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We give a general thermodynamic analysis of the behavior of the chemical potential of electrons in
metals at a second-order phase transition, including in our analysis the effect of long-range Coulomb
forces. It is shown that this chemical potential can have a kink at T, both for fixed sample volume
and fixed external pressure. The Coulomb term transfers the changes in chemical potential of the
electrons into an experimentally observable shift of the surface potential if the sample is electrically

connected to a ground potential,

I. INTRODUCTION

The behavior of the chemical potential (u®) of electrons
at the superconducting phase transition was discussed
recently in Refs. 1-3, and corresponding measurements
were carried out in Ref. 4. It was shown theoretically
that in the BCS model u° is given by the expression u®

°g — 4Au , or, if the density of states near Ep is energy
dependent p® = p§[l — —BZ:—EA(T) ], so that it has a

kink at T,. General consideration gives for the kink the
expression

A(dp/dT)y dWT. (1)
ACy T dN, °

where N. is the number of electrons and ACy is
the jump in specific heat. This conclusion was con-
firmed experimentally,* where it was shown that u° in
YBa,;CuzOy_., does indeed have a kink at T,,. This result
is of an essentially thermodynamic nature and is actually
independent of the specific nature of the phase transition,
i.e., it is valid for other second-order phase transitions as
well, not only for superconductivity.

However, in Ref. 3 relation (1) was derived for a system
at fixed volume, whereas the standard experiments are
carried out at constant ambient pressure. For a system
at constant presssure we should use the Landau expan-
sion not for the Helmholz free energy F(V,T, N, ), but
the Gibbs free energy G(p, N, T, ), where ¢ is an order
parameter. Hence the well-known treatment® of phase
transitions seems at first sight to rule out the possibility
of obtaining a kink in p: As the chemical potential is just
this Gibbs free energy per particle, G = Ny, a kink in p
is the hallmark of a first-order phase transition,® hence
it seems paradoxal that a kink in the chemical potential
was observed experimentally in a second-order supercon-
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ducting phase transition.

The situation, however, is not so simple, and the solu-
tion goes down to the definition of the chemical potential.
The point is that, when dealing with metals, one usually
discusses not the total chemical potential ;1 determined
as a Gibbs free energy per elementary cell or per mole of
the substance, but the chemical potential of the electrons
u® (which at T = 0 is equal to the Fermi energy). One
may say that the total chemical potential p is the Gibbs
free energy for adding to the system an extra unit cell,
with all its nuclei and electrons, whereas u€ is the change
in G when we change only the concentration of electrons.
Thus, generally speaking, the situation here is similar to
the situation in mixtures, solutions or a complex chemical
compound.® In that case we have to introduce chemical
potentials for each component

G =3 wl: (2)

and whereas G itself, and the corresponding total chem-
ical potential p = 8G/8N = G/N (where N is the num-
ber of formula units for fixed concentration of compo-
nents) should have no kink at T, (this is actually the def-
inition of a second-order phase transition), partial chemi-
cal potentials p; may well behave differently, as has been
discussed for the high-T, ceramics by Burns.” The situa-
tion with u® is still somewhat more complicated because,
if we want to discuss it separately, i.e., if we want to
look at the changes in the system when we change the
electron concentration, we also have to take into account
long-range Coulomb forces, which usually guarantee elec-
troneutrality of the system. We will show below that all
these factors taken care of, the chemical potential of elec-
trons u® as measured, e.g., in Ref. 4 should indeed have
a kink at T, even if in the experiment not the volume
but the pressure is fixed externally.
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II. SINGLE-COMPONENT SYSTEM

First of all we derive Eq. (1) using a slightly differ-

ent method than that used in Ref. 3, and show that .

