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Résumé en français

Introduction

L'habitude des anthropologistes à utiliser le nom du matériau utilisé par les hommes
pour nommer un âge de l'histoire montre l'énorme importance des matériaux dans
l'histoire de l'humanité. Comprendre et utiliser les nouveaux matériaux a été une
des plus grandes conquêtes de l'humanité. Dans notre siècle, le développement de
l'électronique et la photonique a suivi la compréhension microscopique des semicon-
ducteurs et des métaux par la mécanique quantique. La majeure partie des propriétés
des solides est déterminée par la portion des électrons participant aux liaisons chim-
iques. Si ces électrons sont des particules chargées, dans beaucoup de situation, la
répulsion coulombienne mutuelle peut être négligée dans la description du solide. Un
des enjeux majeurs de la physique moderne est de traiter correctement ces interac-
tions dans les matériaux où les négliger conduits à une mauvaise compréhension des
résultats expérimentaux. Ces interactions sont à l'origine de nombreux phénomènes
qui ont d'importantes implications dans le magnétisme et la supraconductivité. Si
l'observation du magnétisme remonte à la Grèce antique, il n'a été compris que
grâce au récent avènement de la mécanique quantique et du concept de "spin élec-
tronique". Dans les métaux de transition, la forte répulsion coulombienne ressentie
par les électrons d favorise un arrangement magnétique de leurs spins dans leurs
orbitales d. La description la plus simple d'un matériau magnétique serait de con-
sidérer les moments magnétiques de chaque atome orientés les uns par rapport aux
autres. Cette description s'applique aux matériaux dans lesquels les électrons d sont
localisés sur leur atome et on peut alors parler d'orbitale atomique et de spins
comme dans les oxydes de métaux de transition. Cependant, le magnétisme a été
également observé dans des systèmes métalliques où les électrons sont délocalisés
dans les liaisons covalentes. Le concept de magnétisme itinérant a été développé
pour expliquer ce phénomène. Les électrons formant les bandes électroniques des
solides, équivalentes aux orbitales atomiques, peuvent révéler di�érentes structures
entre une direction de leur spin et une autre. Ceci résulte en une polarisation de
spin qui crée un moment magnétique au sein du système. Ce scénario représente la
limite où les interactions électron-électron sont faibles mais capables de produire du
magnétisme et les implications microscopiques sont actuellement l'objet de débats.

v
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MnSi est considéré comme un matériau à ferromagnétisme itinérant (weak itinerant
ferromagnet) et peut être décrit par un model de ce type. Une partie de cette thèse
s'intéresse à la détermination de la structure électronique de ce matériau, et aux
e�ets des répulsions coulombiennes pour donner une réponse microscopique à son
magnétisme.
Une vaste classe de matériaux couvrant une large part de la table périodique a mon-
tré qu'ils devenaient supraconducteurs à basse température à cause de la formation
de paires assistée par le couplage électron-phonon. Ceci est expliqué dans la théorie
de Bardeen, Schri�er, Cooper, BSC. Les interactions de coulomb entre les électrons
mobiles (chargés négativement) et les ions (chargés positivement) peuvent déformer
le réseau cristallin. Cette déformation peut exciter un mode de phonon particulier du
cristal. Il résulte de cette interaction un potentiel attractif autour de l'électron qui
favorise la formation d'une paire. Lorsque deux électrons, particules possédant un
spin semi-entier, se couplent, ils se comportent comme une particule possédant un
spin entier et obéissant par conséquent à la statistique de Bose-Einstein et peuvent
condenser dans un état quantique unique. Ce condensat représente l'état fondamen-
tal du système, ainsi, dans un supraconducteur le courant peut circuler dans l'état
fondamental, et le matériau montre une résistivité nulle. Dans les supraconducteurs
BSC, la formation du condensat diminue l'énergie potentielle du système dans une
plus grande mesure que son énergie cinétique augmente. L'énergie totale est diminuée
et le matériau subit une transition de phase supraconductrice. En 1986, une famille
de matériaux possédant des transitions supraconductrices à des températures bien
supérieures à celles des matériaux BCS a été découverte. Le composé BCS possédant
la plus haute température de transition est MgB2 avec une Tc d'environ 39K alors
que le composé Tl2Ba2Ca2Cu3O10 devient supraconducteur à 125K. Ces matériaux
sont appelés "Cuprates" en raison de la présence de plans CuO2. De nombreux
arguments indiquent un mécanisme de couplage "non-BCS" dans ces matériaux,
mais malgré un grand nombre de recherches, il n'existe toujours pas de consensus
sur le mécanisme de formation de paires. Alors que les matériaux BSC sont des
liquides de Fermi où les interactions électron-électron peuvent être traitées comme
des perturbations, les cuprates ne sont pas des liquides de Fermi dans l'état normal
et les interactions électron-électron jouent un r�le dominant. Dans un tel contexte,
de nombreux mécanismes de formation de paires on été proposés, tous relatant une
diminution de l'énergie cinétique des électrons, contraire au scénario BSC. Mesurer
le changement d'énergie cinétique du système lors de la transition supraconductrice
pourrait donc indiquer quel mécanisme de formation de paire est responsable de la
supraconductivité dans les Cuprates.
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Spectroscopie optique des supraconducteur à haute
Tc

Les ondes électromagnétiques sont un bon moyen de sonder le mouvement des par-
ticules chargées. La réponse d'un systeme de particules chargées à la lumière est la
conductivité optique complexe σ = σ1 + iσ2, où σ1 mesure l'absorption de la lumière
dans le matériau et σ2 est la partie réactive de la réponse. Une loi sur la somme
existe en spectroscopie optique appelée "sum-rule":

SW =

∫ ∞

0

σ1(ω′)dω′ = ω2
p

8
(R.1)

La quantité SW est appelée poids spectral optique et représente le poids de toutes
les transitions dans le spectre de la conductivité. Si on limite cette intégrale à une
fréquence de coupure Ωc, il devient possible de mesurer le poids de la seule bande de
conduction, qui représente la réponse des électrons libres, responsables des propriétés
électroniques du système. Le poids spectral peut etre relié à l'énergie cinétique par
une simple relation de proportionnalité, et dans l'approximation aux premiers voisins
des liaisons fortes, l'expression SW = −K (K étant l'énergie cinétique) est valide.
La mesure du changement de SW lors de la transition de phase peut permettre de
déterminer expérimentalement si l'énergie cinétique augmente ou diminue lorsque
le systeme devient supraconducteur. Cet e�et a été vu dans des monocrystaux de
Bi2212 [1] pour la première fois. Jusqu'à maintenant nous avons implicitement fait
des assomptions dont la validité doit être véri�ée:

• Le poids spectral (SW) est une intégrale de zéro à une certaine fréquence
de coupure. Evidemment, comme il n'est pas possible de mesurer le spectre
optique jusquèà une fréquence nulle, nous devons estimer l'in�uence de la
partie spectrale manquante sur le résultat �nal.

• L'équation SW = −K n'est strictement valide que lorsque la dispersion de la
bande est limitée aux sauts entre premiers voisins.

• A�n d'établir si oui ou non ceci est une propriété commune à tous les Cuprates,
nous devons étudier ces e�ets sur di�érentes compositions.

Une partie de ce travail consistera à répondre à ces trois points. Nous avons mesuré
di�érents Cuprates avec des composition di�érentes par re�éctivité infrarouge (entre
12 meV et 0.78 eV) et par ellipsométrie spectroscopique (entre 0.78 eV et 4 eV) dans
une gamme de températures entre 10K et 300K. A�n de voir les e�ects induits par la
supraconductivité, les données ont été enregistrées avec une résolution en tempéra-
ture de 1K. De plus, un rapport signal sur bruit supérieur à 3000 su les constantes
optiques mesurées a été atteint dans toute le domaine spectral a�n de détecter les
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Figure R.1: Représentation schématique des mesures de ré�ectivité et
d'ellipsométrie.

changements les plus subtiles à Tc. Beaucoup de soin a été apporté à ce sujet et grâce
particulièrement à l'utilisation d'un cryostat ultra stable nous avons pu mesurer le
transfert de poids spectral lors de la transition avec une grande précision sur dif-
férents matériaux. La Fig. R1 montre le schéma de l'expérience: La ré�ectivité est
mesurée en illuminant l'échantillon puis une couche d'or est déposée "in-situ" a�n
de prendre la ré�ectivité de l'or comme référence. L'ellipsométrie consiste à éclairer
l'échantillon avec une lumière linéairement polarisée et à mesurer l'ellipticité de
la polarisation émergeante induite par l'échantillon. La combinaison de ces deux
techniques donne accès à la conductivité optique complexe dans une large échelle
d'énergies. D'apparence simple, cette expérience est complexe en raison de la large
gamme spectrale (4 décades) et de température (2 décades) et de la haute résolu-
tion nécessaire. Dans les travaux de la référence [1] nous avons mesuré le tenseur
diélectrique d'un cristal de Bi2223 dans toutes les directions cristallographiques non-
équivalentes. Dans cette publication, nous avons montré que SW peut être déterminé
avec une très grande précision même si les mesures ne descendent pas jusqu'à une
fréquence nulle grâce à la combinaison de la grande précision dans la connaissance
des parties réelles et imaginaires de la conductivité optique dans une grande gamme
spectrale. Ceci a été le sujet d'une autre publication où nous avons pu donner des ar-
guments quantitatifs basés sur des approches analytique et numérique des propriétés
des fonctions analytiques. Nous avons également discuté les implications théoriques
du choix de la fréquence de coupure Ωc dans l'intégrale du poids spectral mon-
trant qu'en dessous de 1eV, le poids spectral peut être en e�et représentatif de la
réponse des électrons de conduction dans les Cuprates, donnant accès à la variation
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Figure R.2: Le graphique du haut représente le poids spectral en fonction de la
température. La transition supraconductrice induit une augmentation de SW en
dessous de Tc indiquant une diminution de l'énergie cinétique des porteurs libre
(SW = −K). Le graphique du bas montre les di�érentes extrapolations à basse
fréquences faites sur les mesures de ré�ectivités utilisées pour générer les barres
d'erreur sur le poids spectral. Il est clair que les détails du spectre en dessous de la
dernière fréquence mesurée ne sont pas cruciaux dans la détermination de SW.

de l'énergie cinétique des porteurs libres. Dans la Fig. R.2, nous montrons l'e�et
des extrapolations à basse fréquences sur le transfert de poids spectral. Dans la
référence [3] nous avons étudié la dépendance du transfert de poids spectral avec le
dopage en oxygène dans des échantillons de Bi2212. La non stochiométrie en oxygène
dans ces matériaux peut faire varier les propriétés supraconductrices en modi�ant
le nombre de porteurs dans la bande de conduction. Sans dopage, le système est
un isolant. Il devient métallique et supraconducteur en ajoutant de l'oxygène puis,
passé une certaine quantité, la supraconductivité est supprimée. Dans la Fig. R.3,
on peut voir le diagramme de phase des Cuprates supraconducteurs. Le transfert de
SW en fonction du dopage a un comportement non trivial qui peut être expliqué
théoriquement dans le contexte du modèle t-J partant d'un cluster de 4 atomes de
cuivre, Fig. R.4. L'Hamiltonien du modèle t-J est:

H = −t
∑
i,j,σ

(b†i,σbj,σ + H.c) + J
∑
i,j

SiSj (R.2)

bi,σ = ci,σ(1− ni,−σ) (R.3)
c†i,σci,σ = ni,σ (R.4)



x Résumé

Figure R.3: Diagramme de phase en fonction du dopage en oxygène. Le composé
stochiométrique est un isolant de Mott. La plus haute temperature de transition
supra est atteinte pour un rapport trou/atome de cuivre de 0.15.
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par la supraconductivité expérimentales et les resultats obtenus avec le model t-J.
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et représente un système avec un interaction d'échange J entre voisins et où la
double occupation d'un site est interdite. Ce modèle décrit assez bien la physique
a basse énergie des Cuprates supraconducteurs, comme le con�rme nos résultats.
Jusque la, nous avons considéré comme admise la relation entre le poids spectral
et l'énergie cinétique. Ce point subtil a été traité dans une récente publication.
Pour certaines compositions, en e�et, le poids spectral peut être très di�érent de
l'énergie cinétique. Nous avons aussi véri�é que pour les compositions que nous
avons mesurées expérimentalement, cette relation est une bonne approximation de
la réalité.

La structure électronique et le magnétisme de bande
de MnSi

Comme nous l'avons mentionné dans l'introduction, le magnétisme de bande prend
son origine dans la polarisation de spin des bandes électroniques d'un solide. A�n
d'avoir une description microscopique du magnétisme dans MnSi, qui est consid-
éré comme un aimant itinérant, nous devons connaître avec précision sa structure
électronique. Lorsque les répulsions colombiennes sont faibles, les calculs de struc-
ture de bande donnent une bonne représentation de la structure électronique. Si
elles sont fortes, des e�ets de localisation peuvent apparaêtre et l'image itinérante
n'est plus valable. Une estimation précise des répulsions Coulombiennes est cruciale
pour les systèmes magnétiques, étant donné qu'elles gouvernent le magnétisme. Nous
avons étudié la structure de MnSi en utilisant l'absorption des rayons X (XAS) et
la photoémission spectroscopique (XPS) et comparé leur résultats avec des calculs
de structure de bande LDA.
En XAS, on excite les électrons profonds à des niveaux inoccupés d'un élément
particulier. C'est une technique sensible à l'élément qui peut sonder la densité des
états inoccupés d'un matériau. Si la fonction d'onde du trou a une grande interac-
tion avec la fonction d'onde de l'électron excité associé, par exemple une transition
2p-3d dans un métal de transition, des e�ets de multiplet atomiques peuvent ap-
paraêtre et la forme du spectre d'absorption dépend fortement de la con�guration
fondamentale du système. Ceci fait de l'absorptions X un moyen idéal pour sonder
la valence des matériaux. Dans MnSi, on ne s'attend pas a voir d'e�et multiplets,
étant donné que les électrons de la bande de conduction sont délocalisés dans un
état métallique. Dans ce contexte, on peut s'attendre à ce qu'une simple approche
LDA sera su�sante pour représenter les processus d'absorption: en LDA, on cal-
cule la densité d'états inoccupés d'une seule particule d'un élément sondé par les
rayons X. En conservant l'e�et du trou comme un simple potentiel de Coulomb sur
un atome, on est capable de simuler le processus d'absorption X. Cette approche
néglige les répulsions Coulombiennes entre porteurs. Nous avons montré que cette
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procédure échoue lamentablement dans MnSi et FeSi alors qu'elle donne de bonnes
prévisions pou CoSi, visible en Fig. R.5. La théorie des multiplets atomiques ne
donne également pas des résultats satisfaisants. La raison est que MnSi et FeSi sont
des matériaux dans lesquels les répulsions coulombienne ne sont ni négligeables ni
dominantes. On pourrait expliquer les spectres XAS dans ces matériaux en pro-
posant que leur état fondamental a un caractère de valence mixte ou les e�ets de
localisation de charge supprime partiellement les �uctuations de valence typiques
dans ces systèmes métalliques. L'absorption XAS est une sonde en énergie, en un
sens, il n'est pas parfaitement justi�é de la considérer comme une sonde du "vrai"
état fondamental du système car les rayons X sont eux-mêmes une source de pertur-
bation signi�cative. La même tendance est observée au moyen de la photoémission
de la bande de valence; les spectres de MnSi et FeSi ne peuvent pas être reproduits
par des calculs LDA alors que pour CoSi un bon accord est observé. Dans MnSi,
des expériences d'annihilation de positron qui sondent la densité d'état à la surface
de Fermi ont également montré une déviation des prédictions du scénario LDA. Ces
observations suggèrent que MnSi est à la limite entre un composant à moment local
et itinérant, rendant la compréhension microscopique de son magnétisme une tache
di�cile. Les aimants itinérants, en fait, on quelques caractéristiques communes avec
les aimants localisés, la susceptibilité Curie-Weiss, la dépendance en température du
taux de relaxation magnétique (1/T1), mais leurs valeurs absolues sont renormal-
isées. Un indice microscopique pour comprendre ces observations vient de la théorie
de �uctuation de spin de Moryia. En comparant de nouvelle mesures RMN avec
des mesures de di�usion de neutrons, nous pouvons estimer avec précision quelques
paramètres microscopiques de ce modèles cependant d'importantes déviations sont
observées. Le spectre d'excitation magnétique de ce matériau est montre des ondes
de spin bien dé�nies en intersection avec le continuum de Stoner a 3 meV.
Ceci en fait un composé idéal pour étudier la di�usion paramagnétique et, en fait,
l'observation de l'échange entre les ondes de spin et le continuum a été réalisé sur
MnSi. Cependant, l'étude des excitations de Stoner dans MnSi n'est pas allée au-
delà d'un transfert d'énergie de 20 meV à cause de di�cultés expérimentales et à
cause de la présence de phonons optiques entre 20 et 60 meV. Les données à basse
énergie ont été interprétées en terme de �uctuation de spin ce qui peut expliquer
la loi de Curie-Weiss observée dans la susceptibilité magnétique. Dans ce modèle,
la dépendance en température de la magnétisation est essentiellement gouvernée
par la dépendance en température des ondes de spin de faibles énergies alors que
les excitations de Stoner devraient être indépendantes de la température. Dans nos
données de di�usion inélastique de neutrons, nous pourrions étudier les excitations
de Stoner jusqu'à une énergie de transfert de 400 meV à température ambiante et
10K. Nous avons trouvé une dépendance en température inattendue des excitations
de Stoner qui remet en question l'interprétations microscopique de la loi de Curie-
Weiss de la susceptibilité basée sur le model de �uctuation de spin.
Dans une expérience de di�usion de neutrons, la section e�cace par unité d'énergie et
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Figure R.5: Spectres XAS de MnSi FeSi et CoSi, On peut voir que le calcul dans
l'état de valence mixte peut reproduire le processus d'absorption des trois composés
alors que la LDA ne marche que pour CoSi où les répulsions coulombiennes sont
négligeables à cause du fait que la bande 3d est presque complètement remplie.

