
 1 

   
 

Dirk van der Marel 

 

 

 

Superconductivity  

 
Basic notions of superfluidity and superconductivity 
 

 

 

 

 

Lecture notes 

Janvier 2019 



 2 

 

Contents 

 
Chapter I:  

Introduction to superfluidity and Bose-Einstein Condensation   

 
 
Chapter II:  

The main characteristics of superconductivity     

 

Chapter III: 

Superconducting Pairing Mehanisms     

 
Chapter IV: 

Microscopic Theory of Superconductivity  

 

Chapter V:  

Superconducting properties at finite temperature 

 

Chapter VI: 

Ginzburg - Landau theory        

 

Chapter VII:  

Capita selecta of advanced subjects    

 
 



 3 

Lecture Notes on Superconductivity- Part I, D. van der Marel 

Chapter I:  

Introduction to superfluidity and  

Bose-Einstein Condensation 
 

Helium, named after Helios (who was believed by the ancient Greeks to drive his chariot of 

fire with a pair of horses across the sky), is the lightest of the noble gases in the periodic 

system. After hydrogen it is the most abundant element of the universe. Two stable isotopes 

exist: 4He (~10-5 of the earth atmosphere) was first isolated in 1895 by Ramsey, and 3He 

(~10-11 of the earth atmosphere) was first prepared in 1933 by Oliphant and collaborators.  

At ambient pressure 4He boils at a temperature of 4.2 K. Heike Kamerlingh-Onnes was the 

first to prepare 4He in the liquid phase. Kamerlingh-Onnes was an alumnus of the 

University of Groningen. He became a professor at the University of Leiden, and was 

awarded the Nobel Prize in 1913 for his investigations on the properties of matter at low 

temperatures, which, inter alia, led to the production of liquid helium. He did not –as is 

often assumed- receive the Nobel Prize for the discovery of superconductivity, although 

Gilles Holst and Kamerlingh-Onnes certainly made this discovery in 1911. This confusion 

may in part have been caused by the fact that Kamerlingh-Onnes announced their discovery 

of superconductivity during his Nobel-lecture.  

If we cool down a liquid, it eventually will reach a temperature where it undergoes a first 

order phase transition to the solid phase. The transition temperature depends on the 

substance and on the pressure, but invariably every fluid becomes a solid if we cool it to 

sufficiently low temperature. Not so for helium, which, at ambient pressure remains a liquid 

all the way down to absolute zero! Only if a pressure of more than 25 bar is applied, 4He 

solidifies below ~2 K, while it takes more than 30 bar to solidify the lighter 3He, below ~1 

K. Helium is the only liquid known which does not solidify at ambient pressure. This 

anomaly is a manifestation of quantum mechanics: In a solid the atoms are frozen in 

position because of the hard-sphere inter-atomic interactions. However, due to the 

uncertainty principle the atoms vibrate even at absolute zero temperature: Each lattice mode 

of vibration with momentum !k has in its lowest vibrational state still an energy !ωk/2. The 
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amplitude of these zero-point vibrations is about !1/2C-1/4m-1/4, where C is the inter-atomic 

force constant, and m is the atomic mass. Because m is very small in helium, the zero-point 

fluctuations can overcome the potential barriers separating the atoms, with the result that 

helium remains in a liquid state even at absolute zero temperature.  

 

 
Although no solid/liquid phase transition occurs at ambient pressure, in 1932 Keesom and 

Clausius did in fact discover a phase transition of a different kind at 2.2 K. The effect of 

this phase transition on the specific heat is displayed in Fig. 1.1: The CV versus temperature 

curve has the shape of the character λ, and this phase transition is therefore called the 

“λ−transition”.  Clearly below 2.2 K the system has entered a different phase, but this is not 

the solid phase. In fact it is quite contrary to being a solid: In 1938 Kapitza, and 

Allen&Misener discovered that the viscosity measured in thin capillaries drops several 

orders of magnitude when liquid 4He is cooled through the λ−transition. Further 

experiments have shown that below 2.2 K liquid 4He is a superfluid, which means that the 

fluid can flow without any dissipation.  

FIGURE  1.1 
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One of the most striking effects associated with the superfluid state is the fountain effect, 

displayed in Fig. 1.2: Two reservoirs are connected by a thin capillary. If one supplies heat 

to the inner part, the level of the liquid rises considerably.  If the heated helium is guided 

into a narrow capillary the heat imbalance even gives rise to a fountain. These effects show 

that transfer of matter accompanies heat transfer. These phenomena demonstrated a clash 

with the usual laws of hydrodynamics, and called for a fundamentally different theoretical 

framework when describing the physical properties of  4He below the λ−transition  

 

When a pressure of more than 25 bar is applied, 4He does become solid below about 2 K. 

The pressure phase diagram is depicted in Fig. 1.3.  Staring for a while at the phase 

diagram, one begins to realize that at low temperature and pressure, the solid phase of 4He 

appears to have been replaced with the superfluid phase. This suggests that quantum effects 

not only inhibit solidification, but that superfluidity itself is a quantum effect. 

 

We already saw that experimentally the history of superfluid helium began in 1932. Here 

we have to point out an aspect of 4He which turns out to be of fundamental importance, 

FIGURE  1.2 
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namely that each of these atoms consists of an even number of fermions: 2 protons, 2 

neutrons, and 2 electrons. According to quantum theory composite objects consisting of an 

even number of fermions have boson-characteristics: Nothing prevents an arbitrary number 

of these composite bosons to occupy the same quantum state. (Note that for 3He this 

situation is quite different!). On the theory front the starting shot had already been given in 

1924: Satyendranath Bose studied at the University of Calcutta, then taught there in 1916, 

taught at the University of Dacca (1921-45), then returned to Calcutta (1945-56). He did 

important work in quantum theory, in particular on Planck's black body radiation law.  

Bose sent his work Planck's Law and the Hypothesis of Light Quanta (1924) to Einstein. 

He wrote a covering letter saying: “Respected Sir, I have ventured to send you the 

accompanying article for your perusal and opinion. You will see that I have tried to deduce 

the coefficient in Planck's law independent of classical electrodynamics.”  It was 

enthusiastically endorsed by Einstein who saw at once that Bose had removed a major 

objection against light quanta. The paper was translated into German by Einstein and 

submitted with a strong recommendation to the Zeitschrift für Physik. Einstein extended 

Bose's treatment to material particles whose number is conserved and published several 

papers on this extension. 

 
 

FIGURE  1.3 
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In a nutshell the idea of Bose-Einstein condensation is the following: Consider a dilute gas 

of atoms at some finite temperature. The average kinetic energy of each of the atoms of is 

3/2kBT, and the corresponding deBroglie wavelength is 
Tmk

h

B
dB π

λ
2

= . Einstein proved 

that if the atoms are bosons, a phase transition to a fluid state takes place when the density 

of the gas exceeds a limiting value, i.e. when 3/612.2 dBn λ> . Alternatively one can keep 

the gas at a fixed density (by holding it in a closed container), and reduce temperature. 

Then condensation sets in when temperature drops below a critical value, i.e. when 

T < Tc, where the critical temperature is given by the expression:  Tc =
3.312

mkB
n2/3 . 

 
 

The bosonic character was crucial for the argument, and the mathematical proof proceeds 

along the following lines: We start with the assumption that the bosons behave like ideal 

gas particles. We therefore neglect the interactions between the particles (note that in 1925 

nobody had liquid helium in mind!). The energy-momentum relation of the particles is  

m
kk
2

)(
22

!=ε          (1.1) 

Because 4He atoms are bosons, the occupation of each energy level is controlled by Bose-

Einstein statistics: 

FIGURE  1.4 
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nB (εk ) =
1

eβ εk−µ( ) −1
        (1.2) 

where µ is the chemical potential, which controls the total number of bosons present, and. 

The density of states of a 3 dimensional gas of non-interacting particles is 

D(ε) =ηV ε

η ≡ 2−1/2π −2−3m3/2
        (1.3) 

where V is the volume of the recipient containing the bosons. The total number of bosons 

β=1/(kBT) the inverse temperature. From here on we define n=N/V as the density, which 

can not change if we alter the temperature when the volume of the box is fixed externally. 

On the other hand, the total number of bosons also follows from the Bose-Einstein 

occupation numbers, and the density of states: 

N = D(ε)nB (ε)dε =ηV
ε

e ε−µ (T )( )/kBT −1
dε

0

∞

∫
0

∞

∫     (1.4) 

In order to satisfy that the external density equals the right hand side of the expression, the 

chemical potential has to be adjusted. In an experimental situation it is indeed so, that the 

chemical potential “adjusts itself” in order to satisfy the constraint on particle number 

expressed by Eq. 1.4. Let us look first at the possible values, which the chemical potential µ 

can adopt. First, we can see right away, that under all circumstances it must satisfy  

0<µ          (1.5) 

In fact, the case 0→µ corresponds to an important limit in this context: this corresponds 

exactly to the Bose condensation limit. Careful mathematical analysis of this limit shows, 

that for µ=0 the Bose-Einstein occupation factors are provided by Eq. 1.2, except for the 

occupation of the state with εk=0: This state is occupied with a macroscopic number of 

bosons, N0. The temperature where this special state sets in is easy to calculate: For T < Tc 

we have µ=0, while N0=0 above Tc. When T=Tc both  µ and N0 are zero. This requires, that 

n = η ε
eε /kBTc −1

dε
0

∞

∫ =η kBTc( )3/2 x1/2

ex −1
dx

0

∞

∫      (1.6) 

The integral on the right hand side is a standard integral, which equals 2.31... With the help 

of this the expression for the critical temperature becomes  
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kBTc =
n

2.31 η
!

"
#

$

%
&

2/3

= 3.31 
2

mkB
n2/3       (1.7) 

Below the critical temperature, the chemical potential remains glued to the lowest energy of 

the bosonic band. It can’t shift inside the band, because this would introduce an infinite 

number of particles for all states at energy below µ. The number of excited particles, i.e. 

those which are not the εk=0 state, is given by the expression 

Nexc

N
=

T
Tc

!

"
#

$

%
&

3/2

  (T<Tc)       (1.8) 

The total number of particles is N =Nexc+N0. This implies that at T=0  N0=N: All bosons are 

condensed in the lowest-energy state. Consequently the groundstate is given by expression 

N0 = a0
†( )

N0 0  (T=0)       (1.9) 

Above the critical transition temperature the number of condensed particles, N0=0, but now 

the chemical potential µ differs from zero. With some mathematical effort it can be shown, 

that just above the phase transition 
22/32

1315.2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛−≅

ccB T
T

Tk π
µ  (T>Tc)     (1.10) 

The various situations have been sketched in Fig. 1.4. In Fig. 1.5a temperature dependence 

of Nexc(T), and µ(T) is shown, obtained by solving Eq. 1.4 numerically.  
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FIGURE  1.5a 
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The total energy of the Bose-gas is 

E(T ) = D(ε)nB (ε)ε dε =ηV
ε3/2

e ε−µ (T )( )/kBT −1
dε

0

∞

∫
0

∞

∫     (1.11)  

For T<Tc we have µ(T<Tc)=0, so that 

E(T ) =ηV kBT( )5/2 x3/2

ex −1
dx =1.783ηV kBT( )5/2 =

0

∞

∫ 0.772NkB
T 5/2

Tc
3/2   (1.12) 

Hence the specific heat is 

C(T ) =1.92NkB
T
Tc

!

"
#

$

%
&

3/2

 (T<Tc)      (1.13) 

For T>Tc we have an additional term, due to the fact that µ(T) is given by Eq. (1.10). 

Expanding the Bose-Einstein occupation factor in Eq. (1.11) as  

{ } TkTnnn B/)()()(1)( µεεε ++ , it is easy to prove that close to Tc  

C(T ) =1.92NkB
T
Tc

!

"
#

$

%
&

3/2

− 2.46NkB
T
Tc

!

"
#

$

%
&

1/2
T
Tc

!

"
#

$

%
&

3/2

−1
(

)
*
*

+

,
-
-
 (T>Tc)   (1.14) 

 
In Fig. 1.5b the resulting specific heat curve is displayed. 

 

Let us compare the theory of Bose-Einstein condensation now to the experimental facts in 
4He:  

FIGURE  1.5b 
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v First, 4He atoms are bosons. 

v
 Second, with Eq. 1.7, adopting m=6.69 x 10-24 g for the mass, and  n = 2.2x1022 (cm-3) 

for the density of liquid  4He: the predicted phase transition is at Tc=3.14 K. 

Experimentally this is 2.2K. Actually not bad considering the fact that we approximated 

a liquid with an ideal gas model. 

v
 Third, the specific heat at low T was predicted to have T3/2 behaviour. The 

experimentally observed temperature dependence is T3, which is significantly different.  

v
 In the fourth place the condensate fraction n0 for T<<Tc approaches n0=1 in BEC 

theory. Experimentally n0=0.1 was observed (see Fig. 1.6a) 

v
 Finally, the shape of the calculated anomaly does not at all look like a λ-transition.  

 

 

 

FIGURE  1.6a 
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A clue for the discrepancies is given by the pressure dependence of Tc. The phase diagram 

(Fig. 1.3) showed, that increasing the density by applying pressure, has the effect of 

reducing Tc, which is opposite to the trend expected from the Bose-Einstein formula, Eq. 

1.7. A further clue is provided by the pressure dependence of the superfluid density 

displayed in Fig. 1.6b, where it was observed that the superfluid density decreases when 

pressure is applied.  

The main reason for the disagreement between theory and experiment must be the fact that 

liquid 4He is rather far from the realization of an ideal gas. The atoms interact strongly, on a 

short length scale, which has a profound effect on the excitation spectrum: Instead of the 

energy momentum relation of free particles expressed in Eq. (1.1), a sound like dispersion 

has been observed, with at high momentum a so-called ‘roton-minimum’ (see Fig. 1.7). 

This experimentally observed energy-momentum dispersion has been the subject of intense 

theoretical investigation during the middle of the 20th century, and legendary physicists like 

Boguliubov, Feynman, Landau, Nozieres, Pines, and many others have contributed to the 

microscopic understanding of this peculiar k-dependence, along with the low temperature 

physical properties.  

FIGURE  1.6b 
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Because the long wavelength (small wave number) dispersion is now quasi-accoustical, i.e. 

the energy momentum relation of the particles is  

vkk =)(ε          (1.15) 

Also the density of states has a different energy dependence: Instead of Eq. (1.3) the low 

frequency limiting behaviour of the DOS is given by the expression 

D(ε) = ε 2

2π 2          (1.16) 

Following the same procedure as in Eq. (1.6) a different exponent is now found for Nexc(T),  

and N0(T) namely 

Nexc

N
=

T
Tc

!

"
#

$

%
&

3

  (T<Tc)       (1.17) 

Another consequence of the interactions between the boson is, that the condensate fraction 

is no longer unity for T=0. This is nicely demonstrated in the momentum distribution 

function measured with neutron scattering below and above the phase transition, showing 

that the condensate fraction of 4He is of the order of 10 percent. 

FIGURE 1.7 



 14 

 
 

The most important ingredient of the BEC story is, that 4He is a boson. What happens if we 

remove one of the 4 nuclear particles? On the one hand the mass of  3He is 75% of the 4He 

mass, hence according to Eq. (1.7) one might expect the phase transition to occur at a 30% 

higher temperature, i.e. around 3K.  However, this is not observed.  In fact, no phase 

transition occurs below the solid/liquid transition of 3He down to the mK range! Formally, 

we shouldn’t be surprised because 3He is a fermion: it is a composite object consisting of an 

odd number of fermions.  It is a bit hard to imagine that removal of a nuclear particle could 

have any effect on the properties of a fluid, apart from reducing the mass to 75% of the 4He 

mass. Yet, this is just one of the many strange consequences of quantum mechanics, which 

have now been established as experimental facts.  Indeed 3He is expected to form a Fermi-

liquid, similar to a gas of electrons in e.g. aluminum or sodium. Given the mass of the 

atoms, m=5.0x10-24 g, and the density n=2.3x1022 cm-3 in the liquid phase, the expected 

Fermi temperature is 

FIGURE  1.8 
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K
mk
nT
B

F 2.6
2

)3( 3/222

== π!        (1.18) 

That 3He is a fermion, and not a boson, is nicely demonstrated by neutron scattering, 

showing that the distribution in momentum space indeed has the features of a Fermi-liquid., 

Fig. 1.9.  Note also the large difference in momentum distribution with the bosonic case of 
4He, displayed in Fig. 1.8.  

