
Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy
in Superconducting Cuprates

J. Levallois,1 M. K. Tran,1 D. Pouliot,2 C. N. Presura,3 L. H. Greene,2 J. N. Eckstein,2 J. Uccelli,1 E. Giannini,1

G. D. Gu,4 A. J. Leggett,5,* and D. van der Marel1,†
1Department of Quantum Matter Physics, University of Geneva,

Quai Ernest-Ansermet 24, CH-1211 Genève 4, Switzerland
2Department of Physics, University of Illinois at Urbana-Champaign,

1110 West Green Street, Urbana, Illinois 61801, USA
3Philips Research, Professor Holstlaan 4, 5656 AE Eindhoven, The Netherlands

4Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory,
Upton, New York 11973 5000, USA

5Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana,
Illinois 61801, USA and Institute of Quantum Computing, University of Waterloo,

Waterloo, Ontario N2L 3G1, Canada
(Received 28 November 2015; revised manuscript received 24 June 2016; published 24 August 2016)

We performed an experimental study of the temperature and doping dependence of the energy-loss
function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the
energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence
thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed
temperature-dependent ellipsometry measurements on several Bi2Sr2CaCu2O8−x single crystals: under-
doped with Tc ¼ 60, 70, and 83 K; optimally doped with Tc ¼ 91 K; overdoped with Tc ¼ 84, 81, 70, and
58 K; as well as optimally doped Bi2Sr2Ca2Cu3O10þx with Tc ¼ 110 K. Our first observation is that, as the
temperature drops through Tc, the loss function in the range up to 2 eV displays a change of temperature
dependence as compared to the temperature dependence in the normal state. This effect at—or close to—Tc

depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in
Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the
same size as the condensation energy that has been measured in these compounds. Our results therefore
lend support to the notion that the Coulomb energy is an important factor for stabilizing the super-
conducting phase. Because of the restriction to small momentum, our observations do not exclude a
possible significant contribution to the condensation energy of the Coulomb energy associated with the
region of q around ðπ; πÞ.
DOI: 10.1103/PhysRevX.6.031027 Subject Areas: Condensed Matter Physics

I. INTRODUCTION

Ever since the discovery of high-Tc superconductivity in
the cuprates, a large body of theoretical and experimental
research has concentrated on the mechanism of super-
conductivity. The primary thermodynamic quantity of
interest is the statistical average of the Hamiltonian, E.
An isolated system (i.e., a system in which the entropy is
conserved) becomes superconducting if, and only if,E in the
superconducting state is more favorable than E of all
alternative states of matter. Starting at the most basic level,
the appropriate Hamiltonian for a system of electrons and

nuclei consists of two terms, the kinetic energy (of nuclei
and electrons) and Coulomb interaction energy (between
nuclei and nuclei, nuclei and electrons, and electrons and
electrons). At this basic level, it follows directly from the
virial theorem [1] that the transition must involve saving the
Coulomb energy; what is less obvious [2] is whether this is
still true when one goes to the more phenomenological level
of description standard in solid-state physics, where the
relevant “Coulomb energy” is only that of the interaction
between the conduction electrons. Several years ago, one of
us [3–5] postulated that it is indeed the saving of the
interconduction electron energy, and specifically the part
associated with longwavelengths andmid-infrared frequen-
cies, which is the main driver of the superconducting
transition in the cuprates (the “MIR scenario”). Here, we
employ a basic result from linear response theory, that the
partialCoulomb energy associatedwith a givenwavevector
q is proportional to a thermally weighted integral of the
electron energy loss function LqðωÞ over all frequencies,
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Eq
C ¼ ℏ

2π

Z
∞

0

LqðωÞð1þ 2nωÞdω; ð1Þ

where nω ¼ 1=ðexpðℏω=kBTÞ − 1Þ. For q ∼ 0, the relevant
loss function is that measured in optical ellipsometry. We
present experimental loss-function spectra measured in this
way for a series of high-Tc cuprates with different carrier
concentrations; from these data, we calculate the partial
Coulomb energyE0

CðTÞ between 15 and 300 K in 1-K steps.
The temperature dependence of E0

C and γC ¼ T−1dE0
C=dT

reveals the evolution as a function of doping of the changes
of Coulomb energy associated with pairing and with the
superconducting phase transition. The setup for spectro-
scopic ellipsometry used in the present study has the
advantage of high stability, high throughput, and dense
sampling as a function of temperature. As a result, the
energy loss spectra for q ∼ 0 presented here, and in
particular the observed subtle temperature dependencies,
provide an important benchmark for future studies of the
Coulomb energy using alternative methods such as trans-
mission electron energy loss spectroscopy (EELS).
If the original MIR scenario is correct, then one would

prima facie expect it to be reflected in a decrease, at and
below the superconducting transition, of the loss function
in the MIR region of the spectrum as measured in the
optics. Thus, the first question [question (A)] that we
address in this paper is a qualitative one. Namely, in the
various regions of the phase diagram explored, does the
small-q MIR loss-function increase, decrease, or remain
constant (relative to the extrapolated normal-state behavior;
see below) at and below Tc? This question can be answered
directly from the experimental data. Should the answer to
this question for some particular value of doping turn out to
be that it increases or remains constant, then the prima facie
implication (though see below) would seem to be that the
MIR scenario cannot explain the mechanism of super-
conductivity at least in this region of the phase diagram.
Our second question [question (B)], which is prima facie

relevant only if (where) a decrease in the loss function is
observed, is as follows: Is the decrease in the loss function
that we measure quantitatively consistent with the MIR
scenario, that is, the hypothesis that all or most of the
superconducting condensation energy comes from the
saving of Coulomb energy in the “small-q” regime and
the MIR frequency region? It should be strongly empha-
sized that an answer to this question requires not only a
careful definition of the scenario (in particular, what we
mean by small-q) but also a crucial assumption, namely,
that the value of the loss function measured in our optical
experiments, for which the “effective” q is of the order of
the inverse of the high-frequency penetration depth, about
0.002 Å−1, can be extrapolated to the much larger values of
q (up to about 0.31 Å−1), which dominate the theoretical
expression for the Coulomb energy in the MIR scenario. In
the normal phase, a comparison of the values of the loss

function as measured in optical experiments with that
measured in EELS is consistent with such an extrapolation
[6–8]. Whether this remains valid for the changes observed
at and below the superconducting transition is a question
that needs to be addressed by future EELS experiments. It
is worth mentioning in this context that, on the basis of
inelastic neutron scattering data of the cuprates [9],
indications have been obtained for a significant contribu-
tion to the condensation energy from q ∼ ðπ; πÞ.
At this point, it may be useful to review briefly the

original motivation for the scenario. As we will see in more
detail below [see Eq. (4)], the expectation value of the total
Coulomb energy can be rigorously expressed as a sum
(integral) of contributions from different Fourier compo-
nents Eq

C. As explained in Refs. [3,4], the starting obser-
vation is that one possible origin of the well-known
dependence of the superconducting transition temperature
Tc on the number of CuO2 layers per unit cell is the effect
of the Coulomb interaction between the conduction elec-
trons in different planes. If indeed the saving of this energy
is a major contribution to the increase of Tc (and thus, by
inference, to that of the condensation energy per plane),
then since the relevant matrix element falls off as a function
of the in-plane wave vector q as exp ð−qdÞ, where d ¼
3.2 Å is the interplane spacing (within the bilayers), it
follows that a major contribution to the saving must come
from wave vectors q < q0 ¼ d−1 ¼ 0.31 Å−1. It is then
highly plausible (though, of course, not a rigorous state-
ment) that the same must be true also for the Coulomb
energy, i.e., that a major contribution to the condensation
energy comes from the intraplane Coulomb energy with
q < q0, and we use this condition on q as one of the
defining ingredients in the “MIR scenario.”
In Fig. 1, the partial Coulomb energy difference ΔEq

C is
displayed,whereΔ signifies thevalue of the superconducting
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FIG. 1. S–N difference of the partial Coulomb energy EC
q. Left

panel: According to the MIR scenario (schematic). Right
panel: Resulting from a BCS model calculation [15] for
d-wave symmetry, p ¼ 0.16 hole doping, and the interaction
adjusted such as to give Tc ¼ 100 K. Both panels represent the
qz ¼ 0 cut in momentum space, corresponding to the electric
field polarized along the planes. EC

q at q ¼ 0 corresponds to the
integral [Eq. (1)] of the optical in-plane loss function.
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phase minus the one of the normal phase (hereafter called
“S–N” difference for brevity). The result anticipated from the
MIR scenario (left diagram) is compared with the behavior
expected from BCS theory and later extensions thereof
addressing the collective response [10–14] (right diagram).
The BCS result [15] is a smooth function of q with a
maximum at q ¼ 0. This example also demonstrates that, in
the case of d-wave pairing, BCS theory predicts a negative
sign for ΔEq

