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Optical spectroscopy and the nature of the insulating state of rare-earth nickelates
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Using a combination of spectroscopic ellipsometry and DC transport measurements, we determine the
temperature dependence of the optical conductivity of NdNiO3 and SmNiO3 films. The optical spectra show
the appearance of a characteristic two-peak structure in the near-infrared when the material passes from the metal
to the insulator phase. Dynamical mean-field theory calculations confirm this two-peak structure and allow us to
identify these spectral changes and the associated changes in the electronic structure. We demonstrate that the
insulating phase in these compounds and the associated characteristic two-peak structure are due to the combined
effect of bond disproportionation and Mott physics associated with half of the disproportionated sites. We also
provide insights into the structure of excited states above the gap.
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I. INTRODUCTION

The rare earth nickelates RNiO3 form a remarkable group
of materials [1–4]. While LaNiO3 remains metallic down to
very low temperatures, all other nickelates undergo a metal-
insulator phase transition (MIT) and antiferromagnetic (AF)
ordering as the temperature is lowered. The two transitions
coincide for Pr and Nd, but they are distinct, with TAF <

TMIT, for all rare-earth cations smaller than Nd (Sm, Gd,
and so on down to Lu) [3]. The mechanism of this MIT,
which differs from that of a homogeneous Mott transition,
raises questions of fundamental importance. Furthermore, the
possibility of controlling the MIT by chemical substitutions,
strain, heterostructures, gating, or light pulses [2–7] make these
materials particularly interesting for potential applications. For
these reasons, nickelates have recently been the subject of
intensive research and attention.

The insulating phase is characterized by a lowering of the
crystal symmetry from orthorhombic to monoclinic and by a
disproportionation of Ni-O bond lengths: The NiO6 octahedra
undergo a breathing distortion, with alternating long-bond
(LB) and short-bond (SB) octahedra on each sublattice. This
lattice modulation is accompanied by some form of charge
ordering, the precise nature of which has been the subject of
debate. Early work [8,9] emphasized the formation of ligand
holes, and the importance of the d8L local configuration, in
contrast to the d7 configuration corresponding to the nominal
Ni3+ valence. This leads to a physical picture for the charge
ordering in which Ni-O bonds are involved (rather than
Ni atomic sites). In an extreme limit of this picture, LB
octahedra are associated with the d8 configuration (with a
large local moment) and SB ones with d8L2 (with the Ni local
moment screened by the two ligand holes) [10,11]. Recently,
theoretical work has provided support to this physical picture:
In Ref. [11] the MIT was explained as a “site-selective” Mott
transition associated with the d8 LB sites, and in Ref. [12] a
corresponding low-energy description was proposed, focusing
on the strongly hybridized Ni-O states with eg symmetry. In
this description, consistent with the proposal of Ref. [13],

an effectively attractive interaction between electrons with
parallel spins in different orbitals naturally leads to the
formation of a bond density wave. Since the bands are quarter
filled, the corresponding doubling of the unit cell opens a
gap above the Fermi level, leaving the material metallic at
the band-structure level. The observed insulating state results
in fact from the combination of unit cell doubling and Mott
physics (local moments) at the LB sites. Although a consistent
picture of the MIT appears to be emerging, a direct comparison
to experiments is still lacking.

In this paper, we report experimental optical spectra
on three different nickelate systems. These spectra show a
common feature: the appearance of two peaks as the MIT is
crossed—hence a “universal” feature of the MIT. We show
that this provides direct insight into the structure of the
insulating phase and that the two-peak structure results from
the bond-disproportionated nature of the low-T phase, with
two kinds of nickel sites. We perform dynamical mean-field
theory (DMFT) calculations within the theoretical framework
introduced in Ref. [12], which are found to reproduce quite
well the main features of the optical spectra. Based on these
calculations, we provide a simple analytical understanding of
these main features and of the relative roles of the Peierls and
Mott mechanisms in the MIT of nickelates.

II. EXPERIMENT

Scanning tunneling microscopy [14] and terahertz time
domain spectroscopy [15] experiments have been interpreted
as evidence of a charge-density wave formation. Previous
optical studies of NdNiO3 films have already shown that in
crossing from the correlated metallic (mass enhancement of
order 4 [16,17]) to the insulating phase strong peaks appear at
approximately 0.5 eV and 1.0 eV [18,19]. The Drude spectral
weight is redistributed up to at least 5 eV when the system
becomes insulating [18–20], which was interpreted as an
indication of Mott physics [19] or effects of electron-phonon
interaction [20]. However, a clear mechanism of the optical
response of the insulating phase has thus far been lacking.
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FIG. 1. (Color online) Real part of the dielectric function (top)
and optical conductivity (bottom) of NdNiO3 on a NdGaO3 (110)
substrate (a), NdNiO3 on a NdGaO3 (101) substrate (b), and for
SmNiO3 on a LaAlO3 (001) substrate (c).

The following thin film/substrate combinations were used
in the present study: NdNiO3 on a (110) oriented NdGaO3

substrate (NNO/NGO-110) [21], NdNiO3 on NdGaO3 (101)
(NNO/NGO-101), and SmNiO3 on LaAlO3 (001) (SNO/LAO-
001). These high quality epitaxial films were prepared as
described in Refs. [22,23]. The dielectric function was de-
termined in the range from 0.5 to 2 eV using ellipsometry at
a reflection angle between 65 and 72 degrees with the surface
normal. Measurements were performed in steps of 1 K using
a special UHV cryostat with a vacuum better than 10−9 mbar.