 
In 1971 Oshereroff, Richardson and Lee did discover superfluidity in 3He below 2.6 mK. 

The phase diagram (Fig. 1.10) looks rather complicated, and within the superfluid phase 

extra phase boundaries have been observed. In later chapters we will see, that this 

behaviour is more related to superconductivity, and what one really observes here is the 

condensations of pairs of  3He atoms! 

FIGURE  1.9 
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Because of the complications due to interactions between the helium atoms, causing Tc to 

be different from the BEC prediction, and also strongly affecting the temperature 

dependence of all physical properties, for a long time people have sought to perform BEC 

experiments under conditions closer to those of an ideal gas, i.e. for a real dilute gas of 

bosons. One of the consequences of working in the regime of a dilute gas, rather than a 

dense liquid, is that Tc will be much lower. BEC under ideal gas like conditions have been 

finally realized in 1995 in dilute gases of 11Na23, 37Rb85 , and in 3Li7, almost simultaneously 

by  Ketterle, Cornell, and Hulet respectively.  The densities are indeed much lower than for 

liquid helium: 1014 cm-3 < n < 1015 cm-3. Because the masses of these atoms are much 

higher, the transition temperatures range from 0.5 µK to 2 µK.  The combination of laser 

cooling and evaporative cooling of alkali atoms was a prerequisite for the observation of 

BEC in dilute atomic gases: 

 

The following description of the experimentes was adopted from Wolfgang Ketterles web-

page: “In Ketterle’s trap, the atoms start out in an oven, which is held at 350 degrees 

centigrade. These hot atoms are allowed to escape through a hole in the oven and shoot out 

in a beam traveling at about 800 meters per second (1800 miles per hour). They than aim a 

FIGURE 1.10 
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laser beam in the opposite direction of the atomic beam. The laser beam hits the atoms and 

slows them down to about 20 meters per second (45 miles per hour) at the center of our 

vacuum chamber, where a magneto-optical trap (MOT) captures them. The MOT traps the 

atoms with six laser beams coming in from all directions. These beams push the atoms into 

the center of the chamber. After collecting a large number of atoms in the MOT, they turn 

off the lasers and turn on a large magnetic field, which confines the atoms magnetically. In 

the magnetic trap they cool the atoms down to very low temperatures and study them.  

Ground state sodium atoms can have several different spin orientations. Atoms in one of 

the orientations are attracted to weak magnetic fields. These are the ones which are trapped 

in the BEC experiment. A different spin orientation is attracted to high magnetic fields. 

Since the magnetic trap has a magnetic field minimum at the center, these "strong-field 

seeking" atoms are pushed out of the trap. The technique used by Ketterle to get extremely 

cold atoms is called rf-induced evaporation. To induce evaporation,  radio waves  are used 

to flip the spins of the most energetic atoms in the trap. With their spins flipped, they fly 

out of the trap. Since only the most energetic atoms are ejected, they take away more than 

their fair share of energy. When the rest of the atoms re-thermalize (by bouncing off of 

each other several times), the net energy per atom has dropped, and the atom cloud is 

cooler.  It is very similar to the way evaporation works in a cup of hot coffee. A cup of 

coffee is made up of many molecules flying around and bumping into each other. The 

temperature of the coffee is just a measure of the average energy that these quickly moving 

molecules have. From time to time two molecules will collide in such a way that one of the 

two ends up with most of the energy, sometimes even gaining enough energy to fly out of 

the cup. Since these molecules are going relatively fast compared to the rest of the 

molecules, they take with them more than their fair share of energy, and the molecules 

which are left behind have less energy on average than they did before the fast molecules 

shot out. For every molecule that is kicked out, the temperature of the coffee decreases a 

tiny amount.  

The experiment with which BEC is actually observed, is by turning off the trapping fields 

suddenly and looking at the velocity spectrum of the atoms as they flew out of the trap. 

This method is often referred to as a time of flight measurement, since the velocity 

spectrum is determined from the position of atoms in the image and the time that atoms 
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were allowed to expand in free flight before the image was taken. An example showing the 

velocity distributions, and BEC of  11Na23 while it is being cooled below the BEC point is 

shown in Fig. 1.11 (Figure taken from Wolfgang Ketterle's webpage), clearly showing the 

development of the condensate at zero momentum, as temperature is lowered below Tc. It 

is also clear , that in this case the condensate fraction approaches 100 %, indicating that 

indeed the ideal gas situation envisaged in the Bose-Einstein condensation theory in 1925, 

has been realized here.” 

 
 

A final word about Bose-Einstein condensation. In fact many more phenomena are BEC, or 

related to BEC. Some of these will return in later chapters.  We will see, for example, that 

superconductivity has much to do with BEC. But also the interior of nuclei and neutron 

stars (nn or pp pairing)  have physics in common with these phenomena, but now at an 

entirely different energy scale. In the physics of elementary particles pairing and 

condensation of mesons is been studied theoretically,  chiral <qq> condensates in vacuum 

have been proposed for the structure of elementary particles and <tt> condensates for the 

structure of the Higgs boson. 

FIGURE  1.11 
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In principle one can also look for other bosons to do experiments like this on. The principle 

of a laser (photons!) has much to do with this, because it corresponds to a macroscopic 

occupation of the same electromagnetic state with photons.  However, one can also attempt 

to do condensation experiments of elementary excitations in solids, such as excitons, bi-

excitons, or magnons.  

 

 

Problems 

 

1. Calculate Tc of 11Na23 , 37Rb85 , and in  3Li7,  if the density is 1014 cm-3. 

 

2. Calculate Tc of a mixture of 10 % 4He and 90% 3He, if the density is 2.3x1022 cm-3. 

 

3. Calculate Tc of  a ferro-magnet containing a fixed number of magnons, with a density 

of 1022 cm-3., and adopting the dispersion relation  22)( kJak =ω! , where J =200 K  is 

the exchange constant, and a=0.3 nm is a cell parameter. 
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Lecture Notes on Superconductivity- Part I, D. van der Marel 

Chapter II:  

The main characteristics of superconductivity 

 
Electrons and nuclei (protons and neutrons) are the particles from which solids are formed. 

Electrons couple to the electromagnetic field in two different ways: First of all as a result of 

their electrical charge, second due to their spin.  

• The charge of electrons is at the heart of all 'electrical' phenomena, i.e. metallic 

conductivity and superconductivity and optical properties, and it is responsible for part 

of the magnetic phenomena, in particular the diamagnetic properties of 

superconductors, but also orbital magnetism of rare earth elements.  

• The spin of the electrons causes magnetism in typical ferromagnets such as iron. It is 

also a crucial element in many quantum mechanical phenomena (the Einstein Podolsky 

Rosen paradox is probably one of the most well known). We will see later, that the spin 

FIGURE  2.1 
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quantum number plays a crucial role in the concept of the pairing phenomenon in 

superconductors. 

• The nuclei enter the game in more than one way. First, they provide the electrically 

positive background, which acts as a container for the negatively charged electrons, 

which would otherwise disperse. Moreover, the dynamical vibration spectrum of the 

atoms depends strongly on the mass of the nuclei. We have already seen that in the 

exceptional case of helium at ambient pressure, the zero-point fluctuations prevent the 

formation of a solid. We also know, that lattice vibrations, when coupled to the 

electronic motion, have a strong influence on the transport properties of the electrons. 

Important in the context of superconductivity is, that electron-phonon coupling can play 

the role of a 'glue', causing pair-formation and superconductivity. 

 
The reason that typical insulators such as diamond don't conduct electricity is a quantum 

mechanical effect. Four  ingredients are needed:  

(i) The Pauli-principle, forbidding two electrons of the same spin to occupy the same 

state. 

FIGURE  2.2 
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(ii) The formation of bands due to the periodic potential produced by the lattice 

(iii) Complete filling of the valence band 

(iv) The valence band should be separated from the conduction band by an energy gap 

When all four conditions are fulfilled, the sub-system of the electrons forms a crystal, and 

the material is an insulator. If condition (iii) or (iv) is not fulfilled, the electron subsystem is 

a fluid. Now the electrons can migrate through the crystal and the material is metallic. 

 

When metals are cooled to low temperature, usually the resistivity decreases as a result of a 

reduction of the inelastic scattering by phonons. The temperature dependence of a classical 

metal is: ρ(T) = ρ0+cT5, where is ρ0 the residual resistivity, which is proportional to the 

density of impurities in the crystal. If no impurities are present, one might therefor expect 

that the metal would become a perfect conductor only at T=0. Kamerlingh-Onnes was 

interested in exactly this question, and put his assistent Gilles Holst (who later became the 

director of Philips Research Laboratories in Eindhoven) on the job of measuring the 

resistivity of a very pure metal as a function of temperature. They selected mercury (liquid 

at room temperature, but solid below 234 K) because it can be purified rather easily using 

destillation techniques, resulting in a metal with practically zero residual resisitivity. To 

their surprise, the resistivity signal disappeared when the temperature dropped below 4.2 K. 

It took Holst quite some time and effort to convince his supervisor that he had not made a 

trivial experimental mistake. It also took many decades before the scientific community 

started to pay attention to the important role of Gilles Holst in the discovery of 

superconductivity. 

 

FIGURE  2.3 
The discovery of supercondcuctivity by Holst and 
Kamerlingh-Onnes in 1911 
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Superconductivity has been observed in about 25 elements. Some examples are: 

Element Tc 

Tl 2.4 K 

In 3.4 K 

Hg 4.1 K 

Ta 4.5 K 

V 5.4 K 

Pb 7.2 K 

Nb 9.5 K 

La 11.93 K*  

*at a pressuare of 149 bar 

 

It is of interest to remark, that 

• the alkali-halides are not superconductors 

• ferro- and anti-ferromagnetic elements are not superconductors 

• the higher Tc's are usually observed in metals with a low electrical conductivity. 

Innumerable compounds exist, which exhibit the phenomenon of superconductivity. Many 

of those are intermetallic materials, but also a large class of organic superconductors exist, 

the record holder is electron-doped Cs3C60 under applied pressure, with a transition 

temperature of 38 K. 

Bednorz & Muller
1986

 

FIGURE  2. 4 
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Until 1985 the highest Tc known was 23 K, in the compound Nb3Ge. However, the field of 

superconductivity obtained an enormous boost when, in 1986, Bednorz and Muller 

published a paper in Zeitschrift fuer Physik, announcing superconductivity below 30 K in a 

ceramic compound containing the elements La, Ba, Cu and O. This led to the discovery of 

a whole class of superconductors, all of them containing Cu and O as the main ingredient, 

with ever rising transition temperatures. The record holder is Hg2Sr2Ca2Cu3O10, with a 

Tc of 136 K, under pressure even 164K.  

 
One of the most widely used cuprate superconductors is YBa2Cu3O7, with a Tc of 92 K. 

This transition temperature is well above the temperature of boiling nitrogen (77K), which 

makes this compound very popular as a classroom demonstration tool. YBCO was 

discovered ain 1987 by Paul Chu, who realized that replacing La3+ with the smaller Y3+ 

ion would have the same effect on the crystal structure as applying pressure. It was already 

known at that time that the effect of applying pressure on LaBaCuO was, to increase Tc. 

Indeed Chu's trick worked wonderfully, and YBa2Cu3O3 was born. It is a stable 

compound, which easily survives exposure to air and even moisture. It therefor is widely 

FIGURE  2..5 
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applied in superconducting electronics applications, such as SQUID detectors, stripline 

filters, and Josephson-logic. 

 
Among the many applications of superconducors, superconducting wires are probably the 

most important. For many years already superconducting wire finds wide-spread 

applications in high field magnets. The most spectacular form is for high power 

applications in the commercial electrical power networks around the world. Although 

superconducting power cable is still an order of magnitude more expensive than 

conventional copper wire, commercial niches exist in situations where the capacity needs to 

be increased without disrupting the existing infrastructure of underground tubes, in which 

the cables have to be fitted. One can imagine that for a city like Tokyo it is a lot cheeper to 

replace the existing coppercables with 10 times more expensive superconducting cable, 

than to break down Tokyo, replace the underground tubes with thicker ones, put in new 

copper cables, and finally rebuild the city.  

 

Although the property of zero resistance is often regarded as the defining property of a 

superconductor, this is not really true. Superconductors have an additional property. The 

two properties are: 

(i) The electrical resistance of a superconductor is exactly zero: ρ=0 

(ii) Magnetic fields can not enter a superconductor. Deep inside the bulk of a 

superconductor: B=0 (Meissner-Ochsenfeld effect).  

FIGURE  2.6 
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Apparently in the presence of an external field Bext = H, surface currents set up a net 

magnetization M  (NB: 4πM = B - H ), such that  H = 4π M  or  χ = - 1/4π. The 

superconducting state is said to be perfectly diamagnetic. 
Another aspect of the fundamental importance of the Meissner-Ochselnfeld effect is, that it 

shows, that the transition from the normal to the superconducting state is reversible in the 

thermodynamic sense. To see this, consider the following two experiments: 

(a) A specimen is first cooled below Tc, and then an external magnetic field is applied. 

(b) A specimen is brought in a magnetic field at T > Tc, and then cooled to Tc. 

 

FIGURE  2.8 

FIGURE  2.9 
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According to Meissner-Ochsenfeld, B=0 in both final states, i.e. B=0 independent of the 

history. To appreciate the fundamental importance of this discovery one should realize, that 

the MO effect goes beyond what one would expect from a "perfect conductor" and 

Maxwell's equations. In fact, from the classical relation  
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where 1/τ  is the rate of momentum transfer,  E is the electric field and j the current 

density, it follows that for a perfect conductor  (1/τ=0) 
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We substitute for j the expression for the current density from Ampère’s law 
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The solution is that the time-derivative of the magnetic flux density decays expentially 

away from the sample surface, 
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4πne2 .  

Deep inside the sample one therefore has  

dB/dt=0.  
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While having B=0 is a sufficient condition for this, B can in fact have an arbitrary finite 

value as long as it is stationary. Hence the property that B=0 goes beyond the expected 

behaviour of a 'perfect conductor'. 

Influence of a magnetic field
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Type I superconductors

 
In the Meissner state M(Bext) is fully reversible, i.e. M(Bext) does not depend on the history 

of field, magnetization, or temperature of the sample. Superconductors exhibiting this 

behaviour are so-called type-I superconductors. However, most superconducting materials 

are not type-I: When the external field is lower than the the lower critical field Bc1, they still 

have fully reversible M(Bext) behaviour and a complete flux expulsion. For higher external 

fields, the material remains superconducting, but inside the superconductor B≠0: The actual 

value of M and B now depend strongly on the history of field, magnetization and 

temperature. For fields in the interval Bc1 < Bext < Bc2 the superconductor is in the "mixed 

state". For Bc2 < Bext the material returns to the normal state. The B-T phase-diagram of a 

type-I and a type II superconductor is indicated in Figs. 2.12 and Fig. 2.13 respectively. 

FIGURE  2.12 
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Type-II behaviour in superconductors is caused by the fact, that for magnetic flux partially 

penetrates the superconducting specimen in the form of tiny microscopic filaments, called 

vortices. Each vortex carriers a magnetic flux 15
0 10067.2
2

−⋅==Φ
e
h  Weber.  

 

B.S. Deaver, W. M. Fairbank,
Phys. Rev. Lett. 15, 43  (1961)

Flux quantization in superconducting cylinders

 
 

 

A related magnetic flux quantization phenomenon was discovered by Deaver and Fairbank, 

by measuring the amount of flux trapped in a hollow superconducting cylinder (see Fig. 