d'angle solide pour une interaction électromagnétique entre le moment magnétique
du neutron et les moments magnétiques présents dans un solide est donné par la
formule:

d2σ

dΩdE′ =
kf

ki

(γr0)
2 | g

2
F (Q) |2

∑

α,β

(δα,β −QαQβSα,β(Q,ω)) (R.5)

Où Q = kf − ki et ~ω = Ef − Ei sont les transferts d'impulsion et d'énergie.
γ = 1.913 et g ∼ 2 sont les g-facteurs spectroscopiques des neutrons et des atomes
magnétiques. F (Q) est le facteur de forme magnétique et dépends de l'atome présent
dans le solide. Dans l'Eq. R.5. La quantité S(Q,ω) contient la fonction de correlation
de spin:

Sα,β(Q,ω) =
1

2π~

∫
dteiωt 1

N

∑
i,j

< Sα
i (t)Sβ

j (0) > e−iQ(Ri−Rj) (R.6)

En utilisant le théorème de �uctuation-dissipation, on peu relier la fonction de cor-
rélation de spin à la susceptibilité de spin par la formule:

S(Q,ω) =
1

1− e−β~ω
χ′′(Q,ω)

π(gµB)2
(R.7)

Avec β = 1/kBT . On peut voir de ces équations qu'avec une expérience de di�usion
de neutrons, il est possible d'avoir une information directe sur la partie imaginaire de
la susceptibilité de spin en fonction de l'énergie et de l'impulsion. Dans les aimants
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itinairants, la susceptibilité de spin a été étudiée au moyen de méthodes RPA (ran-
dom phase approximation). Dans ce model, la partie imaginaire ed la susceptibilité
de spin est donnée par:

χ′′(Q,ω) =
Imχ0(Q,ω)

[1− IReχ0(Q,ω)]2 + [IImχ0(Q,ω)]2
(R.8)

Où I est l'interaction intra-atomique et χ0 est la susceptibilité du gaz d'électron
qui n'interagit pas. χ0 peut être calculé analytiquement et des ondes de spin bien
dé�nies avec une dispersion quadratiques sont prédites par ce model. Une compara-
ison détaillée à ce model à été réalisée dans la ref. [5]. Dans MnSi, on doit aller
à travers cette approche a�n d'expliquer la loi de Curie-Weiss de la susceptibilité
magnétique et les propriétés particulières de la di�usion paramagnétique. Ceci est
fait par la théorie des �uctuations de spin de Moryia, où la susceptibilité de spin est
donnée par la formule:

χ(Q,ω) =
χ0(Q,ω)

1− Iχ0(Q, ω) + λ(Q, ω)
(R.9)

Le terme additionnel produit le comportement Curie-Weiss observé expérimentale-
ment. Avant d'être capable de comparer la susceptibilité mesurée avec des prédictions
théoriques, il est nécessaire de séparer la di�usion magnétique de celle des phonons.
Comme nous l'avons mentionné précédemment, dans MnSi, plusieurs modes de
phonons polluent le spectre entre 20 meV et 60 meV. Un calcul ab-initio LDA de
la dispersion de phonon permet de faire une telle distinctions et son ajustement �n
nous renseigne également en retour sur la structure électronique. La Fig. R.6 mon-
tre la comparaison entre la dispersion de phonons obtenue expérimentalement et le
calcul LDA.
Un résultat encourageant a été atteint. Ceci nous permet d'attribuer une part de la
di�usion au magnétisme. Dans la Fig. R.7, on note que le spectrum des excitations
magnetiques a haute temperature est assez di�erent de celui a 10K, espécialment
autour du point R (1,1,1). Cette observation est en contrast avec la théorie de
Moryia qui predit que le spectrum des excitations de Stoner soit independent de la
temperature. Cette observation suggère que les excitations de Stoner jouent un rôle
important dans le magnétisme de MnSi, contrairement aux prédictions de la théorie
de �uctuation de spin.
En résumé, nos observations pourrait paretre contrastées sur certains plans: La lo-
calisation est mise en évidence au moyen de sondes de haute énergies, les expériences
de di�usion de neutron sont interprétées en terme d'un modèle itinérant. Les diver-
gences observées dans les deux approches con�rment qu'aucune des deux, purement
localisée ou purement itinérant, n'est correct. Si la région limite de formation de mo-
ments locaux est une terra incognita d'un point de vue théorique, nos observations
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expérimentales donne des éléments utiles pour développer un model microscopique
pour le magnétisme de band dans MnSi
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Figure R.7: La dispersion des excitations magnetiques en MnSi est representé. Les
lignes representent la prédictione de la théorie de Moriya a deux temperatures: 300K
(rouge) et 10 K (bleu). Les points sont les experiments aux mèmes temperatures.
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Summary

Introduction

The use of anthropologists to name an era after the material used by mankind in
that period suggests the importance that materials have had in the history of man.
Understanding and using new materials has been the driving force for many of the
technological conquests that human kind made. In our century, the development of
electronic and photonics have followed the microscopic understanding of semicon-
ductors and metals thanks to quantum mechanics. Most of the properties of solids
are determined by a portion of the electrons composing the single elements which
are involved in the chemical bonding that gives to the material its shape. These elec-
trons are electrically charged particle, yet in many situations their mutual Coulomb
repulsions can be neglected in the description of the solid. In the modern solid state
physics one of the open challenges is to treat these interactions properly in all those
materials where neglecting them results in a poor understanding of the experimen-
tal observations. These interactions are the cause of several interesting phenomena
which have several important applications such as magnetism and superconductiv-
ity. Magnetism have been observed since ancient Greece, but only when quantum
mechanics was developed and the concept of electron spin became available could
be explained. In transition metal elements, the strong Coulomb repulsion felt by
the d-electrons favor a magnetic arrangement of their spins in the atomic d-orbital.
The easiest description of a magnetic solid would be to think of these magnetic mo-
ments of the atoms oriented among each other. This description applies to materials
where indeed the d-electrons are localized on their atoms, and one can talk of atomic
orbitals and spins, like in transition metal Oxides. However, magnetism has been
observed in metallic systems as well, where the electrons of the solid are delocalized
in a covalent bonding. The concept of itinerant magnetism has been developed in
order to explain this phenomenon. The electrons forming the bands of the solids,
which are the equivalent of the atomic orbitals in a "solid-language", can form dif-
ferent band structures for one spin direction or the other in certain situations. This
results in a spin polarization which gives a net magnetic moment in the system. This
scenario represents the limit where the electron-electron interactions are weak, but
still capable of provoke magnetism, and its microscopic implications are a current
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subject of debate. MnSi is considered to be a weak itinerant ferromagnet, and should
be described by a model of this kind. Part of this thesis deals with the problem of
determining the electronic structure of this material, and the e�ect of the Coulomb
repulsions in order to give a microscopic clue to its magnetism.
A vast class of materials spanning large part of the periodic table has been shown
to become superconductors at low temperature due to an electron-phonon driven
pairing mechanism. This has been explained in BCS theory. The electrons moving
in the lattice can deform the lattice itself via the Coulomb interaction between the
electron negative charge and the ions positive one; this deformation can excite a
particular phonon mode of the crystal. The result of this interaction creates an at-
tractive potential around the electron that favors the pairing mechanism. When two
electrons, particles with half integer spin, couple together, they behave as a particle
with integer spin and obey the Bose-Einstein statistic and can condensate in a single
quantum state. This condensate represents the ground state of the system, therefor
in a superconductor current can �ow in the ground state, and the material shows a
zero resistivity. In BCS superconductors, when the pairs condensate is formed, the
system lowers its potential energy by a larger amount then it increases its kinetic
energy. The total energy is lowered and the material undergoes a superconducting
phase transition. In 1986 a family of material has been discovered which exhibits a
superconducting transition temperature much higher than the one of BCS materials.
The highest Tc BCS compound known is now MgB2 with a Tc around 39 K while
Hg...CuO2 becomes superconductor around 150 K under pressure. These materials
are so called "Cuprates" because they are all compounds involving CuO2. Several
arguments have pointed toward a non-BCS pairing mechanism in these systems,
but despite the large amount of research, a consensus has not be reached yet about
the way the electrons pair. While BCS materials are Fermi Liquid systems where
electron electron interactions can be treated as a perturbation, cuprates supercon-
ductors are non Fermi Liquid in the normal state and electron electron interactions
are playing a dominant role. In such a context several pairing mechanisms have been
proposed, a common ingredient of these is that the pairing occurs with a lowering
of the electronic kinetic energy, opposite to the situation in BCS. Being able to
measure the changes in kinetic energy of the system across Tc could then indicate
which pairing mechanism is responsible for superconductivity in the Cuprates.

Optical spectroscopy of High Tc superconductors

A common probe of the motion of charged particles are electromagnetic waves. The
response function of a system of charged particles to light is the complex optical
conductivity σ = σ1 + i · σ2, where σ1 measures the absorption of light in the
material and σ2 is the reactive part of the response function. A sum rule is available
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in optical spectroscopy, the so called f sum-rule:

SW =

∫ ∞

0

σ1(ω′)dω′ = ω2
p

8
(R.10)

The quantity SW is called optical spectral weight and it represents the weight of
all optical transitions in the conductivity spectrum. If one limits the integral to a
proper cut o� Ωc, it is possible to measure the weight of the only conduction band,
which represents the response of the free electrons responsible for the electronic
properties of the system. The SW can be related to the kinetic energy via a simple
proportionality relation, and in the tight binding nearest neighbor approximation the
expression SW = -K (K being the kinetic energy) is valid. being able to measure the
changes in SW across the phase transition would allow to experimentally determine if
kinetic energy is increasing or decreasing when the system becomes superconductor.
This e�ect has been seen on a single crystal of Bi2212hajo for the �rst time. Up
to this point we implicitly made several assumptions, whose validity needs to be
veri�ed:
- The SW is an integral from zero frequency up to a certain cut o�. Obviously it
is not possible to perform an optical experiment down to zero energy, one has to
estimate how the missed spectral information is going to in�uence the �nal result.
- The equation SW = -K is strictly valid only when the parametrization of the band
dispersion is limited to the nearest neighbor hopping parameter.
- In order to establish weather or not this is a common properties of the cuprates
superconductors one has to study this e�ect for di�erent compositions.
Answering these three points is the subject of part of this work. We measured
di�erent cuprates with di�erent compositions by infrared re�ectivity (between 12
meV and 0.78 eV) and spectroscopic ellipsometry (between 0.78 eV and 4 eV) in the
temperature range between 10 K and 300 K. In order to see the superconductivity
induced e�ect, the data were measured with a 1 K temperature resolution; moreover,
a signal to noise ration higher than 3000 on the measured optical constants had to
be achieved everywhere in the spectrum in order to detect the subtle changes at
Tc. Much care has been taken in this respect, and thanks to a state of the art
apparatus involving an home made ultra-stable cryostat of special design, we could
measure the SW transfer across the phase transition with high accuracy in di�erent
materials. In Fig. R1 one can see a schematic of the experiments: re�ectivity is
measured shining infrared light on the sample and measuring the re�ected beam;
the sample is then coated with gold in situ and the re�ected beam from the gold
surface is measured as a reference. In ellipsometry one impinges on the sample with
a linearly polarized beam and measures the degree of ellipticity in the polarization
that the sample induces in the beam. The combination of these two techniques can
provide the complex conductivity in a wide range of energies. Despite the simplicity
of the concept, this experiment is very demanding because of the very broad energy
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(almost 4 decades) and temperature (almost 2 decades) ranges required with high
accuracy.
In Ref. [1] we measured the dielectric tensor of a crystal of Bi2Sr2Ca2Cu3O10 in
all its non-equivalent crystallographic directions. In this publication we have shown
that the SW can be determined with very high accuracy even if the data are not
measured down to zero frequency, thanks to the combined accurate knowledge of
the real and imaginary part of the optical conductivity in a broad frequency range.
This has been the subject of a further publication where we could give quantitative
arguments based on an analytical and numerical analysis of the properties of analyt-
ical functions [2]. We also discussed the theoretical implications of the choice of the
frequency cut o� in the SW integral, showing that the SW below 1 eV can indeed
be representative of the response of the conduction band electrons in the cuprates
giving hints on the changes in Kinetic energy of the free carriers. In Fig. R2 we show
the e�ect of the low frequency extrapolations on the SW transfer.
In Ref. [3] we studied the dependence of the SW transfer on the Oxygen doping
in Bi2Sr2CaCu2O8 samples. The Oxygen o� stoichiometries in these material can
vary their superconducting properties by changing the number of carriers in the
conduction band. At zero doping the system is a charge transfer insulator, it be-
comes metallic and superconductor introducing Oxygen abundance and over a cer-
tain Oxygen quantity superconductivity is suppressed. In Fig. R3 one can see the
phase diagram for cuprates superconductors. The SW transfer as a function of dop-
ing has a non trivial behavior which could be explained theoretically in the context
of the t-J model starting from a cluster of 4 Copper atoms, Fig. R4. The t-J model
Hamiltonian is:

H = −t
∑
i,j,σ

(b†i,σbj,σ + H.c) + J
∑
i,j

SiSj (R.11)

bi,σ = ci,σ(1− ni,−σ) (R.12)
c†i,σci,σ = ni,σ (R.13)

and represents a system with and exchange interaction J between neighbors and
where the double occupation of a site is forbidden. This model can describe fairly
well the low energy physics of cuprates superconductors, as con�rmed by our re-
sults. So far we have been giving for granted the relation between the SW and the
kinetic energy. This is a very subtle issue which has been addressed in a recent
publication[4]. For certain compositions in fact the SW can behave very di�erently
from the electronic kinetic energy. On the other hand we veri�ed that for the com-
positions that we experimentally investigated this relation is a good approximation
of reality.
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The electronic structure and the band magnetism of
MnSi

As we mentioned in the introduction, band magnetism originates form a spin polar-
ization of the electronic bands of a solid. In order to have a microscopic description
of the magnetism of MnSi, which is believed to be an itinerant magnet, one has to
know precisely its electronic structure. When Coulomb repulsions are weak, band
structure calculations provide a good representation of the electronic structure. If
Coulomb repulsions are strong, localization e�ects can happen and the itinerant pic-
ture starts to break down. An accurate estimate of Coulomb repulsions is crucial for
magnetic systems, since magnetism itself is driven by them. We investigated MnSi
electronic structure by means of X ray Absorption Spectroscopy and Photoemis-
sion Spectroscopy and compared these results to �rst principle LDA band structure
calculations.
In XAS one excites a core electron to the unoccupied states of one particular el-
ement. It is an element speci�c probe which can sense the unoccupied density of
states of a material. If the core-hole wave function has a large interaction with the
excited electron wave function, for example in a 2p 7→ 3d transition in a transition
metal, atomic multiplets e�ect can occur and the shape of the absorption spectrum
heavily depends on the ground state con�guration of the system. This makes XAS
suitable for studies of the valency of materials. In MnSi though, one would not ex-
pect to �nd atomic multiplets e�ect, since the electrons in the conduction band are
delocalized in a metallic state. In such a context one would expect that a simple
Local Density Approximation (LDA) approach would be su�cient to represent the
XAS process: in LDA one calculates the single particle unoccupied density of states
on the element probed by X rays. Keeping into account the e�ect of the core-hole as
a simple Coulomb potential on the atom one is able to simulate the XAS process.
This approach neglects Coulomb repulsions between carriers. We have shown that
this procedure miserably fails in MnSi and FeSi while it gives consistent results in
CoSi, see Fig. R5. On the other hand, also the atomic multiplet theory does not give
satisfactory results. The reason is that MnSi and FeSi are materials where Coulomb
repulsions are neither negligible nor dominant. We could explain the XAS spectra
in these materials proposing that their ground state has a mixed valence character
where charge localization e�ects partially suppress the valence �uctuations typical
of metallic systems. XAS is a high energy probe, in some sense it is not fully justi�ed
to say that it is a probe of the true ground state of the system because the x-rays are
indeed provoking a signi�cant perturbation. The same trend is observed by means
of valence band photoemission; the spectra of MnSi and FeSi cannot be reproduced
by LDA calculations, while in CoSi a very good agreement is achieved. Also some
deviations form the LDA scenario, in MnSi, are observed by means of Positron An-
nihilation Spectrosocpy which can probe the density of states at the Fermi surface.
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These observations suggest that MnSi is on the edge between a local moment com-
pound and an itinerant one, making the microscopic understanding of its magnetism
a di�cult task. Itinerant magnets in fact, have several characteristics in common
with localized magnets, the Curie-Weiss susceptibility, the temperature dependence
of the magnetic relaxation rate (1/T1), but their absolute values are renormalized.
A microscopic clue to the understanding of these observations came from Moryia's
spin �uctuation theory. By the comparison to some new NMR measurements as
well as neutron scattering experiments, we can estimate with precision some im-
portant microscopic parameters of this model, however some signi�cant departures
are observed. The magnetic excitation spectrum of this material shows well-de�ned
spin waves intersecting the Stoner continuum around 3 meV. This makes it an ideal
compound to study the paramagnetic scattering, and in fact the �rst observation
of dumped spin waves within the continuum has been done in MnSi. However, the
study of the Stoner excitations in MnSi didn't go further then an energy transfer of
20 meV because of experimental di�culties and because of the presence of the optical
phonons in the range between 20 and 60 meV. The low energy data have been in-
terpreted in terms of the spin �uctuation theory, which can explain the Curie-Weiss
law observed in the magnetic susceptibility. In this model the behaviour with tem-
perature of the magnetization is mostly governed by the temperature dependence of
the low energy spin waves, while the Stoner excitations are expected to be almost
temperature independent. In our inelastic neutron scattering data we could study
the Stoner excitations up to an energy transfer of 400 meV at room temperature
and 10 K. We �nd an unexpected temperature dependence of the Stoner excita-
tions, which questions the microscopic interpretation of the Curie-Weiss law of the
susceptibility based on the spin �uctuation model.
In a neutron scattering experiment, the cross section per unit of energy and solid
angle for the electromagnetic interaction between the neutron magnetic moment and
the magnetic moments present in a solid is given by the formula:

d2σ

dΩdE′ =
kf

ki

(γr0)
2 | g

2
F (Q) |2

∑

α,β

(δα,β −QαQβSα,β(Q,ω)) (R.14)