indeed even for a one-component system the chemical
potential at constant volume has a kink at the second-
order phase transition, in contrast to the situation at
fixed pressure. At fixed pressure the Gibbs free en-
ergy G(p,T,N) = Nu(p,T), and u(p,T) as well as
the first derivatives of p are continuous at the transi-
tion. The temperature derivative of y at fixed pres-

sure follows by making the transformation of variables
I-L(V; T) = [.L[P(V, T)sT]1 so that

du du du dp
L) =32 == i I 3
(dT)V <dT>p+ (dp r \dT )y ®)
We furthermore identify (dp/dp); as V/N. Only the
second term of this expression gives rise to a discontinuity

at the phase transition, for which we can use one of the
Ehrenfest relations®

A (dp/ dT)V

_ dInT,
ACy - ’

av e

As for a single-component system NdI./dN =

—VdT,./dV, we can now rewrite the Ehrenfest relation
in the form

A(dp/dT), _dlnT, )
ACy 4N ‘

which is identical to Eq. (1). This treatment resolves the
apparent contradiction between microscopic treatments,
which give a finite jump in du/dT at T, and general
arguments according to which u has to be smooth at a
second-order phase transition: As mentioned in the In-
troduction the microscopic treatment is carried out for
a given electron concentration® at fixed volume, whereas
the thermodynamic treatment forbids the kink in p(T)
in a one-component system at a constant external pres-
sure. We will show in the next section, that the partial
chemical potential of electrons may have a kink, even
at fixed pressure, if the thermal changes of the volume
are taken into account. Thus it is instructive to look
for its behavior first at fixed volume, such as is usu-
ally obtained from a microscopic description, and then
make the Legendre transformation of the free energy
G(p,N,T) = F(V,N,T) + pV, to discuss the effects of
fixing external pressure instead of volume. Important
here is the role of the long-range Coulomb interaction.

II1. FIXED VOLUME

The thermodynamical state of the solid as follows
from these conditions is described by the Helmholtz
free energy F(V,T,N,N.), where N is the number of
elementary cells, and N, is the number of electrons.
Equivalently we can use the electron concentration = =
N./N, so that we can write the free energy in the form
F(V,T,N,z). The Gibbs free energy per unit cell is

u(V) = (%)V,T’z and the chemical potential of the elec-
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trons is p¢(V) = N—1 (g—f)V’T, - If the particles would
be neutral, the free energy would depend on the volume
as F =V f(n,2,T) where n = N/V. However if we want
to discuss phenomena where the number of electrons is al-
lowed to change, we should also add the Coulomb (charg-
ing) term, which has a different dependence on the size of
the system. We use for the corresponding term the sim-

le expression §F¢ = mﬁ;—s—“ﬁ Coulomb energy of a
pie exp 2V

charged sphere of radius R = V'*/3 and charge eN (z—2o)
with zp the equilibrium number of electrons per unit cell,
Thomas-Fermi screening has no effect on the macroscopic
charging energy of the sample]. We will see later that
the precise shape of the sample, and therefore the exact
value of the prefactor in 6 F, is unimportant. Hence the
Helmholtz free energy is

F(V,N,z,T) = Vf(n,z,T) + Le(z — zo)2N2V /3,
(6)

For systems where the external volume is fixed, the chem-
ical potential of the electrons is

l“e(na w’ T’ ¢) = Ldrf

8
WTw'V,N,T, = %55 +ed, )

where in the last line we introduced the charging po-
tential ¢ = ez — zo)n'/3N?/3, If the sample is exter-
nally grounded, the electrons are in equilibrium with the
ground potential which fixes p® at the value of the exter-
nal bath. The electrons can now flow freely in and out
of the sample, so that the number of electrons follows
from solving the above expression for z. From this we
see that the charge per unit cell z — zg is proportional
to N—2/3, Note that the total chemical potential has a

- different form:

dF %5 +¢2n-—-1/3N—2/3 . (8)

w2, T) = GNlver =

We see that, due to the fact that ¢ is finite, the last
(Coulomb) term vanishes in the thermodynamic limit.
Clearly, as different partial derivatives are taken of the
functional f(n,=,T), also a different behavior at the
phase transition occurs for p and p¢. Both of them, how-
ever, would have a kink at 7.: Using the continuity of
entropy along the curve T,(z) in the former, and T.(n)
in the latter case (as in Ref. 3), one obtains Eq. (1) for
the kink in du®/dT, while

‘ du\ a1 dinT,
A(dT>V_N Acvdlnn' -0

Hence the kink in du/dT is proportional to the deriva-
tive of T, with respect to the density of unit cells, which
may also include a possible redistribution of electrons be-
tween reservoirs upon changing the lattice constant. On
the other hand A (du®/dT) is proportional to the dT,/dz,
where z is the number of electrons per unit cell. As was
treated in Ref. 2, if the solid contains two charge reser-
voirs, one of which is “active” in the phase transition, a
reduction of A (du®/dT) occurs if a charge redistribution
between the reservoirs takes place at the phase transi-

. tion. This also follows from the present thermodynamic
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analysis: dT,./dz will be reduced if part of the electrons
moves into an “inactive” reservoir upon varying x.

