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Using a generalized version of the gauge argument introduced by Laughlin in the discussion
of the quantum Hall effect, the quantized conductance in a one-dimensional gas of charged
fermions is related to the quotient of fermion charge and magnetic flux quantum, both in the
presence and absence of a magnetic field. It is furthermore shown from the same arguments
that, in the absence of a strong magnetic field, quantization is destroyed due to scattering.
Finally, the crossover to the quantum Hall regime is discussed, employing the gauge argnment.

I. INTRODUCTION

Following the experimental observation of conductance
quantization in zero magnetic field'2 a large number
of theoretical papers3—% have been published describing
various ways of calculating quantum ballistic transport
through constrictions. A question that has received rel-
atively little attention, is whether the above-mentioned
quantization and the quantum Hall effect have a common
origin. This is an important issue, as a common origin
of both effects would indicate that, in principle, some
kind of fractional conductance quantization could also
exist in one-dimensional (1D) structures due to electron
correlation effects. In one of the first theoretical papers
discussing the quantum Hall effect after its discovery,®
Laughlin? explained the exactness of the quantization
using a gauge argument. In the same paper the issue
of the insensitivity of the quantization to scattering was
addressed. Nowadays this is believed to be caused by the
absence of backscattering in strong magnetic fields.3 Con-
trary to the situation in the quantum Hall effect, where
scattering even widens the Hall plateaus, in the zero-field
case, scattering is known to destroy quantization. This
follows both from experimental data and from numeri-
cal work including scattering centers.®:% In the first ex-
perimental paper a series resistance was subtracted from
the experimental data in order to compensate for the ef-
fect of the current-voltage contacts. A disadvantage of
this procedure is that it masks possible deviations of the
quantized steps due to scattering close to the point con-
tact. In other experiments either a four-terminal setup
was used,? where one must somehow take care of the cor-
rections due to the finite size of the wide regions in the
four-terminal Landauer formula® or a two-terminal setup
with low-Ohmic contacts was used.'® Generally one ob-
serves a reduction of the conductance at the plateaus
below the quantized values.!! The best quantization ob-
served to date is still of the order of a percent below the
quantized values,!® while additional structure develops at
the plateaus, especially at low temperatures and in the
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presence of scattering.10—13

In order to demonstrate the common origin of both
types of quantization, I generalize the construction used
by Laughlin in the discussion of the quantum Hall effect
to the case of the longitudinal resistance of a 1D strip
either with or without magnetic field. First we have to
realize that the point contacts that are used in the exper-
iments on zero-field quantization are basically short 1D
channels. Experimentally the channels have to be short
in order to reduce the effect of scattering. The coupling
between the wide 2D half planes and the 1D channel en-
ters the theoretical description of the mesoscopic device
as an extra complication, which is, however, not of fun-
damental importance for the concept of quantization. In
fact, it has already been stressed by Landauer before the
experimental observations were madel4 that a smooth
coupling between the wide and narrow regions results in
the absence of scattering. It was shown by Glazman et
al.® and later by Yacobi and Imry!® that for R/A > 1
(where R is the radius of curvature of the constriction
walls and X is the Fermi wavelength) the structure be-
haves essentially as a 1D channel with a finite number
of 1D subbands at the Fermi level. In the absence of
scattering, each channel contributes®17:14 J = e2Vnup,
where V is the applied voltage, e is the electronic charge,
n = (2m)~'8k/OE is the 1D unidirectional density of
states per unit of length, and vy = A~ '8E/k is the
Fermi velocity. We see that in the Landauer description
the conductance quantization results from a cancellation
between density of states and group velocity. On the
other hand, in the description of the quantum Hall effect,
Laughlin derived that the quantized units of conductance
are given by the quotient of elementary charge and mag-
netic flux quantum. In this paper I discuss the relation
between these two descriptions.

