model curve corre-
sponding to fit 1 shows a very broad �1 at positive gate

TABLE I. Parameter values obtained by the least-square fitting
of reflectivity spectra �fit 2�. All parameters, except T and VCN, are
given in eV.

Parameter This Work DFT Calculation �Ref. 41�

�0 3.16�0.03 2.598�0.015

�1 0.381�0.003 0.34�0.02

�3 0.38�0.06 0.32�0.02

�4 0.14�0.03 0.177�0.025

� 0.022�0.003 0.024�0.01

� 0.018�0.003

T 120�15 K

VCN −22�1 V
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FIG. 4. �Color online� The extracted values of �U� �top panel�
and the chemical potential �bottom panel� as functions of the gate
voltage and doping. Dash-dotted line—the calculated “unscreened”
value of �U�, solid line—an ab initio DFT calculation from Ref. 42,
which takes screening effects into account.
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voltages because the parameter �3 in this fit was unrealisti-
cally large, as discussed above.

Since some deviations between the model fits and the ex-
periment are present, we refined optical conductance using
the Kramers-Kronig constrained variational method.43

Within this approach, we represented the conductance as a
sum of the two terms: G���=Gmod���+Gvar���. The model
term is calculated using Eqs. �2�–�4�. Gvar��� is a variational
Kramers-Kronig constrained correction needed to reproduce
all remaining fine detail of the experimental reflectivity
spectra.43 At the refinement stage, Gmod��� was fixed and
Gvar��� was adjusted in order to get the perfect match to the
reflectivity spectra. The refined conductivity is shown in Fig.
3�c� with symbols. Since we based our analysis on the rela-
tive reflectivity spectra, this procedure gives most accurately
the relative changes in G��� as a function of Vg and � �the
accuracy is better than 0.1G0�, while the error bars for the
absolute level of G��� can be somewhat larger. This explains
slightly negative values of Re G��� at low frequencies at
high-gate voltages. Weak structures below 0.15 eV are arti-
facts coming from the optical phonons in SiO2, which are not
fully cancelled in the fitting procedure, probably due to a
weak dependence of these phonons on the electric field,
which is not included in our model.

C. Temperature dependence

In addition to tuning the spectra by the gate voltage, vary-
ing the temperature provides another important piece of in-
formation. As an example, Fig. 6�a� shows �R�� ,
−45 V� /R taken at the substrate temperature Tsub of 10, 150,
and 300 K. The spectra clearly change with cooling down. In
general, the structures are getting sharper at low tempera-
tures. However, the sharpening is far from being simply a
uniform broadening such as due the electronic scattering �pa-
rameter ��. In particular, the peak at 0.35 eV does not
change, while both the dip at 0.45 eV and a structure at 0.2
show a pronounced temperature variation.

Panel �b� shows calculations of the same quantity at the
following set of graphene temperatures: 20, 120, 200, and
300 K. In all cases, the same parameters, except T, were used
�Table I�. The calculated temperature dependence reproduces

very well the experimental one if one assumes that the effec-
tive temperature of graphene is higher than Tsub. As we dis-
cussed above, this temperature mismatch may be in part due
to the spatial broadening of the chemical potential. One can
see that at T=20 K �dashed line�, the spectral structures are
expected to be much sharper than at 120 K. Similar spectra
comparisons at other gate voltages �not shown� provide the
same results.

The observation that the effect of temperature on the spec-
tra is highly frequency selective is explained by the fact that
only electronic transitions, for which either initial or the final
state are close to the Fermi level, are affected by the tem-
perature. As one can anticipate from the good match between
spectra in panels �a� and �b� of Fig. 6, the application of the
same least-square fitting procedure at higher temperatures
provides model parameters, which are essentially the same as
the ones presented. Therefore, we focus largely on the low-
temperature results. Nevertheless, the ability to quantita-
tively predict spectra at high temperatures based on the re-
sults obtained at low temperature corroborates the
consistency of the used model approach.

