
Chapter 9
Optical Properties of Correlated Electrons

Dirk van der Marel

Abstract Optical spectra provide a versatile tool for studying the electronic
properties of matter. In addition, the absolute spectral weight of an optical spectrum
reveals optical sum-rules, which are one of the most powerful tools of experimen-
tal and theoretical physics providing access to deeply rooted quantities such as the
effective mass of the charge carriers and their kinetic energy. The formalism for the
optical conductivity of correlated electrons is presented in this chapter for general
values of the inverse wavelength q and general band dispersion εk of the electrons.
The corresponding sumrule is found to have a characteristic q-dependence for the
nearest-neighbour tight binding model, causing in this case a vanishing of spectral
weight for q at the Brillouin-zone boundary, i.e. for qa = π. These findings are of
possible importance for k-resolved infrared spectroscopy, a technique which is in
full development at the moment.

In the treasure trove of correlated matter lurk great opportunities for novel phases
of matter, including various different forms of quantummagnetism, unconventional-
and high-temperature superconductivity, and many other forms of behavior result-
ing from correlated motion of electrons. The correlated behavior of electrons in the
context of quantum many-body systems constitutes one of the remaining challenges
of physics. Characterizing and understanding electronic materials requires sophisti-
cated experimental probes [1]. These include advanced optical techniques, including
infrared spectroscopy at low frequency and small wavelength [2–4]. Although seem-
ingly contradictory, near-field techniques with nano-scale resolution are emerging
andwill open theway toward non-local optical spectroscopy, i.e. optical spectroscopy
probing σ(q,ω) with finite q.

Excellent texts are on the market treating the experimental optical techniques
in the long wavelength limit [5] and the optical conductivity of weakly correlated
electrons [6]. Also the various aspects optical conductivity of for q = 0 has been
described in detail in the literature [7–12]. A step-by-step introduction into the
optical conductivity of correlated electrons, for general electron dispersion εk and
wavevector q is to our knowledge not presented in the literature. The purpose of this
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book chapter is to provide such a discussion. Since the purpose is only to provide
a fairly complete description of the many-body formalism underlying the optical
conductivity at finite wavelength andwave-vectors, no attempt ismade here to review
the vast literature on optical properties of interacting electrons.

9.1 Reflection of Electromagnetic Waves

In this section we discuss the reflection and transmission of electromagnetic (EM)
waves at the interface betweenvacuumanda substancewhich could be a solid, a liquid
or even a gas. With optical spectroscopy one measures the reflection or transmission
as a function of frequency ω. A variety of different experimental geometries can be
used, depending on the type of sample under investigation, which can be a reflecting
surface of a thick crystal, a free standing thin film, or a thin film supported by a
substrate. Two frequently used configurations for measuring the optical constants
are shown in Fig. 9.1.

Important factors influencing the type of analysis are also the orientation of the
crystal or film surface, the angle of incidence of the ray of photons, and the polariza-
tion of the light. In most cases only the amplitude of the reflected or refracted light is
measured, but sometimes the phase is measured, or the phase difference between two
incident rays with different polarization as in ellipsometry. The task of relating the
intensity and/or phase of the reflected or refracted light to the dielectric tensor inside

Fig. 9.1 Two commonly used experimental configurations for measuring optical constants
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the material boils down to solving the Maxwell equations at the vacuum/sample,
sample/substrate interface.

Before attacking the problem of reflection and transmission at an interface, we
first give a brief reminder of the macroscopic Maxwell equations inside a medium.
The main properties of the medium which controls the propagation of EM-waves are
the dielectric constant ε, and the magnetic permeability μ

D = εE

B = μH (9.1)

We come later in the chapter to the microscopic interpretation of ε. We will see
among other things, that ε depends on q and ω, and that it has a real and imaginary
part. The speed of propagation of electromagnetic waves is given by

v2 = c2

εμ
(9.2)

For Re
√

εμ > 1 the wavelength is compressed compared to what it would be in
vacuum for the same frequency, as can be seen from the following expression for the
wave-vector inside the medium

q2 = εμ
ω2

c2
(9.3)

In vacuum μ = ε = 1. Another consequence of the Maxwell equations is, that
the electromagnetic wave has electric and magnetic components, which are given by

E(z, t) = x̂Eqeiω(z
√

εμ/c−t)

H(z, t) = ŷHqeiω(z
√

εμ/c−t)

μH2
q = εE2

q (9.4)

We also see now, that the effect of a finite value of Im
√

εμ is to cause an exponen-
tial decay of the wave amplitude from the interface inward to the solid. When one
irradiates a perfect interface between the vacuum and a substance with a ray of elec-
tromagnetic radiation, part of the light is transmitted to the interior of the substance,
and part of the light is reflected. The amplitudes of the incident and reflected rays can
measured experimentally. To describe the reflection process one uses the amplitude
and phase of the electric field component of the electromagnetic waves just before
hitting the sample surface, Ei and just after being reflected Er , and just after being
transmitted inside the solid, Et . Likewise the corresponding magnetic fields are Hi ,
Hr and Ht .
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In the following tablewe summarize the consequences of the solutionofMaxwell’s
equations at the interface relevant to this discussion

Ei + Er = Et (i)

Hi − Hr = Ht (ii)

Hi = Ei (iii)

Hr = Er (iv)

μH2
t = εE2

t (v)

We divide left and right of (i) and (ii) by Ei and Hi respectively. We then insert (iii),
(iv) and (v) in (ii). We furthermore define r = Er/Ei and t = Et/Ei . The resulting
equations are

1 + r = t (i)

1 − r = t
√

ε/μ (ii)

Solution of this system of two equations provides

r =1 − √
ε/μ

1 + √
ε/μ

(9.5)

t = 2

1 + √
ε/μ

(9.6)

In the following sections we are going to consider the case of non-magnetic media
where μ(ω) = 1. Once r(ω) has been measured, it then suffices to invert 9.5 to
obtain the real and imaginary parts of ε(ω), which is usually the quantity of interest.
An example of this is shown in Fig. 9.2. A similar procedure can be followed when
measuring the transmission spectrum through a thin film.

