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Interlayer optical conductivity of a superconducting bilayer
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We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer con-
ductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tun-
neling. The effect of the superconducting transition on the normal-state absorption band is to blue-shift
and broaden it, while causing the peak absorption to be reduced and the line shape to become asym-

metric.

In this paper we present a calculation of the interlayer
optical conductivity of a superconducting bilayer in a cu-
prate superconductor such as YBa,Cu;0,_;.! We as-
sume that each layer of the bilayer is described by a
Bardeen-Cooper-Schrieffer’ (BCS) reduced Hamiltonian,
and that the states of the layers are coupled by weak
single-particle tunneling between the layers. This model
implies, of course, that coupling to other bilayers is negli-
gible. Anderson® has proposed that, due to strong elec-
tron correlation effects, coherent single-particle interlayer
tunneling is blocked even though the bare interlayer hop-
ping integral ¢, is finite [z, ~0.05 eV (Ref. 4)]. In princi-
ple, this assertion of single-particle “confinement” can be
tested experimentally by measurement of the frequency-
dependent conductivity o (@) in the c-axis direction.
The present calculation of o,(w) for the bilayer estab-
lishes a simple benchmark for what should be the conven-
tional behavior of this quantity as the temperature T is
lowered through the mean-field superconducting transi-

- tion temperature T, of the bilayer. A recent experimen-
tal analysis of o,(w) for YBa,Cu;0,_5 has been under-
taken by Homes et al.’

In the simple model we study Reo (w) above T, con-
sists of a single absorption band due to electronic transi-
tions between the ‘“‘bonding” and “antibonding” states of
the bilayer. The energies of these excitations are typical-
ly #iw=2¢,. Below T, we find that the oscillator strength
of the latter excitations is increasingly transferred to pair
excitations with typical energies #o=21/ t2 4+ A?, where
A denotes the magnitude of the superconducting order
parameter. At T'=0, all of the oscillator strength has
been transferred to the pair excitations. The main effect
of the superconducting transition is therefore to blueshift
the normal-state absorption band to higher frequencies.
This effect, which also leads to a broadened and asym-
metric line shape (and, hence, reduced peak absorption)
in the superconducting state, would be observable if the
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dispersion in the value of r; due to the actual three-
dimensional electronic structure of the cuprate is not too
large by comparison to A.

We assume the bilayer to consist of two parallel mono-
layers each of area 4 (4 — o« ), labeled “@” and “b,” and
separated by a distance d in the ¢ direction. We take the
Hamiltonian H describing the bilayer to be

H=S (e, —uNa],ar,+blbrs)

k,o

— S ylaf, by, +H.c.)
k,o

—(1/N) 3, Vilafralga_oiaps
ok

+b5b b b)) . (D)

The first and third terms of H describe, respectively, the
intralayer band energy and BCS pairing interactions of
the isolated monolayers, while the second term specifies
the coupling of the layers via a single-particle hopping
matrix element ¢,. ¥} , denotes the pairing matrix ele-
ment, €, the energy of the Bloch state with two-
dimensional wave vector k, and spin polarization o (“1”
or “|”). N (N — ) denotes the number of vnit cells in a
monolayer while ¢ denotes the chemical potential of the
bilayer. The fermion operators a,fo, At b,:ra, b, create
and destroy electrons in the Bloch state of the layers a
and b, respectively. The interlayer current implied by H
is

J=(ed /if) S, t;(af obro—bhatrs) » )
k,o

where e denotes the electronic charge. Reo,(w) is con-
veniently obtained from the Kubo formula
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Reo( )=.L 1—exp(—~Fiw/kgT)
TN g 2o
X [7 dte™(J(1)(0) , 3)

where kp denotes Boltzmann’s constant, J(z) is the
current operator at time ¢, and { 4 ) denotes the ensem-
ble average of the operator A. We shall assume that the
interlayer tunneling constitutes only a weak coupling of
the layers, i.e., |z, /u| <<1. Then the main temperature
dependence of u is of second order in 7, and, consequent-
ly, we will neglect it. Moreover, |¢;| will later be as-
sumed small by comparison with the energy range within
which the attraction of electrons occurs in Eq. (1) which
is @y in conventional electron-phonon models.

The first two terms of H are immediately diagonalized
by transformation to the bonding and antibonding states
e =(1/V2)ay,+by,) and By, =(1/V2)ay, —bs,).
In terms of these states the Hamiltonian of the coupled
bilayer becomes

H= 2 {(gk 1 )a./‘;o'aka_I-(gk +tk )BZO'Bka}
k,o

—(172N) 3, Vi pelafral +B14BL L)
k, k'

X(a—k'lak'T+B—k'lBk'T)+H, B (4)

In Eq. (4) we have 1ntroduced notatlon Er=€,—u. H'
contains terms of the form «a}, Tﬁ x4 and can be shown to
be irrelevant for the minimum-free-energy state in the
mean-field approximation. The rest of the Hamiltonian
in Eq. (4) then descnbes the classic problem of two-band
superconductivity,® the mean-field solution of which is as
follows.

Corresponding to the bonding and antibonding bands
of Eq. (4) there are two quasiparticle (QP) excitation
bands. These have excitation energies

E (k)=V (& — 1, P+ A2,
Eg(k)=V (&, +1 2+ A2,

Reo (w,t))=(2mv3e%/ Ad#w)

£.>0

where Ay is the superconducting order parameter of the

bilayer. The latter is defined by

Ak =(1/2N) 2 Vk,k'< A} Oy +B—k'lﬁk'T)
Iy

from which follows the gap equation

A1/ S, o, | BEER )y T |
k < k, k'S k' 2Ea(k')

tanh[E4(k") /ky T]
2E (k')

(5)

We note that if ¢, —0, Eq. (5) reduces to the BCS gap
equation for the isolated monolayer.