C near ðπ; πÞ, a state of affairs that is held
responsible for stabilizing the superconducting state
in the context of tJ and Hubbard models for high Tc
[9,16–20]. Note that, at the end of the day, this also represents
a form of Coulomb energy, which is unfortunately not
accessible with optical spectroscopy. The attentive reader
may object that when the numbers are put in, the BCS value
shows substantial variation with q on the scale of the
coherence length, i.e., between the optical regime and
0.31 Å−1, whereas we are assuming the absence of such
variation. There is no contradiction here: In BCS theory, the
relevant frequencies that contribute are of the order of (the
Fermi velocity vF times) q itself, whereas in the MIR
scenario, they are substantially larger than vFq even for
q ∼ 0.3 Å−1. There is no reason why the q dependence
should be the same in these two very different cases.
A second question relates to the region of frequency ω in

which the saving occurs: It was argued in Ref. [4],
following the “Willie Sutton principle,” that since the only
frequency regime in which the loss function in the normal
state is both substantial and likely to have contributions
principally from the conduction electrons in the CuO2

planes is the MIR, this is the region where the maximal
saving should occur. Again, the lower and upper frequency
cutoffs are somewhat arbitrary, but a natural definition of
the relevant “MIR frequency regime” might be, say,
0.6–1.8 eV. In summary, the “canonical” definition of
the original MIR hypothesis is that a very substantial
contribution (let us say >70%–80% of the whole) to the
total condensation energy is made by a saving of
the Coulomb energy associated with wave vectors
q < 0.31 Å−1 and with frequencies 0.6–1.8 eV, and this
constitutes the conjecture addressed by our question (B).
We should further note that in the original formulation, the
saving was assumed to occur only at and below the
macroscopic transition temperature Tc.
The above discussion obviously raises a number of

further questions, which go beyond the original scenario.
First, what if we relax the constraint q < q0, i.e., consider
the saving of interconduction Coulomb energy from all q in
the first Brillouin zone: Is it enough to constitute the whole
of the condensation energy? This is an interesting question,
but in order to obtain any information on it from the optical
data, we would need to extrapolate the optically measured
dielectric constant to the whole of the zone; this seems
implausible, so we will not discuss it further here. A second
generalization would be to raise the same question with the

original constraint on q but with the frequency regime
extended to lower and/or higher frequencies (perhaps right
up to the x-ray regime). This is our question (C). Finally, we
could try to relax the constraint on the relevant temperature
regime and consider a generalized scenario [21] in which
all or a substantial part of the energy saving takes place
above the macroscopic transition; this is question (D). In
the following, we will attempt to give a definitive answer to
question (A), a relatively definitive one (subject to the
extrapolation assumption) to question (B), and some
information that, while it does not answer questions (C)
or (D) unambiguously, may be qualitatively relevant
to them.

II. COULOMB ENERGY IN
SUPERCONDUCTORS

A. Sum rules

To motivate this subsection, we briefly recapitulate the
fundamental concepts underlying the MIR scenario.
The theoretical description of the conduction electrons in
the cuprates is based on the following key assumptions [3]:
(i) Core and conduction electrons can be treated as separate
systems. (ii) The loss spectra below 2 eVare dominated by
the CuO2 planes. (iii) Ionic motion (phonons) is irrelevant.
(iv) The optical response and the mechanism of pairing are
essentially two dimensional; i.e., it is justified to neglect
intermultilayer tunneling in the analysis of superconduc-
tivity (details are provided in Appendix G). Thus, the
generic Hamiltonian is written as

Ĥ ¼ T̂ þ Û þ V̂C; ð2Þ

with T̂ the in-plane kinetic energy, Û the potential felt by
the electrons due to the ionic cores, and V̂C the conduction
electron-electron Coulomb interaction energy [22]. The
main postulate of the MIR scenario is that the interaction
energy hV̂Ci decreases upon entering the superconducting
state.
The first purpose of the present paper is to explore the

qualitative consistency of the optical data with the MIR
scenario, i.e., to answer question (A). For this limited
purpose, we ignore complications associated both with the
layered nature of the cuprates (i.e., we treat them for
electrodynamic purposes as 3D continua) and with the
screening of the Coulomb interaction by the ionic cores (for
these complications, see Ref. [7] and Appendixes F and G).
The total energy per unit cell contained in the interparticle
Coulomb energy is provided by the relation

EC ¼ hV̂Ci ¼
1

2N

X
q

VqSq; ð3Þ

where N is the number of unit cells, Sq ¼ hρ̂−qρ̂qi the
structure factor, and Vq ¼ 4πe2=q2 the Fourier transform
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of the Coulomb potential. For the expression on the right-
hand side, we can employ the general relation [23] between
the structure factor and the charge susceptibility following
from the fluctuation-dissipation theorem

Sq ¼ 1

π

Z
∞

0

χ00ðq;ωÞð1þ 2nωÞℏdω: ð4Þ

The susceptibility appearing in this expression, χðq;ωÞ,
measures the charge response to a density perturbation with
frequency ω and wave vector q, and is related to the
longitudinal dielectric function ϵ∥ðq;ωÞ through

1

ϵ∥ðq;ωÞ
¼ 1 − Vqχðq;ωÞ: ð5Þ

The imaginary part of Eq. (5),

LqðωÞ ¼ Im
−1

ϵ∥ðq;ωÞ
; ð6Þ

can be measured with the help of inelastic electron
scattering [6] and is, for this reason, called the electron
energy loss function. The corresponding transverse quan-
tity, in which ϵ∥ is replaced by ϵ⊥, can be measured in
the q → 0 limit by optical spectroscopy. For normal
metals, it is well established that, in the limit of
q → 0, one has ε∥ðq;ωÞ ¼ ε⊥ðq;ωÞ. This has recently
been proven also for the superconducting state by two of
us [21] in the relevant limit q → 0, ω ≠ 0. The equiv-
alence in the case of the cuprates is, for example,
illustrated in Fig. 3 of Ref. [8]. Together, Eqs. (3),
(4), (5), and (6) provide the “Coulomb energy sum rule”
[3–5,23–25], which, generalized to finite temperature,
provides the Coulomb interaction energy

EC ¼ 1

N

X
q

Eq
C; ð7Þ

where Eq
C is given by Eq. (1).

It should be noted that neither the form of the
Hamiltonian (2) nor the above derivation of the
Coulomb energy sum rule necessarily implies that
the standard textbook description of the many-body con-
duction-electron wave function as an approximately Slater
determinant of Bloch waves is a good one. However, we
can always use the Bloch waves as a basis, and if we do so,
then one consequence of the occurrence of the periodic
crystalline potential U in the Hamiltonian (2) is the
occurrence of “Umklapp” scattering processes. In a recent
study, Lee calculated the influence of Umklapp processes
on the spectral weight of the loss function near the plasma
resonance and predicted an increase of plasmon spectral
weight as the system undergoes the superconducting phase
transition [14].

For the special limit in which, in the band picture [i.e.,
the set of energy eigenstates of the single-particle terms
T̂ þ Û in Eq. (2)], the lowest relevant band reduces to a
nearest-neighbor tight-binding model and one assumes that
the interacting conduction electrons are confined to this
band, there exists a second well-known sum rule for the
“kinetic” energy per unit cell [26–29]:

K ¼ −
ℏ2Ω0

π2e2a2

Z
∞

0

ωImϵðωÞdω; ð8Þ

where a is the in-plane lattice parameter and Ω0 is the unit
cell volume. K subsumes the contributions from the first
two terms of Eq. (2), in addition to Hartree-Fock (and
higher-order) contributions from the interaction term.
Equation (8) is therefore, to some extent, complementary
to the Coulomb-energy sum rule, Eq. (7). Equation (8) has
been the subject of intensive investigations pertaining to the
question of whether superconductivity in the cuprates is
caused by a lowering of kinetic (i.e., single-particle) energy
[2,30,31]. Interestingly, it turns out that in underdoped
samples of the cuprates, the kinetic energy behaves
oppositely to the BCS prediction (i.e., is decreased by
the N–S transition), while on the overdoped side, it behaves
consistently with BCS (i.e., is increased) [32,33], which is
in fact consistent with numerical calculations based on the
Hubbard model and the t-J model [18–20]. However, one
should beware of assuming that the kinetic (single-particle)
energy that enters the sum rule (8) is necessarily the
expectation value of the sum of the single-particle terms
T̂ and Û in Eq. (2); the tight-binding description leading to
Eq. (8) is at a different level from that of the Hamiltonian
(2), and it is, for example, not excluded that the Coulomb
term in Eq. (2) may affect the effective tunnelling matrix
elements in the tight-binding description. Thus, should it,
for example, be found experimentally that in some doping
intervals both the rhs of Eq. (7) and the rhs of Eq. (8)
decrease at the N–S transition, this would not necessarily
constitute a paradox.

B. Optical data and the MIR scenario

As mentioned, the present work aims at exploring the
energy stored in the inter-electronic Coulomb interactions,
using precise measurements and analysis of the optical loss
function. As emphasized in the Introduction, to infer
anything about the Coulomb energy from the optical data,
we need to extrapolate our results to finite q. The big
advantage of optics is the possibility to acquire data during
extended periods of time. This allows us to obtain detailed
information about the relative changes of Coulomb energy
as a function of temperature and doping. These results in
turn provide a benchmark for the accuracy needed to detect
these trends with momentum-sensitive techniques such as
inelastic neutron scattering, (resonant) inelastic x-ray scat-
tering, or electron energy loss spectroscopy, which are
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subject to the severe constraints on measurement time
inherent to large facilities.

III. METHODS

A. Samples

We investigated high-purity single crystals of
Bi2Sr2Ca2Cu3O10þx (Bi2223) and of Bi2Sr2CaCu2O8−x
(Bi2212), with ab-plane oriented surfaces of several
mm2. The Bi2212 samples are easily cleavable, providing
clean and mirrorlike surfaces for optical studies. Details on
growth and characterization of the crystals are provided in
Appendix A. We use the empirical Tallon-Presland relation
between carrier concentration and Tc [34,35] to determine
the doping p. For our under and optimally doped Bi2212
samples with Tc ¼ 60, 70, 83, and 91 K; this yields
p ¼ 0.1, 0.11, 0.13, and 0.16, respectively. For the over-
doped Bi2212 samples with Tc ¼ 84, 81, 70, and 58 K, we
get p ¼ 0.19, 0.2, 0.21, and 0.23, respectively.