9.2 Optical Conductivity, Current and Electric Field

The optical conductivity expresses the current response to an electric field

J(r, t) =
∫

d3r ′
t∫

−∞
dt ′σ(r, r ′, t − t ′)E(r ′, t ′) (9.7)
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Fig. 9.2 Optical spectrum in the infrared range of the insulating quantum magnet NaV2O5. Top
panel experimental reflectivity and phase. Lower panel Real and imaginary parts of the dielectric
function ε(ω). Source [13]

We consider the situation where the electric field is described by a plane wave with
a wavevector q and a frequency ω, hence E(r, t) = Eqei(q·r−ωt), with similar
definitions, Jq , Dq , Pq , for the current, displacement field and polarization density.
We will assume here, that the fields are sufficiently small, so that we may consider
only induced electrical currents which are linearly proportional to the electric fields
at each coordinate r of the matter. Consequently the currents oscillate at the same
frequency and wavelength as the electric field.

Written in frequency and momentum representation the relation between Eq and
Jq is

Jq = σ(q,ω)Eq (9.8)
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The electric field of a plane electromagnetic wave is transverse to the photonmomen-
tum. The tensor elements of the optical conductivity which can be measured in an
optical experiment, are therefore transverse to the direction of propagation of the
electromagnetic wave. The component of the dielectric function describing polariza-
tion transverse to the propagation of the EM wave can be expressed in terms of the
“optical conductivity”, which has a real and an imaginary part. The relation linking
the optical conductivity to ε(q,ω) is

ε(q,ω) = Dq

Eq
= 1 + 4πi

ω
σ(q,ω) (9.9)

In a typical optical experiment the photon energy is below 6 eV. In vacuum the
photon wave number used in optical experiments is therefore 0.0005Å−1, or smaller,
which is at least three orders of magnitude below the reciprocal lattice constant
in a solid. Hence with optical spectroscopy one measures the transverse dielectric
function -corresponding to the optical conductivity—in the limit of vanishing wave-
vector.

9.3 Transverse and Longitudinal Dielectric Function

In the previous sections we have seen that optical experiments measure the transverse
dielectric function εt (q,ω). This can for example be done by analyzing the reflection
coefficient at a sample-vacuum interface. The transverse nature of electromagnetic
waves makes that the component of ε(q,ω) relevant for the optical properties, is
polarized transverse to q, i.e. to the propagation direction of the EM wave. For
the purpose of the discussion in the present section we have written the index t
specifically as a reminder of that. However, the general definition of ε(q,ω) is

ε(q,ω) = Dq

Eq
(9.10)

where D(r, t) = Dq exp i(q · r − ωt) and E(r, t) = Eq exp i(q · r − ωt). For
waves traveling in vacuum transverse polarization is the only possibility allowed by
Maxwell’s equations. Inside a material, on the other hand, longitudinal electromag-
netic waves do in fact exist, plasmons for example. Static and dynamic screening
of charge inside solids is an important phenomenon which involves the longitudinal
component of the dielectric function.

Since we have already seen how to measure εt (ω), we may wonder how one
can measure also εl(q,ω). The experimental method allowing to do so is called
Electron Energy Loss Spectroscopy (EELS). This technique consists of measuring
the inelastic decay of fast electrons passing through a sample. Experimentally one
creates a monochromatic beam of high energy electrons, typically with an energy of
170keV. These electrons are fired through a thin slab (100nm thick) of the material
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which one wishes to investigate. Part of the electrons emerge at the other side of the
sample with the original energy and momentum, others have lost an amount of their
energy, and have transferred momentum to an excitation inside the solid. For each
value of transferred momentum, q, the number of electrons can be counted for any
given value of the energy loss, �ω by selecting a certain direction in space, and by
selecting the energy of the electrons emerging from the sample.

A collision process inside the solid, whereby the momentum changes from p to
p−q and the energy from Ein = p2/(2m) to Eout = | p−q|2/(2m) = p2/(2m)−�ω
generates during the collision process a longitudinal dielectric displacement field,
D(r, t) ∝ exp (iq · r − iωt). Since inside a material the dielectric displacement is
screened by the response of the matter particles, the resulting electric field is

E(q,ω) = 1

ε(q,ω)
D(q,ω) (9.11)

The probability per unit time that a fast electron transfers momentum q and energy ω
to the electrons was derived by Nozières and Pines for a fluid of interacting electrons

P(q,ω) = 8πq2
e

|q|2 Im

{ −1

ε(q,ω)

}
(9.12)

whereqe is the electron charge.Hence this technique provides the longitudinal dielec-
tric function, i.e. the response to a dielectric displacement field which is parallel to
the transferred momentum q.

Finally we come back to the optical spectroscopy. In the limit q → 0 the distinc-
tion between longitudinal and transverse polarization vanishes, and consequently

lim
q→0

εt (q,ω) = εl(q,ω) (9.13)

Since optical spectroscopy allows to measure real and imaginary part of εt (q,ω), it
is possible to calculate the loss function Im(−1/ε(q,ω)) for q → 0 , and this should
correspond exactly to the energy loss spectra measured with EELS. An example
where the two techniques are compared for the same material is given in Fig. 9.3.
Indeed, we see that the two techniques give the same result for q → 0, as expected.