II. GAUGE TRANSFORMATIONS

Let us first consider the conductance of a perfect 1D
strip that is smoothly connected to randomizing baths
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on both sides. Application of a voltage V between the
left-hand side and the right-hand side results in a relative
shift eV of the electrochemical potential of left- and right-
going states. If we take out a finite section of such a strip,
and consider the distribution of the electrons in momen-
tum space, we find that it corresponds to the energeti-
cally most favorable state under the constraint of fixed
total electronic momentum, which for a section of length
L, amounts to LyneVhkr. Another way to look at this is
that it represents the equilibrium distribution seen from
a co-moving frame with a velocity e?V/2hkp. Of course
this is only a meaningful concept if no momentum of the
electrons can be transferred to other degrees of freedom
of the sample, such as the phonon bath. Theoretically
such a situation can easily be envisaged; however, for the
convenience of those who insist on the presence of inelas-
tic scattering I add that our thought experiment is at
least meaningful on a time scale shorter than the inelas-
tic decay time of the electrons. We now bend the strip
and merge both sides together without changing the dif-
ference in occupation between left- and righi-going staies.
Using this procedure we avoid possible confusion about
the meaning of an applied voltage in a loop. Experimen-
tally an imbalance between the occupation of clockwise
states (CWS’s) and counter clockwise states (CCWS’s)
is obtained by applying a time-dependent magnetic flux
through the loop. The Faraday effect then causes an ac-
celeration of the electrons in one direction. Unlike the
situation in a superconducting loop, where the current
carrying state is stable after the change in enclosed flux
has been completed, in a metallic ring this state decays
due to inelastic scattering. In what follows I will assume
that this inelastic decay is sufficiently slow on the time
scale of our thought experiment. In analogy to the sit-
uation in the strip, the state of the electrons in the ring
can be thought of as an equilibrium distribution under
the constraint of fixed electronic angular momentum.

Due to periodic boundary conditions in the loop, the &
vectors of the CWS’s and CCWS’s are now quantized in
units of 27 /L, , where L, is the circumference of the loop.
In Fig. 1(a) the quantized states and the occupations are
indicated for the current carrying state of a ring that has
only one subband occupied. Obviously one can always
choose the circumference of the ring such that there is a
sufficiently large difference in occupation between CWS’s
and CCWS’s no matter how small the difference in chem-
ical potential is. In the plot a free-electron parabola is
displayed, but in what follows this is of no relevance.  We
now calculate the current in the loop by using the ther-
modynamical equation

ou
I=c¢c 5% (1)
where U is the total energy, ¢ is the light velocity, and
¢ is the magnetic flux enclosed by the loop. Similar to
Laughlin’s treatment of the quantum Hall effect we adi-
abatically increase ¢. After the adiabatic addition of one
magnetic flux quantum has been completed, the many-

electron wave function is exactly mapped into itself. We
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FIG. 1. (a) Energy dispersion of a perfect 1D closed loop.

Due to the periodic boundary conditions % is quantized. Elec-
trons occupying these quantized states are indicated for a sit-
uation where the loop encloses no magnetic flux. Also indi-
cated is the difference in electrochemical potential between
CCWS’s and CWS’s. (b) Reduced zone plot of the energy
dispersion of (2) as a function of phase, i.e., 2r¢/¢o, where
¢ is the flux enclosed by the loop. Solid curves are clockwise
states, dashed curves are counterclockwise states, and dotted
curves are the opening of minigaps due to scatiering.

furthermore observe that during the adiabatic change of
¢ the wave functions move along the single-electron dis-
persion curve of Fig. 1(a). This follows from the fact that
the canonical momentum in the presence of an enclosed
flux is given by k-+eA/(hic), where A is the vector poten-
tial. As a result a phase factor e2¥#/%0 has to be added to
the periodic boundary conditions, where ¢q is the mag-
netic flux quantum (I use ¢y to indicate h/e throughout
this paper; in discussions of superconductivity ®q is often
used to indicate i/2e), so that the canonical momentum
of the single-particle states transforms as

-1 ¢
k—k+2nL, ol | |
Hence the net effect after increasing the enclosed flux
with ¢¢ is that one electron is transferred from a CWS
at the Fermi level to a CCWS at the Fermi level. The
corresponding increase in energy (AU) is eV; hence the
current is

sU
1= %5 = c(do)teV . (2)

Adopting the usual values of elementary :éh:;rgej and the
elementary flux quantum, we arrive at the expression for
the conductance

I/V =e/h . (3)