B. Ellipsometry measurements

Using ellipsometry at an angle of incidence of 70° with
the surface normal, we measured the real and imaginary
parts of the ratio of p-polarized over s-polarized complex
reflectivity coefficients, ρ ¼ rp=rs (see Appendix B). The
spectrum is measured continuously while the temperature is
varied from 15 K to 300 K at a rate of 0.2 K=min. For an
isotropic material, the dielectric function ϵðω; TÞ can be
readily obtained by numerical evaluation of the relation

ϵðω; TÞ ¼ sin2θ þ sin4θ
cos2θ

�
1 − ρ

1þ ρ

�
2

ð9Þ

following from the Fresnel equations, where θ is the angle
of incidence, and the loss function is

Lðω; TÞ ¼ Im
−1

ϵðω; TÞ : ð10Þ

For an optically anisotropic material, the expressions are
more complicated, but often, as in the present case, the
c-axis admixture is small and can be corrected easily using
a rapidly converging iterative method, which is outlined in
Appendix D. The loss function yields, through frequency
integration, the partial Coulomb energy, Eq. (1). For
brevity, we will drop the momentum q in the subsequent
discussion of the optical properties, with the understanding
that the experimental data presented here are representative
of q ∼ 0. For the purposes of the present study, it is
convenient to also define an integral between (sample-
dependent) limits ω1, ω2, which are chosen so that the
integration runs over a frequency interval where the loss
function has the same sign of temperature variation (in our
case, it increases upon cooling); i.e., ω1 and ω2 are, to a
very good approximation, isosbestic points [this is

illustrated in Fig. 19 (Appendix E) by the enlarged view
of one of the samples, which is indeed representative of all
samples studied here]. This implies that the slope of the
intensity versus temperature is opposite in the region
between the isosbestic points and the frequency regions
below and above. While this applies to the general trend
over the full 300-K span of temperatures, it does not apply
to the sudden change of slope at Tc. In the examples that
follow, we will see that change of slope is either much
smaller—but with the same sign—below and above the
interisosbestic region, or zero within the experimental
accuracy. The intraisosbestic integral

Eiso
C ðTÞ ¼ ℏ

2π

Z
ω2

ω1

Lðω; TÞð1þ 2nωÞdω ð11Þ

eliminates compensation of opposite temperature trends in
different parts of the spectra and provides, for this
reason, the cleanest (i.e., noise-free) representation of the
temperature dependence of the experimental spectra in
the region of the maximum of the loss function. This is also
the spectral range where, faithful to the “Willie Sutton
principle” [36] we anticipate the strongest saving of
Coulomb energy. At the same time, since the definition
of Coulomb energy requires integrating over all energy,
it is also interesting to look in the other parts of the
spectrum. To address these contributions to the Coulomb
energy, the temperature dependence of the loss-function
integral below the lower isosbestic point and above the
upper isosbestic points is reported for each sample in
Appendix C.
To motivate the form in which we present our data, we

draw an analogy between ECðTÞ and the total internal
energy EðTÞ. In general, for a system in thermal equilib-
rium, EðTÞ is an increasing function of temperature, with a
discontinuity in the slope at a second-order transition.
Usually, one does not measure the internal energy itself but
rather its temperature derivative CV ¼ dE=dT, i.e., the
specific heat, which has a jump at a second-order phase
transition. Often, in the cuprates, the specific heat presents
a Λ-like transition at Tc rather than a jump. This type of
broadening is often attributed to superconducting fluctua-
tions, which must be properly accounted for when one tries
to extract the condensation energy Econd from the data [37].
Since the specific heat of a metal in the normal state is
characterized by a linear temperature dependence (E being
proportional to T2 as discussed in Appendix H), it is
common practice to display the Sommerfeld coefficient
γ ¼ T−1CVðTÞ. In the present context, we concentrate our
analysis on the corresponding quantity related to the
Coulomb energy,

γisoC ðTÞ ¼ 1

T
dEiso

C ðTÞ
dT

: ð12Þ
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Since numerical evaluation of the temperature derivatives
causes a strong amplification of the experimental noise, we
can—for this purpose—only use Eiso

C ðTÞ, i.e., the loss
function integrated between the two (sample-dependent)
isosbestic points.

IV. LOSS FUNCTION AND PARTIAL COULOMB
ENERGY CHANGE THROUGH THE

SUPERCONDUCTING PHASE TRANSITION

A. Qualitative features

The loss function for the temperatures ranging from 15 to
300 K for all Bi2212 and Bi2223 samples is displayed in
Figs. 2 and 3. The peak of the loss function corresponds to
the plasma-resonance energy, which is at an energy slightly
above 1 eV in all samples. Common to all samples of this
study, the intensity in the energy loss function increases
gradually when cooling down and gains approximately 5%
between 300 K and 15 K. There is a narrowing of the loss-
function peak and a blueshift of about 5%. For each of the
samples, all curves measured at different temperatures cross

at two isosbestic points on either side of the maximum of
the loss function.
The real and imaginary parts of −ϵðωÞ−1 for all samples

are shown for different temperatures in Figs. 8–15 of
Appendix C. In the same figures, we also compare the
temperature dependence of the intraisosbestic loss-function
intensity Eiso

C ðTÞ, and the loss function integrated from 0 to
2.5 eV (right panels of the second and third rows). In the
second (third) line of the first column, we display
the temperature dependence of the loss-function integrals
in the range below (above) the intraisosbestic region. For
ease of comparison of the contributions from the different
energy ranges, these contributions are indicated on the
same scale for a given sample.
Based on these data, we make the following global

observations: In the first place, the loss-function integrals
from 0 to ℏω1 (second row, left panel) and ℏω2 to 2.5 eV
(third row, left panel) have very weak temperature depend-
ence compared to the intraisosbestic loss-function integrals
(from ℏω1 to ℏω2). In the second place, the loss-function
integrals over the full (0 to 2.5 eV) range (third row, right
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FIG. 2. Loss-function spectra for Bi2212 with carrier concentrations ranging from underdoped to overdoped for selected temperatures
(lines 1 and 3). Temperature dependence of the integrated intensity, Eiso

C ðTÞ, of the corresponding samples (lines 2 and 4).
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panels) show, by and large, the same main features as the
intraisosbestic loss-function integrals while exhibiting
stronger experimental noise. In view of these observations,
and in the interest of the best possible signal-to-noise ratio,
for the details of the temperature dependence, we concen-
trate on the intraisosbestic loss-function integrals Eiso

C ðTÞ,
which are displayed for all samples in the second and fourth
lines of Fig. 2. However, it is important to emphasize that
this choice in no way influences our conclusions about the
temperature dependence through Tc: The extended inte-
grals from 0 to 2.5 eV, displayed in Figs. 8–15 of
Appendix C, show, for all samples, the same effects, both
qualitatively and quantitatively, when T is tuned through
the superconducting phase transition. The key aspects of
the observed temperature dependencies and the evolution
thereof as a function of doping are the following:
(1) In the underdoped samples, we observe in Eiso

C ðTÞ an
upward kink at Tn. An upward kink is also observed
at Tn for both optimally doped bilayer Bi2212 and
for the trilayer compound Bi2223.

(2) In the overdoped samples, Eiso
C ðTÞ shows a down-

ward kink below a temperature Tp.
(3) For Bi2223, Eiso

C ðTÞ turns downward below 60 K.
We speculate that this behavior has to do with the
peculiarity that the two outer planes and the inner
plane of the trilayer compound have very different
doping levels, as has been noticed with nuclear
magnetic resonance [38,39] and angle-resolved
photoemission (ARPES) [40]. Based on an analysis
of the ARPES data, it was estimated [40] that the
outer planes are overdoped with x ¼ 0.23 holes per
copper atom, while the inner plane is strongly
underdoped with only x ¼ 0.07 holes per copper.
This corresponds to an average doping x ¼ 0.18. In
this case, we expect a rich temperature dependence
of Eiso

C ðTÞ of the coupled planes, combining aspects
of both the underdoped and the overdoped sides of
the phase diagram, which indeed appears to be the
case for the Bi2223 data (see Fig. 3). Figure 4
displays γisoC ðTÞ evaluated using Eq. (12). The main
feature revealed by this quantity is the extremum
close to Tc. Note the striking similarity of γisoC ðTÞ
in the overdoped samples to the Sommerfeld

coefficient measured in a canonical superconductor.
At the underdoped side, the transition is broader, and
γisoC ðTÞ has a Λ-like appearance, similar to the
Sommerfeld coefficient of underdoped cuprates
obtained from specific heat experiments [37,
41–43]. Of particular interest is the opposite sign
of this extremum when comparing the underdoped
and overdoped samples. This sign change of the
jump of γisoC ðTÞ occurs for p ≈ 0.19, which coincides
with the point where a large body of experimental
data indicates the closing of the pseudogap [43].
Recently, Lee [14] has obtained, from a formalism
taking into account Umklapp processes, that the
spectral weight in the loss-function peak is enhanced
when the material switches from normal to super-
conducting. While this prediction agrees with the
behavior that we observe for the underdoped sam-
ples, it is opposite to the effects seen on the over-
doped side. Further theoretical studies should clarify
the role and impact of the Umklapp processes as a
function of doping.

In any case, the answer to question (A) (given, as always,
the extrapolation assumption) is clear: The optical data are
qualitatively consistent with the MIR scenario on the
overdoped side of the phase diagram but not on the
underdoped side.