2.14). When they cooled a cylinder machined out of a superconducting material below the 

phase transition in a magnetic field, and measured the total magnetic flux trapped inside the 

cylinder using a magnetometer, they observed that the amount of flux increases in steps as a 

function of the external magnetic field in which the sample was placed. The height of each 

step was close to hc/2e, and later experiments have confirmed, that magnetic flux is indeed 

quantized in exact amounts of this 'elementary flux quantum' Φ0=hc/2e. The importance of 

FIGURE  2.13 
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this discovery is, that the size of the elementary flux quantum depends on the Planck 

constant h. In a 'classical world', where the Planck constant would be zero, no flux 

quantization would exist. This is the clearest demonstration, that superconductivity is an 

inherently quantum mechanical effect. It also suggests, that an intimate connection may 

exist between superconductivity, and Bose-Einstein condensation, because BEC is also a 

manifestation of quantum coherence on a macroscopic scale (remember, that in the theory 

of BEC the transition temperature is proportional to !2). We will come back to this intimate 

relationship later, and we shall see that indeed superconductivity, superfluidity and BEC 

belong to a single class of macroscopic quantum phenomena. 

 

 

 

Important properties of superconductors: 
Q Zero resistance state 
Q Meissner effect (B=0) 
Q Perfect diamagnetism (M=-4π H)  
Q Macroscopic quantum state:  

 -Flux quantisation 
 -Josephson effects 

Q Electrons form pairs.  
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Lecture Notes on Superconductivity- Part I, D. van der Marel 

Chapter III: Superconducting pairing mechanisms 
 
III.1 The Hamiltonian of interacting electrons 

The energy-momentum dispersion relation of electrons relative to the chemical potential µ 

is ξk = εk − µ. The Hamiltonian describing the energy levels of an arbitrary number of 

conduction electrons is 

K̂ = ξk ck,σ
† ck,σ

k,σ
∑         (3.1) 

When considering the interaction potential between two electrons in vacuum, we know that 

the two equal charges cause a repulsive Coulomb interaction of the form 
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The Hamiltionian describing the Coulomb interaction in quantum many-body physics is 
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σσ ψψ  are the field-operators and σ denotes the spin. These field-

operators create or anihilite a partice in a state which is localized on a particular space 

coordinate. Such a localized state is usually not an eigen-state of the system. Since in a 

translationally invariant space the eigenstates are plane waves, it is usually more convenient 

to express the interaction using operators which create or annihilate a plane wave. These 

are defined as ( )∫= rdre
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σσ ψ where V is the system volume. We can substitute the 

inverse Fourier transform, ( ) ∑ −=
k

k
ikrcer ††

σσψ ! in the expression for the interaction. For 

each of the four field operators we choose an independend summation variable.  
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To simplify the expression we decompose the coordinates r1 and r2 in the relative (ρ = r1 - 

r2) and the center-of-mass coordinate (R = ½{ r1 + r2 }) 
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One way to read the interaction Hamiltonian, is that each one of the two annihilation 

operators devours a particle with spin σ’ and σ respectively, whereas the two creation 

operators expectorate two particles, having also spin σ’ and σ.  

 The integrals over the center of mass coordinate give the Kronecker delta-function 

describing the conservation of momentum in a particle-particle collision 
( )

ppkk
Rppkki Rde −−

−+− =∫ ','
3'' δ
!

 

A momentum q=p’−p is transferred from the electron which had initially momentum p, to 

the electron which had initially momentum k. In the Coulomb interaction this momentum is 

transported by the virtual photon which carries the interaction between the two electrons. 

We use the Fourier transform of 1/r   

2
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to finally arrive at the expression for the Coulomb interaction 
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III.2 The Hamiltonian of two fermions coupled via a bosonic field  

In this chapter we consider the processes in a solid whereby two electrons are scattered 

from each other. Initially electron 1 is in a quantum state k , and electron 2 in a quantum 

state p . In a solid their interaction is not just the bare Coulomb repulsion, but the much 

weaker screened interaction, which is supposed to vanish for ξkà0. 

phonon

electron 1

electron 2

 
Interactions between electrons are generally caused by the virtual exchange of bosons. Such 

a process is represented by the above Feynmann diagram. This is also true for the Coulomb 

repulsion between electrons, in which case the exchanged bosons are photons. However, 
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the Coulomb repulsion is somewhat special, and its treatment requires the full machinery of 

quantum electrodynamics, which is the subject of another course. Here we will consider the 

Coulomb repulsion as an effectively instantaneous interaction.  

In addition to the Coulomb repulsion, another interaction of great importance in the theory 

of nuclear forces is the “Yukawa force”, between nucleons coupled through mesons. The 

mechanism of electron-electron attraction mediated by phonons in a solid is very similar to 

the Yukawa interaction. For this reason we discuss it here in some detail. We call bq the 

annihilation operator of a boson of momentum ħq and energy ħωq. We assume that the 

bosons have an energy-momentum relation  

( )20222 kqvq +=ω         (3.5) 

where the bosonic mass is introduced by the constant k0. The interaction Hamiltonion of 

fermions interacting with this boson field is  
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Consider the case that an electron is present at position r. The expectation value of the 

operator product σσ kqk cc†+  is then iqrikrrqki
kqk eeerccr −+−
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σσ . We now consider a state 

with two electrons at positions r1 and r2. Repeating the previous argument we obtain 
21

12
†

21 ,, iqriqr
kqk eerrccrr −−

+ +=σσ , and the corresponding perturbation of the boson field is  

( ) ( ) ..2
2

1

2/1 21 CHbeeigH
j q

t
q

iqriqr
q

i
b ++−= ∑∑

=

−−−ω!      (3.7) 

Where the matrix element is calculated over the Fermion coordinates, while the boson-

coordinates are still operators at this stage. To calculate the correction on the energy of the 

two electrons due to coupling to the boson field we use second order perturbation theory 
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where ρ=r1−r2 is the relative coordinate of the two electrons. The force acting between the 

two fermions corresponds to the gradient of the above potential energy. We can therefore 

replace (1+cosqρ) with cosqρ, since this only adds a distance independent constant to the 

interaction. The q-space integral is easily performed. For the boson energies we substitute 

the dispersion relation (3.5) with the result 
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with the help of which we arrive at the famous expression for the Yukawa interaction  
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Thus the interaction between two fernions mediated by bosons is attractive. At short 

distances it decays as 1/ρ, like the Coulomb interaction (except for the sign!) while at 

distances larger than k0, it decays exponentially.  

To obtain the Hamiltionian corresponding to the effective interaction of Eq. 3.8 we have to 

proceede in the same way as we used to obtain from Eq. 3.4 from Eq. 3.2: we multiply 

VY(ρ) with the product of field operators ( ) ( ) ( ) ( )2'2
†
'22

† rrrr !!!!!!
σσσσ ψψρψρψ ++ , and  express 

these in terms of the creation and annihilation operators  '
† , σσ pk cc . The resulting expression 
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Has a structure similar to the Coulomb interaction, Eq.  3.4, of the previous chapter, except 

that the sign of the interaction is opposite, and the denominator on the right hand side 

contains an additional term k0
2.  However, this expression contains a deficiency in that it 

was derived using second order perturbation theory taking a static configuration of two 

fermions at positions r1 and r2 as the starting point. Effectively this means that the derived 

effective Hamiltonion applies to the case where the energies of the outgoing particles, and 

the incoming particles are the same, i.e. εk-q−εk=0, and εp+q− εp=0. These on-energy shell 

processes are relevant for scattering processes whereby the electrons remain in free 

propagating incoming and outgoing states, i.e. no bound pair-states are formed. More 

generally we should consider the coupling between 2-particle states having different 

energies. A more complete treatment of the Yukawa interaction reveals that for 

(εk−q−εk)2>>ħ2ωq
2 the  interaction VY(ρ)≈0.  We will take a closer look at this dynamical 

aspect of the effective interaction in the following section. 
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III.3 Quasi-particles 

In a metal the interacting fermions responsible for superconductivity are the so-called 

quasiparticles. These are not the electrons. Instead they are fermionic fundamental 

exitations of the solid with the following properties:  

(i)Their collection of momentum values at zero energy spans a surface in momentum space, 

which is by definition the Fermi surface.  

(ii) Their interactions vanish in the limit of energy going to zero relative to the Fermi 

surface.  

The principle of forming quasi-particles out of the original electron is exemplified by the 

process of screening of the Coulomb interation. Taking the original electron as the starting 

point, they repel each other by the Coulomb interaction. However, we are not interested in 

the bare electrons, but in the fundamental excitations of the solid, which are as close an 

approximation as possible to the eigenstates of the material. Consider a metal in its ground 

state. We are interested to describe a fundamental excitation with charge e and spin ½. 

Imagine that we try to realize such an excitation by adding one extra electron to the metal, 

which we add in a state with momentum ħk and energy Ek. This extra electron will interact 

with all other electrons present via the Coulomb interaction, the average electron-density 

will shift a bit such as to screen the extra charge on the length scale of the Thomas Fermi 

screening length. The resulting eigen-state with momentum ħk, extra charge e and spin ½ is 

our quasi-particle. Its energy relative to the Fermi energy is ξk, is no longer the bare Ek, in 

fact ξk is renormalized by the interaction with the screening cloud. This corresponds to an 

electron and a screening cloud surrounding it! The exact calculation of the quasi-particle 

energy dispersion ξk is a major scientific challenge. Only approximate solutions exist to this 

problem. 
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III.4 The screened Coulomb interaction 
Since quasi-particles are “renormalized” electrons, quasi-particle quasi-particle interactions 

are necessarily different from those between bare electrons. In general some approximation 

scheme needs to be employed to obtain the renormalized interaction between quasiparticles. 

One such approximation scheme treats the effective interactions using the model of 

screening, which is based on the so-called random phase approximation. It is not 

particularly good approximation, but since it is simple to understand and it illustrates some 

interesting and important physics, we will explain it here.  

The Coulomb interaction is a non-retarded interaction. Suppose that at position r1 a charge 

e pops up at time t1 and disappears immediately afterwards, and the same happens at 

position r2 and time t2. If t1 ≠ t2 there is no interaction energy at all, since the two charges do 

not coexist at the same time. The expression for the interaction energy is apparently 
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In solids this is different: A quasiparticle moving through the solid leaves behind a trace of 

perturbations of all electrons and ions with which is has been interacting. It takes a certain 

amount of time for this trace to heal, after which the system has returned to the ground 

state. Another quasi-particle feels the influence of this trace for the time that it exists, in 

other words, the interaction with the earlier electron should be integrated over all time from 

the distant past until the actual time. The resulting interaction is the Fourier transform of the 

Coulomb potential devided by the dielectric constant. Since the dielectric function is 

generally momentum dependend, the potential V(r1,r2;t1,t2) is the Fourier transform in 

frequency and momentum space of the screened interaction in frequency-momentum space 
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When the two particles are still far away from each other, their states are described by 

Bloch waves, i.e. particle 1 is in a quantum state k , while particle 2 is in a quantum state 

p . After the scattering, as the particles are moving away from each other at a long 

distance, they are again in states described by a Blochwave. Moreover, due to kinematic 

constrants the center of mass momentum is conserved throughout the process. 
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Consequently, if particle 1 scatters from state k  to qk −  , than particle 2 has to scatter 

from p  to qp + .  

During the time that the collision process is taking place, each of the two particles is in an 

intermediate state, which in principle can be quite complicated. Here we consider only 

scattering processes in the limit of weak interaction, and therefore assume that only leading 

orders in perturbation theory need be considered. Consequently the intermediate state of 

each particle is a linear superposition of the initial and final state 
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The corresponding amplitudes are 
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from which we see, that in perturbation theory the two particle amplitudes oscillate 

harmonically as a function of time, the oscillation frequency given by the energy difference 

in their respective initial and final states. Due to negative interference, all frequency 

components of the interaction average to zero, except the components having 

qkk −−= εεω! . Hence the (only) frequencies relevant for the screening of the interaction 

are the energy differences of the intital and final states of each of the two particles. If in 

addition the center of mass motion of the incoming and scattered states is zero, we have 

p+k=0. Consequently kqkqppqkk  εε εεω εεω −−+− −=−=−= ' and !! , and ω=ω’. 

 

In summary, a scattering event by the screened Coulomb interaction corresponds to the 

following process:  

1) The quasi-particle with momentum ħk and energy ξk emits a boson with momentum 

ħq after which it continues with momentum ħ(k-q) and energy ξk-q.  

2) The boson is captured by the other quasi-particle having momentum ħp and energy 

ξp, which thereafter continues its journey with momentum ħ(p+q) and energy ξp+q.   
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Attention:  The final state energies are not necesserily on-energy shell.  This means that 

in the final state the quasi-particles have momentum ħ(k−q) and  ħ(p+q), with energies  

ξk-q and ξp+q irrespective of the energy ħωq of the intermediate boson. 

If the center of mass motion of the incoming and scattered quasi-particles is zero (implying 

k=p) the resulting interaction between the two quasi-particles involves an intermediate state 

which oscillates at the frequency qppqkk  εε εεω +− −=−=  ! . 

 

The interaction is then described by the Hamiltonion 
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The choice of sign of ω makes no difference in the expression for Hi, because ε(q,ω) is an 

even function of frequency. The ω-dependence implies that the interaction is retarded, i.e. 

the time-evolution of a collision process is described by a memory function.  

In a metal, the electronic contribution to the dielectric function is to a good 

approximation given by the expression for the Thomas-Fermi screening  
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where k0 is the Thomas-Fermi screening wavevector 
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Where a0=ħ2/(me2) is the Bohr radius and n is the electron density. The resulting screened 

electron-electron interaction takes the form 
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In real space, the screening term k0
2 in the denominator reduces the Coulomb interaction by 

an exponential factor 
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We point out that the above screened Coulmb interaction still represents a repulsive 

interaction regardless of the distance between the electrons. Apparently Thomas-Fermi 
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screening does not overscreen the repulsive Coulomb force. However, the Thomas-Fermi 

model is an approximation; the actual screening has a more complex q-dependence, 

resulting in weak overscreening in certain parts of direct and momentum-space.  While 

interesting as a matter of principle, this type of attractive interaction is too weak to be of 

importance in realistic superconducting materials.  

However, overscreening becomes very important when, in addition to the free charge 

carriers, the presence of the nuclear particles is considered. The dielectric function 

describes now a two-component plasma with one light component (the electrons) and one 

heavy component (the nuclei). In view of their much higher mass, the nuclear particles can 

be treated in the classical limit, hence they contribute to the dielectric function a term 

MnQpp /4    where, /  - 2222 πω =ΩΩ , n is the density, and M is the mass of the nuclei and Q 

their charge.  The longitudinal dielectric function of such a system is  
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The dielectric function is the constant of proportionality between the electric field E inside 

a medium and the field D due to the external sources 
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A particular case is presented when ε(q,ω)=0 : In this case the above egality has a non 

trivial solution for E in the absence of an externally applied field, i.e. while D=0. 

Consequenly an oscillating electric field with these precise frequency and wavenumber can 

propogate without an external source. The collective modes of the two-component plasma 

following from the condition ε(q,ω)=0, are combined (and out-of-phase) oscillations of the 

positive nuclear charge screened by the electronic charge. In fact, these are just the sound-

modes of the solid. Hence the sound-dispersion is given by the relation 

2

2

2

2
010

ω
p

q
k Ω

−+=         (3.20) 

Which can be solved easily with the result  

22
01 qk

qvs
q −+
=ω        (3.21) 
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Where ps kv Ω= −1
0 is the sound-velocity in the hydrodynamic limit (q→0). The screened 

Coulomb interaction in the presence of sound-waves and electronic screening is:  

∑ ∑ +−−+
−=

qpk
pqpkqk

q

i cccc
kq
eH

,, ',
'

†
'

†
22

2

2
0

2

2 4ˆ
σσ

σσσσωω
ωπ     (3.22) 

The most important implication of this expression is, that the sign of this interaction is 

negative for frequencies smaller than ωq. We see, that the combination of sound-waves and 

electronic screening does result in overscreening of the Coulomb interaction, resulting in a 

net effective interaction for frequencies ω<ωD where ωD is the “typical” frequency of 

soundwaves in a solid, i.e the Debye frequency. With a bit of re-shuffling of the operators 

∑ ∑ +−−+
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kpqpqk
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σσσσωω
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We will soon see, that the only terms of importance in BCS theory are those which have 

center of mass momentum  p+k=0, resulting in the so-called reduced interaction 

Hamiltionian  
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In the following chapters we will sometimes use the following shorthand notation for the 

interaction:   
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III.5 Magnetic fluctuations, and their interaction with electrons 
The magnetic susceptibility of a substance describes the amount of magnetization induced 

by a magnetic field, ))) H(q,ω(q,ωM(q,ω χ= . Spontaneous magnetic order requires that 

0  while0 =≠ HM  for a certain momentum value q. This will happen when ∞=),0( qχ . 