9.4 Quantum Electrodynamics of Electrons in a Lattice

To keep the notation light, we use Planck units in the remainder of this chapter.
In those units � = 1, c = 1. Since the fine-structure constant is α = q2

e /�c, we
automatically have qe = −√

α in these units. We will however continue to use the
symbol qe to indicate the electron charge throughout this chapter. Spin-coordinate
plays no role of particular importance in this chapter; we therefore suppress the
spin-labels in the following subsections in the interest of compactness of notation.
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Fig. 9.3 Comparison of the optical data (left [14]) and EELS spectra (right [15], reproduced
from the original figure with permission of the authors.) of Bi2Sr2CaCu2O8, both providing
Im(−1/ε(q,ω)). The peak positions in both spectra correspond to the plasma-resonance frequency

9.4.1 Coupling of Interacting Electrons in Solids
to an Electromagnetic Field

We begin by defining the system in the absence of an external electromagnetic field.
We consider a tight-binding model for the conduction band, where the tunneling of
an electron on a given site rm to surrounding sites rm+ j is described by the hopping
matrix element t j . In addition we have to take into account the interaction between
the electrons, which in general is a function of their mutual distance. Although the
interaction may in principle also depend on the spin, this aspect plays no role in the
present discussion. The full matter Hamiltonian including interactions is then
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Ĥ0 = Ĥ kin + Ĥ int

Ĥ kin = −
∑

m, j

t j (c
†
m+ j cm + c†mcm+ j )

Ĥ int = 1

2

∑

m,n

Vm−n ρ̂(rm)ρ̂(rn) (9.14)

where ρ̂(r j ) = c†j c j is the density operator at lattice site j . For later use we point
out, that the first term is diagonal on the basis of Bloch-states represented by the
operators

c†k = 1√
Ns

∑

m

e−i k·rm c†m

In terms of which

Ĥ kin =
∑

k

εkc†k ck

εk = −2
∑

j

t j e
i k·r j

vk = ∂εk

∂k
= −2i

∑

j

t j r j e
i k·r j (9.15)

Let us now turn to the microscopic quantum mechanical expression for the optical
conductivity. We will follow closely the treatment of Mahan [9], and by Nozières
and Pines [7]. We consider the effect of a time-varying electric field, which is the
time derivative of the vector potential, i.e. the relation between A = Aqe−iωt and
E = Eqe−iωt is

E(t) = −∂ A(t)

∂t
= iω A(t). (9.16)

In quantum electrodynamics the coupling between the electromagnetic field and the
electrons is introduced by making the “minimal substitution” p → p − qe A in the
kinetic energy term of the Hamiltonian. Since here we are concerned with the tight-
binding model on a lattice, we need some form of “course graining” of the vector
potential. The relation between direct- and reciprocal space representations is then

Aq = 1√
Ns

∑

m

e−iq·rm Am (9.17)
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If an electron is transferred from lattice coordinate rm to rn , the wavefunction picks
up a phase due to the vector potential, described by the integral (qe/�)

∫ m+ j
m A(s)·ds,

which depends on the path if∇× A �= 0. A difficulty is, that with the course-graining
procedure we have introduced some ambiguity regarding the path followed by the
electron. Since the path of a hopping term t j in the tight-binding Hamiltonian is of
the order of a lattice constant, the variation of A(s) along the path is very small. We
follow the Peierls coupling scheme, and substitute a constant value in the integral,
Am, j = (Am + Am+ j )/2, corresponding to the average over the tunneling path.

The integral than becomes
∫ m+ j

m A(s) · ds = Am, j · r j . The corresponding Peierls
substitution

t j → t j e
−iqe Am, j ·r (9.18)

does not affect the interaction part of the Hamiltonian (9.14), but the kinetic energy
term picks up the extra phase. The Hamiltonian in the presence of Am, j is, according
to the “Peierls coupling” scheme

Ĥ = −
∑

m, j

t j (e
−iqe Am, j ·rc†m+ j cm + eiqe Am, j ·rc†mcm+ j ) + Ĥ int (9.19)

9.4.2 General Consideration About the Calculation
of the Linear Response

We are interested to calculate the linear response of the current density Jq to the
electric field Eq , which is related to the vector potential Aq through Eq = iω Aq .
The current density is related to the local velocities of all electrons, described by the
expectation value of the current operator ĵ(r) through J(r) = 〈 ĵ(r)〉. Note, that
J(r) refers to the amount charge passing per unit of time per unit area perpendicular
to J(r). The optical conductivity is then

σ(q,ω) = Jq

Eq
= 〈 ĵq〉

iω Aq
(lim Aq → 0) (9.20)

In general terms our task is to compute the time-dependent expectation value of the
current operator in the presence of the vector potential. The vector potential enters the
problem on two levels: First, the time-independent current operator in the presence
of the vector potential is already different from the current operator without vector
potential. Secondly the time evolution of the current operator is described by the
Hamiltionian (9.19), which also contains the vector potential. Taken together

σ(q,ω) = 1

iω Aq

〈
ei Ĥ(Aq )t ĵq(Aq)e−i Ĥ(Aq )t

〉
(lim Aq → 0) (9.21)
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We see, that the vector potential enters in various different positions in the expression.
One can proceed by making Taylor series expansions of all terms, and collect at the
end all terms linear in Aq . Each step takes care and precision, since the operators
in this expression don’t commute. These steps are treated in the following three
subsections.