B. Quantitative considerations

We now turn to question (B). To quantify the change of
Coulomb energy in the N–S phase transition, we proceed in
two steps: (i) We need to compare the measured data of the
samples, which are superconducting, to the value without
superconductivity. (ii) We need to estimate the average over
the relevant sector of q-space actually not of the loss
function itself but of a related quantity (see below). For
point (i), we essentially need to extrapolate the normal state
trend to zero. For the optimally doped sample with
Tc ¼ 91 K, the integrated loss function has a clean kink
at Tc (Fig. 2, top right panel), and the behavior below Tc

behaves as E0
C;sðTÞ ¼ E0

C;nðTÞ þ ΔE0
C½1 − ðT=TcÞη�, with

ΔE0
C ¼ 0.2 meV and 1.5≲ η≲ 3. The constant ΔE0

C then
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represents the S–N difference of partial Coulomb energy
for q ∼ 0. For some of the samples, the transition is less
sharp, the normal state trend is less obvious, or a combi-
nation of these. To assure that the results of different
dopings can be compared to each other, we calculate ΔEC
for each of the samples using the expression

ΔE0
C ¼ η−1½γCðT2Þ − γCðT1Þ�T2

c; ð13Þ

where T1 ∼ Tc and T2 are the temperatures shown in
Fig. 6 characterizing the step in γCðTÞ. Since the choice
η ¼ 2 provides, for sample Op91, the expected result
ΔE0

C ∼ 0.2 meV, we use η ¼ 2 for all samples. The
quantity ΔE0

C forms a useful standard of comparison for
the energies to be discussed below.
Point (ii) involves some rather delicate considerations

concerning the meaning of the “MIR scenario.” To motivate
them, let us note that the total Coulomb energy associated
with wave vector q is given rigorously by Eq. (1). Thus, if
we make our extrapolation assumption and assume for the
moment that L is not strongly dependent on the c-axis
component of q, the order of magnitude of the contribution
to the total Coulomb energy from “small q and mid-infrared
ω” is simply given by ΔE0

C multiplied by the fraction of the
first Brillouin zone corresponding to the in-plane compo-
nent of q being less than q0 ¼ 0.31 Å−1. This fraction is
about 10%, so the resulting energy is about an order of
magnitude smaller than the experimentally measured con-
densation energy. However, this estimate is not in the spirit
of the MIR scenario, which attributes the condensation
energy to the saving of the Coulomb interaction energy
between the conduction electrons in the CuO2 planes; note
that this interaction is screened by the core electrons, an
effect that turns out to be quite significant quantitatively.

We should therefore calculate this interaction energy (or
rather the S–N difference in it) along the lines of Refs. [3,4]
or via a related “3D” approach; see Appendix G. To object
that while the fraction of ΔE0

C thus obtained may be quite
large, the total Coulomb energy saving associated with
small q and mid-infrared ω is much smaller, is no more
compelling than would be an objection to the physical
relevance of the “kinetic energy sum rule” (cf. Sec. II) on
the grounds that it does not take account of the change of
kinetic energy of the core electrons. In both cases, we are
exploring the situation at the level of a model, and the
outcome may look qualitatively different from the exact
Dirac-level picture.
The quantity whose difference in the N and S phases we

want to estimate is given by Eq. (5.1.1) of Ref. [4], with the
factor KðωÞ given by Eq. (4.1.4) of that reference; for the
special case (relevant to Bi-2212) of n ¼ 2, the resulting
expression for the MIR scenario is

Emir
C ¼ a2

8π2

Z
q0

0

qdq
Z

∞

0

dω

×
X
p¼�1

Im
−1

1þ ½1þ pe−qd�ðqd=2Þ½ϵðωÞ − ϵb�=ϵsc
:

ð14Þ

In expression (14), the quantity d is the mean plane spacing
(7.8 Å for Bi-2212), ϵsc is the factor (assumed to be
frequency independent) by which the Coulomb interaction
between the conduction electrons in the CuO2 planes is
screened by the ionic cores, and ϵb is the “background”
dielectric constant, arising from not only the in-plane Cu
and O ions and the intercalated Ca but also from the ions in
the “charge-reservoir” layers, which has to be subtracted
from the experimentally measured ϵðωÞ to get the
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conduction-electron contribution. In evaluating expression
(14), we have taken ϵsc ¼ ϵb ¼ 4.5 (see Appendix F).
Formula (14) is based on a “2D” treatment (“method 1”)
in which one regards the planes as separate from the 3D
“background” and ignores the effect of interplanar
Coulomb interactions, which are important only for
qdc ≲ 1, i.e., q≲ 0.065 Å−1, where dc is the interplanar
spacing. In Appendix G, we generalize the expressions to a
finite interplanar Coulomb interaction. For the present
parameters, the different methods, i.e., modeling as a 3D
stack of δ layers [Eq. (G10)] or as a bilayer [Eq. (14)] result
in the same estimate of the momentum-integrated Coulomb
energy (see Fig. 22), showing that the finite q extrapolation
effectively corresponds to multiplying the q ¼ 0 value by a
factor F ¼ 0.42. Using the same method, we obtained F for
all other dopings, giving F ∼ 0.4 with weak sample-to-
sample variations. Together with the output of Eq. (13), this
yields the MIR-regime Coulomb energy ΔEmir

C ¼ FΔE0
C.

The doping dependence of ΔEmir
C is presented in Fig. 5.

This figure constitutes the central result of this study. In
addition, we show the S–N difference of the total energy
−Econd (i.e., minus the condensation energy) obtained from
specific heat [44], and ΔK from the sum rule, Eq. (8),
representing the difference in band energy (“kinetic
energy”) between the superconducting and normal states
[33]. Important for the interpretation of the data is the
comparison of the absolute values of the energies involved:
The Coulomb energy change is in the range −1 to 1 K, the
condensation energies are in the range 0 to 2 K, and the
kinetic energy changes are in the range −10 to 20 K. We
note (a) that the general trend of the MIR-regime Coulomb
energy as a function of doping, in strong contrast to that of
the kinetic energy, is similar to that of the total

condensation energy and (b) that in the overdoped region
(p > 0.19), it can contribute to the latter, though it
obviously cannot be the whole cause of superconductivity.
This answers the question stated in the Introduction of this
paper, namely, whether the saving of the interconduction
electron energy, and specifically the part associated with
long wavelengths and mid-infrared frequencies, drives the
superconducting transition in the cuprates. The answer to
this question is as follows: Is it an important factor in the
energy balance, but not the only factor driving the
mechanism of pair formation. However, to obtain this
answer we have assumed, rather than tested experimen-
tally, the momentum dependence predicted by the MIR
model. Future experimental studies using electron energy
loss spectroscopy are needed to test the prediction about
the momentum dependence of the partial Coulomb
energy.
These results do not exclude the possibility that the

Coulomb energy in the ðπ; πÞ region is important for
stabilizing the superconducting state. On the microscopic
level, this can involve superexchange interaction mediated
by the virtual exchange of spin fluctuations, or other many-
body effects involving the Coulomb potential. The results
in Fig. 5 show a striking similarity with the theoretical
results of Gull and Millis (GM), shown in the lower panel
Fig. 2 of Ref. [19]. These results were obtained using the
dynamical cluster approximation (DCA) version of
dynamical mean-field theory [45] for the Hubbard model,
taking the value U ¼ 6t for the on-site repulsive inter-
action. In GM. the kinetic energy and interaction energy
refer to the expectation values of the corresponding two
terms (the only ones) of their Hamiltonian. Particularly
striking is the agreement with the change of sign ofΔK and
ΔEC, which follows the same trends both in experimental
and computational data. The doping level where the sign
change occurs is different (p ¼ 0.08 in Fig. 2 of Ref. [19]),
which is not surprising considering that the band-structure
details are different between the theoretical model and
Bi2212. Moreover, in a recent numerical study, Fratino
et al. found that this crossing point depends strongly on the
U over bandwidth ratio [20]. The most important difference
with the numbers shown in Fig. 5 is that the interaction
energy in the latter refers to the long-wavelength limit of
the Coulomb energy, which in reality diverges as e2=q2,
whereas the Hubbard interaction is independent of q. It
would be interesting to analyze GM’s method to see how
the saving of interaction energy depends on q and to study
extended versions of this model to include the e2=q2

dependence in the long-wavelength limit. In their numeri-
cal data, GM find no indication that the nonsuperconduct-
ing pseudogap state has any significant pairing correlations.
The sign change seen both in the theoretical and in the
experimental data is, however, compatible with a competi-
tion between the pseudogap, present at the underdoped
side, and superconductivity.

FIG. 5. The S–N difference of the q-integrated Coulomb energy
ΔEmir

C , together with the total energy difference −Econd (data
reproduced from Ref. [44], with original units converted to the
present ones for the sake of comparison) and band-energy
difference ΔK [33].
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V. HIGHER-FREQUENCY AND
HIGHER-TEMPERATURE EFFECTS

Because of the fact that the Coulomb energy cannot be
treated perturbatively, the question as to which energy
regime contributes most to the condensation energy is very
difficult to answer theoretically. The emphasis on the
photon energy range from 0.6 to 1.8 eV was made primarily
because this is the most obvious regime where the normal
state loss function is both substantial and reasonably
system independent. This assumption may have been too
restrictive since even if interband transitions dominate the
optical response above 2 eV, these bands are probably
mostly associated with the CuO2 planes and/or the apical
oxygen, which are common to the various cuprates.
For example, Eqs. (14) and (G10) implicitly attribute a
fraction 1–1=ϵsc of ΔEmir

C reported in Fig. 5 to the range of
interband transitions of the loss function (for details, see
Appendix F). These considerations lead to hypothesis C:
An important contribution to the Coulomb energy saving
originates in the energy range of charge-transfer transitions
above the free-carrier plasma frequency.
We note one further point, namely, that originally it was

assumed [3] that the saving of the Coulomb energy would
set in at Tc; however, more recently, and in the light of the
earlier rounds of this experiment, two of us [21] have
considered the possibility, in a more general scenario, of the
onset of a drop in the Coulomb energy at some temperature
fairly well above Tc—crudely speaking, because of pre-
formed Cooper pairs [46]—in a temperature range where
other experiments seem consistent with the onset of local
Cooper pairing [47–54]. These considerations lead to
hypothesis D: The experimental results obtained up to this
point could be compatible with a gradual process, whereby
upon lowering the temperature, finite-range pair correla-
tions become progressively facilitated by a saving of
Coulomb energy.