In order to simplify our subsequent discussion of
Reo () we will take V) ,.=V and t, =t,, where ¥ and
tp are positive constants. However, we will later allow
for the dispersion in #, by averaging our result for
o (w,ty) over a Gaussian distribution of values of z,. In
this way we avoid tying our results to a specific model for
the k dependence of ¢;,. The Gaussian distribution also
may be regarded as including the additional dispersion in
the electronic band structure which results from the weak
electronic coupling (#;) between bilayers. This is so be-
cause the effect of the latter is to cause the interband gap
E;, to depend weakly on the Bloch-state wave vector k,
in the ¢ direction. (Explicitly, E;=2[t3 -i-t2
+2¢t; cos(k,b)]'/? where t; <<t, and b is the separation
between bilayers.) With these simplifications it follows
from Egs. (2) and (3) that, in the normal state,

Reo (@,t5)=[27Np(v4e)?/d 18(2t,—#w) , (6)

where we have introduced vy =tyd /#, and the Fermi sur-
face density of states per unit area N of the isolated lay-
er. In the superconducting state (T < T, ), however, Egs.
(2) and (3) lead to the result

S AFBEgk)—E (k) —Fio]Lf 40k)—f k)]

+ 3 APS[E (k) —Eglk)—#0l[fak)—f (k)]

£, <0

+ 3 BE[E,(k)+Egk)—Fio][1—f ,(k)— falk)] | . %)
k

Here, fi(k)={1+exp[E;(k)/kpT]} !
A and B, are the coherence factors:

A =u gk yug(l)+v (K wgk) , (8)
Bk=u3(k)va(k)—ua(k)v5(k) : ©)

in  which =[14+£(k)/E;(k)]/2 and ov}k)
=[1—-&(k)/E,l k)]/2 In the latter we have introduced

, where i=q,pB.

the quantities £;(k )= y=&.+1,
fori=p.
The first two terms of Eq. (7) describe interband excita-

tions of thermally excited QP’s. The excitation energy is

Er—1o for i=a, and &;(k

fio=|V (& +1t, 2+ A2—1/ (&, — 102+ A2

so that #iw lies in the range 0<#w <2t;,. On the other
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FIG. 1 Interlayer optical absorption (in arb. units) as a func-
tion of the reduced frequency for the nondispersive-;, A, case.
Here A/t,=0.2 and T/t;=0.2.

hand, the third term of Eq. (7} describes pair excitations
of energy

fo="(E, — 1, P+ A +V (£, +1 )P+ A% .

The energies of these excitations begin at the threshold
value #iwy=2V"t3+AZ% at which it may be shown from
Eq. (7) Reo (w,t;) has a square-root singularity. At
higher frequencies Reo (o) falls off as @ ~>. We note that
there is an energy gap equal to 2(V/ t3+A%?—1¢,) between
the spectra of the interband and pair excitations. As T'is
reduced, oscillator strength is increasingly transferred
from the interband excitations to the pair excitations. A
characteristic behavior of this two-band absorption at in-
termediate T for the ideal, nondispersive t; and A, =A
case is illustrated in Fig. 1.

In order to allow for the dispersion in the values of ¢;
we introduce a Gaussian distribution of ¢, values and cal-
culate o ,(w) as

(tg—1, P

where w and ¢, are constants. This smears out the fine
structure of o,(w,t;) below T, and gives, of course, a
finite width to the normal-state absorption band defined
in Eq. (6). Figure 2 shows Reo,(w) calculated for T =T,
and for T=0 for the parameter choices A;=0.4f, and
w=0.1z,, where A, is the value of A at T=0. The latter
choice of w produces a total width for the normal-state
absorption that is approximately equal to ¢, and hence of
the order 2A,. It is seen from Fig. 2 that for these pa-
rameter values the blueshift obtained in the supercon-
ducting state is still well resolved. We note that the
transfer of the oscillator strength of the interband excita-

Re a)(w)
»
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FIG. 2. Interlayer optical absorption as a function of the re-
duced frequency for the broadened ¢, case. Broadening param-
eter w/t;=0.1. Compared are the absorption at T=0,
Ay/t;=0.4 (the line marked with crosses) and the normal-state
absorption.

tions of the normal state to the pair excitations of the su-

perconducting state leads to the broadening of the line

shape and, hence, decreased peak absorption in the super-

conducting state. In general, it leads also to a “right-

shoulder-like” asymmetry of the absorption line. Of
course, when the dispersion of t; is very large by compar-

ison to A even these broad features become unresolvable.

In conclusion, it is interesting to note that the inter-

layer conductivity o ,(w), in principle, yields direct infor-

mation on the superconducting gap. This is a conse-

quence of the new combination of BCS coherence factors,

defined in Egs. (8) and (9), which are unique to the bilayer

system. Experimentally,’ the presence of a distinct inter-

band absorption in o,(w) in the normal state of
YBa,Cu;0;_5 is not observed, however, although a

broad and approximately constant absorption represent-

ing a significant portion of the oscillator strength of
Reo,(w) is. It is possible that this absorption is the sum

of a rather wide interband absorption and a

temperature-dependent Drude contribution. This is con-

sistent with the measurements of o (@) at T=10 K
(T << T,),> which reveal the presence of a pseudogap in

the absorption which, allowing for experimental error,

may be placed in the range 200-300 cm ™}, This could

mark the onset of the interband absorption or, as suggest-

ed by Homes et al.,® correspond to the pseudogap of a

spin-gap phase’® of a highly correlated two-dimensional

(2D) metal. If the former interpretation is adopted it

would appear that for YBa,Cu;0,_; the effective disper-

sion in ¢, is too large for the effect we have calculated to

be observable.
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