Data of the epitaxial thin films and corresponding substrates
were combined to calculate the complex dielectric function,
ε(ω) = ε1(ω) + i4πσ1(ω)/ω, using the Fresnel relations (see
Appendix A). The resulting thin film dielectric functions for
all three samples are presented in Fig. 1 for a limited set of
temperatures. DC resistivities of the films were measured as a
function of temperature using the four terminal method. Drude
Lorentz-fitting to the DC resistivity (symbols at zero energy
in Fig. 2) and the complex dielectric function from 0.5 to 2 eV
was used to interpolate the optical data below 0.5 eV. While
the spectral weight of σ1(ω) integrated from 0 to 0.5 eV is
accurately represented by this procedure due to the constraints
imposed by simultaneously fitting σ1(ω) and ε1(ω) [24], fine
details such as phonons are not captured in this representation.

Figure 2 shows the energy dependence (upper panels) and
energy/temperature color maps (lower panels) of the real part
of the optical conductivity for samples NNO/NGO-110 (a),
NNO/NGO-101 (b), and SNO/LAO-001 (c). In the insulating
state, at low temperatures, the dominant features of the
optical conductivity are two peaks at 0.6 (A) and 1.4 eV (B)
for all three samples [Figs. 2(a)–2(c)]. Upon increasing the
temperature and passing through the insulator-metal transition,
the peaks vanish and a broad 1 eV peak along with a weak
feature at 0.5 eV for samples (b) and (c) appear instead.
Formation of free carriers is clearly visible with the growth of
a zero energy mode in the optical conductivity for �ω � 1 eV
(Fig. 2) and a sign change in the real part of the dielectric
function (Fig. 1).

From the metallic to the insulating state, all three sam-
ples present a comparable amount of spectral weight, of

FIG. 2. (Color online) Real part of the optical conductivity for selected temperatures and energy/temperature color maps of samples (a)
NNO/NGO-110, (b) NNO/NGO-101, and (c) SNO/LAO-001. Metal-insulator phase transitions are indicated by arrows on the color maps. A

and B designate two peaks in the insulating phase. Data at 0 eV come from DC measurements.
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approximately 3 eV2, which is transferred from the region
below 0.5 eV (representative of the free carriers in the system)
to a higher energy range which extends to at least 5 eV pointing
to strong correlations in the insulating state [19].

III. THEORETICAL CALCULATIONS

To understand the nature of the optical excitations observed
experimentally, we have performed DMFT calculations for the
bulk low-T phase of SmNiO3 (space group P 21/n), within the
low-energy framework introduced in Ref. [12] (calculation
details in Appendix B). This approach involves only the states
with eg symmetry resulting from the antibonding combinations
of Ni-3d and O-2p states. At the band-structure level, this
corresponds to eight bands, reflecting the four Ni sites per
unit cell with two eg states per site, and a total occupancy of
four electrons per unit cell (one per site on average). The bare
(GGA) band structure of monoclinic SmNiO3 is displayed
in Fig. 3. The bands with eg character form a well-isolated
set of bands of total bandwidth �2.3 eV, separated by a gap
of ∼0.5 eV from the low-lying t2g and oxygen states (not
shown in Fig. 3). At the LDA/GGA level, these materials are
metallic in both the orthorhombic and monoclinic structure,
with the Fermi level crossing the eg manifold. As clearly seen
in Fig. 3, the breathing distortion (bond disproportionation) in
the monoclinic structure leads to the opening of a Peierls-like
gap in the energy range 0.5–0.7 eV. This gap separates four
lower-lying bands with dominantly LB character and four
higher-lying bands with dominantly SB character. Due do
the breathing distortion of the low-T phase the local on-site
energies of LB and SB sites are split by �s � 0.25 eV. This
in turn results in the opening of a Peierls-like gap in the
band structure (of magnitude ∼�s) at an energy of order
+0.5 eV above Fermi level corresponding to half filling (two
electrons per site). This Peierls mechanism alone is therefore
insufficient to account for the insulating nature of this phase,
and correlations play an essential role.

As was demonstrated in Ref. [12], considering the Coulomb
repulsion U and Hund’s coupling J acting within the set of eg

FIG. 3. (Color online) The bare (GGA) band structure of the
monoclinic phase of SmNiO3. The color represents the site character
of the states: LB (red) and SB (blue). Note the Peierls splitting at an
energy +0.5–0.7 eV. The position of the Fermi level is ε = 0.

FIG. 4. (Color online) Calculated optical spectra for several val-
ues of U and J . The two peaks are denoted by A (constant
position) and B (varying position). Inset: Phase boundary of the bond-
disproportionated insulating state. The symbols indicate the values of
U,J , chosen such that the leading edge is kept approximately constant
of order 0.5 eV.

states allows one to describe the MIT provided that U − 3J �
�s . As illustrated in the partial phase diagram in the inset of
Fig. 4, a “bond-disproportionated insulator” (BDI) phase is
found in this regime, in which the eg occupancy is modulated,
with a smaller value on the SB sites and a larger one on the LB
sites. Orbital polarization is weak in this BDI state, with both
eg orbitals approximately equally occupied on each site.