Note that this shift register effect works only if each state
is occupied by a single electron up to the Fermi level. One
can check the importance of Fermi statistics at this point
by trying to envisage what happens if the single-particle
dispersion of Fig. 1 is subject to Bose statistics: The
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ground state of such a system has all bosons in the low-
est level. No applied voltage can exist, although a current
flows if the bosons are condensed in a state with & # 0.
This happens if the enclosed flux is a finite fraction of ¢g.
It is a manifestation of the fact that in a Bose conden-
sate only diamagnetic currents can flow. From the above
result we see that conductance quantization in units of
e%/h is a manifestation of the statistical properties of the
electron gas. Due to the fact that a single electron is al-
lowed in each (spin) state, precisely one electron is trans-
ferred in the adiabatic process. If electrons would obey
another kind of statistics, e.g., if ¢ electrons were allowed
in each single-particle level up to the Fermi level, the unit
of conductance quantization would be ge?/h. One could
regard spin degeneracy as a case where we have ¢ = 2.
However, in the presence of an external magnetic field,
due to spin-orbit interactions, or due to exchange fields,
the spin degeneracy is lifted. Hence, the two spin direc-
tions are usually treated as parallel quantum channels.
In this context it is interesting to mention that fractional
quantization of the conductance is accompanied by frac-
tional statistics of the quasiparticle excitations.!® As the
arguments used above are based on a single-particle pic-
ture of the ground state, these arguments can, however,
not be directly applied to the many-body wave function
describing the fractional quantum Hall state.

Equation (3) can easily be generalized to the quasi-
1D case, where one has N nondegenerate occupied 1D
subbands (not indicated in Fig. 1). The intersubband
energy splitting plays the same role as the energy gap
between Landau levels in the description of the quantum
Hall effect:” It prevents crossover between subbands in
the adiabatic process. One has to add contributions of
each subband to the total energy, resulting in

I/V =Ne?/h. 4)

III. SCATTERING

I now address the question of how scattering modifies
the above result. In Fig. 1(b) the single-electron disper-
sion of Fig. 1(a) is displayed as a function of flux enclosed
by the loop. For a fixed gauge the electrons occupy a dis-
crete set of energy levels for each value of ¢. The CWS’s
are indicated as solid curves, and the CCWS’s are indi-
cated as dashed curves. We see that each CWS crosses
a CCWS at ¢ = ¢p/2. Hence, under adiabatic change
of the enclosed flux the electrons can, in principle, move
from a CWS to a CCWS at this point, provided that some
scattering mixes these two bands. In fact, scattering re-
sults in the opening of minigaps,'® as indicated in Fig.
1(b). It is immediately clear that in the above-mentioned
adiabatic process each electron returns to its original en-
ergy position. As a result the increase in energy AU is
zero and there is no net current. Of course this is just
a manifestation of 1D localization in the thermodynamic
limit.1® This does not mean that for a wire of finite length
the resistance is infinite. In fact, there exists an intimate

relation between the minigaps in a loop structure and
the transmission coeflicients in a linear structure, which
I will describe in the following section. We see that our
gauge argument leads to nonquantized conductances in
the presence of scattering. This is equally true in the case
of the quantum Hall effect, as I will briefly discuss in the
last section. This result does not depend on the presence
or absence of intersubband scattering (or inter-Landau-
level scattering in the case of the quantum Hall effect),
but rather on the presence of backscattering. Backscat-
tering can be heavily suppressed in the presence of high
magnetic fields, which causes the high precision of the re-
sistance standard based on the quanturn Hall effect. This

_high precision does not, however, follow from a gauge ar-

gument. The importance of the gauge argument is that
it allows us to relate macroscopic transport properties to
certain microscopic physical constants by employing the
fact that electrons obey Fermi statistics.

IV. RELATION BETWEEN MINIGAPS
AND TRANSMISSION

Scattering is introduced in a linear strip by including
a portion of imperfect transmission, characterized by the
scattering matrix S:

S = (_:* tt > eH | (5)

With this convention for the ordering of transmission
coefficients ¢ and reflection coefficients r, S is the unit
matrix in the absence of scattering. In a different con-
text quite often a notation is used, where = is the di-
agonal element.?® The latter notation deserves prefer-
ence when multiprobe configurations are considered. In
a multiprobe problem the phrase “absence of scattering”
no longer has an obvious physical meaning. In order to
diagonalize S, the basis of left- and right-going states
(LGS’s and RGS’s) has to be transformed to another
two-dimensional basis, which depends on the properties
of the disordered part of the strip. We reserve the in-
dices + and — to indicate the basis vectors on which S
is diagonal:

|k+) = cos BeialkRGs) + sin OlkLGs) ,
(6)

|k—) = sin #e’*|kras) — cos flkras) -

The parameters ¢, «, and =+ are obtained by applying
the orthogonal transformation, defined by Eq. (6), to the
S matrix and by imposing diagonality:

_1 [
0= 5 arctan (m) , |
a=m/2—arg(r), (M

4 = pk % cos™! Re(t) .