IV. DISCUSSION

A. Seeing bandgap optically: Zero versus finite doping

Optical spectroscopy is routinely used for the bandgap
measurements in usual semiconductors due to the fact that
only the photons, which energy exceeds the bandgap, are
absorbed by electron-hole excitations. However, bilayer
graphene is special in a sense that the bandgap is not intrinsic
but is induced by the gate voltage. Therefore, if only one
gate is attached to the flake, as in the present case, then the
gap opening is inevitably accompanied by doping. Making
two gate electrodes �on top and on bottom� would induce the
bandgap without doping.8 Figure 7 demonstrates, using a
simplified set of SWMcC parameters, the effect of the band-
gap in both cases. The bottom panel corresponds to the un-
doped case ��=0�. One can see that an infrared-absorption
threshold appears at ����g, due to the transitions between
the bands 2 and 3 across the bandgap �the bands are num-
bered in the inset�. Such a structure was observed indeed in a
recent paper by Zhang et al.,22 who used a double-gate bi-
layer graphene device. The second notable effect is a shift by
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FIG. 5. Electronic bands �calculated using parameters extracted
from optical spectra� and chemical potential at selected gate
voltages.
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�g /2 of the second threshold at �1 corresponding to the tran-
sitions between bands 1 and 3 and also to ones between
bands 2 and 4.

The top panel describes the case of a finite chemical po-
tential �electron doping�. There is a striking difference be-
tween the two cases. Now the opening of the gap does not
produce an absorption threshold, since the transitions across
the gap are blocked by the Pauli principle. However, the gap
affects the line shape of the �1 peak that originates from a
combination of interband transitions 3→4 and 2→4. Most
notably, a satellite peak at about �1+�g /2 shows up. In ad-
dition, a shoulder at about �1−�g /2 appears. The satellite
and the shoulder stem from the transitions 2→4 and 3→4,
respectively, close to the K point, where they are separated
by the bandgap energy. Thus, in the doped case the only way
to measure the bandgap is to analyze the shape of the �1
peak.

In reality, the position and the shape of the peak are also
affected by the parameters �3, �4, and �, not included in the
above demonstration, and further broadened by electronic
scattering. Therefore, when the gap is small, its extraction
from the optical spectra requires direct fitting of the data
using a complete set of SWMcC parameters. When the gap is
large, the identification of the gap becomes easier as the
satellite to the main peak is more pronounced. We note that
in actual data one can clearly recognize a satellite to the �1
peak for Vg�80 V �shown by arrows in Fig. 3�c��.

Although the fit reveals the presence of the bandgap also
at negative gate voltages �Fig. 4�a��, the conductance spectra
do not show a clear satellite at this doping side. Such a
difference is in part due to the electron-hole asymmetry,
which results in a stronger broadening of the �1 peak at the

hole doping, and in part due to the shift in the charge neu-
trality point. However, in Sec. IV C we shall demonstrate
direct signatures of the bandgap for both polarities of the
gate voltage.

B. Bandgap: The role of self-screening

As discussed in Sec. II C, the bandgap is determined by
the parameter U, which is defined as the difference in the
electrostatic potential on the two layers. As it was exten-
sively discussed in the literature,6,7,18,44–46 the self-screening
of the external field plays a crucial role in the determination
of U. Our data fully agree with this. One can see �Fig. 4� that
the experimental value of the bandgap is more than two
times smaller than the “unscreened value” �dashed-dotted
line�, given by the external field multiplied by the interlayer
distance �3.35 Å� �Ref. 42� �we assumed that the bandgap
vanishes at Vg=0, based on the experimental results, which
means that charging impurities do not introduce any imbal-
ance of the interlayer potential�. The same observation was
made in Ref. 22

A proper microscopic calculation of the bandgap must be
done self-consistently, since the screening depends on the
bandgap and vice versa. Such a complicated problem was
treated on the Hartree level based on the tight-binding
model6,7,18,46 as well as using ab initio methods.42,44,45 These
calculations provide the doping-dependent bandgap, which is
much closer47 to the present experiment than the “un-
screened” model. As an example, we present in Fig. 4 the ab
initio DFT calculation of Gava et al.42 �solid line�, which
shows a good agreement with the experimental data.

C. “Photon energy—gate voltage” mapping of the interband
transitions

We saw that the extraction of the optical conductance
from the measured spectra is rather involved in the present
case, where the measured spectra depend on both real and
imaginary parts of G��� �as detailed in the Appendix�. Now
we propose a simple way to visualize electronic transitions
based on the raw reflectivity data, which most clearly dem-
onstrates the electron-hole asymmetry, the opening of the
bandgap, and other features of the band structure.