We applied an ab initio LDA+DMFT approach to the
low-T phase of SmNiO3 and calculated the electronic spectral
functions and the optical conductivity using the Kubo formal-
ism (see Appendix B). We display in Fig. 4 the calculated
optical spectra, for a set of values of U and J within the
BDI phase. The values, indicated in the inset of Fig. 4, are
chosen in such a way that the leading edge is roughly constant
and close to the observed experimental value (∼0.5 eV). In
agreement with experimental data, all the theoretical spectra
demonstrate the presence of two peaks (denoted by A and B in
the figure). While the position of peak A is fixed by the choice
of parameters, both the position of peak B and its relative
intensity increase as one moves from the upper to the lower
boundary of the phase diagram, i.e., as U − 3J becomes more
negative and the disproportionation increases.

To identify the optical transitions associated with these two
peaks, we display in Fig. 5 the momentum-resolved spectral
functions plotted for the two extreme points (both at J =
0.85 eV): U = 2.0 eV (smaller disproportionation) and U =
1.0 eV (larger disproportionation). Three sets of states can
be identified, split by a correlation-induced indirect gap at
the Fermi level and by a pseudogap (originating from the
Peierls LB/SB site modulation) at around +0.5 eV. The Peierls
pseudogap is clearly seen in the density of states (side panels
of Fig. 5), and the momentum locations at which it opens
are indicated by circles in the main panel. The states below
Fermi level always have dominant LB character, in accordance
with the largest occupancy of LB states. In contrast, the nature
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FIG. 5. (Color online) Momentum-resolved spectral function
(color intensity map) for two selected parameter sets: U = 1.0 eV,
J = 0.85 eV (top) and U = 2.0 eV, J = 0.85 eV (bottom). The colors
represent the site character of a state: red for LB, blue for SB (violet
for a mixed LB/SB character). A darker (lighter) tone corresponds
to higher (lower) spectral intensity. The circles indicate the energy-
momentum locations where the Peierls pseudogap opens. The indirect
Mott-like gap is indicated by the black arrow connecting the highest
occupied states between R and Z and the lowest unoccupied states
at the � point. Side panel: momentum-integrated spectral functions
(density of states) for LB (red) and SB (blue) sites, with arrows
indicating the optical transitions corresponding to the two peaks (see
text).

of the lowest unoccupied band immediately above the gap
changes from dominantly LB at U = 1 eV to dominantly SB
at U = 2 eV.

The optical transitions responsible for the lower-energy
peak A are the ones across the insulating gap, while the second
peak is due to optical transitions across the Peierls pseudogap,
as indicated by arrows in Fig. 5. The current operator has
only intersite matrix elements, with largest nearest-neighbor
components coupling sites with different characters. This
explains why the first peak has higher relative intensity when
the states on either side of the gap have different characters,
i.e., on the upper side of the BDI phase boundary (smaller
disproportionation).

IV. ANALYSIS AND DISCUSSION

Figure 5 reveals that the dominant site character of the
lowest unoccupied states above the gap is different for the
two values of U . Specifically, it is LB-like for U = 1.0
(corresponding to the lower part of the BDI region in the phase

diagram) and SB-like for U = 2.0 (upper part). To understand
better the electronic structure and, in particular, the structure
of unoccupied states, we first note that, as further detailed in
Appendix C, the self-energies in the BDI phase can be well
described at low energy by

	′
SB(ω) − μ =εSB

(1)

	′
LB(ω) − μ = δ2

ω − εp

+ εLB.

These expressions have a simple physical meaning. The lower
occupancy SB sites are weakly correlated and hence have an
approximately constant self-energy. The LB sites, in contrast,
have a self-energy typical of a Mott insulator, with a polelike
divergence at ω = εp � 0 which is responsible for the opening
of the insulating gap (with a magnitude controlled by the
energy scale δ). This is consistent with the “site-selective Mott”
picture of Ref. [11].

Simplifying further, let us consider a model with only two
sites (LB and SB) per unit cell and nearest-neighbor hopping
tk, so that the noninteracting Hamiltonian reads:

H 0
k =

[
ε

(0)
LB tk

t∗k ε
(0)
SB

]
(2)

The dispersion ω = ωk of quasiparticles (QP) is then deter-
mined from the zeros of the determinant of ω + μ − H 0

k −
	̂(ω), leading to (εp is neglected below)

(ω − εLB − δ2/ω)(ω − εSB) = |tk|2, (3)

where εLB,SB = ε
(0)
LB,SB − μ + 	∞

LB,SB. This cubic equation has
three QP branches, which are displayed in Fig. 7 for a sim-
ple one-dimensional tight-binding band tk = W (1 + ei2ka)/4
(with W the bandwidth).