Where Q = kf − ki and ~ω = Ef − Ei are the momentum and energy transfer.
γ = 1.913 and g ' 2 are the spectroscopic g-factors of the neutron and magnetic
atom. F(Q) is the magnetic form factor and depends on the atom present in the
solid. In Eq. R.14 the quantity S(Q,ω) contains the spin correlation function:

Sα,β(Q,ω) =
1

2π~

∫
dteiωt 1

N

∑
i,j

< Sα
i (t)Sβ

j (0) > e−iQ(Ri−Rj) (R.15)

Using the �uctuation-dissipation theorem one can relate the spin correlation function
to the spin susceptibility by the formula:

S(Q,ω) =
1

1− e−β~ω
χ′′(Q,ω)

π(gµB)2
(R.16)
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with β = 1/kBT . One can see from these equations that with a neutron scattering
experiment it is possible to have direct information on the imaginary part of the
spin susceptibility as a function on energy and momentum. In itinerant magnets,
the spin susceptibility has been investigated by means of the RPA (random phase
approximation) method. In this model the imaginary part of the spin susceptibility
is given by:

χ′′(Q,ω) =
Imχ0(Q,ω)

[1− IReχ0(Q,ω)]2 + [IImχ0(Q,ω)]2
(R.17)

where I is the intra-atomic interaction and χ0 is the susceptibility of the non inter-
acting electron gas. χ0 can be calculated analytically and well de�ned spin-waves
with a quadratic dispersion are predicted by this model. A detailed comparison to
this model has been performed in Ref.[5]. In MnSi, one needs to go beyond this
approach in order to explain the Curie-Weiss law of the magnetic susceptibility and
the peculiar properties of the paramagnetic scattering. This is done by Moryia's spin
�uctuation theory, where the spin susceptibility is given by the formula:

χ(Q,ω) =
χ0(Q,ω)

1− Iχ0(Q, ω) + λ(Q, ω)
(R.18)

The additional term with respect to the RPA formula λ(Q, ω) is producing the
Curie-Weiss behavior observed experimentally. Before being able to compare the
measured susceptibility with the theoretical prediction one has to reliably separate
the magnetic scattering form the phonon scattering. As we mentioned before, in
MnSi several phonon modes are polluting the spectra between 20 and 60 meV. A
precise ab-initio LDA calculation of the phonon dispersion could allow one to make
such a distinction and its �ne tuning can also give an important feedback on the
electronic structure determination. In Fig. R6 one can see a comparison between
the experimentally derived phonon dispersion and the LDA calculation. One can see
that a very encouraging result is achieved, although some departures are present.
This allow us to assign some of the scattering as magnetic in origin. In Fig. R7 we
display directly the dispersion of the magnetic excitations at room temperature and
10 K together with the results obtained from the simulation based on eq. R18. One
can see that a signi�cant temperature dependence is observed, especially around the
R point (1,1,1) in the experiment. The theory however, predicts a weak temperature
dependence of the Stoner spectrum, even of the opposite sign of the one observed
experimentally. It is remarkable that the strongest temperature dependence is ob-
served around the (1,1,1) point, which is the easy axis of the magnetization in the
ordered phase. This observation suggests that the Stoner excitations are playing an
important role in the magnetism of MnSi, contrary to the prediction of spin �uctua-
tion theory. Altogether, our observations might look somewhat in contrast in certain
respects: evidence for localization is found by means of high energy probes, yet the
neutron scattering experiments are interpreted in terms of an itinerant model. How-
ever, the departures observed in both approaches actually con�rms that none of
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the two, the purely localized or purely itinerant, is actually correct. The region on
the edge of the formation of local moments is terra incognita from the theoretical
point of view, our experimental observations provide useful hints for developing a
microscopic model for the band magnetism of MnSi.



Bibliography

[1] " In-plane optical spectral weight transfer in optimally doped
Bi2Sr2Ca2Cu3O10" F. Carbone, A.B. Kuzmenko, H.J.A. Molegraaf,
E. van Heumen, E. Giannini and D. van der Marel. Phys. Rev. B 74 024502
(2006).

[2] "Model independent sum rule analysis based on limited-range spectral data".
A.B. Kuzmenko, D. van der Marel, F. Carbone, F. Marsiglio. Submitted to
Nature Physics.

[3] "Doping dependence of the redistribution of optical spectral weight in
Bi2Sr2CaCu2O8". F. Carbone, A.B. Kuzmenko, H.J.A. Molegraaf, V. Luko-
vac, E. van Heumen, F. Marsiglio, P. Kes, M. Li, S. Corajault, H. Berger, K.
Haule and G. Kotliar. Phys. Rev. B 74 064510 (2006).

[4] "Intraband Optical Spectral Weight in the presence of a van Hove singular-
ity: application to Bi2Sr2CaCu2O8+δ ". F. Marsiglio, F. Carbone, A.B. Kuz-
menko, D. van der Marel. Phys. Rev. B. in press. cond-mat/0606688

[5] Y. Ishikawa, G. Shirane, J.A. Tarvin and M. Khogi Phys. Rev. B 16, 4956
(1977).

xxvii



xxviii Summary



Per i non addetti ai lavori

Quando vi sedete dietro ad un tavolo per giocare a Monopoly, studiate le regole del
gioco e poi giocate. Ogni volta che passate dal via ritirate, perdonate ma io sono del
'76 e ho ricevuto il monopoly a 5 o 6 anni, venti mila lire. Nessuno credo si sia mai
sognato di chiedere perché. Si tratta di una regola del gioco. Cosa c'entra questo
con la �sica? Fare il �sico in sostanza si tratta di sedere dietro al tavolo e iniziare
a giocare a monopoly senza sapere le regole, cercando di capirle da come evolve il
gioco. Immaginate che il monopoly abbia una volontá propria e che faccia �uire il
denaro e le carte man mano che voi spostate il vostro simbolo. Capire le regole vi
porta poco a poco a capire il gioco. Se non andate in bancarotta prima, analogia
tristemente attinente all'uso che l'uomo fa della natura, ad un certo punto avrete
una buona idea di come si gioca e la vostra preoccupazione primaria sará qual é
la mossa migliore, mentre la preoccupazione principale di �loso� e religiosi sará
perché proprio venti mila lire e non cinquanta. In questo breve riassunto io butteró
nella mischia molte regole che i �sici hanno scoperto in anni di storia. Il proposito
di questa digressione é di pregarvi di fare lo sforzo di non chiedervi il perché di
certe regole. Tutto allora �uirá con semplicitá, dando quella e�mera illusione di
capire la natura.
Dall'osservazione dei fenomeni magnetici ai tempi dell'antica Grecia ad una loro
spiegazione microscopica sono trascorsi piú di 2000 anni. Tanto ci ha messo l'uomo
a formulare la teoria della meccanica quantistica. I solidi che ci circondano nella
vita di tutti i giorni, a livello microscopico, sono formati da un reticolo ordinato
di atomi, che sono i tasselli fondamentali del mosaico che ci circonda: la natura.
Gli atomi sono costituiti da un nucleo carico positivamente e da particelle cariche
negativamente (elettroni) che orbitano a distanze distribuite in modo discontinuo
attorno ad esso (orbitali). Gli elettroni che occupano gli orbitali piú esterni sono
quelli responsabili della formazione dei legami chimici che tengono insieme molecole
e solidi. Ciascun elettrone possiede un momento magnetico (cioé la capacità di
esercitare una certa forza magnetica) che puo' essere diretto solamente in due
direzioni convenzionalmente chiamate su e giú, per non far politica s'intende. Gli
elettroni possono riempire gli orbitali a due a due, a patto che quando occupano lo
stesso orbitale abbiano questi momenti magnetici orientati l'uno opposto all'altro.
Il risultato di questa regola é che il momento magnetico risultante é nullo e nessun
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fenomeno di attrazione di altri corpi viene osservato. Alcuni atomi, i metalli di
transizione come Ferro, Cobalto, Manganese etc..., hanno degli orbitali chiamati
"d" dalla forma molto particolare e compatta. Questo fa si che due elettroni che
si trovassero sullo stesso orbitale rimarrebbero molto vicini durante il loro moto.
Gli elettroni sono particelle cariche negativamente; la loro tendenza a respingersi fa
si che preferiscano occupare un orbitale ciascuno mantenendo i momenti magnetici
orientati parallelamente. Questo fa si che il momento magnetico risultante non
venga cancellato e il materiale si dice ferromagnetico. Questa descrizione funziona
bene in tutti quei materiali nei quali, nonostante la formazione del legame chimico,
il movimento degli elettroni é ancora molto simile a quello che avrebbero nei
rispettivi atomi isolati. In molti casi invece, quando gli atomi formano un solido,
gli elettroni piú lontani dal nucleo percorrono traiettorie diverse che spaziano in
tutto il solido e che per semplicitá da qui in poi chiameremo bande. É il caso
del legame metallico, che spiega la propagazione della corrente e del calore in
questi materiali. Alcuni metalli possono essere magnetici, quasi sempre quando
contengono metalli di transizione, grazie ad una diversa forma di magnetismo
chiamato magnetismo itinerante. In alcuni casi, gli elettroni che percorrono queste
bande per evitarsi il piú possibile si dispongono su bande diverse a seconda della
direzione del loro momento magnetico. Il risultato é un momento magnetico non
nullo originato da elettroni che sono delocalizzati in tutto il solido. In questa
tesi abbiamo studiato uno di questi materiali, composto da Silicio e Manganese,
perché la comprensione microscopica di quello che veramente succede in questo
tipo di magneti é ancora scarsa. Come é facile capire da quanto detto �nora, un
ingrediente fondamentale del perché questi fenomeni magnetici avvengano, é la
repulsione tra le cariche negative. Mentre la natura di questa repulsione é semplice
da studiare negli atomi, perché la forma degli orbitali é conosciuta, in un solido
questo é un problema molto complicato. Uno dei risultati di questo lavoro é stata
la determinazione sperimentale delle caratteristiche delle bande del solido e la
stima delle repulsioni che in�uenzano il moto degli elettroni che percorrono queste
bande. Questo, collegato alle caratteristiche magnetiche del materiale, puó fornire
un'idea dettagliata dei meccanismi che a livello microscopico portano un materiale
metallico ad esibire comportamenti magnetici.

Un altro fenomeno di grande interesse nella �sica dello stato solido è la su-
perconduttivitá. In un solido, la corrente e il calore sono trasportati dagli elettroni.
I loro urti contro il reticolo formato dagli atomi danno luogo alla resistenza elettrica.
Nei materiali isolanti la corrente e il calore si propagano molto poco perché gli
elettroni sono localizzati sui loro atomi. Questi concetti intuitivi e banali sono
la base di molti fenomeni che ci circondano; la stufa elettrica funziona grazie ad
una resistenza che si scalda al passaggio della corrente, lo scaldabagno idem e cosí
via. In generale, la resistenza di un materiale é piú bassa tanto piú bassa é la sua
temperatura. L'idea é che piú bassa é la temperatura, minore l'agitazione termica,
gli urti contro il reticolo, e di conseguenza la resistenza. Agli inizi del secolo due
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�sici olandesi volevano veri�care questo fenomeno �no alle piú basse temperature
possibili. Ra�reddando del Mercurio si sono accorti che sotto qualche grado Kelvin
(gradi K = gradi C + 273) la resistenza del mercurio non era piccola, ma nulla. In
seguito lo stesso comportamento fu osservato in molti altri elementi della tavola
periodica. Il fenomeno consiste nell'azzeramento della resistenza elettrica. Si sente
sempre dire che lo zero esatto é un concetto che non si puó misurare in �sica, ecco,
forse la resistenza di un superconduttore é quanto di piú vicino allo zero l'uomo
abbia mai misurato. La comprensione di questo fenomeno avvenne quasi 50 anni
dopo, quanto Bardden Schri�er e Cooper svilupparono la teoria BCS che valse
loro il premio Nobel per la �sica. A questo punto entra in gioco un'altra regola
del monopoly che dice che tutte le particelle del creato possono essere catalogate
in due grandi gruppi: i fermioni e i bosoni. I fermioni obbediscono al principio di
esculsione di Pauli e portano "magliette" con numeri semi-interi, altra regola del
monopoly, mentre i bosoni non obbediscono al principio di esclusione e portano
magliette con numeri interi. Per farsi un'idea di cosa sia il principio di esclusione
faró un esempio rigorosamente sbagliato, ma utile per capire. Immaginate di avere
una pista di atletica con dei corridori che stanno gareggiando, se questi corridori
fossero fermioni, (magliette con numeri 1/2, 3/2, 5/2....) secondo il principio di
esclusione di Pauli non ci dovrebbero essere due corridori che fanno la stessa
velocitá. Se fossero bosoni, anche tutti potrebbero correre alla stessa velocitá.
L'ingrediente fondamentale della teoria BCS della superconduttivitá è che sotto
una certa temperatura in alcuni solidi gli elettroni, che normalmente sono fermioni,
formano delle coppie (dette coppie di Cooper) e viaggiano a due a due. Siccome
viaggiano in coppie e hanno numeri semi-interi sulla maglia, che sommati danno un
numero intero, si comportano come dei bosoni e acquistano la capacitá di viaggiare
tutti alla stessa velocità. Per vedere perché questo porta alla superconduttivitá
ci serve un'altra astrazione: supponete di correre sui merletti di un castello, ogni
tanto dovrete saltare per passare sul merletto successivo. Se immaginate di correre
a velocitá costante e che la lunghezza del vostro salto dipenda solo dalla vostra
velocitá, ci sará una velocitá che vi permette di saltare di merletto in merletto
senza mai cadere nei buchi. Se ora invece che uno solo foste un gruppo di persone,
e se solo uno potesse viaggiare a questa velocitá magica, gli altri inevitabilmente
cadrebbero nei buchi e questo rallenterebbe la loro corsa. Se peró tutti potessero
viaggiare alla velocitá magica, nessuno cadrebbe nei buchi. Se facciamo un parallelo
tra la corsa sui merletti e la corsa degli elettroni in un solido possiamo dire che
quando si accoppiano, grazie al fatto che possono comportarsi da bosoni, possono
tutti viaggiare alla velocit�à giusta ed evitare gli urti con il reticolo. Il risultato é
l'assenza di resistenza elettrica. Resta da capire cosa spinge gli elettroni a formare le
coppie di Cooper sotto una certa temperatura. Nei superconduttori convenzionali,
l'attrazione capace di vincere la repulsione tra due cariche negative é dovuta
all'interazione tra gli elettroni stessi e il reticolo. Immaginiamo due trattori che
scavino due solchi nella terra dove passano, se questi solchi fossero cosí vicini
da toccarsi, ad un certo punto un trattore si troverebbe nella discesa creata dal
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solco dell'altro trattore e i due trattori inizierebbero a percorrere insieme lo stesso
solco. La stessa cosa avviene in un solido, dove ,sotto una certa temperatura in
alcuni materiali, l'altezza del solco richiede un'energia maggiore della repulsione
tra le due cariche negative per essere superata e i due elettroni iniziano a viaggiare
insieme. Questo meccanismo rappresenta un buon modello per i superconduttori
convenzionali, detti BCS, nei quali la resistenza elettrica si azzera al di sotto di
qualche grado Kelvin. A metá degli anni ottanta una nuova classe di materiali, tutti
comprendenti l'ossido di Rame, é stata individuata nella quale la superconduttivitá
si manifesta a temperature molto piú alte, nell'ordine dei cento Kelvin. Quello
che non é ancora chiaro dopo venti anni di ricerca é il meccanismo che forza gli
elettroni a stare a coppie in questi solidi. Nei superconduttori BCS, la coppia di
Cooper si forma spendendo dell'energia cinetica (gli elettroni vanno un po' piú
veloci), e guadagnando una quantitá maggiore di energia potenziale (gli elettroni
diminuiscono le repulsioni dovute al fatto che sono ambedue cariche negative).
L'energia cinetica degli elettroni in un solido é intimamente collegata al colore del
solido stesso, altra regola del monopoly. Quindi studiando i cambi di colore del solido
quando diventa superconduttore si puó scoprire se le coppie di Cooper si formano
guadagnando o perdendo energia cinetica. In questa tesi abbiamo dimostrato che
nei superconduttori ad alta temperatura la formazione delle coppie di Cooper
avviene tramite un guadagno di energia cinetica. Al contrario di quello che succede
nei superconduttori convenzionali. Questi risultati ci hanno permesso di veri�care
sperimentalmente la veridicitá di un modello teorico che descrive la formazione
delle coppie di Cooper che si basa su meccanismi diversi dalla deformazione del
cristallo che ho descritto in precedenza. In queste righe la quantitá di cose sbagliate
che ho scritto é spaventosa, e spero che essendo in italiano nessuno o quasi dei �sici
con i quali lavoro riesca a leggerle. Tuttavia, non mi avventuro a cercare di dare
una visione intuitiva dei modelli teorici per i superconduttori ad alta temperatura
perché il livello di corbellerie potrebbe sorpassare anche il mio senso della decenza.
Lo scopo di questo riassunto non era di spiegare la �sica contenuta in questa
tesi in modo rigoroso per soddisfare chi la �sica la sa, ma di dare un'idea il piú
comprensibile possibile a chi la �sica non la sa, ma si chiede perché mi pagano e cosa
faccio tutto il giorno. In�ne, circa la rilevanza di questi studi, bisogna considerare
che i materiali magnetici sono alla base della gran parte delle memorie utilizzate al
giorno d'oggi per lo stoccaggio delle informazioni e la domanda di memorie sempre
piú e�caci e piccole non si arresta mai. La comprensione dei materiali magnetici ha
dunque un ruolo chiave nello sviluppo della tecnologia per l'informazione. Per quel
che concerne i superconduttori invece, la possibilitá di trasportare corrente senza
perdite dovute alla resistenza del cavo, solo per fare il piú banale degli esempi,
rappresenta una grossa potenzialitá soprattutto in tempi nei quali il risparmio
energetico é di grande attualitá. Nella nostra analogia col monopoly diciamo che chi
riuscisse a fabbricare un superconduttore che avesse zero resistenza a temperatura
ambiente piazzerebbe un bell'albergo su parco della Vittoria......