We consider an example of the susceptibility of a metal close to a spontaneous 

antiferromagnetic instability. The most important feature is, that this susceptibility is large 

for a ‘soft’ wavevectorQ = (π,π ) . An effective interaction between electrons is then 

induced through so-called paramagnon exchange processes, represented by the following 

Feynmann diagrams: 

 
A qualitative description of these diagrams is as follows: When we introduce an electron at 

coordinate r=0 for an infitely short amount of time at t=0, its spin σ (=±1) introduces a δ-

function shaped magnetization pulse, which by virtue of the effective on-site electron-

electron interaction U, induces a local exchange potential  

Uσδ(r)δ(t) =Uσ ei qr+ωt( )

q,ω
∑       (3.29) 

The magnetic susceptibility of the material induces a magnetization that oscillates as a 

function of distance r and decays algebraically at large distances. This magnetization 

interacts with the magnetic moment of the other electrons through the local interaction U. 

The resulting interaction energy between two electrons at a distance r rom each other is 

V(r, t) = −U 2σσ ' ei qr+ωt( )χ (q,ω)
q,ω
∑      (3.31) 

As in the previous section, the frequency ω represents the energy difference of the two 
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interacting particles. The detailed calculation of the Feynmann diagrams shows that the 

righthand side of Eq. 3.31 must be multiplied with a factor 3/2. This way we obtain the 

reduced interaction in the BCS model 

Hi = Vklckσ
t c−kσ '

t c−lσ 'clσ
k,l
∑

Vkl = −σσ '
3
2
U 2χ (k − l,ξk −ξl )

      (3.32) 

If the material is close to a spin-density-wave instability with momentum Q, without 

actually being in antiferromagnetic state, the susceptibility is very large (but does not 

diverge) for a particular momentum k-l=Q. Note, that our sign convention is such, that a 

positive sign of Vkl indicates a repulsive interaction. In the present case the interaction 

between electrons of opposite spin (σσ’ = –1) is repulsive, but strongly dependent on k-l, 

and it becomes very large for k–l=Q.  Such a momentum-dependend interaction can also 

provide a mechanism for pairing, and is believed to constitute a mechanism for pairing in 

the high Tc superconductors. 
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 Lecture Notes on Superconductivity- Part I, D. van der Marel 

Chapter IV: Microscopic theory of superconductivity 
IV.1 Macroscopic wavefunction of a Bose-Einstein condensate 
The electrodynamical behaviour of a superconductor has strong similarities to the 

properties of the quantum mechanical wavefunction of a single charged particle. If the 

charge carriers would be bosons with charge e* and mass m*, a BEC of the charge carriers 

would indeed behave as a single quantummechanical particle. The reason is, that all 

particles in a BEC occupy the same quantum state:  

The quantum state with m bosons occupying the same state ϕ0  is  

|m〉 = (a0
†)

m
|0〉.         (4.1)  

We anticipate, based on the similarities between the properties of 3He, and of 

superconductors, that a superconductor behaves like a BEC of pairs of electrons, where 

center-of-mass coordinates of the pairs are Bose-Einstein condensed in a macroscopic zero-

momentum plane wave-function with K=0. Let us first consider a single pair of electrons. 

In second quanization notation a pair of fermions at position r1 and r2 is described by  

rα,r'β = crα
†  c†

r 'β 0 .         (4.2) 

where α and β are the spin coordinates. 

We assume that there exists an effective attractive interaction between the fermions, so that 

they can form bound states. The Hamiltonion of  two interacting particles 

H = −
2

2m
∇r ⋅∇r −

2

2m
∇r ' ⋅∇r ' +V r − r '( ) .      (4.3) 

can be split in two separate Schrodinger equations for the center of mass coordinate 

R=(r+r’)/2 and for the relative coordinate ρ = r - r’ giving  

H = −
2

2M
∇R ⋅∇R −

2

2µ
∇ρ ⋅∇ρ +V ρ( ) .      (4.4) 

with M=2m and µ=m/2. The total wavefunction of such a pair can be factorized in a 

product of two wavefunctions, one describing the motion of the center of mass and the 

other the motion of the paired electrons relative to each other 

Ψ r, r '( ) =ψ(R)w ρ( ) .        (4.3) 

If the superconductor has translational invariance, the wavefunction is a plane-wave  
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ψK (R) =
1
Ω
eiK⋅R .          

whereas the relative motion will be a bound wave-function for sufficiently attractive 

interaction V(ρ). In a state where there is no net flow of current, the center-of-mass 

momentum will be K=0 giving ψK(R)=Ω-1/2, a constant value which can be absorbed in the 

definition of w(ρ). Consequently the stationary (non current-carrying) two-electron 

eigenstates are  

1 = w ρ( )c†R+ρ /2,αc†R−ρ /2,βd3ρ∫{ }∫ d3R 0      (4.4)   

where the number 1 in the bracket indicates that this wavefunction describes 1 pair of 

electrons. A more compact expression is obtained by Fourier transforming the creation 

operators in momentum space, c†
pα and c†

qβ 

cR+ρ /2,α
† = e−ip R+ρ /2( )

k
∑ cpα

†

cR−ρ /2,β
† = e−iq R−ρ /2( )

k '
∑ cqβ

†
      (4.5) 

The precise form of the relative coordinate wavefunction w(ρ) depends on the type of 

attractive interaction, as well as on the collective effect of the background of condensed 

pairs on each other. We will determine this wavefunction by searching for the form which 

has the minimal energy of the interacting particle system. The function w(ρ) is therefor a 

variational wavefunction describing the “shape” of a pair of electrons. We define its 

Fourier-expansion  

 w ρ( ) = eikρ
k
∑ wk        (4.6)  

and insert Eqs. 4.5 and 4.6 into Eq. 4.4. After some re-arranging of the terms we obtain 

 1 =  e−i p+q( )Rd3R∫ ei k−p/2+q/2( )ρd3ρ∫{ }
k,p,q
∑  wkcpα

† cqβ
† 0   

We can subsitute the identities familiar from the theory of Fourier expansions 

         
Ω−1 e−i( p+q)Rd3R = δ0,p+q∫
Ω−1 ei k−p/2+q/2( )ρd3ρ∫ = δ2k,p−q

 

So that  
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1 = wkck,α
† c−k,β

†

k
∑ 0   

The sum over pairs of creation-operators creates a pair of electrons with center-of-mass 

momentum K=0 and spin α+β. Since the latter is necessarily an integer number (i.e. ms= -1, 

0 or 1) we identify this as the creation operator of a K=0 boson 

a0
† = wkck,α

† c−k,β
†

k
∑          (4.7) 

Suppose that the superconducting state is indeed a BEC of such pairs. Similar to Eq. 4.1 we 

expect the ground state wavefunction of m pairs in the state with center-of-mass K=0 

 m = a0
†( )

m
0 = wkckα

† c−kβ
†

q
∑
#

$
%%

&

'
((

m

0      (4.8) 

Eq. 4.8 is the ground-state wavefunction of a superconductor with m pairs of electrons. 

Usually the BCS formalism is applied to clean systems, and concentrates more on the 

electronic structure having to do with the relative coordinate ρ of the electrons forming the 

Cooper-pairs. For a description of the microscopic properties, it is easier to consider an 

ideal situation, i.e. a homogeneous superconductor that is in equilibrium.  

Note that the real-space representation of this wavefunction (Eq. 4.4) is a plane wave with 

K=0, and therefore has no dependence on the center of mass coordinate R of the pairs. In 

other words: the 'macroscopic wavefunction' corresponding to the “clean” conditions 

considered in the BCS theory, is a constant and has no dependence on the center-of-mass 

coordinate R. However, the presence of boundaries, fields, impurities, etcetera, distorts the 

wavefunction in the groundstate and introduces some finite R-dependence. The GL 

equations discussed in a later chapter deal with the macroscopic properties described by the 

R-dependence, related with the motion of the condensate of Cooper-pairs in its entirety 

such as currents, vortices, etc.  

You may wonder at this point how accurate Eq. 4.8 can be, even for a homogeneous 

superconductor without magnetic fields applied. A serious source of concern is for example 

that pairs are not 'real' bosons. Pairs of electrons, for example, don't satisfy the same type of 

commutation relations as ordinary bosons. You may wonder how the BEC picture can work 

in the case of 4He, which after all is also a composite boson with two electrons and 4 

nuclear fermionic particles? If one works out the commutation relations for composite 
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bosons, it turns out that as long as the charge clouds don't overlap, composite bosons do 

satisfy the usual commutation relations. In the case of 4He the charge clouds of the He-

atoms don't overlap very strongly. In superconductors it turns out, that the wavefunction 

w(ρ) of the relative coordinates extends over a distance of order ξ, the coherence length, 

which we will discuss later on in the context of the Ginzburg-Landau model. The length 

scale ξ can vary from a few nm upto a few hundred nm in superconductors. On the other 

hand, the average distance between the electrons is about one lattice spacing, which is less 

than a nm. Hence, in superconductors the charge clouds of overlap with housands of other 

pairs, so that Bose-Einstein commutation relations don't hold at all. Yet, the wavefunction 

of a BCS superconductor is of the BEC form presented in Eq. 4.8. The pairs in Eq. 4.8 are 

the so-called Cooper-pairs. The most important property of a Cooper-pair is, that its center-

of-mass momentum quantum number is zero. Therefore the two electrons inside a pair must 

individually have a momentum of exactly the same value, but of opposite sign. 

IV.2 The BCS wave-function  
In spite of its simplicity, Eq. 4.8 is not the most convenient representation for the purpose 

of calculating physical properties.  Bardeen, Cooper and Schrieffer proposed the following 

related, but different, variational wavefunction  

Ψ0 =∏
k
uk + vkckα

† c−kβ
†{ } 0

uk
2
+ vk

2
=1

              (4.9) 

In later section we will come back to the relation to BEC, and we will see that the 

parameters describing the wavefunction of a pair, wk (Eq. 4.7) is related to the variational 

parameters  uk and vk by the relation 

wk =
vk
uk

      

The BCS wavefunction corresponds in fact to the superposition of a huge number states 

corresponding to Bose-condensates with different numbers of condensed bosons. The main 

idea of BCS was, that, since a fluctuation in the number of bosons costs zero energy, the 

energy of such a superposition is the same as that of a state with a specific number of 

condensed bosons.  
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The most important thing to note here, is that Eq. 4.9 has in common with a Fermi-gas state 

that it is product of operators. Each term is in itself a superposition of two states, one with 

amplitude vk where a pair of electrons occupies the states with opposite momentum {k,-k}, 

and the other one with amplitude uk where these two states are empty. It is precisely this 

factorization in a product of terms, which makes the calculation of expectation values of the 

many-particle hamiltionian a relatively easy task, with a result, which can be expressed in 

analytically closed form. We begin by analyzing the energy at T=0. The free energy of the 

electrons is just the expectation value of the total Hamiltonian 

		

Ω = Ψ0 K̂ + Ĥi Ψ0

where
K̂ = ξk ck ,σ

† ck ,σ
k ,σ
∑

Ĥi = 12 Vk ,lclσ
† c− lσ '

† c−kσ 'ckσ
k ,l ,σ ,σ '
∑

             (4.10) 

It is important to remember that the energies ξk are defined as the band energies relative to 

the chemical potential. The chemical potential has to be substracted since particle number 

fluctuations necessarily imply transfer of electrons to a reservoir. Hence the equilibrium 

energy in the reservoir, µ, needs to be accounted for, and this is achieved by subtracting µ 

from the energy of the electrons. Consequently the free energy to be minimized is the 

Landau potential Ω. 

Following the BCS approach, we will assume that the ground-state wavefunction is of the 

form given by Eq. 4.9. As said before, the representation given in Eq. 4.9 is the most 

convenient one for calculating physical quantitites. Two types of averages are needed to 

evaluate Ω: 

Ψ0 ck,σ
† ck,σ Ψ0 = v

k
v
k

*

Ψ0 ck,↑
† c−k,↓

† Ψ0 =∏
k ''
∏
k '

0 uk ''
* + vk ''

* c−k ''↓ck ''↑{ }ck,↑
† c−k,↓

† uk ' + vk 'ck '↑
† c−k '↓

†{ } 0 =

                          = 0 vk
*c−k↓ck↑{ }ck,↑

† c−k,↓
† uk{ } 0 = vk

*uk

      (4.11) 

With the help of these averages it is straightforward to show, that 

K = Ψ0 K̂ Ψ0 = 2 v
k
v
k

*ξk
k
∑

Hi = Ψ0 Ĥ
i Ψ0 = ukvk

*Vklul
*vl

kl
∑

     (4.12) 
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The average number of electrons in the ground state is  

N = −
∂Ω
∂µ

= −
∂K
∂µ

= 2 v
k
v
k

*

k
∑       (4.13) 

The expression of the free energy then becomes 

Ω = 2 vkvk
*ξk

k
∑ + ukvk

*Vklul
*vl

kl
∑      (4.14) 

We are searching for the solution with the minimum free energy. The variation of the free 

energy is 

δΩ = 2vp
*ξ p +up

* ukvk
*Vkp

k
∑

#

$
%

&

'
(δvp + 2vpξ p +up Vplul

*vl
l
∑

#

$
%

&

'
(δvp

* + vp
* Vplul

*vl
l
∑

#

$
%

&

'
(δup + vp ukvk

*Vkp
k
∑

#

$
%

&

'
(δup

*
)
*
+

,+

-
.
+

/+p
∑  

Since at the free energy minimum δΩ=0, and the parameters for different momentum 

values are independent, all terms on the righthand side of the above expression have to be 

individually equal to zero for each momentum index p. We furthermore note, that that due 

to the fact that vpvp
* +upup

* =1 , the variations of vp, v*p, up and u*p are not independent i.e. 

vp
*δvp +upδup

* + vpδvp
*  +up

*δup = 0 . Secondly we notice in the wavefunction Eq. 4.9, that 

each of the terms in the product can be multiplied with an arbitrary k-dependent phase 

factor, while the wavefunction remains the same. Since the phase factors can be absorbed in 

the definition of uk and vk we see, that without loss of generality we are allowed to apply 

one more constraint on the parameters vp, v*p, up and u*p which fixes the overall phase of 

each term (up + vpcpα† c− pβ† )  but does not affect the relative phase between vp and up. There are 

various ways to do this, all of which ultimately lead to the same expressions for the ground 

state. Most frequently one sets vp
*δvp +upδup

* = 0  which, by taking the complex conjugate 

implies vpδvp
*  +up

*δup = 0 . Taken together still corresponds to the substitutions 

δvp = −
up
vp

* δup
*         ;           δvp

* = −
up

*

vp
δup  

We furthermore introduce the shorthand notation for the summations over Vkp 

Φp = − ukvk
*Vkp

k
∑

        
(4.15a)

 

and its conjugate 
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Φp
* = − Vplul

*vl
l
∑

        
(4.15b) 

The result is the condition  

0 = −
up
vp
* 2vp

*ξ p −up
*Φp( )− vpΦp

#
$
%

&%

'
(
%

)%
δup + −

up
*

vp
2vpξ p −upΦp

*( )− vp*Φp
*

#
$
%

&%

'
(
%

)%
δup

*  

Since the variations δup and δu*p are independend from each other, each of the terms in 

curly brackets is zero separately. However, since these expressions are complex conjugates 

of  each other it is sufficient to solve just one of them. We take the first one  and rearrange 

the terms as  

2upvp
*

upup
* − vpvp

* ξ p =Φp

       
(4.16) 

We can regard the combination of factors at the left hand side of the expression as an 

alternative variational parameter replacing the u’s and v’s. We use the symbol Δp for it: 

Δ p ≡
2upvp

*

upup
* − vpvp

* ξ p        

Later we will identify Δp as the order parameter. Using elementary arithmetics we express 

up and vp in terms of Δp   

2upvp
* =

Δ p

ξ p
2 + Δ p

2
            ;        2up

*vp =
Δ p

*

ξ p
2 + Δ p

2

2upup
* =1+

ξ p

ξ p
2 + Δ p

2
     ;        2vpvp

* =1−
ξ p

ξ p
2 + Δ p

2
   

(4.17) 