To analyze this equation we plot the LHS as a function of ω,
as depicted in Fig. 6, bearing in mind that the allowed states are
limited by the range of values of the RHS, 0 � |tk|2 � W 2/4.
(The plot is done for εSB > 0, since the BDI state has site
occupancies nLB > nSB.) From the figure we immediately see
that the Mott gap at around zero frequency is an indirect one, as
expected, and the Peierls gap is direct. For k = ±π/2a ≡ kP ,
which is the Fermi momentum of the half-filled system at
which the Peierls gap opens, one has tk = 0 and the three
roots read:

ω− = 1
2

(
εLB −

√
ε2

LB + 4δ2
)
, (4)

ω+ = 1
2

(
εLB +

√
ε2

LB + 4δ2
)
, (5)

ω = εSB. (6)

The occupied QP states correspond to ω− < 0 and have
predominantly LB character. The insulating gap is always
indirect, corresponding to transitions between the top of
the occupied band at k = kP and the bottom of the lowest
unoccupied band at k = 0 (� point). It can be estimated as

�g � 4δ2εSB

W 2
+ 1

2

(√
ε2

LB + 4δ2 − εLB
)
. (7)

Note that it vanishes for δ = 0 as expected.
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FIG. 6. (Color online) Left-hand side of the quasiparticle equa-
tion (3) and graphical construction of the three QP branches. The
green (shaded) area shows the region of allowed values of the RHS:
0 � |tk|2 � W 2/4, where W is the bandwidth. ωi , i = +,−, and
ω = εSB are the roots of the equation for tk = 0. The order of the
roots ω+ and εSB depends on the regime (Mott or Mott-Peierls, see
text).

The nature of the lowest unoccupied branch above the
insulating gap depends on the sign of

�eff
s = εSB − ω+ = εSB − 1

2

(
εLB +

√
ε2

LB + 4δ2
)
, (8)

whose magnitude |�eff
s | is the Peierls direct gap renormalized

by correlations which separates the two unoccupied branches
and opens at k = kP (as indicated by circles in Fig. 7).
For �eff

s > 0 the lowest branch of unoccupied states has
dominantly LB character: This corresponds to the regime of
large disproportionation in which the almost half-filled LB
band undergoes a Mott transition (top panels of Figs. 5 and 7,
corresponding to the lower boundary of the BDI phase). For
�eff

s < 0 the situation is reversed, and the states above the
insulating gap are dominantly SB (bottom panels in Figs. 5
and 7, corresponding to the upper boundary of the BDI
phase with smaller disproportionation). In this “Mott-Peierls”
regime, the Mott mechanism has pushed the upper Hubbard
band above the unoccupied band of SB states, and the states
on either side of the insulating gap have different characters
(analogous to what happens in a charge-transfer insulator).
Relative intensity and separation of the two peaks in the
experimental data suggest that the nickelates studied here may
be more in the Mott-Peierls regime or in the crossover between
the two regimes.

V. CONCLUSIONS

In summary, using ellipsometry we have measured the
detailed temperature dependence of the optical conductivity
spectra of strained RNiO3 epitaxial thin films. The insulator is
characterized by the occurrence of a conspicuous double-peak
structure. Ab initio calculations and model considerations
indicate that this optical signature reveals the peculiar structure
of the insulating state suggested earlier [10–12]. Specifically,
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FIG. 7. (Color online) Quasiparticle band structure, density of
states, and main optical transitions of the simple model discussed
in the text. Top: Mott regime, bottom: Mott-Peierls regime. Colors
indicate the LB/SB character, as above. The indirect Mott-like gap is
indicated with the thin arrow in the main panel.

the two peaks in the optical conductivity of the insulating
phase can be assigned to transitions from the lower Hubbard
band to unoccupied bands split by a renormalized Peierls gap.
Moreover, the model reveals two possible regimes with the
lowest unoccupied states being of either LB or SB character,
with the considered nickelate systems being close to the
crossover between the two regimes. This provides another
possibility of tailoring the properties of these materials by
controlling the charge carrier density via stoichiometry or
heterostructure engineering.
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APPENDIX A: ELLIPSOMETRY OF THIN FILMS

In this paper we study the properties of epitaxial thin
films on different substrates. In Table I selected properties
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TABLE I. Summary of the three film/substrate systems studied.
Film thickness is small enough to ensure monocrystallinity and
homogeneous strain. The properties in column “Bulk” are from
Ref. [25].

TMI /TN (K)

Film / Thickness / Substrate Strain Film Bulk

NdNiO3/ 30 nm / NdGaO3 (110) +1.1% 175/175 200/200
NdNiO3/ 17 nm / NdGaO3 (101) +1.1% 300/225 200/200
SmNiO3/ 10 nm / LaAlO3 (001) −0.1% 360/205 400/200

of these films are summarized and compared to properties of
the corresponding bulk materials.

The complex ratio of p-polarized over s-polarized reflectiv-
ity is given by ρ = rp/rs = tan �ei�. The coefficient � and
the absolute value of the phase difference of p- and s-polarized
light, |�|, are the key parameters determined in spectroscopic
ellipsometry experiment (Fig. 8). For a film with dielectric
constant εf , on a substrate with dielectric constant εs , the
ellipsometric coefficients follow from the relation

ρ = 1 − α cos θ

1 + α cos θ

cos θ + β

cos θ − β
(A1)

FIG. 8. (Color online) (a) Sketch of the optical experiment deter-
mining the ellipsometric parameters � (phase shift between p- and
s-polarized component of the light) and � (argument of the ratio of
p- and s-polarized amplitude). (b) � and � spectra of 17-nm-thick
NdNiO3 on NdGaO3(101) at 100 K measured with an angle of
incidence of 69 degrees, shown with the Drude-Lorentz fit. (c) Thin
film dielectric function calculated from panel (b) with the method
explained in the main text. The insets of (b) and (c) show the same
parameters for the NdGaO3(101) substrate. (d) Optical conductivity
corresponding to ε2(ω) in panel (c), with the DC conductivity.