The diagonal matrix elements of S are exp (2in,); 7, is
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called the scattering phase shift. The physical meaning
of this is that a wave |k, )} incident to the scattering part
is scattered into an outgoing wave | — k,). During this
process the wave acquires a phase shift, whereas the wave
amplitude is conserved. The transmission and reflection
coefficients are now readily obtained from an orthogonal
transformation from the 4+ and — basis to the RGS and
LGS basis, resulting in

te?# = cos 20e"+ + sin 20e%7- |
€

re# = sin @ cos fe ™ (e — %) |

The parameters # and « are determined by the scatter-
ing potential. In principle, they also depend on external
parameters such as electron density and magnetic field.
The same holds true for the scattering phase shifts. In
many physical situations, however, the phase shifts have
a much stronger dependence on external parameters. For
example, if the electron density is such that the Fermi en-
ergy lies close to a resonance, the change in phase shift
in moving the Fermi level through the resonance is m,
whereas § and « are, in principle, unaffected by the reso-
nant behavior. This is also known as Levinson’s theorem.
In a number of cases one can easily see that 8 is a con-
stant. For example, if there is time-inversion symmetry,
we have ¢ = t*, and hence, using Eq. (7), cos?§ = 2.
In the case of inversion symmetry (ie., point inversion
symmetry if there is no time-reversal symmetry; other-
wise a mirror plane perpendicular to the current direction
suffices), the basis is formed by even and odd subbands
along y, and again cos 26 = %.7! The phase shifts have to
be calculated from the perturbation Hamiltonian of the
scattering part. The connection can be made by applying
the optical theorem

S=1+2i(Img)T .

This is an exact identity, which in this form relates the
scattering matrix in diagonal form to the Green’s func-
tion g of the unperturbed system and the transition ma-
trix 7', which is the dressed perturbation Hamiltonian
containing all vertex corrections. From comparison with
the S-matrix elements in diagonal form we immediately
obtain

Ny = arg (Txf: . 9
From the transition-matrix Dyson equation
T=H'+HGH',

where H! is the perturbation matrix and G is the Green’s
function of the perturbed system, we can calculate the
matrix elements of T

ReT}Y = (kv|H'|kv) + (kv]H'(ReG,)H k) ,

(10)
ImTE = (kv|H'(ImG, ) H' |kv) .

We now define
V., = ReT}FY
(11)

Pt =7V, ImTEY .

With these definitions we now see that the phase shifts
are

1, = arctan(V, p}) .

In lowest-order perturbation theory p} is the unidirec-
tional density of states L,/(hvr). For larger values of
the perturbation Hamiltonian H*', p%, and p* reflect a
“dressed” or “effective” density of states. We are now
able to work out an explicit expression for the transmis-
sion coefficient:

,, sin %(26)
T r(Vaph — Vors) /(L + 2V, Vo g )
+ cosz(QB) . (12)

2 =

Note that the term V V_ in the denominator effectively
acts as a higher-order correction to the term (Vyp} —
V_p*). Here we come to the central step, allowing us
to make the connection between transmission coefficients
and gaps: If we now take the strip and again bend it to
form a loop structure; the minigaps at the points where
|kcws) and lkccws) cross are in lowest-order perturba-
tion theory given by

By = (ky|H'[ky) — (k_|H [k_)
= (Ve = V2)+O((HY)?) . (13)

That is, in this order of perturbation theory Vi and
V_ represent the upward and the downward shift of the
eigenstates, which are formed by mixing |kcws) and
Jkccws). We can make the identification more explicit
by defining an effective p* and Ej:

T =/PLpt
g = YAVPL/PL = Vot [P} .

g 14+ 72V Vopipt

(14)

Using these definitions we finally arrive at the following
expression relating the conductance of a 1D strip to the
minigaps in an equivalent ring structure:

2 sin 2(260)
=0
1+ (Ejmp*)?