A. Hypothesis C: Susceptibility well above
the plasma frequency

In order to investigate the temperature dependence of the
loss function well above the main plasmon peak, we
analyze the Coulomb energy integrated from zero up to
2.5 eV (in view of the large amount of noise in some of the
samples in the range 2.5–3.1 eV, we omit this range from
the integral). For frequencies below the frequency range of
the instrument (0.6 eV), the loss function was obtained
from a Drude-Lorentz fit to the experimental data of both
real and imaginary parts of ϵðωÞ simultaneously. While this
does not provide fine details such as optical phonons, the
real and imaginary parts of ϵðωÞ in the range 0.6 to 3.1 eV
narrowly constrain the range of possible values of the loss-
function integral between 0 and 0.6 eV, as revealed by the
low noise level of the temperature dependence shown in the
middle left panels of Figs. 8–15. In Appendix E, we

demonstrate the validity of this procedure for the example
of Bi2223 by comparing the extrapolation with experi-
mental data in the low frequency range. Comparing the
middle left panels with the middle right panels of all
samples, we see that this energy range has a smooth and
weak temperature dependence; in particular, the trends at
the superconducting transition are not affected if we add
this part to the integral. The energy range between the
upper isosbestic point and 2.5 eV is more affected by
instrument noise. The general trend as a function of doping
and temperature is that the temperature dependence
increasingly approaches a T-linear behavior towards over-
doping, and this trend is more pronounced when we extend
the integration range from an upper isosbestic point
to 2.5 eV.
Taking the sum of all three zones results in curves for

optimally doped and weakly underdoped samples showing
maxima at around 150 K. These maxima are a direct
consequence of adding the intraisosbestic B − ATα with
α ∼ 2 and the contributions from zones 1 and 3 of the form
CþDTβ, where β ∼ 1. In view of our current lack of
understanding of these temperature dependences, it is
unclear whether the maxima have any significance within
the MIR scenario.
All in all, the verdict regarding hypothesis C is as

follows: The energy range of charge-transfer transitions
above the free-carrier plasma frequency contributes sig-
nificantly to the temperature dependence of the normal
state. As far as the changes across the superconducting
phase transition are concerned, the contribution to the
Coulomb energy in the narrow range of about 1 eV above
the plasma frequency is too small to be observable in most
of our samples.

B. Hypothesis D: Search for fluctuations
far above Tc

In relation to hypothesis D, we point out recent experi-
ments [48,55] indicating that, in the cuprates, supercon-
ductivity competes with various different states of matter.
In particular, a fluctuating charge-density wave (CDW)
has been observed in the cleanest high-Tc system
YBa2Cu3O6þy (YBCO) for T⋆ > TCDW > Tc [56–61],
but also in La2−xSrxCuO4 [62], which, in principle, may
give signatures in the temperature dependence of the
Coulomb energy similar to those observed for a super-
conducting phase transition. Even if Bi2212 and YBCO
have structural differences, an analogy may exist, in
particular, because charge order is also observed in
Bi2212 by STM measurements [63,64].
Such phenomena might very well also occur in the

Bi2212 and Bi2223 systems, which are the subject of the
present experimental study. However, in principle, it is
difficult to tell the difference between fluctuating charge
density waves and fluctuating superconducting order on the
basis of the temperature trends observed in the optical data.

J. LEVALLOIS et al. PHYS. REV. X 6, 031027 (2016)

031027-10



Consequently, the weak temperature features that we
discuss in the remainder of this section may be attributed
to either of these two, as well as other forms of fluctuating
order. Figure 6 summarizes all values of Tn1, Tn2, Tp1, and
Tp2 as a function of hole concentration for all Bi2212
samples and highlights the change of nature of the Tn1

extremum in γisoC ðTÞ. It is clear that Tn1 and Tp1 (light blue
and gold circles) can be associated with the critical
temperature Tc (defined by the empirical Tallon-Presland
relation). The transition seen in γisoC ðTÞ is broadened,
especially on the underdoped side, and the resulting curves
have a Λ-like appearance, similar to the Sommerfeld
coefficient of underdoped cuprates obtained from specific
heat experiments [37,41–43]. This aspect is most likely the
consequence of fluctuations of the superconducting order
above the critical temperature. Concerning Tn2 (navy blue
circles), the dome shape that it defines, peaked around
p ¼ 0.12, strongly suggests an analogy between this
energy scale and the one determined by Nernst effect
measurements and associated with a range of temperatures
where pair correlations persist above Tc, but where the
phase of the order parameter is strongly fluctuating [48].
Additional indications that in Bi2212, pair correlations
persist far above Tc come from diamagnetism [47], scan-
ning tunneling spectroscopy [49], specific heat [50], and
angle-resolved photo-emission [52,54] experiments. The
sign change of the jump of γisoC ðTÞ when going from
underdoped to overdoped samples occurs for p ≈ 0.19.
This doping level coincides with the point where a large
body of experimental data indicates the vanishing of the
pseudogap [43].
We now turn our attention to the temperature dependence

farther above Tc. The red curves in Figs. 8–15 are
phenomenological fits of the function Eiso

C ðTÞ ¼
Bþ ATα to the data above Tc (where B and A are some
constants). Such a power-law temperature dependence,
with α ∼ 2, is, by and large, described by a constant value

of γisoC ðTÞ. This behavior finds a natural explanation in the
temperature dependence of the free-carrier response at high
frequencies, as explained in Ref. [65] (see Appendix H).
On a qualitative level, even from visual inspection of these
temperature dependences for different dopings, we can
already conclude that for the overdoped samples the normal
state evolution is less curved than for the underdoped
samples. To substantiate this qualitative observation, the
evolution from underdoped to overdoped is best illustrated
by a plot of the fitted exponents, α, as a function of the hole
carrier concentration, shown in Fig. 7. The temperature
dependence between Tc and 300 K changes progressively
as a function of doping. For 19% doping, the value of the
exponent depends strongly on the temperature range fitted,
which should be taken as an indication that the temperature
dependence is not algebraic for this doping. Interestingly,
this is also where the kink at Tc changes from positive to
negative. The general trend is that the curvature is stronger
for underdoped samples, but the exponent returns to the
value 2 for the lowest doped material. It should be
emphasized that for all dopings, the evolution as a function
of temperature above Tc is gradual. Nonetheless, compar-
ing the (not too) underdoped and optimally doped samples,
the observed behavior may be an indication that upon
lowering temperature already far above Tc, the Coulomb
energy of the underdoped samples flows to a lower value
than for the overdoped ones. One can then speculate that
this is the result of fluctuations of some kind of order
parameter (charge density wave, pairing, or other) far above
Tc in the underdoped cuprates.
On a more detailed level, for samples UD70K, UD83K,

OP91K, and possibly Bi2223, we observe in γisoC ðTÞ (which
is negative) a gradual drop for T > Tn1, which approaches
the constant value for temperatures around 150 K [66]. This
hints at an accelerated saving of Coulomb energy when
cooling down below about 150 K compared to the trend at
higher temperatures.
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All in all, the verdict regarding hypothesis D is as
follows: We observe possible indications of rather gradual
changes of the Coulomb energy in the normal phase, which
are possibly associated with the presence of a fluctuating
order of some kind in a region above Tc. First of all, the
steps in γCðTÞ are broadened, especially on the underdoped
side, which is almost certainly indicative of a region of
fluctuating superconducting order. Second, more subtle and
gradual bending of the temperature dependence, especially
on the underdoped side, may be due to fluctuations of
unknown origin, which disappear gradually as a function of
temperature.

VI. SUMMARY AND CONCLUSION

To summarize, we have measured the evolution as a
function of temperature and doping of the loss-function
spectra in the infrared-visible spectral range of double- and
triple-layer bismuth cuprates. Our experiments indicate that
for the overdoped samples, the superconducting phase
transition is accompanied by a saving of the Coulomb
interaction energy; on the underdoped side, there is an
increase of the Coulomb energy below Tc; and the change
of Coulomb energy for q < 0.31 Å−1 is about the same size
as the condensation energy. This state of affairs calls for
studies with other experimental techniques, in particular,
electron energy loss spectroscopy, to explore the momen-
tum-dependent structure of these phenomena. Departure of
a T2 dependence of the measured loss-function data
indicates a corresponding temperature dependence of the
density-density correlations. Unambiguous assignment to a
precursor of superconducting pairing, to another type of
correlation, or neither of these two, is not possible at this
stage. The S–N difference of the Coulomb energy has
similar doping dependence as the total condensation
energy. While the latter is in the range of 0 to 2 K per
CuO2 unit, the Coulomb energy varies between −1 and
1 K. Consequently, while it cannot be the whole cause of
superconductivity, the Coulomb energy is a major factor in
the total energy balance stabilizing the superconducting
state. The experiments presented here demonstrate that it is,
in principle, possible to determine the subtle changes of
Coulomb correlation energy associated with a supercon-
ducting phase transition, and they constitute a promising
first step in the experimental exploration of the Coulomb
correlation energy as a function of momentum and energy.
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APPENDIX A: SAMPLE PREPARATION

Optimally doped single crystals of Bi2223 were grown by
the floating zone method. Because of the slow growth
kinetics of the 3-layer compound, as compared to the
2-layer one, as well as the need to minimize the formation
of Bi2212 intergrowth in the Bi2223 crystals, dedicated
growth conditions were chosen. The growth was performed
at a very low traveling velocity (≈50 μm=h) in a homemade
2-mirror furnace with a steep temperature gradient at the
liquid-solid interface (≈50 °C=mm) under a 7% O2 − 93%
Ar flowing atmosphere. The details of the growth of Bi2223
crystals are reported elsewhere [67]. The resulting as-grown
crystals are slightly underdoped. In order to optimally dope
and homogenize the oxygen content, cleaved crystals of
typical 1–3 mm size were annealed at 500°C in 20 bar of O2

for 50 h. As a result, the optimalTc ¼ 110 K and a transition
width as narrow as≤2 Kwere obtained. The Bi2223 crystals
used for the experiments described in this paperwere selected
out of dozens as being free of any 2212 traces in the x-ray
diffraction pattern and any inflection at about 80 K in the
magnetic susceptibility. This indicates that the amount of
Bi2212 intergrowth is well below 1 volume percent.
Optimally doped Bi2212 single crystals with Tc ¼ 91 K
were grown by using a floating zone method [68].
Underdoped Bi2212 single crystals with a Tc of 83 K were
obtained by annealing in a sealed vacuum quartz tube at
450°C for three days. Underdoped Bi2212 single crystals
with Tc’s of 70 K and 60 K were obtained by annealing
during three days in a vacuum of 10−2 Torr at 550 °C and
500 °C, respectively.