with

α = εf

ηf

εsηf − iεf ηs tan φ

εf ηs − iεsηf tan φ
; β = ηf

ηs − iηf tan φ

ηf − iηs tan φ

ηs =
√

εs − sin2 θ ; ηf =
√

εf − sin2 θ ; φ = ωd

c
ηf ,

where θ is the angle of incidence with the surface normal,
d is the film thickness, ω the angular frequency, and c the
speed of light. To obtain the thin film dielectric function εf ,
analytic inversion of Eq. (A1) is not a practical approach, in
particular since the nonlinearity of this expression gives rise to
multiple solutions. Instead we used a two-step approach. We
begin by expanding the above expression in leading order of
φ, corresponding to the limit of an ultrathin film. In this limit
analytic inversion is straightforward:

εTFA =
(

1 + εs + A

2

)
±

√(
1 + εs + As

2

)2

− εs

where

As = c

ωd

(ρ/ρ0 − 1)(1 − εs)(εs cos2 θ − sin2 θ )

2i cos θ (εs − sin2 θ )
(A2)

and ρ0 is the rp/rs ratio of the bare substrate. One of these
two (±) solutions has a negative imaginary part and should
be discarded for this reason. In Fig. 9 we give an example of
the output for εf (ω) following this approach, when starting
from a known thin-film dielectric function generated by a
Drude-Lorentz multioscillator model. The difference between
the input dielectric function and the result obtained using
the thin-film approximation is a consequence of the fact that
Eq. (A2) is strictly valid in the limit φ → 0. The dielectric
function corresponding to the full solution of Eq. (A1) is
obtained by inserting a multioscillator Drude-Lorentz model

FIG. 9. (Color online) Output obtained when applying the thin-
film approximation, Eq. (A2), to ellipsometric data rp/rs of a film of
finite thickness on a substrate (εTFA, blue curves). A Drude-Lorentz
parametrization (εDL, orange curves) was used to generate the
ellipsometric rp/rs . Parameters for the substrate dielectric function,
film thickness, and angle of incidence are indicated in the legend.
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TABLE II. Drude-Lorentz parameters of the dielectric function of NdGaO3(110), NdGaO3(101), and LaAlO3(001) at two different
temperatures. The notation for the crystal planes of NdGaO3 correspond to the orthorhombic structure, i.e., (110) and (101) correspond to
(001)pc and (111)pc if we approximate the actual structure by the pseudocubic symmetry.

100 K 300 K

Oscillator ωpj
ωj γj ωpj

ωj γj

NdGaO3(110) ε∞ = 1.0 ε∞ = 1.0
1 1 32 481 73 498 22 516 1 30 863 72 379 23 688
NdGaO3(101) ε∞ = 1.0 ε∞ = 1.0
1 1 32 481 73 498 22 516 1 30 863 72 379 23 688
LaAlO3(001) ε∞ = 2.9 ε∞ = 2.9
1 12 269 24 894 32 465 12 344 26 245 34 905
2 49 871 50 225 11 552 51 511 50 756 12 633

for εf (ω),

εf (ω) = ε∞ +
∑

j

ω2
p,j

ω2
j − ω(ω + iγj )

, (A3)

and adjusting the Drude-Lorentz parameters to fit the ex-
pression for ρ to the experimental data. The output for
εf (ω) obtained by the latter method follows rather closely
the dielectric function obtained from the thin approximation,
Eq. (A2). In the main body of the paper we will present
the dielectric function obtained with the latter method (see
Tables II and III). For all data discussed we used the first-
mentioned method for the purpose of a sanity check, as
illustrated by Fig. 9.

While � > 0 for isotropic bulk materials, for a sub-
strate/thin film system � can become negative for certain
frequencies. For all our spectra the sign of � was unambigu-
ously fixed by the Kramers-Kronig constraints on the real and
imaginary part of the corresponding dielectric function. In
particular we obtained that in the insulating phase � < 0 for
�ω � 0.5 eV.

An additional point for σ (ω) was obtained at ω = 0 by
measuring the DC resistivity of the films. Simultaneous fitting
of σ (0) and the �(ω) and �(ω) spectra between 0.5 and
4 eV to a Drude-Lorentz model allowed us to interpolate the
spectra between 0 and 0.5 eV. The complete set of temperature
dependent spectra of ε1(ω) and σ1(ω) are shown in Fig. 1.

APPENDIX B: GENERAL THEORETICAL
METHODOLOGY

Theoretical optical spectra of SmNiO3 are obtained numer-
ically using an ab initio description within the DFT+DMFT

TABLE III. Drude-Lorentz parameters of the dielectric function
of NdNiO3 on NdGaO3 (110) at two different temperatures.

