# LT 21

# c-Axis Excitations in High- $T_c$ Superconductors Detected by Grazing Incidence Reflectivity Measurements

J. Schützmann<sup>a</sup>, H. S. Somal<sup>a</sup>, J. van der Eb<sup>a</sup>, D. van der Marel<sup>a</sup>, A. A. Tsvetkov<sup>b</sup>, R. L. Greene<sup>c</sup>, N. Koleshnikov<sup>d</sup>, V. H. Dujin<sup>e</sup>, N. T. Hien<sup>e</sup>, and A. A. Menovsky<sup>e</sup>

<sup>a</sup> Laboratory of Solid State Physics, University of Groningen, 9747 AG Groningen, The Netherlands

<sup>b</sup> P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 117924 Russia

<sup>c</sup> Center for Supercond. Research, Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111

<sup>d</sup> Inst. of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow, 142432 Russia

<sup>e</sup> Van der Waals-Zeeman Laboratory, University of Amsterdam, The Netherlands

Measuring absolute reflectivity at an angle of incidence of  $80^{\circ}$  for  $Tl_2Ba_2CuO_6$ ,  $Bi_2Sr_2CuO_6$ ,  $Nd_{1.85}Ce_{0.15}CuO_4$  with p-polarized light (plane of incidence normal to the  $CuO_2$ -planes), we were able to extract the c-axis longitudinal optical modes in the normal and superconducting state. Superconducting induced changes in the electronic c-axis properties will be discussed and compared to  $La_{2-x}Sr_xCuO_4$  and  $YBa_2Cu_3O_y$  where a superfluid plasma edge is observed at low frequencies.

# **1. INTRODUCTION**

The c-axis properties of high- $T_c$  superconductors are important for the understanding of the charge dynamics, not only perpendicular to, but also in the  $CuO_2$ -planes. Whereas in several double layer compounds an absorption edge in the normal state far-infrared c-axis conductivity is observed and attributed to a spin gap [1] or an inter-band transition [2], the single layer compound  $La_{2-x}Sr_xCuO_4$  exhibits a weakly frequency dependent electronic conductivity [3]. In the superconducting state a screened Josephson plasma frequency,  $\omega_j/\sqrt{\epsilon_s}$ , is found below 100 cm<sup>-1</sup> for  $La_{2-x}Sr_xCuO_4$  and  $YBa_2Cu_3O_y$ . The frequency of this prominent plasma edge is strongly material dependent as is  $T_c$ . Of special interest is whether a universal relation exists between  $\omega_i$  and T<sub>c</sub> as suggested by Anderson for the single layer compounds [4]. We studied a series of single layer compounds with c-axis length of 100  $\mu$ m. Due to this small dimension, conventional reflectivity measurements (normal incidence), are not possible. By ppolarized reflectivity measurements at a grazing angle of incidence we were however able to determine the c-axis longitudinal optical phonon modes and the superfluid plasma frequency.

# 2. EXPERIMENTAL

Plate-like crystals with typically  $2 \times 2$  mm in the ab-plane of Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6</sub> (T<sub>c</sub>  $\approx 85$  K), Bi<sub>2</sub>Sr<sub>2</sub>CuO<sub>6</sub>

 $(T_c \approx 12 \text{ K})$ , and  $Nd_{1.85}Ce_{0.15}CuO_4$   $(T_c \approx 23 \text{ K})$ were mounted on a cone in a cold finger cryostat with the ab-plane perpendicular to the plane of scattering. Using p-polarized light at an angle of incidence of  $80^\circ$ we are sensitive to the c-axis optical properties. The sample was Au-coated using in-situ evaporation to obtain absolute reflectivity.

#### **3. RESULTS AND DISCUSSION**

Using Fresnel equations for the reflectivity of a uniaxial crystal we derive the following expression for the c-axis pseudo-loss function in terms of the absorptivity  $A_p = 1 - R_p$ :

$$\frac{A_p |n_{ab}| \cos(\theta)}{2(2 - A_p)} \approx \mathrm{Im} e^{i\eta} \sqrt{1 - \frac{\sin^2 \theta}{\epsilon_c}}$$

where  $\theta$  is the angle of incidence with the surface normal (c-axis),  $n_{ab}$  the complex in-plane refractive index with  $|n_{ab}|\cos(\theta) \gg 1$  and  $\eta \equiv \pi/2 - \operatorname{Arg}(n_{ab})$ . A more detailed description of this function is discussed elsewhere [5]. For a strongly anisotropic material like the cuprates with metallic ab-plane properties, *i.e.*  $|\operatorname{Re}(\epsilon_{ab})| \gg 1$  and an almost insulating c-axis the absorptivity,  $A_p$  will peak at the longitudinal optical c-axis modes. By entering the superconducting state an additonal zero crossing due to the formation of the superfluid is expected if the normal state carrier contribution is overdamped like in  $\operatorname{La}_{2-x}\operatorname{Sr}_x \operatorname{CuO4}$  [3],