If there is either time-reversal symmetry or inversion
symmetry the formula has a simpler form, as in the case
we have of sin 2(20) = 1:

h I 1

—_—— —————— | 16

e2V 1+ (Einp*)? (16)

+ cos ?(20) . (15)

In the absence of a magnetic field, the size of the mini-
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FIG. 2. Conductance vs constriction width for a constric-
tion with a varying amount of disorder. The size of the area
was 1.6 Fermi wavelengths in the current direction and 4.0
Fermi wavelengths perpendicular to this. The length of the
constriction was kept at 0.5 Fermi wavelengths, and the width
is the parameter varied along the horizontal axis and is swept
from 0 to 4.0 Fermi wavelengths. The number of impurities
added is between 0 and 90 with increments of 5 from top
left to bottom right. For clarity the curves have been given
diagonal offsets at regular intervals.

Conductance (units of 2e2/h)

T 1T 17 7 11

gaps is proportional to the density of scattering centers.
Hence, for each channel 1 — Itl_2 is proportional to n?,
where n is the 2D impurity density. In Fig. 2 this is fur-
ther illustrated by the results of a numerical simulation of
the effect of adding impurities to a constriction between
two infinite 2D half planes, using the formalism outlined
in Ref. 5. In the simulation é-function impurities were
added at random to a rectangular region adjacent to the
constriction area. We see from the values of the con-
ductance at the plateaus that the conducting channels
roughly follow the expected behavior, each with a differ-
ent prefactor, i.e., the size of each step decreases roughly
proportional to n? and asymptotically approaches zero.
The details of the suppression of the conductance at each
plateau depend strongly, of course, on the precise loca-
tion of the impurities. A single é-function impurity has
the effect of completely suppressing the wave amplitude
in a region of about 2 quarter of a wavelength.’ The ma-
trix elements V,, are therefore proportional to the kinetic
energy times the Fermi wavelength divided by the length
of the loop. Hence E; =~ 0.5ErAp/Ly. The reduction
of the transmission due to a §-function impurity placed
inside the constriction is then approximately 15%, which
agrees with the numerical results of Ref. 5. There are
additional effects, which become stronger as the disorder
increases, such as the formation of virtual bound states,
which gives rise to resonance peaks at certain values of
krpW. I have to add here that the numerical calculations
are exact and hence also incorporate intersubband scat-
tering, an effect that is not included in our simple 1D
formula Eq. (15).

43 GAUGE INVARIANCE AND ABSENCE OF EXACT ... 3473

V. MAGNETIC FIELDS

In the presence of a strong magnetic field this situa-
tion changes drastically. Let us first assume that there
is no scattering. Again the same gauge arguments can
be used.” On increasing the magnetic-field strength the
dispersion relation of Fig. 1 gradually develops into a dis-
persionless band for |k| < L,/(21%), with a steep rise for
k close to L. /(21%), where L, is the width of the strip

‘and lg = (he/[eB])}/? is the magnetic length. An impor-

tant difference is that the wave functions with different
k vectors become spatially separated along the direction

" perpendicular to the current path, i.e., the guiding cen-

ters are given by the following expression:

AT
=k} + (Z?J) (%%) ’ an

where N (i) is the number of k states in the flat portion of
the ith subband, and Lj;(%) is the corresponding effective
sample width. As a result, the spatial separation between
crossing CWS’s and CCWS’s close to the integer filling
factor of a Landau level is of the order of the sample width
L,; i.e., they correspond to opposite edge channels.2? If
we now introduce scattering, in principle minigaps will
open, as in the case where we had zero applied field. The
occurrence of minigaps in this case has been treated by
Aoki.?® The matrix elements determining the minigaps
are then proportional to exp[—(L./415)%].2* If we insert
this in Eq. (15) we obtain an exponentially small correc-
tion on the conductance.

VI. CONCLUSIONS

From a gauge argument it is shown that the occur-
rence of e?/h reflects the (Fermi) statistical properties
of the electron gas, both for the quantum Hall effect
and for the much less robust conductance quantization
in a point contact. In principle, in both regimes the con-
ductances are reduced from the exact quantized values.
However, in the limit of high magnetic fields (L /ig > 1)
the exponentially small parameter exp[—(L;/4(p)?] de-
termines the corrections to the quantized conductance in
the presence of scattering, whereas in the low-field regime
(Lz/lB < 1) scattering has a pronounced influence on
the quantized conductance.
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