IV. FIXED PRESSURE

First of all we again obtain the general thefmodynamic
expression for the behavior of u® and (du®/dT) p initially

ignoring charging effects. Following Ref. 6 we differen-
tiate the expression A (8G/8T) = 0 (continuity of en-
tropy) along the curve T.(z) and find .

0= 74 (‘a?) “,[z;“ (5?) e <6,T8w>]r=n

(10)
so that

dp° AC,dInT, ,
A ( dT ) N dz ' (11)

Thus we see that, indeed if we could treat the electron
concentration z as an independent parameter, the chem-
ical potential of electrons pu® would have a kink at the
second-order phase transition, even at fixed pressure. Ex-
pression (11) has the same structure as Eq. (1), with the
natural change of variables.

We can take into account charging effects, by going
from F(V,N,z,T) to the Gibbs free energy G = F +
pV, where p = —8F/9V, and calculate p*(p, N, z,T) =
8G/8N, and pu(p, N,z,T) = G/IN. As a result of the
Legendre transformation, these have the same functional
form as Eqs. (7) and (8). However, these expressions
are in this case a function of p, as the dependence of the
density n on the external pressure has to be solved from

p(n,2,T) = —f(n,2,T) +ngl + §*n?/>N~2/% .

. (12)
As before ¢, defined as e(x —zo)n'/3N?/3, is the charging
potential. Note that the Coulomb term introduces an
additional dependence on the total number of unit cells
N, due to its long-range nature. Hence in principle we
should consider n(p, T,z,N). However, this contribution
vanishes for N — oo:

,ue(p,a:,T,q5) =7 nBa: +6¢ 2

. 13
wp,2,T) = %£+¢2n‘1/3N“3/3- (%)

QS 28 PO
Il:(p,T,d’) “‘l“?_"‘ ;; [1 - 2B0] + [a(T_TC) -

Here ng =.N/V, represents the molar density of the
golid if the order parameter is zero. So in the first place
we notice that in spite of the coupling to the lattice, the
transition remains of second order. Only if the coupling
constant ¢ exceeds the critical value (bngBo)l/ 2, it be-
comes of first order. In the second place we notice that,

cp 9, 1
_Bo] || +§[b-

As p has to be evaluated at the minimum with respect
to the order parameter, it is automatically ensured that
it has no kink at the phase transition, provided that a
Landau expansion can be made. We also notice that the
charging effects do not affect our expression for the kink
in p° [Eq. (11)], as the charging term is of vanishing order
for N — oo: If the sample is electrically isolated N and
z are fixed. As ¢ = e(z —zo)n/3N?/3, the only thermal
variations enter through the volume changes {changes of
n). Hence, if the sample is electrically charged, there are
temperature dependent changes to u® due to changes in
lattice constant at fixed external pressure, that should
be taken into account. If, on the other hand, the sample
is electrically grounded, u® is fixed externally. In this
case e¢ is exactly equal to u® (but with opposite sign)
of the electrically isolated uncharged sample, and can be
measured experimentally.

V. EXAMPLE

- For a solid undergoing a second-order phase transition,
we may write f(n,z,T,¥) = fo + fy, where for fo and
fy we make the following free energy expansion:

2

”
RNV, ¥) = (ot ps)N + 5 1BoVe (—0 - 1)
eV = Vol gf? + 567V,

e T¥) = e TP + Dt (1)

It has to be understood here that the parameters a, b,
and T, are independent of the volume V, and coupling
between the strain field and the superconducting order
parameter is introduced in an ad hoc manner through the
constant ¢.® The expression for the pressure as occurs in
Eq. (12) is

p=—Byg [Y- - 1] —cly)® + 5¢2V—2/3 (15)
Vo 6
from  which we  solve the volume V
= Vo {1~ (p+ c[4|?)/Bo}. We are now ready to calcu-
late the Gibbs free energy, and from it, with the definition
of u, the chemical potential