9.4.3 Expansion of the Current Operator in Powers
of the Vector Potential

In quantum electrodynamics the current density is obtained from the relation J =
−�−1∂ Ĥ/∂ A. For our tight-binding Hamiltonian (9.14) this implies

ĵ(rm) = − 1

�

[
∂ Ĥ

∂ Am

]

(9.22)

= 1

�

∑

j

t j r j (−iqee−iqe Am, j ·r j c†m+ j cm + iqeeiqe Am, j ·r j c†mcm+ j )

which we expand in powers of Am, j , retaining only terms up to first order

ĵ(rm) = ĵ
r
(rm) + ĵ

d
(rm)

ĵ
r
(rm) = −i

qe

�

∑

j

t j r j (c
†
m+ j cm − c†mcm+ j )

ĵ
d
(rm) = −q2

e

�

∑

j

t j r j (r j · Am, j )(c
†
m+ j cm + c†mcm+ j ) (9.23)

The first term in (9.23) is the so-called “regular” term of the current operator, since
it is independent of the vector potential. We draw attention to the physical interpre-

tation of the velocity operator. The matrix element
〈
−iqet j r j c

†
m+ j cm

〉
describes a

process whereby an electron tunnels from position rm to rm+ j . The tunneling time
of this process is 1/t j , and the displacement is r j . The effective velocity of this
process is therefore r j t j . The second term proportional to < c†mcm+ j > describes

the same event, except that it occurs in the opposite direction. The operator ĵ
r
(rm)

therefore describes exactly the current passing through lattice position rm . While
the Peierls substitution is burdened by ambiguities (except if A(r) is uniform), the
regular part of the current operator in (9.23) is a robust result, which satisfies our
intuitive understanding of a local current. Its momentum-space representation is
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ĵ
r
q = 1√

Ns

∑

m

e−iq·rm ĵ
r
(rm) = qe

�

∑

k

vk + vk−q

2
c†k ck−q (9.24)

where vk = ∂εk/∂k is the group velocity.

The “diamagnetic part” of the current, ĵ
d
, is the term which is proportional to

Am . Its Fourier transform is

ĵ
d
q = −q2

e

∑

q ′
Aq ′ · K̂ q,q ′ (9.25)

K̂ q,q ′ ≡ 1

2�

∑

j,k

t j r j r j (2eiq ′·r j cos k · r j + ei k·r j + ei(k+q−q′)·r j )c†k ck+q−q ′

The expectation value has finite contributions only from q = q ′ in the above expres-
sion, hence

Jd
q =

〈
ĵ
d
q

〉
= −q2

e Aq · K (q) (9.26)

where the tensor K (q) is proportional to the spectralweight in the optical conductivity
function

K (q) = 2

�

∑

k, j

t j r j r j e
i k·r j cos2

(q · r j

2

) 〈
c†k ck

〉
(9.27)

We see, that (9.27) indicates that K (q) depends on the wavevector q of the perturb-
ing field. For the special case of the nearest-neighbour tight-binding model we will
find confirmation of exactly this q-dependence from a different approach in subsec-
tion9.5.4. Nevertheless, we have to keep in mind that the course-graining procedure
used in the Peierls substitution is only fully accurate for a uniform vector potential,
i.e. q = 0. For a general type of dispersion ε(k) non-negligible corrections of order
q2 to (9.27) are to be expected. The limit for q → 0 of (9.27) gives

K = 1

�

∑

k

∂2εk

∂k2

〈
c†k ck

〉
(9.28)

The only exception where K (q) is q-independent occurs for a parabolic energy-
momentum dispersion relation of the electrons, εk = k2/2m. We then obtain the
result

K (q) = K = n

m
(9.29)

For an entirely filled band at zero temperature
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(2π)3

�

∑

k

∂2εk

∂k2
nk =

∫

1t B Z

∂εk

∂k
dsk = 0 (9.30)

where the integral is over the surface of the first Brillouin zone. Since ∂εk/∂k = 0
on the BZ surface, this integral is zero, and consequently K = 0 in this case.

Combining (9.24) and (9.26) we obtain the full expression for the current operator

ĵq = ĵ
d
q + ĵ

r
q = −q2

e

∑

q ′
Aq ′ · K̂ q,q ′ + qe

�

∑

k

vk + vk−q

2
c†k ck−q (9.31)

9.4.4 Expansion of the Hamiltonian in Leading Order
of the Vector Potential

We now turn to the Hamiltonian in (9.19). Since we are interested in the linear
response to the vector potential, we use a Taylor expansion in powers of Am

Ĥkin(Aq) = Ĥ kin + iqe

∑

m, j

t j Am, j · r j (c
†
m+ j cm − c†mcm+ j + · · · ) (9.32)

The terms proportional to Am, j can be worked out as follows:

iqe

∑

m, j

t j Am, j · r j (c
†
m+ j cm − c†mcm+ j )

= iqe

∑

k,q, j

t j Aq · r j (e
i k·r j − e−i(k+q)·r j )c†k ck+q

= −qe

∑

k,q, j

Aq · vk + vk+q

2
c†k ck+q = −�

∑

q

Aq · ĵ
r
−q

where, in order to write the last equation, we use the result for the regular term
of the current operator, (9.24). In leading order of Aq the Hamiltonian can then
be written as the sum of two terms, Ĥ0 representing the full matter Hamiltonian
including interactions (9.14), and Ĥ p representing the perturbation due to a time-
varying vector potential

Ĥ = Ĥ0 + Ĥ p

Ĥ p = −�
∑

q

Aq · ĵ
r
−q (9.33)
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9.4.5 Current Response to an Applied Field

The response to the vector potential is described by expectation value of the Heisen-
berg representation of the current operator, taking the full Hamiltonion including the
vector potential

Jq(t) =
〈
ei Ĥ t ĵqe−i Ĥ t

〉
=

〈
ĵ
d
q(t)

〉
+

〈
ĵ
r
q(t)

〉
= −q2

e Aq · K (q) + Jr
q(t) (9.34)

The diamagnetic contribution to the conductivity is now easily obtained using the
definition (9.20)

σd(ω, q) = Jd
q

iω Aq
= iq2

e K (q)

ω
(9.35)

This term expresses that in the absence of a potential binding the electrons to the
lattice, the response will be that of a plasma of freely moving charged particles with
mass m, charge qe, and density n = N/�.