Chapter 1

Introduction: The role of the
Coulomb repulsion between electrons
in solids

Often in this thesis the reader will encounter the following statement: "this is an
e�ect of electron-electron correlations" The purpose of this chapter is to give a simple
physical explanation to this sentence. The idea is that whenever the reader �nds that
electron-electron correlations are blamed in the thesis he can �nd an explanation in
this chapter.

1.1 The Coulomb repulsions in solids: the Hartree-

Fock approximation
If we consider the Schrodinger equation of a single electron:

− ~
2

2m
∇2ψ(r) + U(r)ψ(r) = εψ(r) (1.1)

The term U(r) represents the potential that the electron feels and should contain
the lattice and the Coulomb repulsions among electrons. To describe the motion
of electrons in solids by this equation is virtually impossible because of the very
complicated e�ect of the interaction between electrons. To be strict, one should use
an equation for the N particles present in the system:

HΨ =
N∑

i=1
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Ψ) + 1/2
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| ri − rj |Ψ = EΨ (1.2)
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Where the �rst term represents the kinetic energy of the particles, the second their
attraction to the nuclei with position Rj and the third the Coulomb repulsions be-
tween the electrons. I introduced this equation here to clarify what one is aiming at.
However, no way to get there. Simpli�cations have to be made in order to solve this
problem. One possibility is the Hartree-Fock method. This approximation consists
of considering the e�ect of the electron repulsion as an average perturbation of the
single particle motion. In this way one can write the equation 1.2 for the single
particle problem in the form:

− ~
2

2m
∇ψi(r)+U ion(r)ψi(r)+ [e2

∑
j

∫
dr′ | ψj(r′) |2 1

r − r′ ]ψi(r) = εiψi(r) (1.3)

where we considered the e�ect of the lattice in the potential U ion(r) = −Ze2
∑

Rj
1/ |

r − Rj | and the potential energy given by the electron-electron repulsions as
U el(r) = −e

∫
dr′ρ(r′) 1

r−r′ . In this equation the density of charge ρ contains an-
other approximation: we use the single particle knowledge that the contribution of
the electron with wave-function ψi to the density of charge is −e | ψi(r) |2 and
therefore ρ(r) = −e

∑
i | ψi(r) |2. This is called the Hartree equation and contains a

non obvious problem which is solved in the Hartree-Fock approach. Eq.1.3 implies
that the possible wavefunctions ψi have the form:

Ψ(r1s1, r2s2, ...rn, sn) = ψ1(r1s1)ψ2(r2s2)....ψn(rnsn) (1.4)

This wavefunction does not satisfy the Pauli principle, which requires the following
antisymmetric condition:

Ψ(r1s1, risi, rjsj, ...rn, sn) = −Ψ(r1s1, rjsj, risi, ...., rnsn) (1.5)

This is obtained by substituting Eq.1.4 with a Slater determinant of the one electron
wavefunction, which is a linear combination of the product in Eq. 1.4 and all other
possible combinations of the permutations of rjsj. The Hartree equation becomes:

− ~
2

2m
∇ψi(r)+U ion(r)ψi(r)+U el(r)ψi(r)−

∑
j

∫
dr′ e2

r − r′ψ
∗
j (r′)ψj(r)δsi,sj

= εiψi(r)

(1.6)

After all these manipulations and simpli�cations, lo and behold, this equation cannot
be solved. Unless of course further approximations are done. I am not going to
mention all of those since there are many and they depend on the problem one
wants to treat. The important point is to realize that starting from the Hartree Fock
equation one can address some very important e�ects due to the Coulomb repulsions,
such as the exchange interaction, which is very important for the magnetism of
transition metals and the screening that the conduction electrons can do to an
externally imposed charge distribution[18].
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1.2 The Coulomb repulsions in solids: the Landau

Fermi liquid

Using the Hartree-Fock treatment of the electron-electron correlations, in the end
we still describe the electronic properties of a system as a consequence of the oc-
cupation of a certain set of single particle states. Clearly such a description cannot
be satisfying in all situations where electron-electron correlations may lead to very
complicated many-body e�ects. However, the remarkable success of the single par-
ticle approximation in describing several properties of solids has a profound reason,
which is explained by the Landau Fermi liquid theory. Starting from the single par-
ticle scenario, imagine that one has a set of well de�ned single particle stationary
states. If one perturbs these states adding correlations, two things might happen: (i)
the energy of the single particle states shifts (which is true also in the Hartree-Fock
approximation), (ii) the particles can evolve as a cascade of particle-hole excitations,
meaning that these states are no longer stationary (this possibility is neglected in
the Hartree-Fock scenario). Clearly the last phenomenon could invalidate the single
particle approach if the rate of this scattering is so high that the electron-electron
scattering dominates all other scattering events. Even in the presence of screening,
Coulomb repulsion would be strong enough to dominate other sources of scatter-
ing. In the end the single particle scenario more or less holds thanks to the Pauli
exclusion principle.
Imagine a system �lled up to the Fermi energy (EF ) and one electron occupying one
level above EF with an energy E1; this electron can scatter onto another electron
with energy E2 below EF (because only these states are occupied). The energy levels
E3 and E4 where the two particles can scatter to must be above EF (unoccupied
states). Moreover, in whatever scattering process the energy must be conserved,
meaning that the summation of the energies before the scattering event and after
must be the same (E1+E2=E3+E4). If the particle 1 is exactly at the Fermi level
one can see that in order to satisfy the energy conservation the scattered particles
must end up also on the Fermi surface (E2,E3,E4=EF ). However, these states are
already occupied, this means that such a scattering event simply cannot take place
and at T=0 K the states at EF are stationary, their lifetime is in�nite. The condition
T=0K in this description is crucial. In fact, if instead of putting the excited state,
particle 1, on top of a completely �lled phase space, as would be the case at zero
temperature, we put it on top of a thermally distributed set of levels, some levels will
be available for the described scattering process. The scattering rate in this scenario
will depend on the distance from EF of the excited state and on the temperature of
the system:

1

τ
= a(ε1 − εF )2 + b(kBT )2 (1.7)
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A crude estimate of the scattering time for the electron-electron process gives a
lifetime around 10−10 sec, while the electron-lattice scattering processes give lifetimes
around 10−14 sec. These numbers have not to be taken as accurate, however they give
a crude reason why most likely the electron-electron scattering can be much slower
than other scattering events, and therefore why the e�ect of Coulomb repulsion
could be a minor correction to the single particle picture in metals.
One should realize that the above argument is valid only with the starting point
that the system can be represented fairly well by a set of single particle states. To
resume, I have shown that in the case in which a set of single particle states is a good
starting point for the description of the electronic structure of a solid, then Coulomb
repulsions are not likely to play an important role close to EF . The main idea of
Fermi liquid theory is the following: if the Coulomb repulsions are strong enough
to invalidate the single particle scenario, one can hope that a set of states obeying
the Pauli principle whose structure is similar to that of a set of single particles state
describes the system. These states are no longer single particle states, but are called
quasi-particle states and they are the result of the complex many body e�ects due to
Coulomb repulsions. A detailed microscopic description of the quasi particle is very
di�cult and goes beyond the scope of thesis. The consequence of this description
is very important and clear. Experimentally, quasiparticles should behave as well
de�ned single particles states, with the only di�erence that their characteristics
should be renormalized by the interactions[18]. When this is not the case, so called
non Fermi liquid behaviors, it means that the above picture is not valid, wether the
blame should be on the assumption on the scattering rate or on the equivalence
between single particles states and many body states or on a combination of the two
is the challenge of modern solid state physics and is the motivation of this thesis. I
will now discuss what are the consequences of electron-electron correlations onto an
experimental observable.

1.3 Manifestations of the Coulomb repulsion in ex-

periments

1.3.1 Coulomb repulsion in Photoemission and X-ray Ab-

sorption Spectroscopy

Photoelectron spectroscopy is based on the photoelectric e�ect discovered by Ein-
stein at the beginning of the XXth century. In these experiments light is used to
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emit electrons from a solid. The velocity of the outcoming electron contains in-
formation on the energy that the electron had in the solid, because of the energy
conservation law which implies that the energy of the photoemitted electron is equal
to the energy of the photon plus the energy that the electron had in the crystal.
Recently it became possible to measure also the angle of photoemitted electrons
gaining information also on the momentum that the electrons have in the solid, via
the conservation of momentum rule. Such probes are measuring the occupied den-
sity of states of a solid. It has been shown[1] via a combination of photoemission
and inverse photoemission that in transition metals and rare earths, the occupied
d(f) states and the unoccupied d(f) states are split by the energy of the Coulomb
repulsion which can be as high as 5 eV for Mn for example. These experiments have
shown that Coulomb repulsions can push away electronic states from the Fermi
energy, and this e�ect can manifest itself by giving rise to satellites in the photoe-
mission spectra. In the presence of strong interactions, if two electronic states have
a large spatial overlap, Coulomb repulsions can separate them in energy and they
can be found in very di�erent positions than one would expect in the absence of
correlations[1]. Since I will discuss the electronic structure of cuprate superconduc-
tors later on, I will use one of these materials as an example. In Fig.1.1[2] valence
band photoemission data on La2SrCuO4 are presented and compared to standard
band structure calculations and cluster calculations including the e�ect of Coulomb
repulsions. In a single particle band structure calculation one would expect to have
the spectral weight of the valence band mostly due to Cu 3d states and O 2p states
concentrated around the �rst 4-5 eV below the Fermi level. Experimentally one �nds
that the valence band has a rather di�erent shape, where some weight is observed
at energies as high as 12 eV from the Fermi level. Performing a cluster calculation
that includes the e�ect of the Coulomb repulsions, one �nds that the 3d9 and the
3d10 states are split by 3eV and that the 3d8 con�guration is pushed away 12 eV
from the Fermi energy. Because of Coulomb repulsion the spectral weight in the
valence band is thus distributed into a main peak and other components at higher
energies which are still due to 3d states, and are called satellites. One should realize
in Fig.1.1 that the 3d8 satellite predicted by the cluster calculation is not visible in
the photoemission experiment, but could be observed in a resonant photoemission
experiment as discussed in section 3.1.2.
Another popular technique for probing the electronic structure of molecules and
solids is X-ray Absorption Spectroscopy [3, 4]. In a single particle scenario, an XAS
experiment probes the unoccupied density of states above the Fermi energy. An
electron is excited from a core level into an unoccupied state. Since the absorption
for a single wavelength is proportional to the unoccupied density of states at that
energy, one can measure the spectrum of the unoccupied density of states by tuning
the energy. However, this simple picture brakes down spectacularly in the 2p → 3d
absorption spectra of transition metals, where Coulomb repulsions manifest them-
selves giving rise to atomic multiplet e�ects. The atomic multiplet theory is often
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Figure 1.1: Valence band photoemission of La2SrCuO4 together with single par-

ticle approximation calculation and con�guration interaction calculations spectra

obtained from Ref. [2].

a good approximation of what goes on in a solid, and represents the extreme case
where Coulomb repulsion is so strong that the electrons are localized on their ions
and therefor the atomic orbitals are a good approximation of the solid. This applies
in particular to transition metals oxides and rare earth compounds. The starting
point for the atomic multiplet theory is the atomic Hamiltonian:

H = −
∑
N

p2
i

2m
+

∑
N

−Ze2

ri

+
∑

i6=j

e2

rij

+
∑
N

ζ(ri)lisi (1.8)

The �rst term in the Hamiltonian is the kinetic energy of the particles, the second the
Coulomb interaction with the nucleus, the third the Coulomb interaction between
electrons and the last is the spin orbit coupling. This equation cannot be solved
analytically; one should realize that the kinetic energy term and the interaction with
the nucleus is going to be the same for all electrons in a certain atomic con�guration,
therefore the important terms are the Coulomb repulsion and the spin orbit coupling.
The Coulomb repulsion term is too large to be treated as a perturbation, therefore
we use the central �eld approximation. This consists in splitting the interaction
term into one with a spherical symmetry and one with a generic one. The spherical
term is treated as an average Coulomb potential and is subtracted from the total
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interaction term. This leads to a Hamiltonian for the Coulomb repulsion that reads:

Hee =
∑
pairs

e2

rij

− <
∑
pairs

e2

rij

> (1.9)

This interaction, together with the spin-orbit interaction, determines the energy of
each electronic con�guration. Each of these con�gurations will be labeled with a
symbol of the type 2S+1LJ where S is the spin of the con�guration, (2S+1) is called
the multiplicity, L is the total angular momentum of the con�guration and J is the
total momentum | L+S |. The result of Coulomb repulsions is to spread the di�erent
atomic con�gurations over several eV, as we can see in the example in Fig. 1.2 where
the energy of all the con�gurations for the transition metal serie is plotted versus
the orbital occupancy; their di�erent contributions, weighted with matrix elements,
in the optical absorption spectrum give rise to atomic multiplets peaks, as shown in
Fig. 1.3. Seeing multiplet e�ects in the XAS spectrum of a solid is indeed a strong

Figure 1.2: Energy distribution of the many body states of 3d orbitals in transition

metal as a function of the orbital occupancy. Graph taken from Ref. [1].

signature of electron-electron correlations. However, one shouldn't forget that this is
a very crude approximation that neglects completely the presence of the solid and its
crystal structure. The e�ect of the solid is to hybridize the ligand orbitals, this e�ect
tends to mix in di�erent con�gurations, as we will discuss in Chapter 5. The e�ect of
the solid can be taken into account in an approximate way considering that the atom
is feeling a potential given by a charge distribution that mimics the symmetry of
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the solid. This approach is developed in the so called crystal �eld theory. In Fig.1.3
I show an XAS spectrum for MnF2 together with the atomic multiplet calculation
where the e�ect of the crystal �eld has been taken into account.

Figure 1.3: XAS of MnF2 together with the crystal �eld atomic multiplet calculation.

Graph taken from Ref. [4].

1.3.2 Coulomb repulsions in optical spectroscopy, non Drude

conductivity and anomalous SW transfer.

In my previous discussion of the Fermi liquid theory I made the statement that in
such a context, quasi particles should behave as well de�ned single particle states
with renormalized properties. The optical conductivity of a wide band metal is
known to have a Drude behavior, see section 2.2. In section 2.2 I describe the general
idea behind the Drude model. For the sake of the current discussion one should keep
in mind that this simple model describes the absorption of light by matter assuming
that an average relaxation time τ describes the motion of the conduction band
electrons which are treated as a free electron gas. This description, very similar to
the description of ideal gases, leads to an optical conductivity with the form:

σ(ω) =
Ne2τ

m

1 + iωτ

1 + ω2τ 2
(1.10)

where τ is the relaxation rate and N the total number of electrons. Clearly in this
context of non interacting electrons, the scattering rate is a constant, i.e. frequency
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independent, number. As a consequence of interactions of any kind, electron-electron,
electron-phonon, or electron to any other boson (one might think of spin �uctuations
for example), one could �nd at low energy a frequency dependent scattering rate.
This possibility is treated in the generalized Drude model [5] and gives an optical
conductivity of the form:

σ(ω) =
ω2

p

4π[1 + Γ2(ω)
ω

]
· 1

Γ1(ω)

1+
Γ2(ω)

ω

− iω
(1.11)

where Γ(ω) = Γ1(ω) + iΓ2(ω) is the frequency dependent relaxation rate. One can
see that this expression still gives a Drude-like shape of the optical conductivity with
renormalized parameters. In this context the scattering rate is no longer a constant
and becomes:

Γ1(ω) =
ω2

p

4π

σ1(ω)

| σ(ω) |2 (1.12)

The equation for the optical conductivity at low frequency can be written in the
more popular form:

σ(ω) =
Ne2

m∗ ·
τ∗

1− iωτ∗ (1.13)

Where 1
τ∗ = Γ1(ω)

1+λ(ω)
, with λ = −Γ2/ω, has the meaning of the frequency dependent

scattering rate and m∗ the frequency dependent e�ective mass. In Fermi liquid theory
one can predict the frequency and temperature dependence of the scattering rate,
and this formula holds:

1

τ ∗(ω, T )
∼ [(2πkBT )2 + (~ω)2] (1.14)

As a consequence of this one has for example that, at least at very low energy, where
the Fermi liquid theory is expected to hold better, the optical conductivity should
have the usual Drude shape expected for metals. Correlation e�ects can manifest
themselves in Fermi liquids by the aforementioned frequency dependent scattering
rate[6, 7], or in more exotic behavior in non fermi liquids[8, 9]. The exact nature
of the correlation e�ects leading to such renormalizations is a tough microscopic
problem which depends on the knowledge of the spectrum of the bosons on which
the electrons scatter, detailed discussions on how to extract this from the optical
spectra are currently going on in literature[10].
Strong electron correlations can have another e�ect on the optical spectra. In section
2.2 I discuss the optical sum rule which relates the integral of the optical conduc-
tivity to the total number of carriers. The weight of the optical conductivity in the
conduction band can in principle give information about the e�ective number of
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carriers and their kinetic energy. It has been shown both theoretically[11, 12, 13, 14]
and experimentally[15, 16] that changes of the high frequency optical response can
happen because of strong electron-electron repulsion. I will try to give an intuitive
idea of why this happens. In the presence of strong electron-electron repulsion the
many-body e�ects could give rise to satellites of the valence band which can be
pushed to rather high energies by the Coulomb repulsion. This has been discussed
already for photoemission experiments, but it has been shown also theoretically that
the optical conductivity of a single band t − J model can show satellite peaks at
higher energy. For the sake of clarity, one should know at this point that the t− J
model is a simpli�ed version of the Hubbard model, in which Coulomb repulsion is
the largest term of the Hamiltonian. In the case of cuprate superconductors these
satellites of the optical conductivity have been associated to the spectral weight in
the mid-infrared region, which could not be justi�ed by any interband transition. In
Fig. 1.4 I show the calculated optical conductivity of a 4×4 cluster within the t− J
model. One can see the "Drude" absorption at zero frequency followed by a marked
peak and other weaker contributions. These high energy "satellites" have been shown
to change upon doping and temperature[12, 13, 14] and give rise to changes in the
integral of the conductivity, the spectral weight. The changes in spectral weight at

Figure 1.4: The optical conductivity in the t − J model. The calculation was per-

formed on a 4x4 cluster with open boundary condition. The curves are broadened,

a high resolution spectrum is shown in the caption. Graph taken from Ref.[12].

high frequency due to strong correlations are a subtle e�ect, both for theoretical and
experimental issues1

1One should keep in mind in the following of this thesis where extensive comparison between the

optical SW transfer and t−J model calculations are made, that when referring to the low frequency
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SW we are using a hard cut-o� in the integral which might leave out some of the aforementioned

high energy satellites. This would mean that the physical interpretation of the integral becomes

somewhat ill de�ned. What may come to rescue is the fact that at 1 eV one expects that most of the

weight of the mid infrared band is already captured; moreover, when the integral is compared to

the theoretically obtained integral of the calculated conductivity, the same problem is faced by the

calculation and one can hope that theory and experiments are neglecting the same contributions.