100 K 300 K

Oscillator ωpj
ωj γj ωpj

ωj γj

NdNiO3 ε∞ = 1.96 ε∞ = 1.92
1 857 0 346 13 840 0 1607
2 15 721 5284 3742 7688 0 229
3 10 257 10 083 4728 13 161 7683 7326
4 33 302 23 402 34 504 34 516 24 539 38 743

framework. First, the crystal structure is obtained by full
structure relaxation using the Vienna ab-initio simulation
package (VASP) [26–28]. To this end, we have employed the
generalized gradient approximation (GGA) plus Hubbard U

(GGA + U ) with the fully rotationally invariant interaction
term [29] and parameters U = 5.0 eV and J = 1.0 eV. The
plane-wave cutoff is chosen to be Ecut = 550 eV and the k

mesh consists of 7 × 7 × 5 points. The structure relaxation
by means of a conjugate-gradient algorithm starting from an
orthorhombic 20-atom unit cell resulted in the monoclinic
phase (space group P 21/n) exhibiting a breathing structure
distortion characterized by long-bond (LB) and short-bond
(SB) octahedra, similar to what was found experimentally in
small-cation nickelates, such as LuNiO3.

The low-energy model considered in Ref. [12] and in the
present paper is obtained by constructing Wannier functions
corresponding to the full eg manifold, i.e., to the energy
window [−0.6,2.6] eV. This is done using projected localized
orbitals (PLO) [30]. The resulting Ni-centered Wannier func-
tions are delocalized, having substantial weight on oxygen
ions [12], due to the strong hybridization between Ni and
O characteristic of these compounds with small or negative
charge-transfer energy. The breathing distortion and Peierls
gap leads to a difference of on-site energies �s in the
low-energy eg Hamiltonian, which in the case of SmNiO3

is of the order of �s � 0.25 eV (practically the same value as
that for LuNiO3).

Local electronic correlations are described by means of
a Hubbard-Kanamori Hamiltonian formulated in terms of
low-energy eg states (see details in Ref. [12]) with only
density-density interactions. The model is solved within
the DFT+DMFT approach, as implemented within the
Wien2TRIQS framework [31–33]. The TRIQS library [32]
implementation of the hybridization-expansion continuous-
time Monte Carlo (CT-HYB) solver [34] was used. The optical
conductivity σ (ω) is evaluated using the Kubo formula with
neglected vertex corrections, i.e.,

σxx(ω) = 2π

ω

∫ ∞

−∞
dε [f (ε) − f (ε + ω)]

× 1

V

∑
k

Tr{J x(k)A(k,ε)J x(k)A(k,ε + ω)},

(B1)
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where J x,y,z(k) ≡ J
x,y,z
μν (k) are current matrix elements,

A(k,ε) ≡ Aμν(k,ε) is the momentum resolved spectral func-
tion, and the trace is over orbital (band) indices μ, ν.

The key point is that the parameter range relevant to the
physics of nickelates lies in the region U − 3J � �s . The
phase diagram for this region was mapped out for LuNiO3

in Ref. [12] and has now been recalculated for SmNiO3.
The main features turned out to be the same as for LuNiO3.
Specifically, for 0.7 eV � J � 1.1 eV the monoclinic phase is
a so-called bond-disproportionated insulator (BDI), while the
orthorhombic phase remains metallic.

APPENDIX C: FREQUENCY DEPENDENCE AND
ANALYTICAL CONTINUATION OF THE SELF-ENERGIES

Once the DFT+DMFT self-consistency cycle converges,
the optical conductivity can be obtained from the interacting
Green function (or self-energy) by means of the Kubo-
Greenwood formalism, with vertex correction neglected. This
requires the analytical continuation of the DMFT self-energy
on the real axis. To this end, we have first inspected the
self-energies at Matsubara frequencies (see the data for
the LB self-energy in Fig. 10). The self-energies at LB
and SB sites behave very differently. The LB self-energy
exhibits a strongly singular behavior at small frequencies
suggesting that a representation by a rational fraction [35]
is adequate. In fact, we have found that the following two-pole
ansatz is sufficient to represent the LB self-energy with high
accuracy:

	LB(ω) = 	∞
LB + p1

ω − p2 − ip3
+ p4

ω − p5 − ip6
. (C1)

The fitting parameters pi (as well as 	∞
LB) have been

obtained by least-square optimization, with the parameters
being bounded to physically meaningful ranges of values
(ensuring the analytical behavior of the self-energy). We have
checked that this ansatz provides a high-quality and reliable
fit for all values of U and J corresponding to the BDI phase.
Examples of the fit for the two limiting cases U = 1.0 eV
and U = 2.0 eV (both for J = 0.85 eV) are demonstrated in
Fig. 10, where the fits are compared to the actual QMC data at
Matsubara frequencies. Figure 11 shows the real-frequency LB
self-energy, and the corresponding fit parameters are presented
in Table IV.

As to the SB self-energy, it has essentially a featureless
structure with a flat real part and very small imaginary part
(Fig. 10), which has been approximated by a complex constant
(using the least-square fit over a range of frequencies spanning
∼4 eV). This analysis of the structure of the self-energies has
inspired the description of the electronic structure of the BDI
phase presented below.