The second contribution to the current in (9.34) represents the combined effect of
the crystal potential in which the electrons move, and their mutual interactions. The
corresponding “regular” contribution to the optical conductivity is

σr (ω, q) = Jr
q

iω Aq
(9.36)

At this point it will be useful to introduce the Heisenberg representation of the
current operator in the absence of the external field described by the term Ĥ p in
the hamiltonian.

ĵ
0
q(t) = ei Ĥ0t ĵqe−i Ĥ0t (9.37)

The vector potential A(t) has been switched on at a certain time t0. Without loss of
generality we can choose this time to be t0 = 0. To describe the time-evolution of
the current operator caused by A(t), we introduce the time-evolution operator

Û (t) = ei Ĥ0t e−i Ĥ t t ≥ 0

Û (t) = 1 t < 0 (9.38)

With the help of (9.37), (9.38) we can rewrite ĵ
r
q(t) in the expression of Jr

q(t)

ĵ
r
q(t) = ei Ĥ t ĵqe−i Ĥ t = Û †(t) ĵ

0
q(t)Û (t) (9.39)
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With the help of this we obtain

Jr
q(t) =

〈
Û †(t) ĵ

0
q(t)Û (t)

〉
(9.40)

We like to expand the expression for the current as a function of Ĥ p and look for

the leading terms for the linear response. Since the definition of ĵ
0
(r, t) contains

Ĥ0 instead of Ĥ , it does not depend on the vector potential Ĥ p. It is therefor only
necessary to expandU (t) as a function of Ĥ p . To do soweneed to know the properties
of Û (t). First of all, according to (9.38) we have Û (−∞) = 1. In addition, Û (t)
satisfies the following expression for the derivative with respect to time

∂Û

∂t
= i Ĥ0ei Ĥ0t e−i Ĥ t − iei Ĥ0t Ĥe−i Ĥ t = ei Ĥ0t Ĥ pe−i Ĥ t

= iei Ĥ0t Ĥ pei Ĥ0t e−i Ĥ0t e−i Ĥ t = −i Ĥ p(t)Û (t)

To solve this equation, we integrate from the lower limit Û (−∞) = 1 to finite time
t :

Û (t) = 1 − i

t∫

−∞
dt ′ Ĥ p(t ′)Û (t ′)

Iterative solution yields

Û (t) = 1 − i

t∫

−∞
dt ′ Ĥ p(t ′) + 1

2

t∫

−∞
dt ′

t ′∫

−∞
dt ′′ Ĥ p(t ′)Ĥ p(t ′′) + · · ·

Since we restrict the discussion here to linear response, we need only the first two
terms. Substituting those in (9.40) yields

Jr
q(t) =

〈⎛

⎝1 + i

t∫

−∞
dt ′ Ĥ p(t ′)

⎞

⎠ ĵ
0
q(t)

⎛

⎝1 − i

t∫

−∞
dt ′ Ĥ p(t ′)

⎞

⎠

〉

(9.41)

The matrix element
〈

ĵ
0
(r, t)

〉
= 0 for a system in equilibrium. Furthermore terms

proportional to (Ĥ p)2 contribute to the quadratic response.We now substitute Ĥ p =
−�

∑
q Aq · ĵ

r
−q (9.33). Retaining only the linear terms gives
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Jr
q(t) = i�

t∫

−∞

〈[
ĵ
0
q(t), ĵ

0
−q(t ′) · Aq(t ′)

]〉
dt ′

We substitute Jr
q(t) = Jr

qe−iωt and Aq(t) = Aqe−iωt and multiply both sides with
eiωt

Jr
q = i�

t∫

−∞

〈[
ĵ
0
q(t), ĵ

0
−q(t ′) · Aq

]〉
eiω(t−t ′)dt ′

Due to time-invariance, we have
[

ĵ
0
q(t), ĵ

0
−q(t ′)

]
=

[
ĵ
0
q(t − t ′), ĵ

0
−q(0)

]
(9.42)

We substitute t − t ′ → t ′′, so that

Jr
q = i�

∞∫

0

〈[
ĵ
0
q(t ′′), ĵ

0
−q(0) · Aq

]〉
eiωt ′′dt ′′

We now divide both sides by Aq

Jr
q

Aq
= −χ j j (q,ω) (9.43)

where χ j j (q, t) is the current-current correlation function defined as

χ j j (q, t) = −iθ(t)�
〈[

ĵq(t), ĵ−q(0)
]〉

(9.44)

and

χ j j (q,ω) =
∞∫

−∞
χ j j (q, t)eiωt dt (9.45)

Comparing this to (9.36) we see, that the regular part of the optical conductivity is

σr (ω, q) = i

ω + iη
χ j j (q,ω) (9.46)

where iη = i0+ moves the pole infinitesimally away from the real axis, such as to
assure causality in the time-dependence of the relation between current and electric
field.
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9.4.6 Frequency and Temperature Dependent Optical Conductivity

We see, that the regular par of the optical conductivity is proportional to the current-
current correlation function, divided by the frequency. We continue the discussion
by considering a well-defined many-particle state |n〉, for which we calculate the
optical conductivity

σr (q,ω) = �

ω + iη

∞∫

0

〈
n

∣
∣
∣
{

ei Ĥ0t ĵqe−i Ĥ0t ĵ−q − ĵ−qei Ĥ0t ĵqe−i Ĥ0t
}∣
∣
∣ n

〉
eiωt dt

After some manipulation with the operators ei Ĥ0t and e−i Ĥ0t we obtain

σr (ω, q) = �

ω + iη

∞∫

0

∑

m �=n

{
jnm
q jmn−qei(ω+En−Em )t − jnm−q jmn

q ei(ω+Em−En)t
}

dt

where for compactness of notation we represent the matrix elements of the current
operators as

jnm
q ≡ 〈n| ĵ

r
q |m〉 (9.47)

In the remainder we will assume a basis on which the conductivity tensor is diagonal,
so that jnm

q // jmn−q . We can than drop the tensor notation and replace jnm
q jmn−q with

| jnm
q |2. We also introduce the short-hand notation for the energy differences Em −

En = ωmn . Carrying out the integrations over time we obtain

σr (ω, q) = i
∑

m �=n

�| jnm
q |2

ω + iη

{
1

ω − ωmn + iη1
− 1

ω + ωmn + iη1

}
(9.48)

Note, that both η and η1 are to be taken in the limit η → 0, but that these limits are
independent from one another, i.e. η1 �= η.

