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INTRODUcrION

Recent experimental developments on quantized conductance in 2D point contacts (1) have

prompted a flurry of theoretical activity (2) in the field of quantum ballistic transport. Although

the theoretical approaches differ in various respects, they aIl have in common that they are

based on, or can be traced back to, the Landauer formula

G=e2/h ~ Tij (1)
IJ

which applies to an idealized two-terminal geometry. A detailed discussion about the

consequences of applying this fonnula to non-ideal geometries, e.g. having a finite width of

the wide parts of the sample, was given by Landauer (3). Aiso in the present paper 1 will stick

to idealized geometries, where the microstructure is flanked by infinite 2D halfplanes. The

electrical contacts to these planes are assumed to lie far from the constriction(s) compared to

the inelastic mean free path.

The fonnalism underlying the numerical results that 1 will discuss below is given in Ref.

4. ln the present paper 1 will only briefly point out the basic physics. The linear conductance

through a constricted region in an otherwise unperturbed 2DEG can be calculated from the

eigenfunctions in the following way: Due to the presence of a constriction the eigenfunctions

having their principle weight in the left half plane (left-side lobes) contribute an infinitesimal

leakage current through the constriction. Similarly the right-side lobes contribute a particle

current pointing to the left. ln the absence of an external voltage these currents cancel. Due to a

small external voltage between left and right the left-side lobes will acquire a surplus
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occupation given by the density of states multiplied by the change in potential. The resulting

current is now given by this extra density multiplied with the flux of each eigenfunction (i.e.

the rate at which a unit area passes from left to right) integrated over alileft-side lobes. For the

left-side and right-side lobes the angle of incidence is still a good quantum number, which is

due to the infinite extent of the continuum solutions compared to the finite scattering cross

section of the constriction. Therefore the summation over eigenstates in terms of an angular

integral can be expressed as follows:
x/2
J ()2n G = e2 <I>(EF,a) ~ da {2)

-x/2

A set of tight binding wave functions is used to represent the electronic states, which is

convenient for computational reasons and bas the possibility of working in the limit of Cree
electron bands (Â.p » a, a is the lattice parameter) and nonparabolic bands (Â.p=a). The

Hilbert space is a 2D square lattice with nearest neighbor hopping parameter t, which

corresponds to h2/ (2 m* a2) where m* is the effective mass near the center of the Brillouin

zone. For such a tight binding lattice the flux can be expressed in the value of the

eigenfunctions at two adjacent rows of lattice points, which can be chosen at x=O and x=a

respectively (The x and y directions are chosen perpendicular and parrallel to the barrier

respectively) :
4xta2

11>('1') = h Im(}::, <'IIIO,n> <l,ni'!'» (3)
n

ln Ref. 4 it was shown, that in a geometry with a set of apertures in an infinetely high
barrier at x = 0 the conductance is exactly given by:

(4)

where

ll. CONDUCI' ANCE QU ANTIZA nON lN POINTCONT ACI'S

ln Fig. 1 the result is given for a few configurations where the conductance as a function

of constriction width is calculated. The following observations can be made from this figure:
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Fig.l. Conductance versus constriction width.
(a)L=O. Solidldashed curve: constriction
withoutlwith impurity. (b)L=O.48Â.F. Upper solid
curve: channel without impurity. Lower solid
curve: impurity inside the constriction (x=O.32Â.F.

y=O.32Â.F). Dashed curve: impurity outside the

constriction (x=O.57Â.p. y=O.32Â.F). (c)L=O.99Â.F.

ln the first place there are oscillations with inflection points at precise integer multiples of 2e2/h

even for a constriction of zero length. On increasing the length of the constriction the plateaus

start to flatten, until at a criticallength Lc the plateaus become horizontal. On further increasing

the length oscillations below the plateaus set in due to interference between waves reflected

from the back and front end of the narrow region. The criticallength where the n'th plateau

becomes horizontal obeys the following scaling behaviour :

1<; = 0.45 ...[Wi:; = 0.32 ÂP.,ln (5)

The square root dependance of Lc on W implies that in order to have quantization the

narrow region can be much shorter than wide. Note that this is sornewhat counter intuitive: ln

orner to have ID subbands one tends to assume that a channel must be much longer than wide.