APPENDIX B: ELLIPSOMETRY
MEASUREMENTS

In order to accurately determine the temperature
and frequency dependence of the dielectric function
ϵðω; q ¼ 0; TÞ in the infrared (from 0.5 eV), visible, and
ultraviolet ranges, we performed spectroscopic ellipsometry
using a commercial variable angle spectrometer (Woollam,
Inc.). An ultrahigh vacuum cryostat (conflat flanges, no
viton) of unique design allows continuous variation of the
angle of incidence of the light, θ between 45 and 90 degrees
with the surface normal, without breaking the vacuum. This
is achieved by two arms composed of flexible metallic
bellows terminated by optical windows that can be set
parallel to the light path. Pitch, roll, and yaw of the crystals
are controlled with high precision. Sample temperature can
be controlled from 10 K to 400 K. Samples are glued on a
conical copper piece allowing rejection of light irrelevant to
sample. A cold finger is thermally coupled with copper
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braids to the sample block, which is anchored mechanically
to the bottom of the cryostat while remaining thermally
isolated from it, ensuring high mechanical stability upon
temperature variation. Both a compact turbo-molecular
pump and a compact ion pump are mounted directly on
top of the cryostat such as to keep pumping resistance to the
minimum. After outgassing the cryostat walls by a heating-
cooling cycle of several days, the valve to the turbopump is
closed, the turbo is switched off, and the ion pump takes
over to maintain the base pressure of 10−9 mbar. These
precautions and the ultrahigh vacuum conditions are nec-
essary requirements for stable sample surface conditions
during the ellipsometric measurements at low temperatures.
Ellipsometry spectra are obtained during cooldown or
warm-up in the temperature range from 15 to 300 K at
an average rate of 12 K per hour. The low noise level needed
during the analysis of the present study requires the best
possible statistics and imposes the splitting of the spectral
range in two: The first covers 0.5–1.5 eV, and the second
covers 1.5–3.1 eV. The angle of incidence was uniformly
70 degrees. All data acquisition and temperature control are
computer controlled.

APPENDIX C: PRESENTATION OF THE
FULL DATA SET

In this section, for each of the Bi2212 samples and the
Bi2223 sample, we present the loss function and the
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FIG. 11. Sample Bi2212-91-OpD. Caption details as in Fig. 8.
The value of the fitted exponent α is 2.2.
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FIG. 12. Sample Bi2212-84-OD. Caption details as in Fig. 8.
The value of the fitted exponent α is 2 when fitting down to Tc
and 1 and 3 when splitting into Tc − 200 K and 200–300 K
windows.
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FIG. 13. Sample Bi2212-81-OD. Caption details as in Fig. 8.
The value of the fitted exponent α is 1.6.
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loss-function integrals as a function of temperature in
different frequency domains. In the top panels of
Figs. 8–15 are displayed: imaginary (left panel) and real
(right panel) parts of −ϵðωÞ−1 for selected temperatures.
The curves in the interval on the left of the vertical blue line
are Drude-Lorentz oscillator fits to the experimental com-
plex loss function in the range 0.6–3.1 eV. The second and
third rows from left to right are as follows: Integral of the
loss function of the red, gray, blue, and total areas as a
function of temperature. The right middle panel shows
power-law temperature dependence Bþ ATα, fitted to the
data in the normal state.

APPENDIX D: c-AXIS CORRECTION

Ellipsometry determines the ratio of p-polarized over
s-polarized reflectivity coefficients, ρ ¼ rp=rs, which in
turn is a function of the tensor elements of the dielectric
function and the angle of incidence relative to the surface
normal, θ. This relation is given by the Fresnel equations.
In the interest of compactness of notation, we define

η≡ ρ − 1

ρþ 1
; ðD1Þ

which, from now on, we treat as the primary experimental
ellipsometric quantity. Here, we consider the ellipsometric
data for an optical uniaxial material with the optical axis
perpendicular to the sample surface. The dielectric constant

perpendicular to the sample surface is ϵc, and along the
sample surface, we have ϵa. In this case, the Fresnel
equations give

η ¼ ð1þ δ − ϵaÞ cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa − sin2 θ

p
ϵa cos2 θ − ð1þ δÞðϵa − sin2 θÞ ; ðD2Þ

where

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ−1a sin2θ
1 − ϵ−1c sin2θ

s
− 1: ðD3Þ

The ϵaðωÞ spectra can be obtained from the combination of
ρðωÞ and ϵcðωÞ using the method described below. In the
isotropic case (ϵa ¼ ϵc ≡ ϵ), we have δ ¼ 0, and Eq. (D2)
simplifies to

η ¼ cos θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − sin2 θ

p

sin2 θ
: ðD4Þ

Given the value of ηmeasured by ellipsometry, we can then
calculate the dielectric function ϵ using the relation

ϵ ¼ sin2 θ þ η2 sin4 θ
cos2 θ

: ðD5Þ

We begin by noting that, according to Aspnes [69], even if
the material is optically anisotropic, Eq. (D5) provides a
good approximation of the tensor element of the dielectric
constant along the intersection of the plane of reflection and
the sample surface. For an uniaxial material with the optical
axis perpendicular to the sample surface Eq. (D2) can be
solved iteratively, starting from Aspnes’ zeroth order
solution, Eq. (D5), i.e., ϵa;0 ¼ ϵ. The speed of convergence
is controlled by the smallness of δj defined in Eq. (D3)
(with ϵ−1a;j instead of ϵ−1a ). The full solution of Eq. (D2) is
obtained by substituting ϵa;0 in the right-hand side of the
expression,

ϵa;jþ1 ¼ sin2θ þ η2

cos2θ

�
sin2θ −

δjϵa;j
1 − ϵa;j þ δj

�
2

: ðD6Þ

The process continues by resubstituting ϵa;jþ1 in the right-
hand side of the expression, which is reiterated until
convergence is reached. Convergence typically takes less
than 20 cycles, as illustrated by the example shown in
Fig. 17. The c-axis optical constants have been reported in
Ref. [70] (Bi2212) and Refs. [33,71] (Bi2223) and have
been found to be essentially independent of temperature for
frequencies above 0.5 eV. Furthermore, ReϵcðωÞ ∼ 3–5,
and ImϵcðωÞ is very small. Because of crystal imperfec-
tions, some a-axis admixture may have occurred in afore-
mentioned experiments, during which the measured ϵcðωÞ
may have been underestimated. Moreover, quite generally,
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The value of the fitted exponent α is 1.8.
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the bound-charge polarizability in the cuprates as obtained
from ab-plane experiments corresponds to ϵb ¼ 4.5� 0.5
for Bi2212 and Bi2223. The anisotropy of the bound
charge polarizability is known to be small in the cuprates,
so ϵcðωÞ (for which the free-carrier contribution is negli-
gible) should be near 4.5. Anomalous spectral weight
changes below Tc in the c-axis response of underdoped
cuprates has been discussed, reported, and analyzed in
Refs. [31,72–76]. One may then wonder whether a T
dependence of the c-axis response, even a weak one, may
interfere with the relatively small changes of the in-plane
loss-function spectra that are reported here. To investigate
this possible influence, we analyze the case of optimally
doped Bi2223. The same pseudo-dielectric function is fed
into the procedure described above, where this time
ϵcðω; TÞ used in Eq. (D6) is measured by ellipsometry
[77]. The resulting loss function is shown in Fig. 18(a).
Apart from a general level increase, there are no qualitative
distinctions between this loss function and the one that we
obtained with ϵc ¼ 3.5 shown in Fig. 16. The temperature-
dependent loss-function integrals in Fig. 18(b) yield
extremely close temperature dependence and so do the
corresponding Sommerfeld coefficients in Fig. 18(c) with
matching characteristic temperatures. This has motivated
us to adopt, for the c-axis correction described above,

ϵc ¼ 4.5 for Bi2212 and ϵc ¼ 3.5 for Bi2223 throughout
the frequency and temperature ranges from 0.5 to 3.1 eV.

APPENDIX E: LOW-ENERGY DRUDE-LORENTZ
EXTRAPOLATION

It was mentioned in Sec. III that for a list of reasons, our
analysis uses a spectral range limited by two isosbestics
points, ω1 and ω2, displayed in Fig. 19 for the under-doped
Bi2212-83K sample. We show here that, in fact, the
0 − ℏω1 eV part of the loss function amounts to a marginal
contribution to the partial Coulomb energy. To remain as
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FIG. 16. Sample Bi2223-110-OP. Caption details as in Fig. 8.
The value of the fitted exponent α is 2.7. The evolution as a
function of temperature above 220 K was not fully reproducible
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crystal size and instrument drift. The temperature range for this
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close as possible to experimental input, we consider the
Bi2223 loss function obtained with a c-axis data correction
to which the low-energy part of the spectrum is comple-
mented by far-infrared data [77] as shown in Fig. 20(a).
This region, situated below our measurement range,
contains all previously reported superconductivity induced
changes of temperature-dependent optical properties at
photon energies, above the superconducting gap.
However, these do not appear as strong features in the
loss function at all: These spectral details are only dis-
tinguishable from a Drude-Lorentz fit (shown in Fig. 21)
when displaying the data in a log-log scale, as shown in
Fig. 20(b). The temperature dependence of the loss-func-
tion integral over the 0 − ℏω1 and the 0–2.5 eV regions is
shown in the second row of Fig. 20. It is obvious, when
comparing the 0–2.5 eV integral with the one carried out on

extrapolated data shown in Fig. 21, that aside from an
∼0.5 meV offset, the temperature dependence extracted
from the two methods is identical. Additionally, one can
also notice that the temperature dependence of the data at
low energy is actually irrelevant to the general behavior of
the 0–2.5 eV integral of the loss function.