In Fig. 8�a�, the whole set of experimental spectra �R /R
is represented as a color map in the coordinates ��� ;Vg�.
One can see a set of lines that resemble somewhat band
dispersions seen in ARPES. First we note the two “�”-like
structures, shifted with respect to each other along the pho-
ton energy axis. They correspond to the onsetlike features in
the optical conductance, marked in Fig. 7 as A and B and
related to the interband transitions 2→3 and 1→3, respec-
tively �2→3 and 2→4 in the case of hole doping�. Indeed,
one can see that they match closely the expected threshold
energies �A�Vg�=2���Vg�� �dashed line� and �B�Vg�=�1
+2���Vg�� �dotted line�. Although several experimental
papers presented infrared spectra of gated bilayer
graphene,16,17,19–22 the second threshold was reported only in
Ref. 20. Here we reaffirm, based on a new set of data, the
existence of the second threshold, which is essential for the
overall consistency of the tight-binding approach.
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In Fig. 8�a� the presence of electron-hole asymmetry is
quite obvious, since in the case of perfectly symmetric bands
with respect to the Dirac point the �R /R spectra should be
precisely antisymmetric with respect to Vg=VCN, as exempli-
fied in the hypothetical graph of Fig. 8�d�. Within the
SWMcC model, the asymmetry between electron and holes
bands is due to the hopping term �4 and the on-site energy
difference �. In Refs. 18 and 19 they were deduced from the
doping dependence of the position of the maximum of the �1
peak. Since the maximum location is affected not only by �1,
�4, and � but also by �3, �, and, most importantly, by U, we
choose to determine all parameters, including �4 and �, by
fitting of the whole set of spectra.

This way of presenting spectra also allows us to see the
distinct features related to the opening of the bandgap. These
features appear to be quite different on the two doping sides
due to the electron-hole asymmetry. In panels �b� and �c� of
the same figure, we show the fits of �R /R without and with
the bandgap, respectively �namely, fits 1 and 2 described in
Sec. III A�. On the electron side �Vg�VCN� the “ridge” indi-
cated as “1” finds absolutely no counterpart in fit 1, but is
mimicked by in fit 2. On the hole side, the ridge marked as
“2” clearly disperses toward low frequencies as the absolute
value of Vg is increasing. This trend is well captured by fit 2,
while in fit 1 this ridge is precisely vertical.

D. Deficiencies of the tight-binding description with constant
scattering

Although the overall agreement between the panels �a�
and �c� of Fig. 8 is very good, a closer inspection reveals
some deficiencies in fit 2. For the electron doping, at gate
voltages between 50 and 80 V, the ridge indicated by 1 is
quite narrow in the experiment but is broad and barely rec-
ognizable in fit 2 �as indicated by 3 in panel �c�. For the hole
doping, fit 2 contains a weak extra ridge �marked as “4”�
which is not clearly present in the experiment. In Fig. 9 we
concentrate on these doping levels, taking the gate voltages
Vg=−95 V and +65 V as examples. Here we improved the
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match even further as compared to Fig. 3�b� by slightly com-
promising the fit quality at other gate voltages �although all
the bandgaps were kept the same�.

The model curve at −95 V is featured by three distinct
peaks between 0.3 and 0.45 eV. Crudely speaking, they are
related, respectively, to the shoulder, the main maximum and
the satellite to the �1 peak depicted in Fig. 7. The value of U
is related to but somewhat smaller than the distance between
the leftmost and the rightmost peaks. We can see that the
data also show three peaks at same photon energies, but the
first peak is stronger and the third one is much weaker than
the counterpart on the theoretical curve �the latter one gives
rise to the feature “4” in Fig. 9�c��.

At Vg=+65 V the peak at 0.4 eV is rather sharp in the
experiment but has a pronounced double structure in the
model. Although this does not question the existence of the
bandgap as such �recall that the best fit without the bandgap
does not show this peak at all�, such a discrepancy is too
significant to be ignored.