Figure 1: Generalized absorptivity  $A_p/2(2 - A_p)$  of La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub> measured at 80° of incidence with p-polarized light at 6 K (solid line) and at 35 K (dotted). The inset shows on an enlarged scale the appearance of the superfluid plasmon peak at 50 cm<sup>-1</sup>.

for which the screened superfluid plasma frequency is found at 50  $cm^{-1}$  by normal incidence reflectivity measurements [3, 6]. As a confirmation of our technique we display in Fig. 1 the results for grazing incidence for La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub>. Because the inplane conductivity has a smooth frequency dependence [7], the two strong absorption peaks in the vicinity of 460 and 580  $cm^{-1}$  can be attributed to c-axis longitudinal optical phonon frequencies. Below T<sub>c</sub> ( $\approx$  30 K) an additional loss-peak appears which is caused by the superfluid plasmon. In Fig. 2 the results for the  $Tl_2Ba_2CuO_6$ ,  $Bi_2Sr_2CuO_6$  and Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub> single crystals are shown. For Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6</sub> three LO modes are found at 157, 427 and 630 cm<sup>-1</sup>. Below  $T_c$  there is no indication of an additional zero crossing in  $\operatorname{Re}(\epsilon_c)$ . If the superfluid plasma frequency was located above 700  $\rm cm^{-1}$ , an apparent shift towards higher frequencies of the longitudinal modes, which have now mixed phononplasmon character, would be expected. Therefore the screened superfluid plasma frequency is located below 50  $\rm cm^{-1}$  and the corresponding penetration depth  $\lambda_c \geq 10 \mu m$ . From the linewidth of the losspeaks, which is determined by the intrinsic life-time and the c-axis electronic conductivity  $\sigma_c$  [5], an upper limit of  $\sigma_c \approx 1$  S/cm is obtained. This indicates that the strong absorption edge as in the double layer compounds is not present, which might be related to the missing inter-band transition between CuO2bilayers. We note that clear evidence for a spin gap has been found in Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6</sub> [8]. Similar considerations hold for Bi<sub>2</sub>Sr<sub>2</sub>CuO<sub>6</sub> and Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub> where the superfluid plasma frequency is not observed above 100 and 30  $\rm cm^{-1}$ , respectively, and also



Figure 2: Generalized absorptivity  $A_p/2(2 - A_p)$  of (a) Tl<sub>2</sub>Ba<sub>2</sub>CuO<sub>6</sub> at 6 K (solid line) and 100 K (dashed), (b) Bi<sub>2</sub>Sr<sub>2</sub>CuO<sub>6</sub> 6 K (solid), 300 K (dashed) and (c) Nd<sub>1.85</sub>Ce<sub>0.15</sub>CuO<sub>4</sub> 6 K (solid), 30 K (dashed). There is no indication of a superfluid plasmon in the measured frequency ranges.

a shift of the longitudinal modes is absent.

#### 4. CONCLUSIONS

Using p-polarized light at a grazing angle of incidence we have shown that the c-axis longitudinal modes can be extracted from extremely thin platelike crystals. There is no indication of a c-axis superfluid plasma frequency in the measured frequency ranges except for La<sub>1.85</sub>Sr<sub>0.15</sub>CuO<sub>4</sub>.

### REFERENCES

- C. C. Homes et al., Phys. Rev. Lett. 71, 1645 (1993).
- [2] S. Tajima *et al.*, Solid State Commun. 95, 759 (1995).
- [3] J. H. Kim et al., Physica C 247, 297 (1995).
- [4] P. W. Anderson, Science 268, 1154 (1995).
- [5] D. van der Marel et al., Proc. of the 10th Anniversary HTS Workshop on Physics, Houston, March 12-16 (1996), to be published.
- [6] K. Tamasaku, Y. Nakamura and S. Uchida, Phys. Rev. Lett. 69, 1455 (1992).
- [7] H. S. Somal *et al.*, Phys. Rev. Lett. **76**, 1525 (1996).
- [8] S. Kambe et al., Phys. Rev. B 47, 2825 (1993).