APPENDIX F: SCREENING OF THE COULOMB
INTERACTION IN A LAYERED MATERIAL

In this paper, we use the data obtained in optical
experiments, plus the “extrapolation assumption,” to infer
something about the changes in the expectation value of the
long-wavelength (but not very long) part of the intercon-
duction electron Coulomb interaction EC. While in an
isotropic 3D material this procedure is straightforward (see
below), the strongly layered nature of the cuprates gives
rise to a complication, as follows: As we will verify below,
in a layered material with inter(multi)layer separation s, the
screening of the Fourier component Vq of the Coulomb
interaction depends qualitatively on q: For qs ≪ 1, it is of
the standard “bulk 3D” form and is completely taken into
account by a q-independent dielectric constant ϵðωÞ; for
qs≳ 1 the effect is more complicated; and for qs ≫ 1, it is
represented by a q-dependent “pseudo-dielectric constant”
ϵps ¼ 1þ ½qs=2�½ϵðωÞ − 1�. This is because, while in 3D
the Fourier component is proportional to q−2, in 2D it is
∝ q−1. Since in the MIR scenario the main contribution to
EC comes from qs≳ 1 with a strictly two-dimensional q
(but the optics measures the dielectric tensor for qs ≪ 1
where q is three dimensional), some care is necessary.
In the following, we assume until further notice, as in

Refs. [3,4], (a) that any screening of the inter-Coulomb
energy by the ionic cores is itself three dimensional and
hence may be represented by a q- and ω-independent
constant ϵsc, and (b) that intermultilayer (inter-unit-cell)
tunneling is negligible and hence that, in the frequency
range of interest, the experimentally observed (q ¼ 0)
c-axis dielectric function is some ω-independent constant.
The effect of relaxing these assumptions will be briefly
discussed in Appendix G. For pedagogical simplicity, we
give the explicit discussion for a single-plane cuprate; the
generalization to the actual (bilayer) case of interest is
straightforward and will be indicated where necessary.
The general statement following from the fluctuation-

dissipation theorem is that at T ¼ 0 (which we adopt
throughout this subsection), the full susceptibility
χðq;ωÞ and the qth Fourier component of the Coulomb
interaction are related as

Eq
C ¼ ℏ

2π
Im

Z
∞

0

Vqχðq;ωÞdω; ðF1Þ

where Vq is the Fourier transform of the bare Coulomb
interaction. For a bulk 3D sample, this implies a direct
relation to the longitudinal dielectric function
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FIG. 20. Bi2223 optimally doped with an extended low-energy
region from Ref. [77].
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FIG. 21. Bi2223 optimally doped with the low-energy region
extrapolated.
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Eq
C ¼ ℏ

2π
Im

Z
∞

0

dω
−1

ϵðq;ωÞ : ðF2Þ

However, ϵðq;ωÞ characterizes the dielectric response of a
3D material; consequently, Eq. (F2) cannot be directly
applied to, e.g., the case of a two-dimensional conducting
plane. The general formula irrespective of the geometry is
given by

Eq
C ¼ ℏ

2π
Im

Z
∞

0

dω
−1

1þ Vqχ
ð0Þðq;ωÞ ; ðF3Þ

where χð0Þðq;ωÞ is defined by the relation

χðq;ωÞ−1 ¼ χð0Þðq;ωÞ−1 þ Vq: ðF4Þ

Note that this is a definition of χð0Þðq;ωÞ, which, despite the
resemblance to the random phase approximation, does not
rely on the validity of that approximation. However, we
assume, for present purposes, that in the ðq;ωÞ region of
interest (q ≠ 0, qz ¼ 0, where q and qz are the ab-plane
and c-axis components, respectively) Vχð0Þ is a function
only of ω (this subsumes the “extrapolation assumption”),
and that for the c-axis component (qz ≠ 0, q ¼ 0)
Vχð0Þ ¼ 0, and thus the c-axis component does not con-
tribute to Eq. (F3); we return to it in Appendix G.
The three-dimensional Fourier transform of the Coulomb

potential in a layered electron gas is [78,79]

Vq ¼ e2s
2ϵ0q

sinh qs
coshqs − cos qzs

: ðF5Þ

In the limit jqjs ≪ 1, this is just e2=ðϵ0jqj2Þ, and hence Eq
C

is simply the integral over the familiar loss function
Imϵðq;ωÞ−1. However, the regime that dominantly con-
tributes to the overall Coulomb energy is qs≳ 1. If we
make the approximation qs ≫ 1, then for any qz, Vq is
approximately given by e2s=ð2ϵ0qÞ, so after summation
over qz, we find the “per-plane” result

Eq
C ¼ ℏ

2π
Im

Z
∞

0

dω
−1

1þ ðqs=2Þ½ϵaðωÞ − 1� : ðF6Þ

In Appendix G, a more general formula [Eq. (G9)] for Eq
C is

given, and it is shown that after summation over qz, the
result integrated over q up to a cutoff q0 coincides with
Eq. (F6) provided q0s ≫ 1.
However, we wish to calculate the value of the screened

Coulomb interaction between the conduction electrons.
This can be done simply by replacing Vq by Vsc

q ¼ Vq=ϵsc,
where ϵsc is the frequency- and wave-vector-independent
dielectric constant due to screening of the conduction
electrons by the ionic cores (recall we are assuming this
screening to be three dimensional, i.e., uniformly due to the

whole unit cell). In the limit qs ≪ 1, the effect is simply to
multiply the expression (F3) by an overall factor of ϵsc. We
may see this more explicitly as follows: The general form of
the Hamiltonian of a metal is [see Eq. (2)]

Ĥ ¼ T̂ þ Û þ V̂C; ðF7Þ

where T̂ is the kinetic energy, Û the crystal potential, and

V̂C ¼ 1

2

X
q

Vqρ̂qρ̂−q: ðF8Þ

The dielectric function of such a many-electron system is

ϵðq;ωÞ ¼ 1þ Vqχ
ð0Þðq;ωÞ: ðF9Þ

Often one is interested in the free-carrier properties, in
which case it is useful to integrate out the degrees of
freedom having to do with the “bound charge,” i.e., the
interband transitions. This distinction is meaningful when
the interband transitions are well separated from the intra-
band degrees of freedom, which is actually the case in the
cuprates. The dielectric constant can be split as follows:

ϵðq;ωÞ ¼ 1þ Sðq;ωÞ þ Vqχ
ð0Þðq;ωÞ; ðF10Þ

where Sðq;ωÞ subsumes all bound charge terms. At low
frequencies and small q, we have

1þ Sðq;ωÞ ¼ ϵsc: ðF11Þ

Wewill neglect q andω dependencies up to frequenciesωb,
which is some high-energy-scale representative of the
interband transitions. The dielectric function at low
frequencies becomes

ϵðq;ωÞ ¼ ϵscf1þ Vsc
q χ

ð0Þðq;ωÞg; ðF12Þ

where Vsc
q ¼ Vq=ϵsc. The effective low-energy Hamiltonian

is

Ĥeff ¼ K̂ þ V̂sc
C ; ðF13Þ

where the first term describes the free charge carrier band
dispersion and the second one the bare Coulomb interaction
screened by the aforementioned bound charges, so

V̂sc
C ¼ 1

2

X
q

Vsc
q ρ̂

f
qρ̂

f
−q: ðF14Þ

Consequently, the relation between low-energy susceptibil-
ity taking into account the screened interaction χscðq;ωÞ
and χð0Þðq;ωÞ becomes
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χscðq;ωÞ−1 ¼ χð0Þðq;ωÞ−1 þ Vsc
q : ðF15Þ

The fluctuation dissipation theorem [24] provides the
relation between the screened Coulomb interaction and the
limited range susceptibility integral

ℏ
π

Z
ωb

0

Imχscðq;ωÞdω ¼ hρ̂fqρ̂f−qi ðF16Þ

from which, with the help of Eqs. (F12) and (F16),

Emir
C ¼ hV̂sc

C i ¼
ℏϵsc
2π

X
q

Z
ωb

0

Im
−1

ϵðq;ωÞ dω: ðF17Þ

Equation (F17) tells us that the loss-function integral, when
carried out over the free-carrier part of the response, probes
a fraction 1=ϵsc of the Coulomb interaction between the free
charge carriers, which—compared to the bare Coulomb
interaction—is already reduced by an additional factor
1=ϵsc. To verify that no double counting of 1=ϵsc has
occurred, we reformulate the individual q-terms of the lhs
and rhs of Eq. (F17),

ℏ
2π

Z
ωb

0

Vsc
q Imχð0Þðq;ωÞ

j1þ Vsc
q χ

ð0Þðq;ωÞj2 dω ¼ 1

2
hVsc

q ρ̂
f
qρ̂

f
−qi; ðF18Þ

which in the weak coupling limit (Vq → 0, so that the
denominator→ 1), returns the fluctuation-dissipation theo-
rem for the noninteracting system

ℏ
π

Z
ωb

0

Imχð0Þðq;ωÞdω ¼ hρ̂fqρ̂f−qi; ðF19Þ

as expected. The remaining fraction (1 − 1=ϵsc) of the
screened interaction energy is recovered in the loss function
in the range of interband transitions. Since the interband
region is typically smeared out over several tenths of eV, the
corresponding signatures are small and very difficult to
detect experimentally.
In the more relevant case of a layered system with

qs ≫ 1, we can go through the same argument, but we
must now bear in mind that Vsc

q χðq;ωÞ is no longer equal to
½ϵðωÞ=ϵsc − 1� but rather to ½qsϵðωÞ=ϵsc − 1�. Thus, we
recover Eqs. (4.1.4) and (4.1.5) of Ref. [4], and hence
Eq. (14) of the main text. Finally, if we relax the assumption
that the core screening is three dimensional (for example,
assume that it comes only from the highly planar array of
intralayer Cu’s and O’s), the effect is simply to replace the
quantity ϵsc in Eq. (14) by the relevant ϵscðqÞ, which may
have a substantial q dependence but, in practice, does not
make much difference for the computed value of Emir

C .