This tums out to be an unnecessary condition. More important is, that the channellength is of
the order of (or smaller than) the decay length III( of the electrons tunnelling below the lowest

unoccupied 10 subband in the narrow region, i.e. Lc-2 -1(2 -2m 112 (En+l -En). ln a square

weIl confmement potential the latter energy difference is propertional to the channel index: 1(2 -

n W-2. Using the fact, that the channel index n is approximately given by 2W 1 Â.p we can

now qualitatively understand, that Lc is proportional to the square root of the width. Also

shown in Fig.l is the effect of impurities, which clearly is to destroy quantization.
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III. QUANTUM RESONANCE DEVICES

1 now turn to the problem of a small box connected to 2D half planes on both sides through

point contacts. Technically such a deviœ can be realized by rneans of a set of gates that detines

the shape, and a second gate covering the box and its surroundings. The latter gate can be used

to define the position of the Fermi level. ln Fig. 2 the result is given for a round box. The

peaks coïncide with the energy positions of the localized levels inside the box and are caused

by resonant tunneling. ln the situation depicted in Fig. 2 the apertures on both sides act as

mode selectors which allow only for partial transmission of the lowest subband in the narrow

region. This effectively makes the problem ID, even though the contimuum states to which the

localized states in the box couple are in the 2D half planes. The only relevant quantum number

is now parity with respect to the y mirror plane. The states can be characterlzed by 'atomic'

quantum numbers: 1 s, 1 Px, ldx2_y2 , 2s etc. .For a box of 200 nm diameter and an effective

mass ofO.O7rne these levels are at 3.6, 9.3,16.7 and 18.5 Krespectively. The lpx and ldx2-

y2levels are degenerate with the 1 Py and ldxy levels respectively, but the latter do Dot couple

to the modes selected by the point contacts, as these levels have odd symmetry around the x-

axis, whereas the selected modes are even. With regards to rnirror symmetry around the y axis

we observe, that ls, ldx2_y2 and 2s are even, whereas lpx is odd.

As parity is conserved by the coupling of the localized states to the continuum (The slight

asymmetry in the geometry of Fig. 2 bas neglegible physical influence) one can write

Ikp> = (l-kR> :f: Ikr.,»/ -r2 , where p indicates the parity quantum number and the +/- sign

refers to even and odd parity. In(out) coming waves have posive (negative) values for k. Due

to unitarity the outcoming waves acquire a parity- and energy-dependent phase shift Tlp(E). A

wave enterlng from the left is given by a linear combination of even and odd-parity waves,

so that the scattered wave is: 1 kscan> = 2-1/2 ( e2iTle 1 ke> + e2iTlo 1 ko> ). The transmission

is now:

(6)T = 1 <- kR 1 kscatt >1 2 = sin2 (11e -110)

k
r 1dx2_y2 2s18 1Px

~'2'"
Q)
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~
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Fig.2. Conductance versus Fermi energy for
the geometry indicated in the top left corner. ln the
calculation the barrier extends from y = -00 to 00.
lndicated above each resonance are the orbital
quantum numbers of the corresponding virtual
bound states.

0 2l

Energy (units of 2t)
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ln the more general case of an asymmetrical box other linear combinations of L and R

waves have to be taken, which results in a reduced transmitted amplitude compared to Eq. (6).

The energy dependance of the phase shifts follows directly from the Friedel SUffi Rule (5):

dllp / dE = 1t i\pp (7)

where ~Pp is the impurity induced change in the density of states. Generally speaking

fuis implies, that the phase shift increases with 1t each rime the Fermi level crosses a quasi

localized level, giving rise to a resonance peak with a maximum transmission of exactly one. If

an even and an odd level are energetically close to each other, complete or partial cancellation
i

can occur. On the other band, if there is a succession of two or more states of the same parity,

there must be a point of exactly zero transmission between two subsequent peaks. Especially if

the energy positions are close to each other fuis gives rise to a very strong energy dependency

of the conductance. ln its simplest form the change in density of states connected with each

localized state bas a Lorentzian line shape:

(8)L\pp = 7t k Arg(E -Eip -i f'ip)

This immediately leads to the following fOnD of the phase shifts:

Tlp = L cotg-l(rip / (E -Eip» (9)
i

A plot ofTle, Tlo, Tle-Tlo and T is displayed in Fig. 3 , taking 3, 14, and 18 K for the energy

position of the even peaks and 0.2, 1.5 and 2.0 K for the con'esponding r. The odd peak was

positioned at 7K with r=l.O K. Clearly most of the physics of Fig.2 is contained in the simple

scattering phase shift considerations explained above.
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Fig.3. The phase shifts and the transmission
versus Fermi energy of a QRD containing 3 even
levels and 1 odd level. Dashed. chained and solid
curves are 17e. 170 and 17e- 170 .
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N. ELEcrRON CORRELA110N lN QRD'S

So far 1 have neglected electron correlation effects. Although this is reasonable in the 2D

wide parts of the geometry, as interactions are strongly screened there, this is no longer correct

in a small box, or even in a ID con striction. Especially in a small box the situation is

reminiscent to atomic physics. Let us first take a look at the relevant energy scales. We take the

energy difference between the two lowest levels (ls and Ip) as representative of the level

spacings without electron-electron interactions:

t12
M.=Ep-Es=2iii*

0.71
1t R2

(10)

the width of the s level scales as

W L -/1 -2:ff.!..r s = Es R exp( -2 7t W "\f 1 -';R2 ) (11)

i.e., keeping the shape and the relative sires of the QRD fixed, the 1inewidths and the energies

sca1e with R in the same way. The Coulomb integral of two e1ectrons in a 20 circu1ar box

scales as:

U=f ~
ER

(12)

where E is the dielectric constant and fis a dimensionless factor of the order one which

depends on the details of the wavefunctions involved. If two electrons occupy states with

different orbital quantum numbers, we also have to take into account the exchange integral J,

favouring parallel spin alignment. The exchange integral follows the scaling behaviour of the

unscreened Coulomb interaction U given in Eq. (12). Both an increase of the number of
occupied levels and a reduction of ~ leads to a reduced value of U due to screening. From

the analogy with transition metal impurities 1 expect a much weaker effect of screening on the

exchange interaction J (6). The scaling behaviour of the bare (unscreened) parameters is

displayed in Fig. 4 in a temperature versus length "phase diagram". We recognize from this
plot, that for boxes larger than 110 (nm) ~ < U, whereas for smaller boxes [' s « U <~.

The latter condition leads to the formation of a magne tic state localized inside the box on

partial filling of the s level. The Hamiltonian describing the interacting system is the weIl

known Anderson impurity Hamiltonian:

~ t t .tH = ~ Ek 'l'kt 'l'ke + ; nos + U nJ.snts + ~ (Vk 'l'ke 'l's + Vk 'l's 'l'ke) (13)

k
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Fig. 4. Phase diagram oftemperature versus
diameter of a circular QRD (using rypical GaAs
parameters for the effective mass and the dielectric
constant). indicating the various regions in
parameter space .

10.

The easiest approximation is to solve the Schrodinger equation using the self consistent

Hartree-Fock approximation (7). As a result the s-virtuaI bound state will divide up in two

spin split peaks as soon as the density of states at the Fermi level exceeds a certain critical
value. This can only occur if U > Xl. ln other words, if the latter so caIled Anderson criterion

is fulfllled, the Hartree-Fock approximation gives a sharp transition between the magnetic and

the non magnetic regime as a function of s-level occupation. It is important to point out that

this sharp transition is an artifact of the Hartree-Fock approximation. More advanced ground

state caIculations lead to a graduaI crossover between the two regimes (8). 1 have performed

the selfconsistent Hartree-Fock caIculation as a function of Fermi energy, thus extracting a

conductance per spin channel from the s-level occupation numbers (i.e. by employing the

Friedel Suffi mIe). The resulting conductances and occupation numbers are displayed ln Fig. 5.

The leftmost example is at the border of the above mentioned Anderson criterion and there is

only a single peak with its maximum at 2e2/h. For larger U the Anderson criterion is satistied

and there are now two peaks, with their maxima between e2/h and 2e2/h.

The rightmost example is representative of the box of about 200 nm diameter discussed in

section 3. If in this example the Fermi level is inbetween the two peaks, the box contains

approximately a single spin, and we have to face the fact, that our previous assumption of

independent channels for the two different spin quantum numbers no longer holds. The reason

is as follows: A current flowing through the box has to be envisaged as a sequence of virtuaI

hops of electrons and/or holes into and out of the box. An applied voltage favours hopping in

one direction. An electron hopping into the box must have its spin antiparallel to the spin that

L5j



is aIready there (A more correct way of stating this is: bath electrons must fonn a singlet

state). ln the secc;>nd step of the virtual process, where an electron hops out of the box, there

are now two energetically equivalent possiblities: Either an up-spin remains in the box and a

downspin hops out, or vice versa. ln other words: Each electron contributing to the current

bas a 50% chance of undergoing a spin flip, which is the strongest fonn of spin flip

dephasing. ln fact this behaviour willlead to the fonnation of a Kondo state at low tempera-

tures in which the electron in the box builds up a collective singlet state with eleëtron-hole

pairs in both halfplanes (8). This leads to the characteristic logarithmic behaviour of the trans-
port properties with the Kondo scaling temperature: kBTK = Ep exp (- (IEsIIEs+UI) 1 (U r s) ),

where Es and Es+U are the energies of the occupied and the unoccupied spin levels relative to

the Fermi energy. With the gated QRD structure one bas the unique possibility of tuning these

energies and hence of having an experimental handle on TK. ln the case where the Fermi level

is precisely midway Es and Es+U, one can easily estimate that the Kondo temperature is far

below experimentally accessible temperatures. On moving the Fermi level closer to one of the

peaks TK lises sharply and the anomalous temperature dependency should enter the observable

temperature range. Therefore 1 believe, that Quantum Resonance Deviœs are a unique tool for

studying collective behaviour induced by spin flip scattering.
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