Indeed when the comparison is based on the de�nition of kinetic energy this problem might be

more severe.
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Chapter 2

A brief introduction to optical
spectroscopy

2.1 The microscopic description of the absorption

of light from matter
A thorough description of the interaction between radiation and matter is carried
out in several books [1] and is beyond the scope of this work. The purpose of this
introduction is therefore to give an intuitive description of optical spectroscopy. The
motion of charged particles (electrons) in a solid can be described by the following
Hamiltonian:

H =
1

2m

N∑
i=1

(pi+
e

c
A(ri))

2+

N,M∑
i=1,j=1

V 0
j (ri−Rj)+

1

2

N,M,i 6=i′∑

i=1,i′=1

e2

|ri − ri′|−
N∑

i=1

eΦ(ri) (2.1)

The Hamiltonian describes the energy of the particles in a certain position and time,
and contains: (i) the kinetic energy of the particles (1st term), due to their proper
motion (p) plus the motion caused by the �eld (A(r)), where r is the position; (ii) the
interaction of the electrons with the ions lattice. V 0

j (ri − Rj) is a periodic function
that represents the Coulomb potential due to the positive charge of the nuclei;
(iii) the Coulomb repulsion of the electrons between each other (3rd term); (iiii) a
scalar potential as produced by an external charge (last term). In this description
we neglect the spin orbit coupling, and electron-phonon coupling. The microscopic
version of Ohm's law says that:

J(ω) = σ(ω)E(ω) (2.2)

15
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where J is the current density, σ is the conductivity, and E is the electric �eld
(which integrated along a path gives a potential V). The frequency dependence in
Eq. 2.2 takes into account the possibility that the �eld applied to the material is
time varying. Once we know the current induced in the solid (measurable) by the
external applied �eld (known) we can extract the conductivity with all its useful
microscopic information, because the conductivity re�ects the electrical properties
of the system. In order to do that, we need to express the density of current J in
terms of a microscopic model. In general, the current density can be written as:

J = n · q · v (2.3)

where n is the number of electrons, q is their charge and v their velocity. The velocity
of the particles is something that one can extract from the Hamiltonian, equation
2.1, thus one can relate the microscopic model with the quantity J. The quantum
mechanical operator for the current density is:

J(r) = −e

2

N∑
i=1

[viδ(r − ri) + δ(r − ri)vi] (2.4)

where vi is the velocity of the particles at the position ri. A charged particle in a
�eld has a speed v = p/m + eA/mc, therefor

J(r) = − e

2m

N∑
i=1

[piδ(r − ri) + δ(r − ri)pi]− e2

mc

N∑
i=1

A(ri)δ(r − ri) (2.5)

With some fantasy, one can call the �rst term of this expression the paramagnetic
current operator and the second the diamagnetic current operator. The hamiltonian
in eq. 2.1, can be written as a sum of two terms, H = H0 + Hint, where H0 is
the unperturbed term in the presence of light and Hint is the term containing the
interaction between light and matter. This interaction term can be written as:

Hint =
e

2mc

N∑
i=1

[pi · A(ri) + A(ri) · pi]− e

N∑
i=1

Φ(ri) (2.6)

Using eq. 2.5 one can write the interaction term in terms of the current density

Hint = −1

c

∫
J(r) · A(r)dr (2.7)

Bearing in mind that we want to derive an expression for the optical conductivity,
namely the absorption rate of light in matter, we assume that this absorption takes
place exciting a transition from a certain initial state | s > to a �nal state | s′ >. In
a system, the number of transitions per unit time and per unit volume is given by
Fermi golden rule:

Ws 7→s′ =
2π

~2
|< s′ | Hint | s >|2 δ[ω − (ωs′ − ωs)] (2.8)
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One can �nd the matrix elements for this transition using eq. 2.7 and after some
further manipulations one can obtain the �nal expression for the optical conductivity
(the so called Kubo formula):

σαβ(q, ω) =
1

ων

∫ t

−∞
dt′e−iωt−t′ < ψ | [J+

α (q, t), Jβ(q, t′) | ψ > +
n0e

2

mω
iδαβ (2.9)

This expression relates the absorption of light due to all the electronic transitions
from occupied initial states to unoccupied �nal states to the current-current corre-
lation function and it is a very general expression often used in condensed matter
physics.

2.2 The Drude model and the f-sum rule
The optical spectroscopy of materials started obviously much earlier than the con-
cepts used to derive the Kubo formula were available. Di�erent materials show dif-
ferent colors to the naked eye, some materials even change colors after long exposure
to air or water. Already from the �rst classi�cations of such color changes done by
middle-age alchemists using the not very microscopic idea of putrefaction it is clear
that it is possible to say something about the state of matter from its response to
light. Once the idea of charged particles circulating in solids was spread, mankind
made the �rst attempt to describe microscopically the interaction of light with mat-
ter. In this chapter we will try to connect the �rst and simplest microscopic model
for the optical response of metals (the Drude model) to the sophisticated Kubo for-
mula described above. From this comparison I will extract a very powerful property
of the optical conductivity, which is the f-sum rule. What the f-sum rule says is: the
number of particles reacting to the light has to be conserved. The Drude model is
based on the assumption that a metal is representable as a gas of electrons moving
and carrying current and heat. Like in an ideal gas, the relaxation of the system to
equilibrium can be described by an average relaxation time τ . This means that the
changes in momentum of the electrons are related to the relaxation of the momen-
tum itself and the acceleration of the charges induced by an external �eld. In an
equation:

dp

dt
= −p

τ
− eE (2.10)

The current density is J = −N · e · v and the conductivity σ1 = J/E, thus if
the electric �eld is time-dependent, E(t) = E0e

−iωt the solution of the di�erential
equation of motion gives for the frequency dependent conductivity the expression:

σ(ω) =
Ne2τ

m

1 + iωτ

1 + ω2τ 2
(2.11)
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This description is very crude and neglects several concepts developed in the frame-
work of quantum mechanics, although it can be a reasonable picture in several
circumstances where the many assumptions made are more or less valid. It is re-
markable anyway that such a simple model has a great success in describing the
low frequency experimental response of most simple metals. If one integrates over
frequency the real part of the equation 2.11

∫ ∞

0

σ1(ω′)dω′ = Ne2

m

∫ ∞

0

τ

1 + ω′2τ 2
dω′ = ω2

p/8 (2.12)

where ωp = (4πNe2

m
)1/2 is the plasma frequency. In this context, this expression is

derived for a free electron gas. Now I want to derive the very same Drude expression
starting from the Kubo formula, this allows one to understand, given the modern
knowledge of the microscopic theory, where the assumptions are that lead to such
a result. The starting point is equation 2.9; we assume that the current-current
correlation function decays following this expression:

J(q, t) = J(q, 0)e−t/τ (2.13)

This is equivalent to assume that all the �nal states will relax to the ground state
in the same time τ . If we insert this in equation 2.9 we obtain

σ(q, ω) =
1

~ω
∑

s

∫
dt[e−iωt−|t|/τ < s | J2(q) | s >] (2.14)

If we introduce a full set of states with the property
∑

s′
| s′ >< s′ |= 1 (2.15)

we have

< s | J2 | s >=
∑

s′
|< s | J | s′ >|2 (2.16)

If one considers the equation 2.4 for the density of current and calculate its Fourier
transform, since we want to obtain an expression in the frequency space, one obtains:

J =

∫
J(r)e−iq·rdr = −e/m

∑
j

pj (2.17)

This is true in the dipole approximation, which means that we consider q small as
such that eiqr ≈ 1. The expression for the optical conductivity becomes:

σ(ω) =
e2

~ωm2

∫
dte−iωt−|t|/τ

∑
s,s′,j

|< s′ | pj | s >|2 (2.18)
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In this formula the quantity |< s′ | pj | s >|2 can be thought of as the probability
of the transition from the state s to the state s′. If we de�ne the oscillator strength
as: 2

∑
s,s′,j

|<s′|pj |s>|2
m~ωs,s′

= fs,s′ after integrating equation 2.18 we obtain:

σ(ω) =
e2τ

m

fs,s′
1 + iωτ

(2.19)

Given the de�nition of the oscillator strength, it is easy to show that for free electrons
fs,s′ = N where N is the density of electrons. One can see that under certain
approximations it is possible to calculate the Drude formula for the conductivity of
a metal. Let's brie�y discuss which are these approximations. At the very beginning
we postulated that the relaxation time of all the �nal states is the same. It is
remarkable that this approximation, that looks very crude at �rst glance, is actually
very robust and holds for the coherent response of all Fermi Liquid materials. This
shows that the idea that the electrons in the conduction band of a metal are like a gas
of free charged particles for which an average description of their motion is su�cient
is not so far from reality. The other important approximation we made is the dipole
approximation. Assuming q very small, the so called local limit, one neglects all the
possible processes that happen exchanging a momentum, such as electron-lattice
and electron-electron interaction. In many cases this leads to a frequency dependent
τ , as discussed in more detail in the generalized Drude model [1].

2.3 The experimental path to the determination of

the optical spectral weight

So far we discussed the theory that relates the optical conductivity to the microscopic
properties of matter. We have shown that the absorption of light by a solid can tell
us something about its microscopic properties. In practical terms the absorption of
light is a very straightforward concept. In fact, it is related to the ratio between the
light that can pass through a material and the light that impinges on the material.
This means that a transmission experiment is ideal if one wants to measure the
optical conductivity. Sometimes, such an experiment is not possible, or very di�cult
(for example in metallic systems where the transmission in the infrared is almost
zero) and other ways have to be used. In this paragraph we give a brief description
of two very popular approaches, spectroscopic re�ectivity and ellipsometry, and we
discuss the possibility of using a combination of these two methods.
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2.3.1 Re�ectivity and Kramers-Kronig transformation

A standard technique used to extract the optical conductivity, σ1(ω) is to measure
the normal incidence re�ectivity over a broad range of frequencies. Since re�ectivity
is a combination of the real and imaginary part of the dielectric function

r(ω) =

(
1−

√
ε1(ω) + iε2(ω)

1 +
√

ε1(ω) + iε2(ω)

)2

(2.20)

in principle it contains information about both. However, as one can see, one has
one equation and two unknowns. One can obtain the second equation imposing the
causality condition to the re�ectivity signal. Causality implies that the real and
imaginary parts of a given response function are Kramers-Kronig related. One can
write the complex re�ectivity as

r =| r | eiφ

ln(r) = ln | r | +iφ (2.21)

The Kramers-Kronig relation between the modulus and the phase is

ln | r(ω) |= 1/π℘

∫ ∞

−∞

φ(ω′)
ω′ − ω

dω′

φ(ω) = −1/π℘

∫ ∞

−∞

ln | r(ω′) |
ω′ − ω

dω′ (2.22)

Having the quantity r(ω) allows to calculate the phase φ(ω), the complex re�ectiv-
ity is then related to the complex dielectric function, Eq. 2.20. It is important to
notice that this approach implies the knowledge of the normal incidence re�ectivity
in the entire energy spectrum, as is clear from the integral in Eq. 2.22. Since this is
not experimentally possible, in practice one measures re�ectivity over the broadest
possible range and than uses suitable extrapolations to get the complete r(ω) func-
tion to use in the Kramers Kronig integral. It is intuitive that a source of error in
the extracted quantities is the extrapolation procedure. Several methods have been
proposed in order to improve the accuracy of this method, an exhaustive discussion
of these approaches is going to be to cumbersome for this thesis, so for whom is
interested in knowing more about this procedure I recommend the references [1, 2].

2.3.2 Ellipsometry

One can avoid the aforementioned problem of the extrapolations measuring the com-
plex dielectric function with spectroscopic ellipsometry. The light re�ected from a
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sample is composed of a part polarized parallel to the plane of the sample (r‖, s wave)
and a part polarized perpendicular to this plane (r⊥, p wave). Ellipsometry measures
the complex ratio between the re�ection coe�cients of these two components:

ρ =
r‖
r⊥

= tan(Ψ)ei∆ (2.23)

Where Ψ is related to the amplitude ratio, and ∆ to the phase di�erence of the s
and p waves. Knowing the angle of incidence (θ) of the beam one can calculate the
complex dielectric constant from the measured quantities Ψ and ∆:

ε1 = sin2(θ)[1 +
tan2(θ)(cos2(2Ψ)− sin2(∆)sin2(2Ψ)))

(1 + sin(2Ψ)cos(∆))2
]

ε2 = sin2(θ)
tan2(θ)sin(4Ψ)sin(∆)

(1 + sin(2Ψ)cos(∆))2
(2.24)

This approach has several advantages over the measurement of re�ectivity: (i) it
doesn't require extrapolations and Kramers Kronig analysis to get the complex
optical constants, (ii) since the intensity of the light does not enter the analysis, a
calibration for the absolute value of the re�ected beam is not needed, (iii) in the
ultraviolet region this technique is less sensitive to the surface roughness than normal
incidence re�ectivity. The main drawback is that ellipsometry is experimentally more
demanding than re�ectivity, especially in the infrared region where high quality
polarizers operating in a broad region of frequency are not available. The principle
of ellipsometry is very simple. On the other hand there are many complications
whose discussion is beyond the scope of this thesis. Details can be found in the
literature[3, 4, 5]. The important message that this brief introduction wants to stress
is that ellipsometry provides an independent determination of the real and imaginary
part of the optical constants, in contrast to re�ectivity where a further condition
has to be imposed in order to separate them.

2.3.3 Drude-Lorentz analysis of re�ectivity and ellipsometry

The two approaches discussed before have both positive and negative aspects. More
importantly, one should realize that depending on the spectral region, one approach
could present important advantages over the other. For example, while ellipsometry
is a very well established technique in the visible region of the spectrum, and is
still under development in the infrared region, infrared re�ectivity has been used
already for several decades to investigate the electronic properties of solids. For this
reason it is particulary appealing to combine the two techniques in order to cover the
whole spectrum and get a better determination of the complex dielectric function.
A possible approach that allows to combine these two techniques, re�ectivity and
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ellipsometry, is to �t simultaneously all the data with a model from which, knowing
the model parameters, it is possible to calculate all the optical constants. A simple
phenomenological description of the optical spectra is given by the Drude-Lorentz
model. The dielectric function of this model is given by the formula:

ε(ω) = ε∞ +
∑

i

ω2
pi

ω2
0i − ω2 − iγiω

(2.25)

Basically this model describes the optical transitions as lorentzian oscillators with
a strength, ωp, and width, γ. In a metal an oscillator centered at zero frequency
mimics the response of the free charges and is referred to as the Drude oscillator. It
has been shown that simultaneously �tting the infrared re�ectivity and the visible
light ellipsometry gives a better determination of the complex dielectric function
then the usual re�ectivity and KK approach, because of the additional information
given by the ellipsometric data [6]. In order to preserve all the spectral information
that one measures, one has to use a very large number of oscillators. This approach
has been developed in our group and we have shown that it can improve signi�cantly
the standard Kramers-Kronig analysis. In order to obtain the optical constants in
the whole frequency range, we use a variational procedure described in Ref. [2].
In the �rst stage, the infrared re�ectivity and the ellipsometrically measured com-
plex dielectric function in the visible and UV-range are �tted simultaneously with
a Drude-Lorentz model. In the second stage, the �t is re�ned with a variational
dielectric function added on top of the Drude-Lorentz model. The former is essen-
tially a set of a large number of narrow oscillators, each corresponding to one or
two spectral datapoints. This yields the Kramers-Kronig consistent dielectric func-
tion which reproduces all the �ne details of the infrared re�ectivity spectra while
simultaneously �tting to the measured complex dielectric function at high frequen-
cies. In contrast to the "conventional" KK re�ectivity transformation this procedure
anchors the phase of the complex re�ectivity to the one at high energies measured
directly with ellipsometry[6].