APPENDIX D: GENERAL CONSIDERATIONS AND
SIMPLE MODEL

We present here details of the simple model analysis
introduced in the main text. One of the key experimental
observations is that the optical spectrum in the insulating phase
consists of two distinct peaks (around 0.6 and 1.4 eV). As has
already been pointed out in Ref. [19] these features correspond

FIG. 10. (Color online) Examples of the analytical fit (LB: red
solid, SB: magenta dashed) of the QMC self-energy (LB: blue filled
circles, SB: green empty circles). The LB self-energy is fit with a
two-pole ansatz given by Eq. (C1), while the SB self-energy is fit
with a constant. Top two panels: U = 1.0 eV; bottom two panels:
U = 2.0 (J = 0.85 eV in both cases).

to transitions within the eg manifold, and hence their origin
can be addressed in the framework of our low-energy eg

description.
We recall that the band structure of the monoclinic phase

(Fig. 3) has a Peierls gap separating two manifolds of states,
corresponding to the disproportionation between LB (lower
manifold) and SB sites (higher manifold). We also emphasize
that optical (current) matrix elements are intersite and hence
dominantly couple LB and SB sites.

In the limit of very large disproportionation, the transition
into the BDI insulator can be considered as a Mott transition
on the sublattice of LB sites [11,12]. In the band picture this
corresponds to the opening of a Mott gap in the lower manifold
(LB) of eg bands. This results in three bands of quasiparticle
states, one below the Mott gap and two above, and the two
observed optical transitions can be interpreted as transitions
between these three sets of states.
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FIG. 11. (Color online) Analytical fit of the LB self-energy on
the real axis. Green: U = 1.0, blue: U = 2.0 (J = 0.85 eV in both
cases). The LB self-energy is fitted with a two-pole ansatz given by
Eq. (C1), with parameters presented in Table IV.

This can be captured on a qualitative level by considering
a simple model with just two sites per unit cell (LB and SB)
and nearest-neighbor hopping between them, described by the
band Hamiltonian:

H 0
k =

[
ε

(0)
LB tk

t∗k ε
(0)
SB

]
(D1)

where ε
(0)
LB,ε

(0)
SB correspond to bare LB and SB site energies,

respectively, and tk is the hopping amplitude between the
sites. To get the desired site splitting �s = ε

(0)
SB − ε

(0)
LB, one can

choose the parameters to be ε
(0)
LB = −�s/2, ε

(0)
SB = +�s/2.

Inspired by the analysis of the self-energies in Appendix C,
we can adopt a very simple ansatz for the self-energies
on both types of sites. The SB self-energy can be treated
as a constant, and for the LB self-energy we can con-
sider a single-pole representation appropriate at low energy,
namely:

	LB(ω) = δ2

ω
+ 	∞

LB, (D2)

	SB(ω) = 	∞
SB, (D3)

with δ (essentially equal to
√

p1 above) giving the effective
interaction strength and the constants 	∞

LB,SB renormalizing
the on-site energies. These constants depend both on the
interaction strength and site occupancies. In this expression,

TABLE IV. Parameters of the two-pole fit to the LB self-energy
used in Fig. 10 (for J = 0.85). All parameters are in eV, except for
p1,p4 (eV2).

U (eV) 	∞
LB p1 p2 p3 p4 p5 p6

1.0 −0.518 0.120 −0.015 0.003 1.070 0.564 2.690
2.0 0.608 0.127 −0.057 0.000 1.411 2.137 0.749

we have neglected the fact that the pole of the LB self-energy
is slightly offset from zero energy. Indeed, the parameter p2

is always small—it is smallest, as expected from low-energy
particle-hole symmetry, when the LB band is almost half filled
(strong disproportionation).

The k-resolved spectral functions of this model read

A(k,ω) = − 1

π
Im

[
ω − εLB − δ2

ω
+ i0+ tk

t∗k ω − εSB + i0+

]−1

,

(D4)

where we have introduced effective on-site energies εLB,SB =
ε

(0)
LB,SB − μ + 	∞

LB,SB. The corresponding equation for the
eigenvalues is Eq. (3) of the main text, which yields the
dispersion of quasiparticles’ (QP) excitations and is thus a
cubic equation which has three roots at each k point, resulting
in three QP bands.

The characters of the bands can be determined from the
corresponding eigenvectors at every k point. However, to
understand the qualitative behavior it is sufficient to examine
the k points for which tk = 0. In this case the matrix in
Eq. (D4) becomes diagonal and the bands, thus, possess pure
site characters. Moreover, the QP equation is readily factorized
when the RHS is zero, which gives the following roots:

ω− = 1
2

(
εLB −

√
ε2

LB + 4δ2
)
, (D5)

ω+ = 1
2

(
εLB +

√
ε2

LB + 4δ2
)
, (D6)

ω = εSB, (D7)

where the first two roots correspond to LB bands and the third
to a SB band. The magnitude of the renormalized Peierls gap
is therefore given by |�eff

s |, with

�eff
s = εSB − ω+ = εSB − 1

2

(
εLB +

√
ε2

LB + 4δ2
)

(D8)

which can be interpreted as the effective site-energy difference
between SB and LB sites, renormalized by interactions.