The expression for the total conductivity (diamagnetic + regular) is obtained by
combining this with (9.35).

σ(q,ω) = σd(q,ω) + σr (q,ω) (9.49)

= i

ω + iη

⎧
⎨

⎩
q2

e K +
∑

m �=n

[
�| jnm

q |2
ω − ωmn + iη1

− �| jnm
q |2

ω + ωmn + iη1

]⎫
⎬

⎭
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In (9.49) σ(ω) is represented by two separate terms, a δ-function for ω = 0 and a
summation over excited many-body eigen-states. The δ-function is a diamagnetic
contribution of all electrons in the system, the presence of which is a consequence of
the gauge invariant treatment of the optical conductivity. Note however, that accord-
ing to (9.30) for an insulator (the bands of which are either fully occupied or entirely
empty) we have K = 0. The presence of this term is at first glance rather confusing,
since left by itself this δ-function would imply that all metals are ideal conductors!
However, the second term has, besides a series of poles corresponding to the optical
transitions, also a pole for ω = 0, corresponding to a negative δ-function of Reσ(ω).
It turns out, that for all materials except ideal conductors this δ-function compen-
sates exactly the first (diamagnetic) term of (9.49). This exact compensation is a
consequence of the relation.1

For every n: q2
e K = 2

∑

m �=n

�| jnm
q |2

ωmn
(9.50)

Experimentally truly ‘ideal’ conductivity is only seen in superconductors. In ordinary
conducting materials the diamagnetic term broadens to a Lorentzian peak due to
elastic and/or inelastic scattering. The width of this peak is the inverse life-time of
the charge carriers. Often in the theoretical literature the broadening is not important,
and the Drude peak is counted to the Dirac-function in the origin. The infrared
properties of superconductors are characterized by the presence of both a purely
reactive diamagnetic response, and a regular dissipative conductivity. The sum of
these contributions counts the partial intra-band spectral weight which we discussed
previously in relation to the “kinetic energy sum rule”. With the help of (9.50), the
diamagnetic term of (9.49) can now be absorbed in the summation on the right-hand
side, so that after combining all terms

σ(q,ω) = 2iω
∑

m �=n

�| jnm
q |2

ωmn

1

ω(ω + iη) − ω2
mn

(9.51)

wherewe have to keep inmind, that the equivalencewith (9.49) holds under condition
that η (= 2η1) is infinitesimally small. Note, that in deriving (9.51) from (9.49), an
ω+iη term in the numerator has been replaced byω since, unlike for the denominators
containing iη, the effect of iη vanishes if we consider the limit η → 0.

In (9.51) we have calculated the optical conductivity assuming that, under the
influence of the external potential, the system evolves as a function of time from an
eigenstate |n〉. In the most common experimental situation the sample is in thermal
equilibrium with heat bath with temperature T . Following the approach of Kubo we
calculate the conductivity using thermodynamical weight factors e−βEn /Z for each

1 Equation (9.50) is obtained if one represents the current operators as commutators of the hamil-
tonian with the dipole operator defined in (9.68). The expectation value of the hamiltonian is used to
cancel out the factor ωmn in the denominator of the expression. In the final step the commutator of
the dipole operator and the current operator is calculated, which completes the derivation of (9.50).
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many-body eigenstate (see [9] for a discussion on the justification of this approach).
Here Z is the partition function, and β = 1/kB T . The expression for the optical
conductivity at finite temperature becomes then

σ(q,ω) = 2iω
∑

n,m �=n

�| jnm
q |2

ωmn

e−βEn

Z

1

ω(ω + iη) − ω2
mn

(9.52)

The imaginary parts of the terms are Dirac δ-functions, so that

Reσ(q,ω) = π
∑

n,m �=n

�| jnm
q |2

ωmn

e−βEn

Z
{δ(ω − ωmn) + δ(ω + ωmn)} (9.53)

The spectrum thus consists of a series of peaks, each representing an excitation
from the ground state |n〉 to an excited many-body state |m〉 at an energy cost ωmn .
In atoms and molecules one observes indeed a discrete set of lines. In solids the
excitations broaden into bands due to the fact that the excitations in different parts
of the lattice are coupled, resulting in bands of excited states. The most commonly
observed excited states are the creation of one hole in the occupied band and one
electron in the states above EF . The resulting optical spectrum is than something like
a joint density of states of the bands below and above the Fermi energy. Examples of
this are shown for ametal (MnSi), a semi-comductor (FeSi), a semimetal (CoSi) and a

Fig. 9.4 Density of states (left) and real part of the optical conductivity (right) of a number of
transition-metal silicides. Source [16]
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doped semiconductor (Co-dopedFeSi) are shown inFig. 9.4. The optical conductivity
of FeSi reveals the gap around the Fermi energy visible in the density of states of the
left panel.