2.4 The calculation of the Spectral Weight integral

2.4.1 Why do we bother?

We now focus on a property of the optical conductivity: the f-sum rule. As I discussed
in section 1.2, a sum rule can be derived for the optical conductivity:

Neff (ω) =
emV

πe2

∫ ∞

0

σ(ω′)dω′ (2.26)
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This equation emphasizes the fact that it is possible to calculate the number of
carriers integrating the optical conductivity. Thus, it is intuitive that evaluating the
integral of the optical conductivity up to a certain energy, Ωcutoff , it is possible to
calculate how many charge carriers are absorbing the electromagnetic radiation in
the energy range between zero and the aforementioned energy cut-o�. Furthermore,
plotting the integral as a function of the frequency cuto� in a material in principle
could display its electronic structure. In order to clarify this very important point we
show the example of the spectral weight of pure aluminium in Fig. 2.1. The e�ective
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Figure 2.1: The sum rule as a function of the energy cuto� for the ab-initio calculated

optical conductivity of aluminum. The data are taken from the literature[7]

number of carriers as a function of energy shows three marked slope changes which,
as indicated by the vertical lines, correspond to the electronic levels of aluminium.
The low energy plateau represents the conduction band of aluminium, which has
a valency of 3 given by the electrons in the 3rd energy level; higher in energy one
can see the second level, the e�ective index rises from 3 to 11 meaning that the
8 electrons of the second level (2 on the s orbital and 6 on the p one) have been
added to the 3 third level electrons. Eventually when the electromagnetic wave has
su�cient energy to excite the electrons of the 1st level the e�ective index reaches 13,
the total number of electrons in aluminium. The total number of electrons of course
is a conserved quantity, meaning that at su�ciently high energy the e�ective index
should be temperature independent. On the other hand, redistributions of spectral
weight can occur at lower energies, due to changes of the occupation numbers or
of the e�ective masses as a function of temperature; in this case the partial sum
rule, the integral up to a low energy cuto�, can be temperature dependent. For
common metals this happens only at very low energy, below 1 eV, while it often
happens that in strongly correlated electron systems a violation of the partial sum
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rule is observable at energies even higher than 2 or 3 eV [8]. This simple example
provides an intuitive picture of the f-sum rule which will be largely used in this
thesis. One should notice that since the integral in Eq. 2.26 starts from zero energy,
a part of experimental information will always be missing since one cannot measure
down to zero frequency for practical reasons. In simple cases, such as aluminium,
this is not a problem since the spectrum from the optical frequencies extrapolates to
the dc conductivity in a Drude-like fashion; in more complicated materials, such as
superconductors, where a gap opens and at low temperature a condensate peak is
sitting at zero energy a trivial extrapolation of the optical data is less obvious. We
derived a number of di�erent approaches in order to evaluate this integral with high
precision, in the following section I will describe the main concept which is behind
all of these approaches.

2.4.2 Integrating the unknown with precision

The usual equation for the optical spectral weight includes the integral of the optical
conductivity from zero up to a certain frequency cuto�. If we take advantage of the
Kramers Kronig relations (KK) we can write the following equations for the complex
conductivity:

σ1(ω) = ℘

∫ ∞

0

K(ω′, ω)σ2(ω′)dω′ (2.27)

σ2(ω) = ℘

∫ ∞

0

K(ω′, ω)σ1(ω′)dω′ (2.28)

K(ω, ω′) is the kernel (2ω/π)(ω2 − ω′2)−1. Given the usual formula for the spectral
weight (SW):

W (ω) =

∫ ∞

0

σ1(ω′)dω′ (2.29)

One can express σ1 in terms of its Kramers Kronig transform and then apply itera-
tively the truncated Hilbert transform. If we split the integral from zero to in�nity
into a contribution that we will call internal (

∫
Int

=
∫ ωmax

ωmin
) and another one called

external (
∫

ext
=

∫ ωmin

0
+

∫∞
ωmax

), KK transform σ2 in the external integral, split the
integration range again and iterate this procedure n times, we can write the SW as
a combination of σ1 and σ2 in a limited energy range.
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∫ ∞

0

σ1 = limn→∞

∫ ∞

ωc

[σ1u
(n)
1 + σ2u

(n)
2 ]dω (2.30)

u
(n)
1 = Q2n[1/πln(

ω + ωc

ω − ωc

)] (2.31)

u
(n)
2 = Q2n+1[1/πln(

ω + ωc

ω − ωc

)] (2.32)

Q0 = 1 (2.33)
Q1 = x (2.34)
Q2 = −1/2x2 (2.35)
.....

The above solution is analytic and applies only under the assumption that σ1 and σ2

are known with in�nite precision in the given interval and that the upper limit of this
interval tends to in�nity. It is possible to extend this treatment to the realistic case
where the data have a �nite resolution, a certain noise is present and the upper limit
of the interval is not in�nity. In this case the derivation becomes rather cumbersome,
the details of this procedure are described in Ref. [9]. More importantly we can
demonstrate that thanks to this approach we can build a routine which is capable
of calculating the SW given σ1 and σ2 in a limited frequency range in experimental
conditions. We show a demonstration of this routine, called Devin, in Fig. 2.2,2.3,2.4.
We generate several random sets of Durde-Lorentz models, where the strength, the
position and the width of the oscillators is arbitrary, then we calculate ε1 and ε2

for these models and we provide these two quantities to Devin. In the �rst test we
vary the noise level that we superimpose on the data. In Fig. 2.2 one can see one
of the many Drude-Lorentz models (lower panels) with two di�erent noise levels.
The upper panel of the �gure shows the correspondence between the true SW of
the models (which we know) and the SW calculated by Devin. It is important to
notice that each of the symbols in the upper graphs correspond to a di�erent Drude-
Lorentz model, while for obvious reasons in the lower graphs we display only one
of these models as an example. It is evident and expected that adding more noise
to the data gives larger errors in the determination of the SW, on the other hand
the correspondence between the calculated SW and the real one is very good even
for rather noisy data, showing that the algorithm works very well. The next test is
to vary the width of the interval in which the data are provided to Devin, in Fig.
2.3 one can see that the SW is better determined when a larger interval of data is
provided. Finally, we see what the e�ect of the frequency cuto� is. From Fig. 2.4
one can see that when the cuto� is set inside the interval of the given data the SW
is very well determined, while when the cuto� is outside the error bars explode.
In this paragraph we have shown that for very fundamental reasons related to the
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Figure 2.2: The integrated SW for a frequency cut o� of Ω= 2 for di�erent Drude-

Lorentz models with di�erent noise level.

KK properties of the optical constants, it is not necessary to know the optical con-
ductivity down to zero frequency in order to determine the partial sum rule integral.
This is due to the fact that knowing also the imaginary part of the optical conduc-
tivity, provides a further constraint to the value of the SW through the KK relation.
In principle one can use this approach to determine the SW value, given the possi-
bility of having the complex dielectric function measured. On the other hand, this
result shows equally that also the knowledge of the re�ectivity can anchor the value
of the SW because re�ectivity is a function of both the real and imaginary part of
the optical conductivity. We will discuss this point later in a practical case, showing
that the SW of a Drude-Lorentz model with a large number of oscillators, therefore
a function with a lot of spectral degrees of freedom, can be su�ciently constrained
by an experimental data set composed of infrared re�ectivity and visible light ellip-
sometry.
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Figure 2.3: The Integrated SW for a frequency cut o� of 1.5 for di�erent Drude-

Lorentz models for two di�erent width of the "measured" interval

Figure 2.4: The integrated SW for di�erent Drude-Lorentz models and di�erent

frequency cut o�s
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Chapter 3

The spectral weight transfer in
cuprate superconductors

"It is necessary to deprive matter of its qualities in order to draw out its
soul.....Copper is like a man; it has a soul and a body....the soul is the most sub-
tle part...that is to say, the tinctorial spirit. The body is the ponderable, material,
terrestrial thing, endowed with a shadow....After a series of subtle treatments cop-
per becomes without shadow and better than gold...The elements grow and are
transmuted, because it is their qualities, not their substances which are contrary."
(Stephanus of Alexandria, 620 A.D.). Anyone measuring the infrared re�ectivity of
cuprates knows that in the superconducting state they can re�ect more than gold......

3.1 Overview on the properties of cuprate super-
conductors

3.1.1 crystal structure

The cuprate superconductors belong to a class of materials which has the perovskite-
like crystal structure, shown in Fig. 3.1. Among them the bismuth based family,
Bi2Sr2CuO6 , Bi2Sr2CaCu2O8 , Bi2Sr2Ca2Cu3O10 , is one of the most studied be-
cause large single crystals of good quality are available and because these crystals
cleave along the Bi-O planes giving a fairly �at surface. In this thesis I will show
experimental results obtained on Bi2Sr2CaCu2O8 , and Bi2Sr2Ca2Cu3O10 . Since
most of the crystallographic features are common to all cuprate superconductors I
comment for simplicity on the case of Bi2Sr2Ca2Cu3O10 . copper oxide based super-
conductors can be thought of as a layered structure: in the stoichiometric compound,
the Cu-O planes show antiferromagnetism and the material is a charge transfer in-
sulator. In the case of Bi-based cuprates, oxygen can occupy some vacancies in the

31
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Bi-O plane and oxygen in excess can be introduced in the crystal. The Bi-O planes
function as charge reservoirs and can induce charge in the CuO2 planes, doping the
system, which thereafter shows a metallic behavior. As a consequence of this, dis-
tortions can take place in the structure giving a modulation of the crystal structure.
This modulation has been shown to have an impact on the capability of doping the
system[1]. From this point on I will refer to the ab plane as the plane de�ned by the

Figure 3.1: Bi2Sr2Ca2Cu3O10 unit cell and the modulated crystal structure.

Cu-O checkerboard and to the c-axis as the direction perpendicular to this plane.

3.1.2 Cuprates electronic structure

In introducing the electronic structure of cuprate superconductors we will use the
unpopular concept that "everything happens in the Cu-O planes". There are several
arguments against such a statement, most of them make perfect sense. The fact that
depending on the composition, the superconducting transition temperature can vary
even by a factor of 10 is the strongest argument in my view. Some e�ects have also
been seen upon oxygen isotope substitution. The reason to use such a simpli�cation
is that from the general point of view, the main properties of these materials are
undoubtedly given by the Cu-O planes; these planes in fact are the only common
building block of all high temperature superconductors. In the undoped (parent)
compound, all the atomic shells are �lled but the Cu++ 3d one. As a result of the
crystal �eld, which lifts the degeneracy of the 3d bands, the system ends up with
one single hole in the dx2−y2 orbital, which gives a half �lled band. In Fig. 3.2 we
show the Cu-O planes with the dx2−y2 copper orbital together with the oxygen 2px,y

ones. In a system where electron-electron correlations are negligible, the Cu dx2−y2

orbital and the O 2px,y ones form bonding, non-bonding and anti-bonding bands,
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Figure 3.2: The important orbitals in the copper-oxygen plane.

as displayed in the top left graph of Fig. 3.3; the anti-bonding band is half �lled
and band theory would predict a non magnetic metallic ground state, while a gap
of 1.5 eV is observed experimentally and the system is an insulator [2]. Such a
failure of band theory is due to the Coulomb repulsion, which causes the electrons
to localize on the ions and form an antiferromagnetic lattice, in order to minimize
the spatial overlap of their wavefunctions. In the top right graph of Fig. 3.3 one
can see that when the Coulomb repulsion U exceeds the width of the conduction
band the last splits into a lower Hubbard band (LHB) completely occupied and an
upper Hubbard band (UHB) completely empty and the system is a Mott-Hubbard
insulator. In a more extreme situation, when the Coulomb repulsion is larger than
the copper oxygen charge transfer energy, the system turns into a charge transfer
insulator, as visible in the bottom left scheme of Fig. 3.3. The hybridization between
the UHB and the bonding band splits the latter into singlet and triplet states, where
the singlet state is called Zhang-Rice singlet[3]. More discussions on the nature of
this singlet states are in Ref. [4].
It has been proposed [6] that the single band Hubbard Hamiltonian describes the
physics of the cuprates:

H = −t
∑

<i,j>,σ

(c†i,σcj,σ + H.c.) + U
∑

i

ni,↓ni,↑ (3.1)

Where the sum in the �rst term is carried out on the nearest neighbors only. This
Hamiltonian can be simpli�ed if one assumes that U >> t. The model then reduces
to the t− J model. In the t− J model the double occupancy of a site is projected
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Figure 3.3: Zaanen-Sawatzky-Allen scheme taken from Ref. [5].

out and the Hamiltonian reads:

H = −t
∑
i,j,σ

(b†i,σbj,σ + H.c) + J
∑
i,j

SiSj (3.2)

bi,σ = ci,σ(1− ni,−σ) (3.3)
ni,σ = c†i,σci,σ (3.4)

This model is considered to represent the low energy excitations of the cuprates, and
we will show a comparison between the experiments and the theoretical predictions
based on this model for the low frequency optical spectral weight transfer. One of
the key di�erences between low Tc superconductors and high Tc cuprates is the fact
that in the latter the Cooper pair coherence length is much smaller than in BCS
theory, of the order of the lattice spacing. In this context several theories have pre-
dicted that superconductivity takes place with a lowering of the electronic kinetic
energy, opposite to what happens in a conventional BCS superconductor. This can
be measured with optics and will be the subject of this chapter. Before going into the
details of this problem though, we want to make an experimental connection to the
theoretical aspects we discussed concerning the electronic structure of the cuprates.
The parent compounds are experimentally found in optical experiments to be insu-
lators with a gap of 1.5 eV[2]. Doping the system results in a metal, in fact a Drude
peak grows in the optical conductivity spectrum; moreover one can verify that the
e�ective number of carriers in the conduction band corresponds to the doping. In
Fig. 3.4 one can see the optical conductivity for an optimally doped (δ = 0.15, 0.15
holes/Cu atom) sample of Bi2Sr2Ca2Cu3O10 . One can see a Drude peak and around
1.5 eV the �rst peak, interpreted as a charge transfer excitation. At higher energies
one has contributions from Bi, O, Sr and Ca bands and a straightforward summa-
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tion of the number of carriers as we carried out in the case of Aluminum, Fig. 2.1,
is not possible. On the other hand one can see that the weight of the conduction
band gives roughly the expected number for the e�ective number of carriers, in fact,
if the nominal doping is 0.15 holes/Cu atom, and we consider a formula unit of
Bi2Sr2Ca2Cu3O10 which contains 3 Cu atoms, we should expect 0.45 carriers in the
conduction band. The SW integral is representative of the conduction band in the
energy range between 0.7 and 1.2 eV, where the value of Neff varies between 0.4
and 0.6, indeed in agreement with what one expects. We can therefor experimentally
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Figure 3.4: Topmost panel: The optical conductivity of Bi2223. Lowest panel: The
e�ective number of carriers versus energy obtained by the f sum-rule in Bi2223.

see that the conduction band is �lled by the doping carriers. One would also like to
see that indeed copper has a 3d9 con�guration and that indeed the large Coulomb
repulsion is manifesting itself in the copper states. X-ray Absorption Spectroscopy
(XAS) has been shown to be successful in determining the valence of oxide materi-
als. In the presence of strong electron-electron correlations in fact, the interaction
between a 2p core-hole and the 3d valence electrons in transition metals gives rise to
atomic multiplet e�ects which can identify di�erent ground state con�gurations[7].
A more exhaustive description of this technique will be given in Chapter 5. For the
moment one can see, in the topmost panel of Fig. 3.5, that the XAS spectra of
Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 is very similar to the simulated spectrum of
Cu 3d9, supporting the claim that the Cu-O planes are composed by Cu++ ions. In
the lowest panel of Fig. 3.5 one can see the valence band photoemission spectrum
of Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 ; these spectra have been theoretically re-
produced by including into the standard band calculations the e�ects of Coulomb
repulsions by performing a con�guration interaction cluster calculation [8]. More-
over, these calculations predicted the presence of a valence band satellite at around
12 eV from the Fermi energy. Such a satellite would be the Cu 3d8 electronic state
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pushed away from the valence band by an on site Coulomb repulsion larger than
8 eV. In a resonant photoemission experiment the satellite structures of copper are
strongly enhanced when the photon energy is tuned at the 2p 7→ 3d transition[9],
providing a unique tool to check the impact of Coulomb repulsions on the electronic
structure of cuprates. Indeed this satellite has been observed in resonant photoemis-
sion on Bi2Sr2CuO6 and Bi2Sr2CaCu2O8 samples[10], and in the lower panel of Fig.
3.5 we show new measurements on Y-doped Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10

samples which also show the strong resonant 3d8 states 12 eV away from the Fermi
energy. In these photoemission experiments one can also identify the di�erent elec-
tronic states of the elements and compare their position with the peaks observed in
the optical spectra, keeping in mind that the selection rules for optics and photoe-
mission are di�erent. To summarize this paragraph, we have discussed the electronic
structure of the cuprates, in particular of the Cu-O planes, and we have shown some
experimental examples where one can directly see manifestations of the theoretical
concepts described above.
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Figure 3.5: Topmost panel: the XAS spectra of Bi2212 and Bi2223 together with
3d9 atomic multiplet calculations. Bottom panel: the photoemission and resonant
photoemission spectra of Bi2212 and Bi2223.
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3.2 The optical spectral weight and the pairing
mechanism