CZ 4, 2,3 _y/3,-2/3
| [+ 5T AN (1)

—

in the case where the transition is still of second order, T,
is shifted with an amount and direction which depends
on c and the value of the externally applied pressure. The
Gibbs free energy per particle calculated at the minimum
with respect to ¥|? is
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p ]_a2(T—:/”’,_.)2 A

= Pl __P
M(PaT)—lLo+n0 [1 2B %

+§n—-1/3N—~2/3 ,

) )
Tc(p) = Tc +p’no_§o—a )
2
~ c
=ph— .
b no By

Clearly the total chemical potential of the system has a
smooth behavior at the phase transition without a kink,
unless the coupling to the lattice is sufficiently strong to
make the transition first order.

Let us now consider the electronic subsystem. As we
are considering a solid, the number of unit cells, NV, is ex-

ternally fixed, and the corresponding chemical potential

need not be in equilibrium with an external bath. The
situation is completely different for the electrons however,
as these can move in and out of the solid. Using again the
definition £ = N, /N for the number of electrons per unit
cell, we can calculate the corresponding chemical poten-
tial by differentiating the total Gibbs free energy (uN,
where p is the chemical potential as calculated above)
with respect to N.. As we have seen in the preceding
section, the long-range Coulomb forces can be included,

and the correct expression becomes u®(p) = %’g( . +eg,

where we have to assume now that p not only dep,ends on
p and T, but also on z. Indeed most of the properties of
a solid depend strongly on the number of charge carriers
per unit cell, for example by influencing the strength of
the chemical bond between neighboring unit cells, or by
having an effect on the superconducting transition tem-
perature. For our discussion the latter dependence is the
most important one, as we are interested in the behavior
near the superconducting transition. Let us indeed as-
sume that g, is derived from a microscopic theory, which
also predicts that dT,./dz # 0. If the electronic subsys-
tem is brought into equilibrium with an external bath by
connecting it with a current lead, the charge on the sam-
ple is such that e¢ compensates for the difference. Hence
p%(p) = p* and the voltage on the sample is

- a*(T — T,) dT.,

- -(18)
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This voltage has a kink at T, which can be deter-

" mined experimentally by measuring the work function of

the sample. If the lattice is sufficiently soft (By < ¢2/ngb)
the transition becomes first order. The above expression
diverges at the point where By = ¢%/ngb and is no longer
valid in this limit. If the material is hard (Bo >> ¢?/ngb)
and the external pressure small (p « ngaBy/c), Eq. (18)
is just the result which we already obtained at fixed sam-
ple volume.

VI. CONCLUSIONS

The seemingly paradoxal result of microscopic theories
of superconductivity, that the chemical potential may
have a kink at a second-order phase transition, is re-
solved. There are two ingredients in the resolution of
the paradox. The first is that the microscopic treatment
is always carried out at a given concentration of elec-
trons, i.e., at fixed volume or density. In contrast to fixed
pressure, there is absolutely no general rule forbidding
the kink in g at fixed volume; general thermodynamic
results® confirm that. More interesting is the second part

~ of the story. The chemical potential of the electrons is

in general different from the total chemical potential and
thus can have a kink, even at fixed pressure. This stems
from the fact that electrons are free to move in and out of
a solid, thus maintaining electrical equilibrium with the
environment, whereas the ions in a solid are immobile.
As a result the chemical potential of electrons and the
Gibbs free energy per mole of the ions have different de-
pendencies on temperature, pressure, etc., and are only
coupled through the long-range Coulomb forces. Using
scaling arguments the Coulomb charging energy is shown
to be of vanishing order in the Gibbs free energy per unit
cell, the density of the solid, T, and the order param-
eter. At the same time the long-range Coulomb forces
on the one hand keep the charge carrier density fixed,
while on the other hand they transform changes of the
chemical potential of the electrons into equally large and
measurable changes of the work function, if the solid is
in electrical equilibrium with its environment.
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