Combining Eqs. (4.15), (4.16) and (4.17) we obtain the self-consistent expression for Δp 

Δ p = −
ΔkVkp

2 ξk
2 + Δk

2
k
∑        (4.18a) 

Where Δp is now the complex order parameter, the phase of which can have finite k-

dependence.In the remainder of this section we will assume that the interaction dependes on 

the energies ξk, ξ-k, ξp, and ξ-p of the electrons forming the Cooper-pairs, but that there is no 

dependence on the direction in momentum space. The summation over k can then be 

replaced with an integral over the energy, and Eq. 4.18 becomes an integral equation  
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Δ ξ( ) = Vξ ,ω
Δ ω( )

2 ω 2 + Δ ω( )
2

−∞

∞

∫ N(ω)dω      (4.18b) 

where N(ω)dω is the number of states in the energy interval dω, in other words N(ω) is the 

density of states. In the previous section we have seen that that the interaction between 

quasiparticles is attractive in a shell ħωD around the Fermi surface, where ωD is the typical 

phonon frequency (the Debye frequency).  It is common practice to replace the full 

expression for the interaction with a toy model of the interaction potential, which captures 

the essential aspects: 

V(ξ,ω) = −V    for ω 2 + Δ ω( )
2
<ωD      (4.19) 

V(ξ,ω)= 0       otherwise        

Another reasonable assumption is, that the density of states, N(ω), doesn't vary appreciably 

within this narrow shell around ξF. Hence we may set N(ω)=N(0) in the region where the 

interaction is finite. One then often replaces the dimensionless product N(0)V with the 

parameter λ, which is called the electron-phonon coupling constant, and which is 

proportional to the effective attractive interaction between the electrons. This implies, that 

also Δ(ξ)=0 for ω 2 + Δ ω( )
2
>ωD , and moreover Δ(ω)=constant=Δ for 

ω 2 + Δ ω( )
2
<ωD . We can than make a transformation of variables x = 1+ξ 2 /Δ2 , with 

the help of which Eq. 4.18b, becomes  

1
λ
=

1
x2 −1

dx
1

ωD /Δ

∫    

The solution of the above integral equation is   

                       1
λ
=

1
x2 −11

ωD /Δ

∫ dx = −coth−1 x( )$% &' 1

 ωD /Δ
= −coth−1 ωD /Δ( )+ 0        

Inversion of this equation gives ( ) 2/)/1coth(/ /1/1 λλλ eeD +=−=Δ −  , hence 

Δ = 2ωDe
−1/λ 1+ e−2/λ( )

−1
      (4.20) 

Which for weak coupling (λ<<1) corresponds to the famous BCS expression for the order 

parameter at zero temperature 
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Δ ≈ 2ωDe
−1/λ

       (4.21) 

We still have to check, that this extremum actually corresponds to a stable minimum, and 

that it is not a maximum of the function Ω(Δ). We can do this by resubstituting the solution 

for Δ in the expression for the free energy, Eq. 4.14. With a little algebra we obtain 
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     (4.22) 

From the above expression we see that automatically K is positive definite, and increases as 

a function of increasing Δ. On the other hand, the sign of Hi depends on the sign of the 

coupling constant, λ. From this we can already see, that for a repulsive net interaction Δ=0. 

As this implies that in the BCS wavefunction vk =0 for εk > εF, (vk =1 for εk < εF) the 

groundstate wavefunction for V<0 corresponds to the usual metallic state, with no pairing, 

and no superconductivity.  For a superconducting solution to occur, having Δ≠0, it is 

necessary that the interaction is attractive, i.e. λ>0.  The integrals can be solved trivially, 

with the result for λ>0 
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(4.23) 

The righthand side of the expression for the free energy Ω, is only valid in the limit of weak 

coupling (λ << 1, implying Δ<< ħ Dω ).  
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Above we plot the three energies, K, Hi, and Ω as a function of the coupling constant 

λ=N(0)V. It is clear from this, that the effect of superconducting order is to increase the 

kinetic energy in the superconducting state, and to decrease the interaction energy Hi. For 

the latter to occur it is necessary that the quasi-particles have a net attractive interaction. If 

the interation is repulsive, both K>0 and Hi>0 for any value of Δ, and the only stable 

minimum is found when Δ=0. Hence, in the model of Eq. 4.10 the superconducting order is 

strictly limited to the situation where the interaction is attractive. 
 
IV.3  Relation between the BCS wave-function and a Bose-Einstein 

condensate of Cooper-pairs  
The energy of each pairs in a BEC is given by µ=0, where µ is the chemical potential. 

Therefore the thermodynamical potential of a superconductor does not depend on whether 

it is occupied with Np, Np−1, Np+1... Cooper-pairs. A famous theorem of quantum 

mechanics says, that a linear superposition of different quantummechanical states, all 

having the same energy, is again an eigenstate. Consequently a linear superposition of 

states containing Np, Np−1, Np+1 etc. Cooper-pairs is also an eigenstate. A particularly 

useful example of this property is constituted by the “coherent state”  

φ =C 'exp eiφa0
†{ } 0

       
(4.24)

 
where C’ is a normalization constant, which can be expressed as a Tayler-series expansion 

of states with m condensed pairs
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φ =C ' 1
m!
eimφ a0

†( )
m

m
∑ 0 =C ' 1

m!
eimφ wkckα

† c−kβ
†

q
∑
#

$
%%

&

'
((

m

m
∑ 0    

This state is now characterized by the phase quantum number φ, instead of the number of 

particles in the system. To keep the notation compact we combine the phase factor exp{iφ} 

and wk by the definition  

ωk = e
iφwk

 
  
 

We now apply to Eq. 4.24 the following property of a set of commuting operators {a,b,c,..}:  

exp{a+b+c…}=eaebec….  

φ =C '∏
k
exp ωkckα

† c−kβ
†{ } 0       

The next step is, to make a Taylor-series expansion of each of the exponential factors 

exp ωkckα
† c−kβ

†{ }=1+ωkckα
† c−kβ

† +
1
2!

ωkckα
† c−kβ

†( )
2
+...  

Here we can employ the fact, that the due to the Pauli-principle, terms like ωkckα
† c−kβ

†( )
n

|Ψ〉  

= 0 for any state |Ψ〉, unless n=0, or n=1. Hence 

|ϕ〉= C'∏
k
1+ eiφwkckα

† c−kβ
†{ } |0〉       

Normalization is obtained with C'=∏
q
1+ wq

2( )
−1/2

. One then defines 

uk =
1

1+ wk
2

vk =
wk

1+ wk
2

      

together satisfying the normalization condition |uk|2+|vk|2 = 1. We thus see, that the BCS 

wavefunction (Eq. 4.9) 

 Ψ0 φ( ) =∏
k
uk + e

iφvkckα
† c−kβ

†{ } 0      

is a coherent sum of Bose-condensates for the particular phase-value, φ=0. Vice versa, a 

BEC with a fixed number of pairs N is obtained by taking a superposition of BCS-

wavefunctions with different phases (exercice !) 

 a0
†( )

N
0 =

1
2π

dφeiφN
0

2π

∫ Ψ0 φ( )       (4.25)
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Lecture Notes on Superconductivity- Part I, D. van der Marel 

Chapter V: Superconducting properties at finite 

temperature 
V.1 The Bogoliubov-Valatin transformation 
To explore the physical properties at finite temperature, it is important to know the exact 

nature of the excitations of the superconductor. Due to the presence of an interaction, in 

principle an excitation reached by adding a single electron with momentum p and spin ↑ to 

the system, c†
p↑�Ψ0〉, is in fact a wavepackage of several true eigenstates of the system with 

different energies. c†
p↑�Ψ0〉 is not an eigenstate! Due to Galilean invariance non-relativistic 

interactions between particles usually have the following structure in k-space representation 

σ+
σσ

σ+−σ+−σ+∑∑= ,
',,,

',
†

',
†

,
ˆ

ql
lk

qlqkqkkl
q

i ccccVH      (5.1)  

independent of their microscopic origine. In chapter III we have already seen, that the only 

terms in the interaction which matter for the groundstate are those for which q=0. This is 

because in �Ψ0〉 the electron creation operators only occur in the combination c†
p↑c

†
-p↓. In 

the BCS model it is assumed, that the excitations do not carry the superconductor far from 

the groundstate, so that also for the excited states the only relevant terms in the interaction 

Hamiltonian are those for which q=0.  
For the calculation of the excitation spectrum the first approximation is to consider only 

those interactions which scatter a (-k↑,k↓) pair with total momentum equal to zero,  to a 

similar state (-p↑,p↓) 

↑↓−↓−↑∑= ,
,

,
†
,

†
,

ˆ
k

pk
kppkp

i
red ccccVH       (5.2) 

We have already seen, that this hamiltonian will lead to a ground state where pairs of Bloch 

states (p↑,-p↓) are in a mixed state of being empty (with amplitude up) and occupied (with 

amplitude vp). Because of coherence, operators such as c†
p↑c

†
-p↓ can have nonzero 

expectation values †
,

†
, ↓−↑ pp cc  in such a state, rather than averaging to zero as in a normal 

metal. In the previous section (Eq. 4.11), we have already seen that *†
,

†
, pppp vucc =↓−↑ , 

where the expectation value is taken for the groundstate at T=0. However, in the remaining 
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sections we are interested in the statistically weighted average at finite temperature

 cp,↑
† c− p,↓

†

T
= upvp

*          (5.3)  

Moreover, because of the large numbers of particles involved, the fluctuations about these 

expectation values, defined as  

φp
† = cp,↑

† c− p,↓
† − cp,↑

† c− p,↓
†

T
        (5.4) 

should be small. This suggests that it will be useful to express such a product of operators 

formally as 

 c†
p↑c

†
-p↓ = upv*

p + φ†
p         (5.5) 

With this definition terms quartic in the creation and annihilation operators become 

kpkkppkkppkkppkkpp cccccccccccccccc ϕϕ+−+= ↑↓−↓−↑↑↓−↓−↑↑↓−↓−↑↑↓−↓−↑
†

,,
†
,

†
,,,

†
,

†
,,,

†
,

†
,,,

†
,

†
,   

The central approximation consists of neglecting the 4th term in the above expression, 

because it is the product of two fluctuation operators, each of which has a small expectation 

value, and the product in mean-field theory averages to zero. If we follow this procedure 

with our pairing Hamiltonian, we obtain 

    kk
pk

ppkp
pk

kkppkp
pk

ppkkkp
k

kkk vuvuVccvuVccvuVccH *

,

*

,
,,

*

,

†
,

†
,

*

,
,

†
, ∑∑∑∑ −++ξ= ↑↓−↓−↑

σ
σσ  (5.6) 

Similar to what we did in Eq. 4.15, the summations over Vkp upv*
p can be substituted with a 

the variational parameter 

Φp = − ukvk
*

k
∑ Vkp          (5.7)  

With the help of this, we obtain the central Hamiltonian of BCS theory 

H = ξk ck,σ
† ck,σ

k,σ
∑ − Φk

*cp,↑
† c− p,↓

†

p
∑ − Φkc−k,↓ck,↑

k
∑ + Φkuk

*vk
k
∑    (5.8) 

which is now bi-linear in the creation and annihilation operators. The energies of a state 

with one electron removed, or one electron added relative to the ground-state energy, is -ξk 

and ξk respectively.  Note, that, due to the fact that the terms proportional to Φk mix one-

electron removal with one-electron addition states in this Hamiltonian, the number of 

electrons is not a good quantum number. Consequently the eigenstates should have the 

form  

{ } 0
†
,,, Ψ+=Ψ ↑−↓↓ kkkkk cvcu        (5.9) 
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As was shown by Bogoliubov and by Valatin, we can diagonalize the Hamiltonian in 

second quantized form by introducing a new set of creation and annihilation operators  

↑−−
+
↓−

+
↓

+
↑−−↓−↓

↑
+

↓−
+

↓−
+
↑↓−↓−

↓−
+

↑−−
+

↑−
+
↓−↑−−↑−

↓−
+
↑

+
↑

+
↓−↑↑

+=+=
+=+=
−=−=

−=−=

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

cvcucvcu
cvcucvcu
cvcucvcu

cvcucvcu

**

**

**

**

γγ
γγ
γγ
γγ

    (5.10) 

The inversion of this transformation is 

+
↓−↑−−

+
↓↓−

+
↑−−↓

+
↓−↑

+
↓−↓−

+
↑↓−

↓−
+

↑−−
+

↑−
+
↓−↑−−↑−

↓−
+
↑

+
↑

+
↓−↑↑

+−=+−=
+−=+−=
+=+=

+=+=

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

uvcuvc
uvcuvc
vucvuc
vucvuc

γγγγ
γγγγ
γγγγ

γγγγ

**

**

**

**

    (5.11) 

We substitute the new operators γkσ for the creation and annihiliation operators in Eq. 5.8. 

With the help of some straightforward algebra we can verify that, when we take the 

following values for the coefficients uk and vk 

uk  =  1
2

1+ξk / Ek

vk =  1
2

1−ξk / Ek

where Ek ≡ ξk
2+ |Φk |2

,       (5.12) 

the Hamiltonian of Eq. 5.8 takes the simple bilinear form 

H = Ekγ k,σ
† γ k,σ

k,σ
∑ + Φkuk

*vk +ξk −Ek( )
k
∑      

From comparing Eq. 5.12 and 4.17 we see that the ad hoc variational parameter Φk is in 

fact identical to the order parameter Δk. From now on we will use Δk instead of Φk. With 

this notation the linearized BCS Hamiltonion is 

 H = Ekγ k,σ
† γ k,σ

k,σ
∑ + Δkuk

*vk +ξk −Ek( )
k
∑      (5.13) 

where  Δk must be obtained by solving this equation self-consistently for each temperature. 

We will perform that task in the following section. The first term corresponds to excitations 

where we add a particle of energy Ek = ξk
2+ |Δk |

2  to the system, and has the usual form 

of an energy-momentum dispersion of non-interacting particles. In the previous section Δ 
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emerged as an energy scale which characterizes the superconducting order. Its exact 

physical meaning remained unclear. We have now discovered that Δk has the physical 

meaning of a gap in the single particle excitation-spectrum. From the expression for the 

eigen-energies, and from the dispersion relations shown in Fig. IV.1, we see that terns 

mixing particle and hole character create a gap at the Fermi energy in the single particle 

excitaton spectrum.  

 

Let us now investigate the nature of the particles described by the creation operators γ†
kσ. A 

table of their most important properties is given below: 

 

 

Property Value 

Energy 2*2
k ||E kk Δ+= ξ is always positive 

Mininum value of the energy Ek  >  |Δ| 

Statistical properties Fermionic 

Anti-commutation relations γkα  γ†
kβ 

 + γ†
kβ γkα  =  δk,qδα,β, etc. 

Momentum k  

Spin S=1/2 

Charge is not a good quantum number 
kkk Eeq /ζ−=  

Charge at minimal energy, Ek =  |Δ| qk = 0 

Charge for |k| >> kF qk = – |e| 

Charge for |k| << kF qk = +|e| 

 

The particles generated by γ†
kσ are called “Bogoliubov quasi-particles”, or simply 

“bogoliubons”. Although they are in many ways equivalent to electrons or holes, they differ 

in one essential respect: The charge of these particles is not a proper quantum number! The 

bogoliubons are quantum-superpositions of an electron-excitation and a hole-excitation. 

This should not be confused with an electron-hole pair!  A bogoliubon-excitation is of the 

form { } 0
†
,, Ψ+ ↑−↓ kkkk cvcu , and therefore it is a fermionic particle. As an e-h pair consists of 
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two fermions, and is described by the product of an electron creation and an electron 

annihilation operator 0
†
',, Ψσσ qk cc . Since composite particles consisting of an even number 

of bosons, an electron-hole pair has bosonic character. 