9.4.7 The Drude-Lorentz Expression

It is useful at this stage to relabel the transitions m, n → j , where j is a generalized
index, and to introduce a plasma frequencies for each transition with energy ωmn =
ω j

� j (q)2 = 8π
�| jnm

q |2
ωmn

e−βEn

Z
(9.54)

with the help of which we obtain the following compact expression for the optical
conductivity tensor

σ(q,ω) = iω

4π

∑

j

� j (q)2

ω(ω + iγ j ) − ω2
j

(9.55)

Although formally γ j = η = 0+, a natural modification of (9.55) consists of lim-
iting the summation to a set of oscillators representing the main optical transitions
and inserting a finite value for γ j , which in zero’th approximation represents the
inverse lifetime of the corresponding excited state (e.g. calculated using Fermi’s
Golden Rule). With this modification (9.55) is one of the most commonly used phe-
nomenological representations of the optical conductivity, generally known as the
Drude-Lorentz expression. An example is shown in Fig. 9.5. In its original incar-
nation the Drude-Lorentz expression is obtained from a model of classical damped
oscillators.

The simple recipe of broadening the δ-functions by a life-time broadening is prone
to pitfalls: For example, different line shapes of the oscillators are obtained if we
make the substitution η1 = η = γ in (9.49). Apparently it is important to combine
all (positive and negative) δ-functions coming from diamagnetic (σd ) and regular
(σr ) terms in (9.49), not only in order to cancel out the negative δ-function in the
origin, but also to make a connection to the Drude-Lorentz expression.

9.5 Spectral Weight Sum Rules

9.5.1 K-Sum Rule

We define the total spectral weight of the optical conductivity as follows
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Fig. 9.5 Optical conductivity of HgBa2CuO4, shown together with a fit to (9.55). Each of the
colored curves represents a separate term defined by its position ωmn , strength �2

mn and width γmn .
Source [17]

W (q) ≡ Re

∞∫

−∞
σ(q,ω)dω (9.56)

The optical conductivity has, as we have seen in the previous subsection, a dia-
magnetic part and a regular part. We split up the corresponding contributions to the
spectral weight accordingly, i.e.

W (q) = W d(q) + W r (q)

W d(q) = Re

∞∫

−∞
σd(q,ω)dω

W r (q) = Re

∞∫

−∞
σr (q,ω)dω (9.57)

To calculate W d(q) we use (9.35)
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W d(q) = Re

∞∫

−∞

i K (q)

ω + iη
dω = πq2

e K (q) (9.58)

where K (q) is defined in (9.27). The substitution ω → ω + iη in the denominator is
needed to ensure causality and convergence of the integrals. The same substitution
is used in (9.46) from which we calculate W r (q).

W r (q) = Re

∞∫

−∞
dω

i

ω + iη

∞∫

0

χ j j (q, t)eiωt dt (9.59)

It is easy to see that the total regular spectral weight is zero. We first interchange the
order of integration over frequency and time:

W r (q) = Re

∞∫

0

dtχ j j (q, t)

∞∫

−∞

i

ω + iη
eiωt dω (9.60)

We can calculate this by a contour integral. Since t > 0 the term eiωt converges
exponentially to zero for |ω| → ∞ provided that ω is in the upper half of the
complex plane. The contour integral along the half-circle in the upper half of the
complex plane than also converges to zero for |ω| → ∞. The integral along the real
axis has the same value as the contour consisting of the integral along the real axis and
the half-circle in the upper half plane. To calculate the latter contour, we can apply
Cauchy’s residue theorem. However, the only pole in the integrand occurs for for
ω = −iη, and this is in the lower half of the complex plane. Since the contour-integral
encloses no poles, the integral over ω has a vanishing result. Consequently

W r (q) = 0 (9.61)

Apparantly there is an exact compensation going on between positive and negative
contributions to the “regular” optical conductivity. In the previous subsection we
discussed this in relation to (9.49): The regular optical conductivity has a negative
δ-function at zero frequency, which has exactly the same spectral weight as the
conductivity integrated over all finite frequencies. Moreover, for all metals except
superconductors there is an exact cancellation between the positive δ-function com-
ing from the diamagnetic response, and the negative one from the regular part of the
conductivity.

This completes the general discussion of the spectral weight sum rule. Since this
is a central theorem of many-body physics, we write here in full glory the limit for
q → 0
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Re

∞∫

−∞
σ(0,ω)dω = πq2

e

�

∑

k

∂2εk

∂k2

〈
c†k ck

〉
(9.62)

Two cases of the spectral weight sumrule, (9.62) are of particular importance, which
we detail in the following two subsections.

9.5.2 F-Sum Rule

The free electron dispersion εk = k2/(2m) gives

Re

∞∫

−∞
σ(q,ω)dω = πnq2

e

m
(9.63)

This is the f-sum rule, or Thomas-Reich-Kuhn rule. It is a cornerstone for optical
studies of materials, since it relates the integrated optical conductivity directly to
the density of charged objects, and the absolute value of their charge and mass. It
reflects the fundamental property that also in strongly correlated matter the number
of electrons is conserved.

9.5.3 Kinetic Energy Sum Rule

The nearest-neighbour tight-binding model has a dispersion relation εk = −2t
cos(ka), where a is the lattice constant. The implication for the K -sum rule is

Re

∞∫

−∞
σ(q,ω)dω = πq2

e K (q) (9.64)

K (q) = 1

�

∑

k

2ta2 cos(ka) cos2
(qa

2

)
〈c†k ck〉 = − cos2

(qa

2

) a2

�
〈Ĥ kin〉

This is also known as the “kinetic energy sum rule”, since the spectral weight is
proportional to the minus the average kinetic energy of the electrons. An example
of such a measurement is shown in Fig. 9.6 for a high temperature superconductor.
Besides a gradual change of the kinetic energy (spectral weight) as a function of
temperature, one observes a sudden change at the superconducting phase transition
at 110K.
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Fig. 9.6 Reσ(ω) of the high Tc superconductor Bi2Sr2Ca2Cu3O10 for some selected temperatures.
Inset: Free carrier spectral weight as a function of T . The dotted line signals the critical temperature
of the sample (Tc = 110K). Note that in the superconducting state the optical conductivity has a
δ-function at ω = 0. The spectral weight of this δ-function has been experimentally determined
from the imaginary part of the optical conductivity (not shown), and it’s contribution is taken into
account in W (T ). Source [18]