The indirect Mott gap can be estimated by observing (Fig. 6)
that it involves a transition between the occupied (valence)
band at tk = 0 and the lowest unoccupied (conduction) band
at k = 0 (|tk| = W/2). At that point, the QP energy of the
conduction band is close to zero energy. This can be used in
Eq. (3) to obtain the following estimate for the insulating gap:
�g � 4δ2εSB/W 2 − ω−, hence

�g � 4δ2εSB

W 2
+ 1

2

(√
ε2

LB + 4δ2 − εLB
)
. (D9)

Given that εSB > 0, the first root ω− is always the smallest,
ω− < ω+,εSB, and it corresponds to the occupied LB-like
band. The order of the two other roots, on the other hand,
depends on the parameter regime:

(1) εSB 
 εLB (�eff
s 
 0), which implies εSB > ω+: In

this case an excitation bringing electrons from a LB site to a SB
site is larger than a typical Mott excitation energy [between
the corresponding lower (LHB) and upper (UHB) Hubbard
bands] and the band right above the correlation gap (lowest
unoccupied band, LUB) is predominantly of LB character.
The gap corresponds to a Mott gap on the LB sublattice, with
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FIG. 12. (Color online) k-resolved spectral function for the sim-
ple 1D model. The parameters for the three panels are taken from
the fitted parameters of the self-energies for three cases. Top panel:
J = 0.85 eV, U = 1.0 eV, middle panel: J = 0.8 eV, U = 1.2 eV,
bottom panel: J = 0.85 eV, U = 2.0 eV. The color represents a site
character of states: LB (red) and SB (blue).

the practically empty SB sublattice lying above the UHB, and
in this limit one can talk about a “site-selective Mott transition”
as introduced in Ref. [11].

(2) 0 < εSB � εLB (�eff
s � 0), which implies εSB < ω+:

The intersite hopping excitation LB → SB in this case is
smaller than the Mott excitation energy, the LUB is mainly of
SB character, and this limit corresponds to a sort of an “intersite
charge-transfer” (or “Peierls-Mott”) regime. One can say that
in this regime the unoccupied SB-like band is situated between
the LHB and UHB of the LB sublattice.

These two regimes and the crossover between them (the
crossover point is determined by a relation ω+ = εSB) can
be nicely illustrated by the k-resolved spectral function
evaluated according to Eq. (D4), displayed in Fig. 12. The
self-energy parameters are taken from the fits to the actual
QMC data, where the first (dominant) pole of the double pole
fit [Eq. (C1)] is used for the LB self-energy (with δ2 ≡ p1 and
the small parameters p2, p3 neglected). The resulting values
of parameters εLB and εSB are presented in Table V.

The lowest (occupied) band is predominantly of LB char-
acter reflecting the occupancy disproportionation (nLB > nSB)
in the BDI phase. The two regimes described above are easily
distinguished by comparing the spectral functions for U = 1.0
(top panel in Fig. 12) and U = 2.0 (bottom panel). For U = 1.0
the character of the middle band (LUB) is predominantly

TABLE V. Parameters of the simple model used to plot Fig. 12.
Note the crossover from one regime (εLB < εSB) to another εLB > εSB

as U is increased. The correlation strength δ is almost constant due to
the choice of parameters U , J along the line of the constant leading
edge (see main text).

U (eV) J (eV) εLB (eV) εSB (eV) δ2 (eV2)

1.0 0.85 0.10 0.70 0.12
1.2 0.80 0.26 0.55 0.12
2.0 0.85 0.51 0.29 0.13

LB-like (red), especially close to the Peierls-gap edge, and the
top-most band is SB-like (blue). For U = 2.0 the characters
of the two top bands are switched. An intermediate case
corresponding to the crossover regime demonstrates a highly
mixed character of these two bands.

APPENDIX E: RESULTS OF GGA+DMFT
CALCULATIONS

The above analysis provides a model picture of the
electronic structure of the BDI phase at the qualitative level.
It is not entirely clear to which of the two regimes (Mott or
Mott-Peierls) the nickelates actually belong. The fact that the
lower-energy peak in the infrared spectrum has higher intensity

FIG. 13. (Color online) k-resolved spectral function for SmNiO3

as obtained in the GGA+DMFT calculation. The parameters for the
three panels are taken from the fitted parameters of the self-energies
for three cases. Top panel: J = 0.85 eV, U = 1.0 eV, middle panel:
J = 0.8 eV, U = 1.2 eV, bottom panel: J = 0.85 eV, U = 2.0 eV.
The color represents a site character of states: LB (red) and SB (blue).
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may suggest that they are more in the Mott-Peierls regime
or in the crossover between the two regimes. Although the
calculated GGA+DMFT electronic structure is more complex
than the simple model above, many of the qualitative features
can still be recognized.

As one can see in Fig. 13, there is a clear difference in the
dominant character of the lowest unoccupied states right above
the gap. Deep in the BDI phase (U − 3J − �s � −1.8) these
states are mainly of LB character (red) almost everywhere in
the BZ. On the contrary, close to the upper boundary of the
BDI phase (U − 3J − �s � −0.8) the entire band above the

gap is SB-like (blue). In the intermediate regime (J = 0.8,
U = 1.2) the characters of the unoccupied states are mixed
apart from certain parts of k space. It is also worth noting that
an additional diffuse band appearing between 2.5 and 3.0 eV
in the case of U = 2.0 is an atomiclike UHB that lies above
the unoccupied SB bands and whose position relative to the
occupied band (LHB) is given by U + J (equal to 2.85 eV
in this case). This band is responsible for the transfer of a
substantial amount of the spectral weight to higher energies in
the one-electron spectra but plays no significant role in optical
transitions because of its incoherent nature.
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