Δ

0

 εk-µ
 µ-εk
 Ek
 -Ek

kF

En
er

gy

k
 

V.2 The critical temperature of a BCS superconductor 

Sofar we have evaluated Δ only at T=0, which was obtained from the selfconsistancy 

expression, Eq. 5.7, Δ p = − ukvk
*

k
∑ Vkp . The product ukv*k is obtained from the thermally 

averaged quantity  

c−k,↓ck,↑ T
≡ e−β Eλ−µNλ−Ω( )

λ

∑ Ψλ c−k,↓ck,↑ Ψλ

where  e−βΩ ≡ e−β Eλ−µNλ( )

λ

∑
     (5.14) 

The result is 

c−k,↓ck,↑ T
= ukvk

*         (5.15) 

and the selfconsistency condition at finite temperatures is 

Δ p T( ) = − Vkp c−k,↓ck,↑ TT
p
∑        (5.16) 

In the superconducting state the Bogoliubov quasiparticles behave like ordinary fermions, 

and their occupation factors are described by the Fermi-Dirac distribution. We therefor 

express the c-creation operators in the γ-creation and annihilation operators with the help of 

the transformation of Eq. 5.11. Aforementioned self-consistancy condition then becomes 
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Δ p = − Vkp −vkγ k↑

+ +uk
*γ−k↓{ } uk

*γ k↑+ vkγ−k↓
+{ }

T
k
∑ =

= − Vkp uk
*vk γ−k,↓γ−k,↓

† −γ k,↑
† γ k,↑ T

+ vkvk γ k,↑
† γ−k,↓

†

T
−uk

*uk
* γ−k,↓γ k,↑ T{ }

k
∑

  (5.17) 

The last two terms ↑↓−↓−↑ γγγγ ,,
†

,
†

,  and kkkk  
are zero, because the Bogoliubov quasi-

particles are Fermions with the usual properties of creation and annihilation of particles. 

The product u*
kvk  of the first term can be evaluated with the help of Eq. 5.12. Finally, 

because the quasi-particles are Fermions the thermal averages in the first term of the 

equation above are given by the Fermi-Dirac distribution: 

γ k,↑
† γ k,↑ T

= f (Ek ) =
1

1+ exp Ek / kBT{ }

γ−k,↓γ−k,↓
†

T
=1− f (Ek ) =

1
1+ exp −Ek / kBT{ }

     (5.18) 

Combining all this, we obtain the following self-consistent expression for the gap-function 

∑ ⎟⎟⎠

⎞
⎜⎜⎝

⎛Δ
−=Δ

l B

k

k

kkp
p Tk

E
E

V
2

tanh
2

       (5.19) 

The gap equation (5.19) determines the temperature dependence of Δ(T) in the Bogoliuov 

quasiparticle spectrum. Making the usual transformation from summation in k-space to 

energy integral, the equation reads  

∫
ω

Δ

⎟
⎠
⎞⎜

⎝
⎛ β

Δ−
=

λ

D

dEE
E

!

2
tanh11

22
      (5.20) 

Substituting x=βE: 

( )
∫
ωβ

Δβ Δβ−
=

λ

D

dx
x

x!

222

2/tanh1        (5.21) 

The transition temperature can be easily calculated, by realizing that just at Tc the gap 

should vanish. Hence setting Δ=0 with we obtain the expression for Tc 

dx
x
xcBD Tk

∫
ω

=
λ

/

0

)2/tanh(1 !

      (5.22) 

Integrating in parts yields 
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   (5.23) 

The second integral 122.0
2

tanh)ln(
0

−=⎟
⎠
⎞⎜

⎝
⎛

∂
∂

∫
∞

dxx
x

x . Consequently 

λ−ω= /113.1 eTk DcB !        (5.24) 

In the previous subsection we have already seen, that λ−ω≈Δ /12 eD! , hence the gap-over-

Tc ratio satisfies the wellknown BCS-relation 

53.3)0(2 =Δ

cBTk
         (5.25)  

 

V.3 Temperature dependence of the gapfunction 
The temperature dependence of the gap, Δ(T), is obtained by solving Eq. 5.21.  The general 

solution is only possible by numerical means. The numerical solution is shown in the 

following graph 

 
Close to Tc the solution by series expansion is 

)(                 11.3)(
cB

ccB

Tk
T
T

Tk
T <<Δ−=Δ     (5.26)  
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V.4 Thermodynamics of a BCS superconductor 
The presence of a gap in the bogoliubov quasi-particle density of states of a superconductor 

has strong consequences for the thermodynamical properties. The primary thermodynamic 

functions of interest for this chapter are summarized in the following table: 
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TSU'

dT'T'CUNEU'

T
STC

wwkS

eQ

Qew

T

V

V
V

B

NE

NE

−=Ω

+=µ−=µ

∂
∂=µ

−=

=µ

=Ψ

∫

∑
∑

λ
λ

λ

λ

µ−β

µ−β
λλ

λλ

λλ

                                                    :energy freeLandau 

                                       :fixed h energy wit Internal

                                          :fixed heat with  Specific

ln                                                                      :Entropy

                   :) fixed(with function partition  Grand""

/       :  statebody -many ofy probabilit lStatistica

0

'
0

 

 

where β=1/(kBT). We begin by calculating the entropy. The partial entropy associated the 

bogoliubon state of wavevector k and spin σ is 

∑
=

−=
1

0

ln
n

nnBk wwkS         (5.27) 

Where n, the number of bogoliobons with the same quantum number is necessary restricted 

to zero or one, since bogoliubons are fermions. The probabilites wn are therefore given by 

the Fermi-Dirac distribution: 

22

0

1
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1
1

1
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k

Ek

E

fw
e

fw
k

Δ+ξ=

−=
+

== β

       (5.28) 

and consequently the total entropy is given by the general relation for fermions:  

( ) ( ){ }∑
σ

−−+−=
,

1ln1ln)(
k

kkkkB ffffkTS      (5.29)  
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One obtains the specific heat from the relation 
VV

V
S

T
STC

β∂
∂β−=

∂
∂= . In taking the 

derivative with respect to temperature, we should take into account the fact that Δ(T) is a 

function of temperature. We furthermore employ the fact that temperature and energy occur 

exclusively in the combination βEk in the Fermi functions. Consequently 
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Applying now the chain rule 
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We use the fact that ln(fk/(1–fk))= – βEk 
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Making the usual replacement of the k-space sum with an integral, we obtain 

∫
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The specific heat at general temperatures, as well as the other thermodynamic functions 

such as entropy, free energy, etcetera, can be obtained by solving the above integrals 

numerically. We summarize below the numerical solution of the main thermodynamic 

quantities as a function of temperature 
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Of particular interest is the behaviour of the specific heat at Tc. In an ordinary metal the 

specific heat is known to have a term proportional to temperature, TCV γ= , which can be 

observed at low enough temperature where the phonon-contribution (proportional to T3) 

becomes negligeable. The coefficient γ is proportional to the density of states at the Fermi 

energy. However, in a superconductor the bogoliubon spectrum is gapped. Consequently 

we expect that below Tc the specific heat is suppressed! Indeed, this can be easily 

calculated. We have already seen in the previous subsection, that the temperature derivative 

of Δ2(T) is discontinuous at Tc:  
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The first integral gives the familiar result for the normal state:  
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The integral of the second term on the right hand side gives  
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Hence, we see that the specific heat has a jump at Tc with the universal ratio 
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V.5 Tunneling spectra and infrared-conductivity spectra.  
In the previous section we have seen, that as a result of the pair-correlations, the single-

particle excitations in a superconductor are no longer electrons or holes, as in an ordinary 

metal, but quasi-particle-excitations which have a gap Δ at the Fermi energy. Because the 

single particle states which originally had an energy ξk relative to µ, have been shifted 

away from µ up to an energy (ξk
2 + Δ2)1/2 , density of states has been moved from the region 

below Δ, to the region just above Δ. Let N(k) be the number of states with momentum 

quantum number smaller than k. The density of states of the new quasiparticles is 

dN(k)/dEk =(dN/dξ)*(dξk/dEk). The first term is the density of states in the normal state: 

dN/dξ=ρF. The second term is  

( )
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E
EEE

dE
dE ξρ      (5.36) 

A standard method for determining the gap is by measuring the tunneling current, I, 

through a metal-insulator-superconductor sandwich structure, as a function of the voltage V 

across the insulating barrier. The barrier has to be sufficiently thin, that to allow quantum-

mechanical tunneling of electrons through the barrier. In such a device Ω's law is not 

satisfied, and dI/dV depends strongly on the applied voltage. It can be shown, that dI/dV~ 

C ρ(eV), where eV is the potential energy difference of an electron between both sides of 

the tunneling barrier, and ρ(eV) is the density of states of Eq. 5.36. The tunneling data of 

MgB2 is given in the figure below 

 

Figure 

Tunneling spectroscopy of MgB2  (Tc = 39 K) 

H.Schmidt et al (2001) 
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The presence of a region of zero density of states for E<Δ, implies that the material absorbs 

no photons of energy !ω<2Δ, because the absorption of lightquanta involves the excitation 

of two quasi-particles with total spinquantum number. For a material with Tc=16 K, the gap 

is thus 2Δ=3.5kBTc~5meV, which is in the far infrared range of the optical spectrum. The 

superconducting gap can for example be detected by measuring the transmittivity through a 

thin film (see, Figure below for an example of the latter procedure).  

 

 

Figure 

Infrared Conductivity and transmission of NbN 

(Tc= 16 K)  

H.S. Somal et al., Phys. Rev. Letters 76 (1996) 
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Lecture Notes on Superconductivity- Part I, D. van der Marel 

Chapter VII: 
Ginzburg - Landau theory 

VII.1 The free energy as a function of ψ(r) 

Until now we have not yet found the explanation of the two main properties of a 

superconductor: zero resistance and Meissner effect.  We will address these important 

issues in the present chapter, in particular in the discussion following Eq. 7.14. In our 

discussion of the condensate wavefunction in Chapter IV we pointed out that the total 

wavefunction of a pair can be factorized in a product of two wavefunctions, one describing 

the motion of the center of mass, r, and the other the motion of the relative coordinate, ρ, 

within a pair  

Ψ r + ρ / 2, r − ρ / 2( ) =ψ(r)w ρ( ) .   

In the simplest case of a clean translationally invariant superconductor with no fields 

applied and no current flowing, the function ψ(r) becomes a constant independent of 

position r, which can be absorbed in the definition of the wavefunction w(ρ) of the relative 

coordinate. While the previous chapters on the microscopic theory of pairing concentrated 

on such a simple situation, the physics of the center-of-mass motion is also very interesting, 

and pertains to such interesting phenomena as vortices, Josephson effect, type I and type II 

superconductors, and several other aspects of the phase diagram as well as the transport 

properties of superconductors.   

Although in principle the thermodynamical, and electrodynamical properties of a 

superconductor can be derived starting from microscopic considerations, such as the BCS 

model, the model proposed in 1950 by Vitaly Ginzburg and Lev Landau provides an 

elegant and direct way to calculate the macroscopic properties of superconductors, which 

bypasses the aspects of the pairing mechanism and summarizes a large range of properties 

in a group of three (temperature dependent) model parameters. The key assumpti is, that the 

superconductor is described by a single macroscopic wavefunction ψ(r). which is nothing 

else than to the center-of-mass wavefunction of the pairs. The Ginzburg-Landau theory 

provides a simple method to calculate ψ(r) in the presence of electromagnetic fields, 

sample boundaries, currents, etcetera. So we see, that while in previous sections we have 
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concentrated on w(ρ) under the condition that ψ(r)=constant, in the present chapter we will 

concentrate on the variations of ψ(r)  on length scales larger than the size of a Cooper pair. 

Since the Cooper pair wavefunction is described by w(ρ) we assume that w(ρ) effectively 

represents a point-particle and need not bother about the details of this function in the 

context of this chapter.   

The basic postulate of GL theory is, that the amplitude |ψ(r)| is small. Due to this restriction 

GL-theory can be expected to be quantitatively correct close to Tc. GL furthermore next 

write the free energy in form of a Taylor series expension of ψ(r), and magnetic field h(r). 

Due to the smallness of |ψ (r)|, it is assumed that terms of order |ψ (r)|6 and higher can be 

neglected. Based on these and other considerations they postulated that Helmholtz free 

energy has the following dependence on the phase and amplitude of ψ(r) 
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where h(r)=∇×A(r) is the microscopic magnetic field. The parameters α and β are model 

parameters, and they may vary as a function of temperature. In GL-theory the following 

temperature dependence is assumed: 

 α(T) = −α'( 1 − T/Tc ) 

 β(T) = β   

(α'>0;  β>0)         (7.2) 

The basic idea of this free energy density is, that at every temperature the free energy must 

be minimal with respect to the fields ψ (r) and A(r). This way the GL free energy has four 

adjustable parameters: α', Tc , β, and m.  

 

VII.2 Temperature dependence of Ψ 

If no fields and gradients are present, the last two terms of 4.1 are zero and ψ (r) = ψ 0. In 

Fig. 7.1 a sketch is given of the free energy for T>Tc and for T<Tc. Clearly a nontrivial 

equilibrium value of ψ 0 is only obtained for T<Tc. We can minize the free energy with 

respect to ψ 0 and obtain the so-called superfluid density 

 n0 = |ψ 0|2 = − α/β  = (α'/β) (1 − T/Tc)     (7.3) 
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The value of the free energy at temperature T<Tc  of a sample with volume V is then 
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If an external magnetic field is applied, in first instance no field penetrates the bulk of the 

superconductor: The expulsion of the flux lines means that due to the presence of the 

superconducting sampe some extra work has to be done by the current generator when the 

field is switched on (or when the superconductor is cooled through the phase transition). 

 

This amount of work is exactly ∫ ⋅−=
H

VW
0

'dH)M(H' . Because in a type I superconductor 

4πM=−H, the extra energy stored in the magnetic field due to the presence of the 

superconductor is exactly W =VH2/8π, where H is the external field. Hence the total free 

energy is 
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If the field H exceeds the critical value 
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it becomes energetically favourable to switch to the normal state: The energy advantage of 

the second term in Eq. 7.5 will be lost, but since the field can now penetrate the sample, the 

third term also disappears, offering a net energy saving for H > Hc. The field Hc  is called 

the thermodynamical critical field. With this definition Eq. 7.5 can also be written as 

π
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FIGURE  7.1 
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The specific heat is calculated from the free energy using TFTS ∂−∂= /)( , and 

dTTdSVTc /)( 1−= , so that 

 2

2')()(
c

n T
TTcTc

β
α+=  ( T<Tc ) 

 )()( TcTc n=    ( T>Tc )     (7.8) 

The GL-model predicts, that the specific heat has a discontinuous jump at the phase 

transition, in good agreement with experimental observations on superconductors, and with 

the fact that the transition into the superconducting state is a second order phase transition. 

 

VII.3 The Ginzburg-Landau equations 
The GL-equations are obtained by minimizing the GL free energy, Eq. 7.1, with respect to 

the fields ψ*(r) and A(r) : 
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Here it is important that the functional derivatives with involve also the variation of 

derivatives of the fields. Since the free energy dependes on ψ(r) as well as its gradient, we 

will need the following general property of functional derivatives:  
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And the same for its complex conjugate. To make it easier to recognize the gradient of ψ(r) 

in the free energy expressions, we use 
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With this definition the Ginzburg-Landau free energy reads 
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For the first Landau equation we begin by calculating the functional derivative  
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We obtain for the first and second term by straightforward differentiation 
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We combine these in expression for the functional derivitage and obtain by some re-

arranging of terms 
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The condition ( )  0/ * =rFs δψδ then implies the first Ginzburg Landau equation: 
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The free energy depends both on A(r) and ( )  r(r) Ah ×∇= . For the second Landau 

equation we therefore need the following property of functional derivatives:  
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We combine these terms in a single expression and obtain  
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On the righthand side of the second expression we can use Ampère’s law. Since we 

consider here a steady state situation, there are no time-varying electric fields, hence 

(r)(r)c Jh  4π=×∇ .  After some re-arranging of terms 
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The condition ( )  0/ =rFs Aδδ then implies the second Ginzburg Landau equation:  



 72 

( ) ( ) ( ) ( ) 0..2 =++⎥⎦
⎤

⎢⎣
⎡ +∇ rccrψr

c
eirψ

m
e * JA!  

Thus we have obtained the first and second Ginzburg-Landau equations 
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in the second equation we recognize the result for the microsopic model of a charged 

quantum fluid, which becomes the London equation (A16 of Appendox A) in the Meisner 

state of a superconductor. 