APPENDIX G: c-AXIS CONTRIBUTION IN A
LAYERED MATERIAL

For the c-axis, the free-carrier spectral weight is very
low. The transition from normal to superconducting state is
characterized by the appearance of a Josephson plasmon.
For the Bi2212 materials, the Josephson plasma frequency
is much lower than the (already low) frequency observed in
single-layer Tl2201 [73]; in fact, the exact value is not
known since it is below the experimental window of
infrared spectroscopy. However, Zelezny et al. [76]
observed a temperature dependence in the optical phonon
range, which they attributed to the transverse optical
Josephson plasmon [75]. In order to have an influence
on the ellipsometric data in the range of the ab-plane
plasmon, it would be necessary that the optical spectral
weight associated with such a plasmon is transferred from
high energy. There are no indications for this; in fact, the
absence of reflectivity changes in the near infrared in these
compounds (as discussed, for example, in Appendix D)
rather suggests that this spectral weight is reshuffled within
the infrared range. If we nonetheless model the c-axis
dielectric function with a 400 cm−1 plasma frequency
which disappears in the normal phase (equivalent to a
transfer of the associated optical spectral weight to infinite
frequency), we obtain a strongly overestimated upper
bound of the c-axis contribution to the Coulomb energy.
To simulate the effect on the optical properties, we use the
following expressions:

ϵcðω; TÞ ¼ ϵsc −
ω2
pcnsðTÞ
ω2

;

nsðTÞ ¼
�
1 − ðT=TcÞ2 T ≤ Tc

0 T > Tc;
ðG1Þ

with the parameters ωpc=2πc ¼ 400 cm−1 and ϵsc ¼ 4.5.
We furthermore assume, as per the MIR scenario, that the
value of the loss function can be extrapolated up to an upper
limit q0, and for larger q, it has a negligible contribution to
the S–N difference of the Coulomb energy. This yields the
q-averaged effective Coulomb energy in the MIR scenario
[see Eqs. (F17) and (F2)],

Emir
C ¼ ℏϵsca2s

8π3
Im

Z
ωb

0

dω
Z

q0

0

qdq
Z

π

−π
dqz

−1
ϵðq;ωÞ ;

ðG2Þ
where the upper bound ωb is the energy scale of the core-
electron excitation energies (see Appendix F), and

ϵðq;ωÞ ¼ 1þ Vqχ
ð0Þðq;ωÞ; ðG3Þ

with χ0ðq;ωÞ defined in Eq. (4.1.2) of Ref. [4]. Without
loss of generality, we can define the tensor Ki;jðq;ωÞ in the
following way:
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χð0Þðq;ωÞ≡ 2ϵ0
e2s

X
i;j

Ki;jðq;ωÞqiqj: ðG4Þ

In a 2D system, this becomes simply

χð0Þðq;ωÞ ¼ 2ϵ0
e2s

Kðq;ωÞq2; ðG5Þ

where Kðq;ωÞ is the in-plane component [4], assumed here
to be isotropic within the plane. Allowing for finite
tunneling between the layers does not change Vq [given
by Eq. (F5)] as long as we stick to the model of the δ layers,
but it introduces a nonzero kz dispersion in the single-
particle dispersion with the property ϵk;kzþ2π=s ¼ ϵk;kz ;
consequently, χð0Þ should be a 2π=s periodic function of
qz. Since χð0Þ should vanish as q2 þ q2z for small momen-
tum, it is described by a series in powers of ~q2nz , with
~qzs=2 ¼ sinðqzs=2Þ and n an integer number. To
avoid clutter in the evaluation of the qz integral later in
this appendix—but admittedly at the cost of loss of
generality—we truncate this series at n ¼ 1 and obtain

χð0Þðq; qz;ωÞ ¼
2ϵ0
e2s

½Kðq;ωÞq2 þ Kzðq;ωÞ ~q2z �: ðG6Þ

We furthermore use the MIR Ansatz that ϵðq;ωÞ has no
important dispersion, at least up to q0, so we can remove
the q dependence of K and Kz. In parallel to the free-carrier
response, there exists a bound-charge screening described
by the function SðqÞ, which can be considered static in the
range of the plasma frequency. The corresponding bound-
charge dielectric function is ϵscðqÞ ¼ 1þ SðqÞ, so

ϵðq;ωÞ ¼ ϵscðqÞ þ
sinh qs

q
q2KðωÞ þ ~q2zKzðωÞ
coshqs − cos qzs

: ðG7Þ

If the momentum dispersion of ϵscðqÞ is not too large, the
dispersion has no important consequences for the Coulomb
energy estimate; we therefore simply replace ϵscðqÞ by the
constant ϵsc. At this point, it is convenient to introduce the
following shorthand notation for the free-carrier response
parallel (perpendicular) to the conducting layers,

2KðωÞ=ϵsc ¼ fs; 2KzðωÞ=ϵsc ¼ gs: ðG8Þ

We insert the expression of the dielectric function,
Eq. (G7), in the one for the Coulomb energy, Eq. (G2),
and obtain, after integration over qz,

Emir
C ¼ ℏa2

4π2
Im

Z
ωb

0

dω
Z

q0s

0

dx
x

1þ g

�
−1þ x2f=2 − g½x coth x − 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx coth xþ x2f=2þ gÞ2 − ð1þ gÞ2x2=sinh2x
p �

: ðG9Þ

In the absence of interlayer tunneling (g ¼ 0), this reduces
to Eq. (5.43) of Ref. [7],

Emir
C ¼ ℏa2

4π2
Im

Z
ωb

0

dωZ
q0

0

dq
q2sf=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qsf cothqsþ ðqsf=2Þ2
p : ðG10Þ

Reference [4] discussed the case of a purely two-dimensional
system of electrons, where the effective screening of the
interconduction electronCoulomb interaction is threedimen-
sional and therefore described by the dielectric constant ϵsc.
This limit is described by s → ∞, so coth qs → 1. We
rearrange the integrand to 1 − ð1þ qsf=2Þ−1 and substitute
the definition [4] sf=2≡ KðωÞ=ϵsc, with the result

Emir
C ¼ −

ℏa2

4π2
Im

Z
ωb

0

dω
Z

q0

0

dq
q

1þ qKðωÞ=ϵsc
; ðG11Þ

where we recognize Eq. (4.1.5) of Ref. [4].
The result of Eq. (G11) is shown in Fig. 22 and

compared with the extrapolation schemes of Eqs. (G9)
and (14) using s ¼ d ¼ 7.8 Å, q0 ¼ 0.31 Å−1, and in

Eq. (14), d ¼ 3.2 Å, as well as the integral of the
experimental loss function for q ≈ 0. From this comparison,
we conclude that the replacement of the “true” Coulomb
energy by the MIR one, plus the extrapolation to finite
momentum and the 0.31 A−1 cutoff, effectively boils down
to a uniform scaling of the q ¼ 0 result. The result is rather
insensitive to the extrapolation scheme chosen and corre-
sponds to a scaling factor F ¼ 0.42.
To determine the impact of temperature dependence of

the c-axis dielectric function, we compare the output of
Eq. (G9) assuming that ϵc is independent of temperature
(green curve) and that the temperature dependence is
described by Eq. (G1) (orange curve). Despite somewhat
exaggerated assumptions about the c-axis temperature
dependence, the influence on the Coulomb energy is
negligible in comparison to that of the ab-plane
contribution.

APPENDIX H: NORMAL STATE T
DEPENDENCE OF Eiso

C

Quite generally, increasing the quasiparticle relaxation
broadens the loss-function peak, and it causes a redshift.
The loss-function integral will then exhibit a corresponding
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decrease in intensity. It is therefore of interest to see if a
relation exists between the temperature dependence of the
loss-function integral and the quasiparticle relaxation rate.
Based on a similar reasoning, it was demonstrated in
Ref. [65] that the truncation at some finite value Ω of
the spectral weight integral of the optical conductivity,
Eq. (8), introduces a temperature dependence of the
quasiparticle relaxation rate. If indeed such a relation could
be established, it would imply that in the relevant frequency
range of about 1 eV, the relaxation rate at these frequencies
would have the same temperature dependence for all
dopings. At first glance, this appears at odds with the fact
that the transport relaxation rate is known to have strong
qualitatively different behavior for different doping levels.
However, we cannot exclude a priori that the temperature
dependence of γðω; TÞ is more universal among the
cuprates for ω ∼ 1 eV. Additional intensity develops when

the temperature passes through the zone between Tn2 and
Tn1, where Tn2 is the lower bound of the region of T2

temperature dependence, and Tn1 is the inflection point.
Aforementioned additional intensity of the integrated loss
function corresponds to a gain of the partial Coulomb
energy for small q. For the description of the dielectric
properties of the interacting electrons in the normal state,
we adopt the generalized Drude model

ϵðωÞ ¼ ϵ∞ −
ω2
p=ω

ω½1þ λðωÞ� þ iγðωÞ : ðH1Þ

We furthermore use the model of Ref. [65] for the damping
γ and the mass renormalization constant λ. For ω larger than
the energy of the fluctuations coupled to the electrons
(phonons, density fluctuations) λ ∼ 0, γ becomes frequency
independent, and its temperature dependence is

γðTÞ ¼ 2γ

�
1 −

2kBT
ω2

ln ð1 − e−ω1=kBTÞ
�
: ðH2Þ

The parameter values relevant for the present materials are
ϵ∞ ¼ 4, γ ¼ 0.25 eV, ωp ¼ 3.1 eV, ω1 ¼ 15 meV, and
ω2 ¼ 300 meV. The integration of the corresponding loss
function is shown in Fig. 23, where the temperature
dependence was extracted by a power-law fit yielding an
exponent of 2.
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