A vast class of materials spanning a large part of the periodic table has been shown
to become superconducting at low temperature due to an electron-phonon driven
pairing mechanism. This has been explained by the BCS theory: the electrons moving
in the lattice can deform the lattice itself via the Coulomb interaction between the
negative electron charge and the positive ions one; this deformation can excite a
particular phonon mode of the crystal. The result of this interaction creates an
attractive potential around the electron that favors the pairing mechanism. When
two electrons, particles with half integer spin, couple together, they behave as a
particle with integer spin, which obeys the Bose-Einstein statistic and can condense
in a single quantum state. This condensate represents the ground state of the system,
therefor in a superconductor current can �ow in the ground state, and the material
shows a null resistivity. In the BCS model, when the pair condensate is formed, the
system lowers its potential energy by a larger amount than it increases its kinetic
energy. The total energy is lowered and the material undergoes a superconducting
phase transition. In 1986 a family of materials has been discovered which exhibits a
superconducting transition temperature much higher then the one of BCS materials.
The intermetallic compound with the highest Tc is MgB2 with a Tc around 39 K
while Bi2Sr2Ca2Cu3O10 becomes superconducting around 110 K. The latter are so
called "Cuprates" because they are all compounds involving CuO2 planes. Several
alternative models have been proposed for the pairing mechanism of high Tc cuprate
[6, 11, 12], many of them predict a decrease of kinetic energy in the superconducting
state [6, 11, 12, 13, 14] , but despite the large amount of research, a consensus has not
been reached yet about the way the electrons pair. While BCS materials are Fermi
Liquid systems where electron-electron interactions can be treated as a perturbation,
cuprate superconductors are believed to be non Fermi Liquid in the normal state
and electron-electron interactions are playing a dominant role, as discussed in the
previous paragraph. Moreover the pseudogap phase [15, 16, 17], and the d-wave
symmetry of the superconducting gap [18] are di�cult to understand in terms of
the standard BCS mechanism based on the electron-phonon interaction. Another
indication for an unconventional pairing mechanism came from the experimental
temperature dependence of the low energy spectral weight of optimally doped and
underdoped Bi2212[19, 20], which behaves opposite to the prediction from BCS
theory[21]. On the other hand, it has been shown that in the overdoped region of
the phase diagram the system has a more conventional Fermi-liquid behavior[22, 23,
24, 25]. This issue can be addressed by optical techniques[19, 20], taking advantage
of the relation between the intraband spectral weight and the energy momentum
dispersion of the conduction electrons [26]

W (Ωc) ≡
∫ Ωc

0

σ1(ω)dω =
πe2a2

2~2V
< −T̂ >, (3.5)
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where σ1(ω) is the real part of the optical conductivity, Ωc is a cuto� frequency,
a is the in-plane lattice constant, V is the volume of the unit cell, and T̂ ≡
−a−2

∑
k n̂k∂

2εk/∂k2. In the superconducting state, the integration must include the
δ-peak at zero frequency due to the condensate. In the nearest neighbor tight-binding
approximation T̂ is exactly the kinetic energy of the conduction band electrons. In
this case the lowering of W (Ωc) implies an increase of the electronic kinetic energy
and vice-versa. The value of Ωc has to be chosen as to cut o� the region of the
interband transitions. In the presence of strong electron correlations the intraband
energy region becomes very broad as it includes the high-frequency peaks due to the
electronic transitions leading to the double occupancy. Recently Wrobel et al. [14]
pointed out that W (Ωc) is representative of the kinetic energy within the t-J model,
if Ωc is chosen between the values of exchange integral J ∼ 0.1 eV and hopping t ∼
0.4 eV, while it corresponds to the kinetic energy of the Hubbard model when the
cuto� energy is above U ∼ 2 eV.
While the physical meaning of the temperature dependent W(Ωc) is a matter of
theoretical interpretations, it can be, in fact, experimentally determined without
model assumptions, as discussed in section 2.4.2. The latter is non-trivial, since
the integration in Eq.3.5 requires, at �rst glance, the knowledge of σ1(ω) down to
zero frequency and a separate determination of the super�uid density. Fortunately,
additional information about the real part of the dielectric function ε1(ω), which is
independently obtained from ellipsometry as well as re�ectivity measurement (since
re�ectivity depends on both ε1 and ε2), allows one to determine accurately W (Ωc)
and its temperature dependence without low-frequency data extrapolations.

3.3 The relation between SW and kinetic energy

In order to draw conclusions about the kinetic energy of the carriers based on optical
experiments, one has to investigate the validity of the relation between SW and
kinetic energy, given the real band structure of the material under investigation. It
is important to do this, since our intuition is based on the behaviour of the kinetic
energy (which, as we illustrate below) always increases in the superconducting state,
in a BCS scenario. However, the optical spectral weight for a single band is given
by [27, 26]

W (T ) =
2~2

πe2

∫ +∞

0

dνRe [σxx(ν)] =
2

N

∑

k

∂2εk

∂k2
x

nk, (3.6)

whereas the negative of the band kinetic energy is given by a somewhat di�erent
expression; in the simplest case it is given by
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− < K >= − 2

N

∑

k

εknk, (3.7)

where εk is the tight-binding dispersion (that takes into account already Hartree-
Fock-type corrections) and nk is the single spin momentum distribution function (we
take the lattice spacing to be unity). The sum over k is over the �rst Brillouin zone,
and in the case with bilayer splitting (see below), includes a summation over the two
split bands. Note that this is not the total kinetic energy of all the electrons, but just
the kinetic energy of the electrons in the given tight-binding band(s); furthermore,
only in the case of nearest neighbour hopping is W proportional to − < K >. In the
presence of more complicated band dispersion, the expectation value of the kinetic
energy has a more expression.
We �rst review the expectation for the kinetic energy, based on Eq. (3.7), since
this correspondence has been used to build intuition concerning the optical spectral
weight. First, what happens when the system goes superconducting? The momentum
distribution function changes as discussed previously [29]� it goes from a Fermi-like
distribution function (in the absence of strong correlations) to a distribution smeared
by the presence of a superconducting order parameter. For an order parameter with
d-wave symmetry, the momentum distribution is no longer a function of the band
structure energy, εk alone. For example, for a BCS order parameter with simple
nearest neighbour pairing form, ∆k = ∆(cos kx − cos ky)/2, then, as k varies from
(0, 0) to (π, 0), the magnitude of the order parameter changes from zero to ∆. On the
other hand, as k varies along the diagonal (from the bottom of the band to the top),
the order parameter is zero (and constant). In any event, even at zero temperature,
BCS-like superconductivity raises the kinetic energy of the electrons (see Fig. 3 of
Ref. [29]). This is as expected, since for non-interacting electrons the normal state
at zero temperature corresponds to a state with the lowest possible kinetic energy.
Therefore, any modi�cation to this state (for example, because of a superconducting
instability) can only increase the kinetic energy expectation value.
The question, partially answered in Refs. [29, 37] is: does this behaviour remain at
all electron densities? Furthermore, with further than nearest neighbour hopping,
does the spectral weight (given by Eq. (3.6)) also follow the same trend as the
negative of the kinetic energy? Perhaps not surprisingly, we �nd that the spectral
weight does not qualitatively follow the kinetic energy near a van Hove singularity.
However, as will be discussed further below, we �nd that for the band structure
and doping regime thought to be applicable in Bi2Sr2CaCu2O8+δ (BSCCO) [28], the
spectral weight should decrease in the superconducting state relative to the normal
state. That is, correlations, phase �uctuations, scattering rate collapse, or some other
scenario is required to understand the "anomalous" behaviour. We will also address
the temperature dependence in the normal state; in some ways this is a more easily
measured quantity than the change below Tc.
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Figure 3.6: Spectral Weight vs. T 2 for (a) half-�lling, and (b) n = 0.5. The normal
state is given by the solid red curve, and the superconducting state with d-wave
(s-wave) symmetry by the short-dashed blue (dashed green) curve. In both cases
the normal state result is almost linear in T 2, and the superconducting state shows
a decrease in the spectral weight (increase in the kinetic energy) as expected. We
used t = 0.4 eV, and BCS values for order parameters, etc. with Tc = 69 K.
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In the next section we examine the optical spectral weight for a model with nearest
neighbour hopping only. This simple band structure yields an optical spectral weight
which is directly proportional to the expectation value of the negative of the kinetic
energy. We examine the behaviour of the optical spectral weight as a function of
electron density. Note that we will use the symbol n to denote electron density;
for a single band this quantity will span values from 0 to 2. It will be used when
systematic investigations of the spectral weight for a given band structure are carried
out. When comparing with experiments in the cuprate, we will use the symbol δ to
denote doping away from half-�lling, i.e. n = 1. Thus, δ = 1− n, and the regime of
experimental interest is roughly 0 < δ < 0.25. We use the phrase "hole doping" to
refer speci�cally to the value of δ.
Following this section we introduce next-nearest neighbour hopping into the band
structure (t− t′ model). This moves the van Hove singularity away from half �lling
and also causes the spectral weight to deviate from the kinetic energy; hence both will
be plotted in the ensuing plots. We �nd already in this simple extension signi�cant
departures from the "standard BCS" description based solely on the kinetic energy.
Finally, following Ref. [28], we also introduce a next-next-nearest neighbour hop-
ping and a bi-layer splitting term; these are required for a quantitatively accurate
description of the ARPES (Angle-Resolved PhotoEmission Spectroscopy) results.
We �nd that these terms have signi�cant e�ects on the optical sum rule. First, the
van Hove singularity is split into two singularities, secondly the �rst of these occurs
at a much lower hole doping level than in the t− t′ model.
As discussed in the summary, the end result is that (i) the change in the optical
spectral weight due to superconductivity can be either positive or negative, depend-
ing on the band structure and electron density, and (ii) if a parametrization of the
band structure is adopted from ARPES studies, then the optical spectral weight
decreases in the superconducting state. The observed increase for optimal and un-
derdoped samples then requires additional ingredients. Some possibilities are brie�y
mentioned.

3.3.1 nearest neighbour hopping only

For nearest neighbour hopping only, the band structure is given by

εnn
k = −2t(cos kx + cos ky) (3.8)

and we have that 2W = − < K > in two dimensions. In Fig. 3.6 we show plots
of the spectral weight vs. T 2 for two representative electron densities, n = 1 and
n = 0.5. The �rst places the Fermi level right on the van Hove singularity, while
the second is well removed from all van Hove singularities. These are computed
through the usual procedure: �rst, even in the normal state, the chemical potential
must be determined at each temperature to ensure that the electron density remains
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constant as a function of temperature. This is the common procedure, though it is
true that in complicated systems for which one is using some "low energy" tight-
binding Hamiltonian to describe the excitations that it is not immediately obvious
that the electron number density should remain �xed as a function of temperature;
nonetheless, we adopt this procedure here. In Eq. (3.6) the chemical potential enters
the momentum distribution function, which, in the normal state, is replaced by the
Fermi-Dirac distribution function, nk → f(εk−µ). In the superconducting state, we
simply adopt a model temperature dependence for the order parameter, following
Ref. [29]. This has been tested for both s-wave and d-wave symmetries by comparing
to fully self-consistent solutions to BCS equations with separable potentials [29]. One
still has to determine the chemical potential self-consistently for each temperature,
which is done by solving the number equation in the superconducting state for a
�xed chemical potential and order parameter, and iterating until the desired number
density is achieved. The value of the zero temperature order parameter is �xed by
the weak coupling BCS values, 2∆0 = ηkBTc where η = 4.2(3.5) for the d-wave
(s-wave) case. Further details are provided in Ref. [29]. For the electron densities
studied in the �rst part of this section, we simply take Tc = 69 K for all electron
densities. In section IV we will adopt Tc values as observed from experiment.
Both plots in Fig. 3.6 show somewhat linear behaviour with T 2, though in Fig. 3.6
there is some noticeable upward curvature due to the van Hove singularity which is
present at the Fermi level for this electron density. The decrease in spectral weight
at the transition is more pronounced for s-wave symmetry (dashed green curves)
than for d-wave symmetry (dotted blue curves). The normal state results show
a decreasing value with increasing temperature, indicative of an increasing kinetic
energy. This is the 'textbook' example of the temperature dependence of the spectral
weight through a superconducting transition [21, 30, 29].
In Fig. 3.7 we examine both the spectral weight di�erence (Ws−WN and Wd−WN

for s- and d-wave symmetry, respectively � 'N' here stands for 'normal') at zero
temperature, and the slope of W (T ) with respect to T 2 at Tc, vs. electron density,
n. These plots make evident several important points. First, the van Hove singu-
larity clearly plays a role; it enhances the overall magnitude of the e�ect, whether
we examine the di�erence between the superconducting and normal state at zero
temperature, or the slope at Tc. In fact the latter tracks the former, indicating that
both are related to one another. One can understand this qualitatively by the ob-
servation that in both cases (warming up or going superconducting) the momentum
distribution function broadens, though for di�erent reasons [29]. The most impor-
tant point to learn from this plot is that the di�erence is always negative, indicating
that, for nearest neighbour hopping only, the opening of a gap does indeed increase
the kinetic energy and decrease the spectral weight in a superconductor.
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conducting state with d-wave symmetry and the normal state at zero temperature
vs. doping (dotted blue curve). The dashed green curve shows the same quantity
for s-wave symmetry, and the pink points indicate the slope (with respect to T 2)
of the spectral weight near Tc. All three quantities are always negative, and show
an enhancement near half-�lling due to the van Hove singularity. In fact, the pink
points are almost a perfect inverted image of the density of states (see the minus
sign in Eq. (3.12)), except for the small density regime near half-�lling, where the
van Hove singularity makes the Sommerfeld expansion invalid.

3.3.2 next-nearest neighbour hopping

When next-nearest neighbour hopping is included in the band structure, one obtains
the so-called t− t′ model. This model has band structure

εnnn
k = −2t(cos kx + cos ky) + 4t′ cos kx cos ky, (3.9)

and goes a long way towards understanding the Fermi surface for Bi2Sr2CaCu2O8+δ

(BSCCO), as determined by ARPES [31, 28], at least for the doping levels studied.
On the theoretical side, the presence of t′ shifts the van Hove singularity to an energy
given by µ = −4t′. For the sake of this study one can study all electron densities;
however, one must bare in mind that most experiments on BSCCO are at doping
levels such that the van Hove singularity is not crossed, i.e. the Fermi surfaces
are always hole-like. We will also study (see next section) a band structure more
pertinent to BSCCO [31, 28], which uses a next-next-nearest neighbour hopping
amplitude in addition:

εk± = εnnn
k − 2t′′(cos 2kx + cos 2ky)± t⊥(cos kx − cos ky)

2/4, (3.10)



44 The spectral weight transfer in cuprate superconductors

-1.5

0.0

1.5 δ=0.09  n=0.91
δ=0.15  n=0.85
δ=0.19  n=0.81
δ=0.21  n=0.79k

x

k
y

 

-1.5

0.0

1.5

 n=1.5
 n=0.75
 n=0.6
 n=0.3

M

Y

Γ

ΓMYΓ

 

E
n
e
rg

y
 (

e
V

)

-1.5

0.0

1.5  n=1
 n=0.5

(c)

(b)

(a)

 

 

Figure 3.8: Illustrative plots of the band structure for (a) nearest neighbour hopping
only, (b) the t − t′ model, and (c) the Kordyuk et al. [28] parametrization of the
band structure with bilayer splitting. The van Hove singularities occur where the
band dispersion �attens.

which we will refer to as the t − t′ − t′′ model. Note that we allow for a bilayer
splitting term as well, following Kordyuk et al. [28]. However, they actually adjust
hopping parameters for each doping, while we simply adopt the ones used for their
overdoped sample: t = 0.40 eV, t′ = 0.090 eV, t′′ = 0.045 eV, and t⊥ = 0.082 eV.
Illustrative plots of the band structures are shown in Fig. 3.8.
Returning now to the t − t′ model, the van Hove singularity occurs at an electron
density n = 0.60, i.e. a hole doping (away from half-�lling) of δ = 1 − n = 0.4. As
mentioned above, this high level of doping is never realized in samples of BSCCO
[32]. In any event, we are interested in the more generic behaviour of the spectral
weight, given a reasonably representative band structure for the cuprate.
In Fig. 3.9 we show a summary of the doping dependence of the various quantities
with the t − t′ band structure. In both Fig. 3.9 (a) and (b) we have plotted the
density of states at the Fermi level as a function of doping (this is possible for
a doping-independent band) to illustrate where the van Hove singularity is. The
remarkable feature in Fig. 3.9 (a), for electron densities below (i.e. hole doping away
from half �lling "above") the van Hove singularity, is that the spectral weight change
in the superconducting state is positive ! Similarly in Fig. 3.9 (b) the actual slope
of the spectral weight above Tc is positive. Note that our intuition about the kinetic
energy change remains correct; it is indeed negative, for all electron densities, for



The spectral weight transfer in cuprate superconductors 45

-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0

W
s
 -

 W
N

 (
m

e
V

)

n

(a)

T = 0

Wd - WN

Ws - WN

-(<K>d - <K>N)/2

-(<K>s - <K>N)/2

g(εF)

-0.8

-0.4

0.0

0.4

0.8

1.2

0.0 0.5 1.0 1.5 2.0

T
c
2
*d

W
/d

T
2
 (

m
e
V

)

n

(b)

T = 69 K

 Tc
2*dW/dT2

-Tc
2*d<K>/dT2/2

g(εF)

Figure 3.9: (a) The di�erence (Wd−WN) in the spectral weight between the super-
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Both exhibit positive values to the left of the van Hove singularity (the density of
states at the Fermi level is indicated, as a function of doping, by the dot-dashed cyan
curve). The negative of the kinetic energy for d-wave (blue short-dashed curve) and
for s-wave (dotted pink curve) behaves as expected, always negative, and peaks (in
absolute value) at the van Hove singularity. (b) The normal state slope (taken at
Tc = 69 K) of the spectral weight vs. doping (solid red curve). The dashed green
curve shows the same quantity for the negative of the kinetic energy. These behave
in very similar fashion to the di�erences (taken at zero temperature) shown in (a).
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both s-wave and d-wave symmetries. Moreover, the slope is also everywhere negative,
which establishes a de�nite correlation between the slope above Tc and the change
at T = 0. Note that in Ref. [29] (see Fig. 3 of that reference) the doping parameters
were such that the optical sum rule and the negative of the kinetic energy were
qualitatively (and even quantitatively) similar [33]. Here, in the vicinity of the van
Hove singularity we encounter a regime where these two properties are markedly
di�erent from one another.
How do we understand this strange dependence near the van Hove singularity ? It
is easiest to focus on the temperature dependence in the normal state. One should
�rst review the simple argument for why the slope for the negative of the kinetic
energy is expected to always be negative, no matter what the band structure. This
quantity is de�ned as

− < K >= −
∫ +∞

−∞
dε ε g(ε)f(ε− µ) (3.11)

where g(ε) ≡ 1
N

∑
k δ(ε − εk) is the single spin, single particle density of states for

electrons with band dispersion εk. One can perform a Sommerfeld expansion, which
yields two terms, one of which is eliminated by performing the analogous expansion
for the electron density, with the requirement that the density remains constant as
a function of temperature [34]. The result is [34]