 

VII.4 Relevant length-scales in GL-theory 

Before we attack the coupled equations 7.9 for the fields A(r) and Ψ(r), we will first carry 

out an analysis of the relevant length scales of the problem. Using the definition of the 

superfluid density n0=|ψ0|2 (Eq. 7.3) and combining 7.6 and 7.3  
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We devide left and righthand side of Eq. 7.9a by α, and substitute for α and β the 

expressions 4.10, with the result 
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Since the operator ∇2 has dimensions of inverse length squared, the factor multiplying it 

must have the dimension of length squared. This is one of the two important characteristic 

length scales, which we define as 
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The so-called coherence length, ξ, is in principle a temperature dependent quantity, which 

diverges when the temperature approaches Tc, and ξ=∞ in the normal state. A general rule 

of thumb is, that ξ is small, the higher the Tc of the material is.    

A different combination of parameters provides the London penetration depth 

( )20

2
2

24 en
mc

π
λ =          

discussed in chapter III. It represents the length scale on which magnetic fields decay inside 

the superconductor.   

The dimensionless Ginzburg-Landau parameter  

κ =
λ
ξ

          (7.11) 

characterizes the superconductor by the ratio of the two relevant length scales. We will see 

in a later section, that for type II superconductors  κ > 0.7, while for κ < 0.7 we expect a 

type I superconductor. We also observe, that close to the phase transition κ has no 

important temperature dependence, because β does not depend on temperature in the GL 

model.  

It is easy to verify the following useful relation between λ, ξ, and Hc 
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stating that the product of two length scales and Hc is temperature independent, and in fact 

proportional to the flux quantum  
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The first and second Ginzburg-Landau equations are with these definitions 
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The coherence length ξ characterizes the minimal length scale over which the 

superconducting order can vary. To verify this, we consider the situation that the vector-

potential is zero, and we take the limit where the order parameter variations are small 
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compared to the average value: ψ(r)= ψ0⋅(1+g(r)), and |g(r)| << 1. We can then expand the 

GL equations in |g(r)|. Keeping only the leading terms in the first GL equation, we obtain 

)()(2 2 rr gg Δ= ξ         

with the solution in 1 dimension  

 { })(/2exp)0()( Tgg ξxx −=       

We see, that the 2-1/2ξ represents the exponential decay length of the superconducting order 

parameter. 

As to the interpretation of the second length scale, λ, we apply a small magnetic field and 

assume that we can neglect the variations of  ψ. The second GL equation, 7.14b, gives 

J = − c
4πλ 2

A         (7.14c) 

In a usual metal the current is proportional to the electric field E. Eq. 7.14c expresses the 

essence of superconductivity: Having current proportional to the vector potential implies 

that a static electrical current can flow with no physical field (E or B) acting on the 

electrons. A detailed discussion of the differences and correspondances between ordinary 

metals and superconductors is given in Appendix A.  

With the help of Maxwell equation ∇×h = 4πc−1J  (Eq. A3 of appendix A), the definition 

h =∇×A , and the property ∇×∇×A = − ∇⋅∇( )A our expression relating J and A takes 

the simple form  

∇⋅∇( )A = 1
λ 2
A          

The solution of this differential equation is an exponentially decaying field with decay 

length λ:  

A =A0e
−x/λ

 

 

VII.5 Upper critical field 

Let us now consider the situation where a magnetic field is applied. The effect is to 
suppress the order parameter ψ, until a field value is reached where  ψ  becomes suppressed 
altogether. Close to this critical field  |ψ/ψ0|<<1.  Under those conditions we can expand the 
first GL equation in leading orders of ψ, and retain only the linear terms. So when ψ is 
small, Eq. 4.14a can be approximated in the following way 
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In the limit of a uniform magnetic field along z, Ax=Hy, we obtain the wave equation 
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Introducing dimensionless coordinates u=x/ξ, v=y/ξ, w=z/ξ  and substituting a shorthand 

notation for the term multiplying y:     2

0

2

Φ
≡ Hξπϕ we obtain 
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The fact that the operator multiplying ψ depends on the coordinate v, but not on u and w, 

suggest a solution which is a propagating wave of the u and w coordinate. Consequently we 

may anticipate that in general the solutions have the form 
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Inserting in Eq. 4.15 provides  
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To simplify further we can make the following change of variables 
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Substituting this in the wave equation we obtain 
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The operators in round brackets are hermitian conjugated and satisfy commutation relations 
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Consequently a+ and a are respectively raising- and lowering-operators. The wave equation 
becomes with this notation  
 

{ }[ ] 0)(121 22 =−+− + vVkaa zξϕ  

Since a+a is the number operator, and resubstiting the definition of φ, the eigenvalues of the 
wave-equation have to satisfy   
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2πξ 2H
Φ0

1+ 2n( )+ kz2ξ 2 =1  

Now the z-momentum can take any value, hence 
{ }∞∈ ,022ξzk   

Consequently the magnetic field has an upper limit, given by 

H <
Φ0

2πξ 2 1+ 2n( )
 

The lowest eigenvalue has n=0, for which we write this condition as 

H < Hc2

where

Hc2 ≡
Φ0

2πξ 2

         (7.16) 

Hc2 is called the 'upper critical field' of a type II superconductor. It corresponds to the 

lowest field which can penetrate the superconducting material uninhibited. Since for fields 

higher than Hc2 there is no flux expulsion, the material has lost its superconducting 

properties for those fields. For H > Hc2  the material is therefore in the normal (as opposed 

to superconducting) state. Any field value lower than Hc2 will be expelled, in part at least, 

by the superconductor.  

 

Let us compare the upper critical field to the thermodynamical critical field. With the help 

of Eqs. 7.11, 7.12 and 7.16 

cc HH κ22 =         (7.17) 

We can now distinguish two types of superconductors:  

(I) Hc2 < Hc , equivalent to κ < 2/1  

(II) Hc2 > Hc , equivalent to κ > 2/1   

 

VII.6 Type I superconductivity 

Ad I: Consider a type I superconductor. Let us assume, that we are below Tc and that we 

have applied an external field H which is larger than Hc. Let us now gradually reduce the 

external field. When H drops below Hc all flux will be expelled from the superconductor. 

From now on, if we keep decreasing the external field, h will be zero in the interior of the 
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superconductor, and the criterion of Eq. 7.16 will never be reached. In fact is has been 

'skipped' due to the fact that the external field is removed at once as soon as H drops below 

Hc. Hence Hc2 is of no practical importance in a type I superconductor. 

 

VII.7 Type II superconductivity 
We begin with an external field H which is larger than Hc2. According to the criterion of 

Eq. 4.16 there is no superconductivity for H>Hc2. However, when the field becomes equal 

to Hc2, the criterion of Eq. 7.16 is satisfied, and the macroscopic wavefunction has a 

solution with a finite amplitude, corresponding to the cyclotronic motion of the paired 

charge carriers in the field H=Hc2. The cyclotron radius of a boson of charge e* is 

lc=Φ0/2πH, so that the condition that H=Hc2 corresponds exactly to the condition, that the 

coherence length matches exactly the cyclotron radius lc=ξ.  Since Eq. 7.15 is a linear 

differential equation, the amplitude of the cyclotronic wavefunction is arbitrary, implying 

that Ψ, which is zero for H>Hc2, could increase without bound as soon as H becomes 

smaller than Hc2. However, the actual GL equation is non-linear, causing |Ψ| to increase 

continuously as a function of H for H < Hc2. 

  

Figure 7.2 

 

What happens when we apply an external field just below Hc2 ? The magnetic field is still 

almost homogenous and passing through the superconductor, but as the field is reduced 

below Hc2 Cooper-pairs are progressively beginning to condense in a cyclotron 
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wavefunction ψ(r) described by Eq. 7.15. The magnetic field distribution becomes 

progressively corrugated as the field is lowered, until at a certain moment regions of B=0 

form. Eventually the situation becomes reversed, and most of the material has B=0, with 

“islands” of finite (but quantized) flux density. Ultimately, the last of these vortices 

disappears when the field passes below the lower critical field, Hc1. 

We have seen above that, type-II behaviour in superconductors is characterized by the fact, 

that for fields H larger than Hc1 magnetic flux partially penetrates the superconducting 

specimen in the form of tiny microscopic filaments, called vortices. Each vortex carries a 

magnetic flux 15
0 10067.2

2
−⋅==Φ

e
hc  Weber. The magnetic induction inside the 

superconductor is directly related to n, the number of vortices per unit area, B=nΦ0.  

Let us now explore some of the properties of a vortex. In Fig. 7.2 a sketch is given of a top 

view on a vortex line. Physically a vortex corresponds to a whirlwind of supercurrents, 

circling around a region which is in the normal state (even though the temperature is below 

Tc). This phenomenon is somewhat analogous to a tornado or a hurricane, and to whirls, 

which occur under certain conditions in fast flowing water. An important difference is, that, 

of course, hurricanes and waterwhirls are not quantized, they are classical phenomena.  The 

central part of the vortex, which is in the normal state, is called the 'vortex core'. The 

diameter of this region is usually small (2-5 nm in high Tc superconductors, a micrometer in 

very clean low Tc  superconductors). 

 

Figure 7.3 
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In Fig. 7.3 we also indicate the current, field, and superfluid density distribution as a 

function of distance with respect to the center of the vortex. In the sketch it is shown, that 

the scale on which the superfluid density is recovered is the so-called 'coherence length', ξ. 

The current density approaches zero at large distances, and increases as a function of 

decreasing distance from the vortex core. At the boundary of the vortex core, the current 

density has reached the critical value. The magnetic field has its maximal value in the 

center of the vortex core. Both J and B decay on a lengthscale larger than the coherence 

length, called the London penetration depth, λ. 

 

 

 
Figure 7.4 

For a sufficiently low external field type II superconductors exhibit the Meisner effect, just 

like in type I superconductor. The corresponding phase diagram is sketched in Fig. 7.4 This 

happens for an external field smaller than the lower critical field, Hc1: If we cool down 

below Tc, and subsequently increase the external field, Hc1 corresponds to the external field 

value where the first isolated vortex forms.  A crude estimate of Hc1 can be made as follows 

(see fig. 7.5) : From general principles the condensation energy is Econd = − ∫ dHHM )(  (in 

a type I superconductor, because  M=−H/4π, this quantity is Hc
2/8π). In a type II 

superconductor M=−H/4π for fields upto  Hc1 only, after which the magnetization decays 
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until it reaches M(Hc2)=0  at the upper critical field. The area under the magnetization curve 

in the mixed state (Hc1<H<Hc2) is crudely speaking a triangle. The integral over the 

magnetization triangle of the mixed state region is therefor approximately 

{−Hc1/4π}*{Hc2−Hc1}*0.5. For an extreme type II superconductor Hc1<<Hc2, hence,  

− ∫ dHHM )( ~ Hc2Hc1/8π. Hence we see, that based on a crude estimation of the 

magnetization curve we expect that in an extreme type II superconductor Hc
2 ~ Hc2Hc1. 

Hence, together with properties, Eq. 7.12 and 7.17, we expect that Hc1~Φ0 / (4πλ2). 

 

 
Figure 7.5:   Magnetization curve of type II superconductor. The linearized 

behaviour for Hc1 < H < Hc2 is an idealization of the true (non-linear) field dependence. 

 

A more precise estimate of Hc1  can be made using the GL equations, from which the GL 

free-energy of a vortex can be calculated. This is a lenghty calculation. For a more detailed 

discussion, we refer to "Introduction to superconductivity" by Tinkham. The calculation is 

done along the following steps: When the density of vortices, n, is low, the interaction 

energy between vortices can be neglected, and the energy of formation is nLuv, where Luv is 

the energy of forming an isolated vortex, and L is the length of the vortex. As each vortex 

carries a magnetic flux Φ0, the macroscopic (average) magnetic flux density, B, inside the 

superconductor is B=nΦ0. When the external field H is held constant (rather than the 

Hc1 Hc2 

-4πM 
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fluxdensity B), we should subtract the work done by the generator of the external field from 

the Helmholtz free energy. This is called the Gibbs free energy  

∫∫ −++= rdrHhrdrhEEG kincore
332 )()(

8
1
π

     

This thermodynamical quantity should be minimized under equilibrium conditions. The 

first two terms are kinetic energy of the circulation currents, and the condensation energy of 

the core region. From the previous discussion, we already know that the microscopic flux 

density around a vortex decreased exponentially where λ is the 1/e length.. Because the 

integrated flux density correspond to the flux quantum, Φ0, the detailed dependence on 

space coordinate must be h(r)=Φ0 e-r/λ/(2πλ2). To calculate the kinetic energy we also need 

to know the dependence on space coordinate of J(r). Here we can use Ampere's law 

(4π/c)J(r)=∇×h(r), we obtain immediately, that (4π/c)|J(r)| = |h(r)|/λ. For the details of 

this calculation I refer to the book of Tinkham. For the free energy difference between 

mixed and Meissner state one obtains then 

0

2
0 ln

4
Φ−⎟

⎠
⎞⎜

⎝
⎛ Φ=− nLHnLGG Meissnermixed κ

πλ
  

The factor lnκ in the first term is a result of including the energy of the core region. The 

lower critical field is the value of H for which Gmixed <  GMeissner.This requires, that H > Hc1 

, where  

κ
πλ

ln
4 2

0
1

Φ
=cH          

We can combine this with the expression relating Hc and Hc2 (Eq. 7.17), and obtain 

 

 κln2
21 =

c

cc

H
HH

         

Typically κ~10-1000 in a type II superconductor, hence lnκ~3-7. We see, that having a 

high upper critical field, implies that the lower critical field is small.  
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Lecture Notes on Superconductivity- Part I, D. van der Marel 

Chapter VIII: Capita selecta of advanced subjects in 

superconductivity 
  

VIII.1:  The gap equation of unconventional superconductivity: 
Let us take a look at the gap equation. 
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     (8.1) 

If Δk is independend of k, and Vk,l > 0, this equation has no solution other than the trivial 

one (i.e. Δ=0). Things change Δk depends on k. We may expect this to happen when the 

interaction potential Vkl varies strongly as a function of momentum. We have encountered 

this when we discussed the pairing interaction mediated by paramagnetic fluctuations in 

section III.5. The interaction which we discussed in that section was strongly peaked 

around k−l=(π, π). Note that in this example we have in mind a 2-dimensional strongly 

interacting electron system such as the high Tc cuprates. We approximate Vkl resulting from 

the magnetic susceptibility as a frequency independent potential within a shell of width J 

around the Fermi energy 
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(8.2) 

Note that for k−l=(π,π) the interaction has its maximum valule: Vkl=U+2V0. We write the 

k-dependent term as a sum over 4 terms in “separable” form 
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(8.3) 

For an interaction of the form  

Vk,l = −V0 gkgl         (8.4) 

the BCS gap equation is 
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Since the summation on the righthand side of the expression is independend of k, we see 

that the momentum dependence of the gap function is entirely given by gk: 

                 0 kk gΔ=Δ         (8.6) 

where the constant Δ0 is solved selfconsistently by inserting Eq. (8.6) in (8.5)  
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This way we arrive at the self-consistent expression for Δ0 
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Usually one has to solve this equation numerically. The trick is to calculate Tc for each of 

the pairing channels constituted by the separable interaction terms of Eq. (8.3). One of the 

Tc‘s will have the value, and since all order parameters are zero at this temperature, the gap-

equation is indeed of the form (8.7) with gk representing to the “dominant” pairing channel 

(i.e. the pairing-symmetry with the highest Tc). For lower temperatures additional gaps may 

open, and the problem of coupled gap-equations needs to be addressed, a problem which 

we will not treat here. 