Presently, the origin of the shown mismatches is not clear.
This may be an indication that more hopping terms need to
be taken into account. In this respect, it would be instructive
to compare optical spectra directly to the results of ab initio
band-structure calculations. Another possibility is that the
discrepancies are caused by our assumption that the scatter-
ing � is the same for all electronic states, which can fail due
to the electron-phonon and electron-electron interactions.
Last but not least we have assumed in our analysis a rigid-
band model, i.e., the tight-binding band parameters �apart
from the bandgap� are assumed to be independent of doping
and gate voltages. That this may not be strictly the case was
experimentally shown in an ARPES study on epitaxial
graphene,9 where an increase in �1 by about 3% was ob-
served when U changed from 0 to 100 meV. Electron-
correlation effects introduce a doping and energy-dependent
renormalization of the bare dispersion. Also the gate voltages
influence the interatomic tunneling matrix elements, which
in turn affect the tight-binding parameters. Studying the
manifestation of these interactions in optical spectra will un-
doubtedly be one of the most intriguing directions in the
further research of graphene.

V. SUMMARY

We presented a detailed analysis of infrared reflectivity
spectra of bottom-gated bilayer graphene that allowed us to
determine the tight-binding Slonczewski-Weiss-McClure pa-
rameters and the doping dependence of the bandgap induced
by the electric field generated by the gate. The direct least-
square fitting of the whole set of infrared spectra using the
SWMcC Hamiltonian and the Kubo formula turns out to be a
very efficient technique to disentangle the complicated inter-
play of various band-structure parameters in the optical spec-
tra. It also provides independent information about the ex-
trinsic doping level.

Our analysis clearly shows the presence of the bandgap,
which depends almost linearly on the gate voltage. This de-
pendence agrees with the tight-binding and ab initio calcula-
tions that take the screening of the external field by the �

bands into account. At the maximum applied gate voltage of
100 V the bandgap reaches about 80 meV, which is three
times larger than kBT at room temperature. Even higher val-
ues of the bandgap �up to 250 meV� could be obtained on
double-gated bilayer graphene,22 making this material very
promising for applications.

The very fact of achieving quantitatively good fits is a
strong indication that the tight-binding model is quite accu-
rate for the actual band structure of bilayer graphene. Nev-
ertheless, some discrepancies remain, and further investiga-
tions will be needed to explore their origin in the context of
electron-phonon and electron-electron interactions.
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APPENDIX: RELATION BETWEEN THE REFLECTIVITY
AND THE OPTICAL CONDUCTANCE OF

GRAPHENE

The reflectivity of bare substrate, and graphene on top of
the substrate �Fig. 1�a�� can be calculated based on the opti-
cal conductance of graphene G��� and the known dielectric
functions ���� of SiO2 and Si.30,31 We can treat the silicon
layer as semi-infinite, since in our case it is thicker than the
penetration depth. The Fresnel equations for the reflectivities
can be written as follows:

Rsub = 
r01 +
t01t10�

2

1 − r10r12�
2
2

, �A1�

Rgr = 
 r̃01 +
t̃01t̃10�

2

1 − r̃10r12�
2
2

, �A2�

where indices 0,1, and 2 refer to vacuum ��=1�, SiO2, and Si
layers, respectively, and

� = exp�i
�

c
��1d1� . �A3�

We used the complex reflection and transmission coefficients
at the interface between media i and j

rij =
��i − �� j

��i + �� j

, �A4�

tij =
2��i

��i + �� j

. �A5�

The presence of graphene between layers �in our case it is
between vacuum and SiO2� modifies the interface coeffi-
cients in the following way:
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r̃ij =
��i − �� j − �� G

G0

��i + �� j + �� G
G0

, �A6�

t̃i j =
2��i

��i + �� j + �� G
G0

, �A7�

where �=e2 /�c is the fine-structure constant. The latter for-
mulas are valid in the thin-film limit �the thickness is much

smaller than the wavelength�, which is perfectly applicable
to graphene.

Since the typical values �R /R �Fig. 3�b�� are rather small
��10−2�, it is useful to introduce the so-called “sensitivity”
functions that we previously used in similar analyses48,49 and
employ an approximate linear relation

�R���
R

� �1���
Re �G���

G0
+ �2���

Im �G���
G0

. �A8�

Here we obtained the sensitivity functions �1��� and �2���
numerically, using a linear regression of the exact formulas
for the values of G /G0�1. These functions, which are spe-
cific to the substrate used are shown in Fig. 10. One can see
that the reflectivity depends on both the real and the imagi-
nary parts of G��� in a nontrivial way. At high energies, the
dependence is stronger than at low energies. Optical phonons
in SiO2 give rise to structures at �0.15 eV, which affect
�R /R.
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