9.5.4 Regular Part of the Spectral Weight

The exact compensation between the negative zero-frequency mode and the finite
frequency spectral weight of the regular spectral weight (9.61) deserves some extra
attention. It is still interesting to verify the amount present at zero frequency. This
is easily obtained. From inspection of (9.59), we notice that the real part of i

ω+iη
represents a δ-function πδ(ω). The spectral weight of the zero-frequency mode is
then

W r,0(q) = πRe

∞∫

−∞
χ j j (q, t)dt = π�Im

∞∫

0

〈[
ĵ
r
q(t), ĵ

r
−q(0)

]〉
dt (9.65)

where (9.44) was substituted to obtain the righthand part of the equation. We first
define the “dipole” field operator with the property
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∂ p̂q(t)

∂t
= ĵ

r
q(t) (9.66)

We can now integrate (9.65) and obtain

W r,0(q) = π�Im
(〈[

p̂q(∞), ĵ
r
−q(0)

]〉
−

〈[
p̂q(0), ĵ

r
−q(0)

]〉)
(9.67)

The dipole (current) operator is the position (velocity) operator times the elec-
tron charge. Maldague [8] used the position operator for q = 0 defined as x̂ =∑

m rmc†mcm , and calculated the commutator with the velocity operator, resulting in
the K-sum rule for q = 0. Here we generalize this result to q �= 0. It is tempting to
use x̂q = ∑

m e−iq·rm rmc†mcm . While the time derivative has the required property,
that ∂ x̂q/∂t = i[Ĥ kin, x̂q ] = v̂q , there are obvious difficulties with this definition
due to the divergence of rm in the thermodynamic limit. However, those difficulties
can be avoided. If we consider the following operator

p̂q ≡ − iqe

2�

∑

k

vk + vk−q

εk − εk−q
c†k ck−q , (9.68)

then we notice that there are no divergencies of the expression in the thermodynamic
limit for any q �= 0. Moreover, it is easy to verify, that

∂ p̂q/∂t = i
[

Ĥ0, p̂q

]
= ĵ

r
q (9.69)

which implies that p̂q corresponds to the momentum-space Fourier transform of the
dipole operator. The first term in (9.67) represents the response in the pq -channel
after an infinite amount of time, which is certainly zero. The second term can be
calculated directly from the commutation relations

�
〈[

p̂q , ĵ
r
−q

]〉
= iq2

e K r (q)

where

K r (q) = 1

4�

∑

k

{
(vk+q + vk)

2

εk+q − εk
+ (vk−q + vk)

2

εk−q − εk

} 〈
c†k ck

〉
(9.70)

Consequently

W r,0(q) = −πq2
e K r (q) (9.71)

The amount of spectral weight at finite frequencies exactly balances this amount,
hence



294 D. van der Marel

W r,+(q) =
∞∫

0+
Reσ(q,ω)dω = πq2

e

2
K r (q) (9.72)

Let us now consider the properties of K r (q). In the first place it is interesting to look
at the limit q → 0. We can use that vk+q − vk = q · ∂2εk/∂k2 for the terms in the
numerators, and εk+q − εk = q · ∂εk/∂k + (q2/2)∂2εk/∂k2 in the denominators to
show that

lim
q→0

{
(vk+q + vk)

2

εk+q − εk
+ (vk−q + vk)

2

εk−q − εk

}
= 4

∂2εk

∂k2
. (9.73)

Consequently by comparing to (9.28) we see, that for q = 0 there is a perfect
compensation of the zero-frequency spectral weights of the diamagnetic and the
regular parts of the conductivity:

K r (0) = 1

�

∑

k

∂2εk

∂k2
〈c†k ck〉 = K (9.74)

Again we consider the most commonly encountered case: The free electron disper-
sion εk = k2/(2m) gives

∞∫

0+
Reσ(q,ω)dω = πq2

e

2m

∑

k

〈c†k ck〉 (9.75)

which is the same expression as the familiar f-sum rule, (9.63), and we see that in
this case K r (q) = K is independent of q.

With the tightbinding formula εk = −2t cos(ka) one obtains after some gonio-
metric manipulations

K r (q) = cos2
(qa

2

) 1

�

∑

k

2 T a2 cos(ka)
〈
c†k ck

〉
= K cos2

(qa

2

)
(9.76)

which corresponds exactly to the result in (9.64).
The fact that the same expression for K (q) is found in (9.76) and (9.64) indicates

the perfect compensation of the positive (diamagnetic) and negative (regular) zero-
frequency delta-functions. This resultmakes perfect sense physically; the implication
is that no dissipation-less DC currents can flow for any wave-vector. Presumably the
implementation of the Peierls substitution used here is quite accurate, despite some
ambiguity for any q �= 0 due to the course-graining procedure of the tight-binding
form.2

2 One can pose the questionwhether the corresponding expression for the current density satisfies the
continuity equation. On a fundamental level this relation expresses the conservation of the number
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Following (9.72) the spectral weight of the optical conductivity decreases as a
function of increasing q and vanishes at the Brillouin-zone boundary.
From inspection of (9.68) it is clear why this is the case: for q = π there is an
exact cancellation of terms in the numerator, i.e. vk + vk+π = 0. In other words, all
optical matrix elements are zero for q = π and consequently the intensity of the opti-
cal spectrum vanishes in this limit. While for general ε(k) dispersion such an exact
cancellation is not expected, yet this indicates that the trend that W (q) diminishes
for increasing q is the rule rather than the exception. With the advent of new experi-
mental techniques which allow the exploration of the optical conductivity at finite q
[2–4] the q-dependent optical conductivity sumrule in (9.72) provides a lower bound
on the intensity of the free carrier optical response of correlated electrons.
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