The most important conclusion is, that a non-trivial solution of the gap-equation can be 

found, even resulting from a repulsive interaction such as the spin-fluctuation mediated 

pairing in the singlet channel.  For the high Tc cuprates the dominant pairing channel turns 

out to be the third term of Eq. (8.3) 

( )( )             coscoscoscos0' yxyxkk llkkVV −−−=  

The resulting gapfunction has the form  

Δk = Δ0 coskx − cosky( )                 

which has regions of opposite sign around the Fermi surface, separated by nodes for the 

directions kx=±ky. The fact that nodes are present in the gap-function implies that also the 

wavefunction describing the relative motion of quasi-particles forming a Cooper pair have 

wavefunctions with nodes. In the example above, this would imply that the orbital 

momentum of the Cooperpairs is L=2. This is called “d-wave pairing”. 
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Spin and orbital quantum numbers of Cooper pairs 
In case that spin-orbit interaction is zero, the quasi-particle energies obey the following 

symmetry: ↓↓−↑−↑ === kkkk ξξξξ . If the orbital momentum of the Cooperpairs is either 

L=0, or L=2, the wavefunction has even symmetry for its orbital part, while the spin-part 

must be odd. Odd symmetry of the spin coordinates implies S=0. For the gap-function this 

implies that it obeys the symmetry relation Δk= Δ-k.  Examples: 

Pb, Al, Nb, MgB2:  L=0, S=0  

La2-xBaxCuO4 , YBa2Cu3O7: L=2, S=0  (J.R.Kirtley, C. Tsuei, Nature 373, 225 (1995)) 

CeCoIn5: L=2, S=0 (W. K. Park et al, Phys. Rev. Lett. 100, 177001 (2008)) 

 

In the previous discussion we arrived at the conclusion that spin-fluctuation mediated 

paring leads to d-wave (L=2, S=0) pairing. This was obtained for a spin-susceptibility 

which is characteristic of a metal close to an anti-ferromagnetic instability. If the metal is 

close to a Ferro-magnetic instability, similar arguments can be used to show that p-wave 

(L=1, S=1) pairing is favored. If the orbital momentum of the Cooperpairs is L=1, or L=3, 

etc, the wavefunction has odd symmetry for its orbital part, while the spin-part must be 

even. Even symmetry of the spin coordinates implies S=1. For the gap-function this implies 

that it obeys the symmetry relation Δk=−Δ-k. These properties can be easily verified from 

the gap equation and the Cooperpair wavefunction (Eq. 4.8 or 4.9). Experiments to test for 

orbital and spin quantum numbers are difficult, and often several experimental techniques 

need to be combined in order to obtain conclusive evidence. 

Some famous examples where such tests have been carried out are: 

Superfluid 3He: L=1, S=1  

(A. J. Leggett, Rev. Mod. Phys. 47, 331-414 (1975)) 

Sr2RuO4: L=1, S=1 

(D.F. Agterberg, T.M. Rice and M. Sigrist, Phys. Rev. Lett. 78, 3374 (1997)) 
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VIII.2 The Anderson-Higgs mechanism 
Previously we have pointed out, that the only terms that matter for the groundstate in  

σ
σσ
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†

, ql
lk

qlqkqkkl
q

i ccccVH ++−+−+∑∑=     (8.9)  

are those for which q=0. This is because in �Ψ0〉 the electron creation operators only occur 

in the combination c†
p↑c

†
-p↓. In the BCS model it is assumed, that the excitations do not 

carry the superconductor far from the groundstate, so that also for the excited states the 

only relevant terms are those for which q=0.  
A few years after the BCS theory was published, P.W. Anderson explored the 

consequences of the full interaction hamiltonian, which resulted in the prediction of  novel 

collective excitations with a mass gap. This model was later applied in elementary particle 

physics to predict the existance of a novel elementary particle, the Higgs boson, with a 

finite mass, and to explain the fact, that the W+/− and Z bosons have a finite mass. 

However, usually in elementary treatments of superconductivity phase-fluctuations, and 

coupling of phase-fluctuations to the EM-field are ignored. For many practical purposes 

this is OK. For example, the tunneling spectra and specific heat can usually be calculated 

reliably using the so-called reduced Hamiltonion (q=0 in the equation above), at least for 

most superconductors with a low Tc. 

Theory of Superconductivity Theory of weak nuclear interactions  

Spontaneous symmetry breaking of the 

pairing-amplitude field 

Spontaneous symmetry breaking of the 

Higgs field 

Gap amplitude |Δ|2 is proportional to the 

density of Cooper-pairs 

Finite amplitude of the Higgs field 

corresponds to the mass of the Higgs-boson 

Macroscopic phase fluctuations: φ(r,t) Fluctuations of the phase of the Higgs-field 

Coupling of macroscopic phase, φ(r,t), to 

the EM-field: ∫+
r

drtrA
c
etr
0

'),'(2),(
!

φ  

Coupling of the phase of the Higgs-field  

to the W+/− and Z gauge fields  

Coupling of φ(r,t) to the EM-field causes a 

gap in the photon-dispersion relation of 

photons travelling inside a superconductor. 

This coupling causes a gap in the W+/− and 

Z excitations, which corresponds to the  

finite mass of the W+/− and Z bosons. 
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Appendix A: Electrodynamics of superconductors in the quasi-static limit 
In this section we will show, that the characteristic properties of superconductors can not be 

explained from classical electrodynamics of solids.  For this purpose we will need 

Maxwell's equations in solids, summarized in Boxes  I and II.  

The starting points are the following: 

• We will assume that the electric and magnetic fields are quasi-stationary, i.e., that the 

external electromagnetic fields are either constant, or vary only linearly as a function of 

time:  ( )00)( ttt −∗+= DDD ! , etc. As a result  

0/ 22 =∂∂ tD , 0/ 22 =∂∂ th , etc. for a quasi-stationary field   (A1) 

• hb =   (absence of magnetization m in microscopic description of SC) (A2)  

• JDh
ctc
π41 =

∂
∂−×∇     (Ampere's law)      (A3) 

• 01 =
∂
∂+×∇
tc
hE     (Faraday's law)      (A4) 

• 0=•∇ h           (A5) 

• The current density in a solid is the product of the charge, the density, and the (drift) 

velocity of the charge carriers: J = -e n v.     (A6) 

• ( ) ( ) ( )GGG •∇∇+∇•∇−=×∇×∇
!!!!!!

      (A7) 

Let us consider an ideal conductor, with no dissipation. If we apply an electric field, each of 

the electrons in the conductor will be accelerated according to Newton's law: 

⇒−= Ev
m
e

dt
d

EJ
m
ne

t

2

=
∂
∂       (A8) 

As we are going to use Ampere's law to substitue J with the fields h and D, and Faraday's 

law to substitute E with h, we first have to take the curl of both sides of the expression: 

 EJ ×∇=
∂
∂×∇

m
ne

t

2

        (A9) 

This, after substitution with Amperes and Faradays law becomes: 
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Because we are only considering quasi-stationary fields here, d2D / dt2 = 0 in this case. 

Using further the properties of vector operators, and the fact that no magnetic monopoles 



 88 

are present, we obtain as a final result a differential equation for the magnetic field 

distribution of a superconductor
  

( ) hh
tmc

ne
t ∂

∂=
∂
∂∇•∇ 2

24π
 

 (Field in a perfect conductor)  (A11)
 

If we place a sample with a flat surface perpendicular to a uniform external field parallel to 

the z-axis, and we ramp up the field linearly as a function of time, eq. A11 tells us that 

outside the superconductor (z<0), where n=0, dhz/dt is independent of the position z. Inside 

the superconductor (z>0) , the field drops exponentially to zero on a length scale  λL , the 

so-called London penetration depth:   
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This implies, that deep inside the superconductor (z>>λL) dh/dt = 0. On the other hand, the 

Meissner effect requires that deep inside the superconductor h=0. This condition would be 

satisfied satisfied if 

( ) hh 2

24
mc
neπ=∇•∇    (Field inside a superconductor)  (A13) 

Apparently, the Meissner effect requires a different ingredient, not already contained in the 

classical description of electromagnetic fields coupled to a dissipationless charged fluid. 

The fact that flux quantisation is observed in quanta which require Planck's constant 

suggests, that the additional ingredient required for the description of superconductivity and 

the Meissner-effect, is quantum-mechanics. To make this more explicit requires that we 

return to Maxwell's equations. We can substitute Faraday's law (Eq. A4) in Eq. A9, and 

obtain for the quasi-stationary field in a perfect conductor 

Jh
tne

mc
t ∂

∂×∇−=
∂
∂

2   (Maxwell)     (A14) 

For a superconductor it is required, that the same expression holds for stationary field in a 

superconductor. This was postulated by the London-brothers: 
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Jh ×∇−= 2ne
mc   (London-equation)    (A15) 

Using the fact, that the magnetic field is the curl of the vector potential, Ah ×∇= , we can 

write the London equation in the form 

AJ
mc
ne 2−=    (London-equation)    (A16) 

Usually the vector potential A is determined apart from choice of gauge: Adding an 

arbitrary term of the form g∇
!

 to A does not influence the field h, because 0
!!!

=∇×∇ g .  

Since also the current on the left hand side of A16 is gauge-independent, Eq. A16 

represents a particular choice of gauge for the vector potential A, the so-called “London 

gauge”. In a steady-state situation the charge distribution is constant as a function of time. 

The condition of continuity ( 0/ =⋅∇+∂∂ Jtρ ) then implies that 0=⋅∇ J . Consequently 

0=⋅∇ A  in the London gauge, and the normal component of A at a sample surface 

vanishes.  Eq. A16 is reminiscent of Ohm's law  

EJ σ=    (Ohm's law)     (A17) 

with the difference that Ohm’s law expresses a dissipative current response to a Coulomb 

potential, while the linear relation between current and vector potential expresses a 

dispersive electrical response to a vector potential. Up to this point, the London equation 

emerges 'out of the blue'. Although it can be regarded as a very economical way to describe 

the phenomenology of the electromagnetic properties of quasi-stationary fields and static 

fields in superconductors, we would like to understand a little better the microscopic 

foundation. In fact, we are already rather close to a microscopic description. Let us take a 

closer look at Eq. A16. This expresion appears to tell us, that the electrons behave 

collectively like a single electron in a vector potential. Quantum mechanics tells that the 

effect of applying a vector potential A, while the magnetic field 0=×∇= AB , to a particle 

of charge 2e is equivalent to making a transformation (Appendix D)   
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and to substitute the transformed ψ and ∇ quantities in the Schrödinger equation. The 

integral corresponds to  B=0 along the trajectories: Differentiating both sides of the last 

equation of A18 we have η∇= cq !A , hence η∇×∇= cq !B , which implies that B=0. 

Another way to understand this, is to consider a strip without holes. The integral along two 

different paths, labeled 1 and 2, is 

 =•×∇=•=•−• ∫∫∫∫ S),A(r'r'),A(r'r'),A(r'r'),A(r' dtttt
S

ddd
21

Φ (A19) 

Thus only if B=0  in this strip will the phase factor η be independent of the choice of path 

in the line integral. Such an independence is required, in order to ascertain that the wave 

function is single-valued.  

We will see later, that in a superconductor the current is carried by pairs of electrons, with 

charge 2e, mass 2m, and with a density n/2. The ∇ operator corresponds to the momentum 

of a particle, which is proportional to the velocity. When applied to a pair of electrons, Eq. 

A18 corresponds to the velocity transformation 

Avv
cm
e
)2(
)2(+→  

Consider a superconductor in equilibrium, with no vector potential present. In this situation, 

the drift velocity of the charge carriers is zero. If we now switch on the vector potential A, 

the velocity of the charged fluid becomes (e/mc)A, and the current density becomes 

AAJ
mc
ne

cm
en 22

)2(
)2)(2/( −=−=  

in the presence of the vector potential. This is just the London equation, so we see that the 

London equation expresses the fact that the electrons form a quantum fluid on a 

macroscopic scale.  
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Appendix  B 

Maxwell's equations in solids 

 
The best book on this subject is Classical Electrodynamics by J. D. Jackson (Wiley, 1962, 
1975).  
 
Maxwell's equations are 
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where E and B are the avaraged E and B of the microscopic, or vacuum, Maxwell 
equations. The quantities D and H, usually called the electric displacement and magnetic 
field (B is called the magnetic induction), have components given by 
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The quantities P, M, and similar higher order objects represent the macroscopically 
averaged electric dipole, magnetic dipole, and higher moment densities of the material in 
the presence of applied fields. Similarly the charge and current densities ρ=ρext+ρi and 
J=Jext+Ji are macroscopic averages of the external and internal charges and currents, and 
the charges and currents and densities in the medium. Bound charges and currents appear in 
the equations via P and M.  (However, the distinction between bound and free charge and 
current in a solid is somewhat arbitrary, allowing different and equally correct definitions 
of the fields D and H, see Appendix C). The electromagnetic force on a charged particle 
moving in a dielectric and diamagnetic medium are controlled by E and B 
 

F=q(E+c-1v×B) 
 

Together, Eqs. 1 and 2 imply that D and H are controlled by the free charges and currents. 
So if no free charges and currents are present in the solid, D and H correspond exactly to 
the electric and magnetic field set up by the external charge and current sources, e.g. the 
fields produced by a lightsource and/or an external electromagnet.  
 

 

 
 



 92 

 
Appendix C 
Gauge transformations in electromagnetism 
 
There exists a freedom of definition in this set of equations allowing us to inteprete a net 
magnetization as a surface current.  This becomes clear, when we insert Eq. (6) in Eq. (2) 
of Box I. The current consists of an external contribution, i.e. a current source placed 
somewhere outside the sample, and currents inside the sample or at the sample surface. In 
the following discussion it is useful to make this distinction explicit by writing J = Jext + Ji. 
We then obtain Ampere's law in a slightly modified form: 
 

( )McJJ
ct

D
c

B iext ×∇++=
∂
∂−×∇ π41  

 
We see, that Ampere's law is invariant under the transformation of the internal quantities  
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McJJ ii

+=

×∇−=  

 
Hence, a space-varying magnetic field can be represented by an electrical current. In 
particular a current flowing at the surface of the sample can be represented by a net 
magnetization inside the material. In the special case of a superconductor, the Meissner 
effect is represented in two different ways.  
(i) When describing the superconductor on a macroscopic scale, the absence of 

magnetic field deep inside the superconductor is ascribed to a net macroscopic 
magnetization M = - H / 4π, causing the total macroscopic field,  B = H+4πM to 
vanish. This corresponds to assuming that the surface currents are described 
completely by Ji = -c∇×M, and that 0~ =iJ . With this choice of gauge 

( )McJ
ct

D
c

B ext
~41 ×∇+=

∂
∂−×∇ π  

 
(ii) When describing the superconductor on a microscopic scale, one realizes that 

microscopically no magnetic moments are involved (the situation is quite different 
in ferromagnet, where a magnetic polarization is generated by the gyromagnetic 
moments of the electron-spins): The net magnetization in a superconductor is 
entirely due to the surface currents. In this case one writes 0~ =M , so that ii JJ ~=  in 
the transformation. With this choice of gauge 

( )iext JJ
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The magnetic flux density has a strong dependence on spacial coordinates. In 
textbooks on superconductivity the lowercase symbol h is reserved to describe the 
magnetic fluxdensity on a microscopic scale i.e. to describe the field variations in 
and around vortices, surface layers, etcetera.. Hence h satisfies the relation  ∇•h = 
0, and h is described by a the vector potential A: h=∇×A. The macroscopic flux 
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density B is the average value of h over a suitably chosen length scale (typically the 
penetration depth). Deep inside the superconductor h = B = 0. Near the surface 
boundary Ji=c∇×h/4π.  The relevant electromagnetic equations for a 
superconductor are  
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Appendix  D 
Charged quantum particle in an electromagnetic field 
We want to verify, that  

),r(~),r(~)(),r(~~~
2

2

tEtrVt
m

ψψψ =+∇⋅∇− !   

where  

),(2~ tr
c
ei A
!

−∇=∇ , ),r(),r(~ ),r( tet ti ψψ η= ,  

and  

∫ •=
r

0
'd),(r'2),r( rA t

c
et
!

η .  

By differentiating in parts we can show that 

),r(),r(~~ tet i ψψ η∇=∇ ,  

and subsequently that  

),r(),r(~~~ tet i ψψ η ∇⋅∇=∇⋅∇ .  

The transformed Schrodinger equation   

ψψψ ~~)(~~~
2

2

ErV
m

=+∇⋅∇− !    

then reduces to  

ψψψ ηηη iii EeerVe
m

=+∇⋅∇− )(
2

2
! . 

 Since the phase factor eiη is a scalar, it can be devided out from both sides of the 

expression, from which results the original –untransformed- Schrodinger equation. This 

concludes the proof that the transformed states ψηie  are solutions of the Schrodinger 

equation with the transformation A
c
ei
!

2−∇→∇ . 