− < K >= − < K >T=0 −π2

3
(kBT )2g(εF ), (3.12)

where, it is now clear that, regardless of the Fermi level, the temperature correction
is always negative. This means that the kinetic energy (< K >) always increases as
the temperature increases, a statement which is physically obvious.
With the spectral weight,

W ≡ 2

N

∑

k

∂2εk

∂k2
x

f(εk − µ), (3.13)

there is no simple cancelation, as occurs in the kinetic energy. If one de�nes the
quantity,

gxx(ε) ≡ 1

N

∑

k

∂2εk

∂k2
x

δ(ε− εk), (3.14)

then the Sommerfeld expansion can be applied to W (T ) as was done for the kinetic
energy. The result is

W (T ) = W (0) +
π2

3

(kBT )2

8t
φ(εF ), (3.15)



The spectral weight transfer in cuprate superconductors 47

−10

−5

0

5

10

 0  0.5  1  1.5  2

φ(
ε F

) 
(m

eV
)

n

thick curves:   spectral weight
 thin curves:   kinetic energy

t = 0.40 eV

t’ = 0

t’ = 0.05 eV

t’ = 0.10 eV

t’ = 0.15 eV
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where

φ(εF ) = 8t

{
g′xx(εF )g(εF )− g′(εF )gxx(εF )

g(εF )

}
. (3.16)

Using gxx(εF ) = −εF g(εF ), which is correct for nearest neighbour hopping only, one
�nds φ(εF ) = −8tg(εF ) and one recovers the previous result, given by Eq. (3.12) for
the optical spectral weight as well as for the kinetic energy. Otherwise, the sign of the
correction is dependent on the quantity within the braces. This quantity involves a
di�erence between two quantities, both of which contain singularities. This quantity
is plotted in Fig. 3.10 for the t − t′ model for various values of t′, along with the
corresponding quantity for the kinetic energy, which, by Eq. (3.12), is −8tg(εF ). It is
evident that as t′ increases, a larger anomaly over a wider range of electron densities
is expected. For more complicated band structures, an assortment of Fermi energies
(i.e. electron concentrations) will exist for which the slope (and the change in the
superconducting state) is "anomalous", i.e. positive.
In Fig. 3.11 we show some speci�c examples of the temperature dependence of
the optical spectral weight for a variety of electron concentrations. These results
clearly show the progression from the 'standard' result shown for n = 1.5 (top
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Figure 3.11: Spectral weight for four representative densities for the t− t′ model (see
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ing vs. normal state di�erence) as the electron concentration changes such that the
chemical potential sweeps through the van Hove singularity.
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frame) to the highly anomalous result shown for n = 0.6 (third frame). Note the
variation of the vertical scale: there is the obvious progression of lower spectral
weight with decreasing electron density. However, the magnitude of both the slope
and the change due to superconductivity also experiences a large increase for the two
electron densities near the van Hove singularity (n = 0.75 and n = 0.6). For example,
the absolute value of the slope in the second frame (n = 0.75 is approximately a
factor of 5 higher than that in the �rst frame (n = 1.5). Similarly at n = 0.6 the
slope is much higher than at n = 0.3, particularly at low temperatures. The reason
is evident from Fig. 3.10: this enhancement occurs in the vicinity of the van Hove
singularity. Note that the results of Fig. 3.11 are displayed for t′ = 0.15 eV. In
this case, Fig. 3.10 shows that there is an extended range of electron densities for
which a positive slope (and positive change below Tc) occurs. Using t′ = 0.10 eV,
for example, would result in a very narrow range of electron densities for which the
optical spectral weight has behaviour opposite to that of the negative of the kinetic
energy (see Fig. 3.10, blue dashed curves).
In summary, in the case of the simple next-nearest neighbour model considered,
the anomalous region always occurs at electron concentrations below the van Hove
singularity. In many of the high temperature superconducting cuprate, this electron
concentration is not experimentally achieved. Certainly in the experiments that
report a positive ("anomalous") optical spectral weight change in BSCCO, this
regime is believed to be irrelevant. Hence, while this investigation of the behaviour
of the optical spectral weight using the t− t′ model certainly plays havoc with our
intuition (which motivated the experiments in the �rst place), it apparently does
not provide an explanation of the experimental results [35]. This is further explored
in the next section.

3.3.3 bi-layer splitting

It is evident that the characteristics of the optical spectral weight will be very de-
pendent on the band structure and the doping level. A complete investigation of
parameter space, with an accompanying catalogue of optical spectral weight be-
haviour would undoubtedly reveal a wide assortment of results. Perhaps a more
useful procedure at this point would be to adopt the band structure proposed for a
particular compound (BSCCO), as prescribed by some other experiment (ARPES),
and determine the behaviour of the optical spectral weight in this case. As dis-
cussed in the previous section, we will adopt the parameters used in Ref. ([28]) to
�t their ARPES results; these include a bilayer splitting term, which, as will now
be discussed, can result in even more unusual doping dependence. Their determined
structure was given in the previous section by Eq. (3.10) with parameters listed
below this equation. They also used t⊥ = 0.082 eV; we will adopt these parameters
for all electron concentrations (i.e. hole doping) for simplicity.
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Figure 3.12: Spectral weight for the four hole doping concentrations considered in
the experiments [37]. These calculations use the ARPES-determined band structure
parameters from Ref. [28], including the bilayer splitting. Slopes are always negative,
and the change at Tc is also always negative. Note that in this case the s-wave order
parameter gives roughly the same value as the d-wave parameter.
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Fig. 3.12 shows the optical spectral weight as a function of temperature for the four
doping levels considered in the experiments [37, 36]. For these band structures, BCS
would always show a decrease of SW below Tc.
However, very recently, very overdoped BSCCO samples have been produced [38];
ARPES measurements [38] have determined that the chemical potential moves
through the �rst van Hove singularity. Thus, it is instructive to examine the con-
sequences of this BCS model for higher hole doping concentrations (lower electron
densities). In Fig. 3.13 the doping dependence of the optical spectral weight slope
is shown as a function of electron concentration, n for the hole doped region (with
respect to half-�lling). This �gure uses the band structure parameters from Kordyuk
et al. [28], so the crossing of the �rst van Hove singularity occurs at a higher hole
doping (about δ ≈ 0.28) than reported in Ref. [38]. Leaving this detail aside for
the moment, it is clear from Fig. 3.13 that a dramatic change is expected in the
optical spectral weight anomaly for this doping. In Fig.3.14 we show the tempera-
ture dependence for some hole doping concentrations near this region, as indicated
by the open squares in Fig. 3.13. Both the normal state and superconducting state
behaviours show a transition as one crosses the van Hove singularity. It would be
most interesting to measure the optical spectral weight in this doping regime. Such
measurements would provide a good indication of whether or not the van Hove
singularity is relevant in these materials.

3.4 The optical properties of Bi2223

3.4.1 The ab-plane response

Two large single crystals of Bi2Sr2Ca2Cu3O10 with Tc = 110 K and transition width
∆Tc ∼ 1 K were prepared as described in Ref. [1]. The samples had dimensions
(a× b× c) of 4×1.5×0.2 mm3 and of 3×0.8×3 mm3 respectively. The �rst crystal
has been used to measure the in-plane optical properties and was cleaved within
minutes before being inserted into the cryostat. We measured the normal-incidence
re�ectivity from 100 and 7000 cm−1 (12.5 meV - 0.87 eV) using a Fourier transform
spectrometer, evaporating gold in situ on the crystal surface as a reference. The
re�ectivity curves for selected temperatures are displayed in Fig. 3.15. The ellipso-
metric measurements were made on the same sample surface in the frequency range
between 6000 and 36000 cm−1 (0.75 - 4.5 eV) at an angle of incidence of 74◦. The
ellipsometrically measured pseudo-dielectric function was numerically corrected for
the admixture of the c-axis component which provided the true ab-plane dielectric
function, whose real and imaginary parts are shown in Fig. 3.16. The c-axis dielec-
tric function that is required for this correction was measured independently on the
ac-oriented surface of the second crystal as described in the next section. The su-
perconductivity induced changes of the optical properties at photon energies above
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Figure 3.15: In-plane re�ectivity spectra of optimally doped Bi2223 for selected
temperatures.

the superconducting gap (in the mid-infrared and higher frequencies), are rather
small but their reliable detection is crucial to determine to correct sign and magni-
tude of the spectral weight transfer. We used home-made optical cryostats, whose
special design preserves the sample alignment during thermal cycling. In the visible
- ultraviolet (UV) region, in order to avoid spurious temperature dependencies of
the optical constants due to adsorbed gases at the sample surface, an ultra high
vacuum cryostat was used, operating at a pressure in the 10−10 mbar range. All
data were acquired in the regime of continuous temperature scans at a rate of about
1 K/minute between 20 K and 300 K with a resolution of 1 K. The signal to noise
ratio of the temperature dependent re�ectivity in the mid-infrared is about 2000.
In order to obtain the optical conductivity σ1(ω) in the whole frequency range,
we used a variational procedure described in Ref. [39]. In the �rst stage, the in-
frared re�ectivity and the ellipsometrically measured complex dielectric function in
the visible and UV-range were �tted simultaneously with a Drude-Lorentz model.
The corresponding parameters at selected temperatures are listed in Table 3.1. We
found that one Drude and four Lorentz terms form a minimal set of oscillators �tting
data well enough at all temperatures. The Drude peak narrows with cooling down
and transforms to a condensate δ-peak below Tc. The two lowest frequency oscil-
lators which mostly describe the mid-infrared absorption, show dramatic changes
below Tc, mimicking the formation of the superconducting gap. The high-frequency
Lorentzians corresponding to the interband transitions, show very little temperature
dependence. In the second stage, the �tting was re�ned with a variational dielectric
function added on top of the Drude-Lorentz model. The former is essentially a set
of a large number of narrow oscillators, each corresponding to one or two spectral
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Table 3.1: Fit of the measured re�ectivity and ellipsometry data with one Drude
and four Lorentz oscillators: ε(ω) = ε∞ +

∑
k ω2

p,k/(ω
2
0,k − ω2 − iγkω) at selected

temperatures. All parameters, except ε∞, are given in cm−1, i.e. they should be
multiplied by 2πc to convert to angular frequencies in units of s−1.

ε∞ ω0,k ωp,k γk ε∞ ω0,k ωp,k γk

280 K 55 K
2.53 0 7184 160 2.46 0 10145 0

201 8598 706 1113 9997 1866
1607 15472 6670 4260 12460 7928

18553 12211 11911 18812 11655 11436
37110 39368 20474 37550 40829 21353

205 K 25 K
2.52 0 8497 152 2.45 0 10295 0

178 7768 787 1149 9730 1797
1759 15287 6750 4232 12583 7914

18647 11733 11390 18815 11580 11410
37190 39761 20750 37622 41095 21582

110 K
2.47 0 9872 82

943 11944 2636
5147 10490 8143

18757 12162 11992
37500 40563 21161

datapoints. This yields the Kramers-Kronig consistent dielectric function which re-
produces all the �ne details of the infrared re�ectivity spectra while simultaneously
�tting to the measured complex dielectric function at high frequencies. In contrast
to the "conventional" KK re�ectivity transformation this procedure anchors the
phase of the complex re�ectivity to the one at high energies measured directly with
ellipsometry[40].
In Fig. 3.17 we show the optical conductivity at selected temperatures. The spec-
tral and temperature dependence of σ1(ω) of Bi2223 is very similar to the one of
Bi2212[41, 19], although the conductivity of Bi2223 is slightly larger, likely due to a
higher volume density of the CuO2 planes in the tri-layer compound. The strongest
changes as a function of temperature occur at low frequencies. In the normal state
the dominant trend is the narrowing of the Drude peak. The onset of supercon-
ductivity is marked by the opening of the superconducting gap which suppresses
σ1(ω) below about 120-140 meV, slightly higher than in Bi2212. Such a large scale
is apparently caused by a large gap value in Bi2223, which amounts up to 60 meV,
as shown by tunnelling measurements [42].
The much smaller absolute conductivity changes at higher energies, which are not
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Figure 3.16: Bi2223 ab-plane dielectric function at selected temperature.

discernible at this scale, can be better seen in Fig. 3.18 where we show the tem-
perature dependent optical constants taken at selected photon energies. The change
induced by superconductivity in the optical constant is clearly visible as a kink at
Tc for energies up to at least 2 eV, which tells that the energy range where the
redistribution of spectral weight takes place is very large.

3.4.2 Determination of the c-axis dielectric function

In order to properly convert the pseudodielectric function measured ellipsometri-
cally on the ab-crystal surface to the true dielectric function along the ab-plane, we
additionally measured the c-axis dielectric function using another crystal of Bi2223
grown under the same conditions.
We did spectroscopic ellipsometry from 6000 and 36000 cm−1 on an ac surface of di-
mensions (a×c) 3×0.8 mm2 which we cut and polished with a diamond paper of 0.1
µm grain size. The surface image is shown in Fig. 3.19. Two orthogonal orientations
of the sample were used, designated as (ac) and (ca), as shown in Fig.3.19 which
provided four ellipsometric parameters ψac, ∆ac, ψca, ∆ca at each frequency. Assum-
ing that εa ≈ εb we inverted four corresponding expressions based on the Fresnel
equations in order to obtain four unknown variables εab

1 , εab
2 , εc

1 εc
2. We applied this

procedure for three angles of incidence 65◦, 70◦ and 75◦ simultaneously in order
to improve the accuracy of the inversion. We also measured the normal incidence
re�ectivity between 450 and 8000 cm−1 on the same crystal plane for the electric
�eld parallel to the c-axis. This measurement agrees well with the ellipsometrically
determined εc(ω), which con�rms the validity of the described inversion procedure.
Finally, the re�ectivity and ellipsometry output were all �tted simultaneously with a
variational KK consistent function [39] in order to extend the frequency dependence
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Figure 3.17: In-plane optical conductivity of Bi2223 at selected temperatures. The
inset displays the low energy part of the spectrum.

of εc(ω) down to 450 cm−1 while anchoring the unknown phase of the re�ectivity by
the ellipsometric data.
The c-axis re�ectivity Rc(ω), optical conductivity σ1c(ω) and the real part of the
dielectric function ε1c(ω) are displayed in Fig. 3.20. We observe a weak wavelength
dependence for ε1c(ω), which is in a good agreement with with a previous report by
Petit et al [43]. However, we found a rather di�erent σ1c(ω) which is likely due to the
fact in that in Ref.[43] the re�ectivity was measured on a textured polycrystalline
sample of Bi2223 and the conductivity was obtained by a conventional Kramers-
Kronig transform. As it was pointed in Ref.[43], the misalignment of the grains of
the oriented ceramic can have a considerable impact on the �nal result. The main
advance compared to these earlier results is that our samples were single crystals,
and we determined the real and imaginary part of the dielectric tensor in a direct
way using ellipsometry, without the need of a Kramers-Kronig transformation.

3.4.3 The sensitivity of the in-plane dielectric function to the
c-axis correction

The pseudodielectric function measured on the ab oriented crystal surface de-
pends on both components of the dielectric tensor and the angle of incidence θ:
εpseudo = f(εab, εc, θ). It was shown by Aspnes[44] that in this case the pseudodielec-
tric function should be much more sensitive to the ab-plane component, which lies
along the crossing line of the plane of incidence and the sample surface, than to the
c-axis one. In order to verify that this is the case, we show in Fig. 3.21 the "sen-
sitivity functions" ∂εpseudo/∂εab and ≡ ∂εpseudo/∂εc calculated for the actual angle
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Figure 3.18: Optical constants of Bi2223 at selected photon energies as a function
of temperature. Left panel: normal incidence re�ectivity at 0.027, 0.14 and 0.56 eV.
Right panel: real and imaginary parts of the complex dielectric function at 0.8 1.24
2.05 eV. The photon energies are chosen close to the borders and in the middle of
the experimental range.

of incidence (in our case 74◦) on the base of described above ac-plane ellipsometry
results.
One can see that the pseudodielectric function is indeed much less sensitive to the
c-axis component since ∂εpseudo/∂εc is about 4-5 times smaller than ∂εpseudo/∂εab. For
this reason, the temperature dependence of the c-axis dielectric function is expected
to have only a minor e�ect on that of the measured pseudodielectric function. In
order to verify this, we performed the c-axis correction of the ab-plane pseudodi-
electric function and calculated the spectral weight integral W (Ωc = 1eV ) using in
the �rst case the temperature dependent c-axis dielectric function and in the second
case a constant, temperature-averaged one. The resulting temperature dependence
of W (Ωc) in the former case is shown in Fig. 3.22, while the one in the latter case is
shown in Fig.3.23. One can see that accounting for the temperature dependence of
the c-axis dielectric function does not have any signi�cant in�uence on temperature
dependence of W (Ωc), except for a stronger scatter of the datapoints as a result of
the inevitable noise introduced by extra measurement on a small crystal surface.
Therefore we used the temperature averaged c-axis data to correct the ab-plane
pseudodielectric function in the main part of this work.
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Figure 3.19: Top: the image of the ac plane after polishing. Bottom: two geometries
of the ellipsometry experiment.

3.5 The SW transfer in Bi2223

3.5.1 Experimental determination of W (Ωc)

The extraction of the spectral weight W (Ωc) from the measured spectra is a delicate
issue. Formally, one has to integrate the optical conductivity over a broad frequency
range, including the region below the low-frequency experimental cuto� Ωmin (in
our case about 100 cm−1) containing the condensate δ-peak (below Tc) at ω = 0
and a narrow quasiparticle peak. According to a frequently occurring misconception
the existence of such a cuto� inhibits the calculation of this integral. Indeed if
only the real part of the optical conductivity in some �nite frequency interval was
available, clearly an essential piece of information needed to calculate W (Ωc) would
be missing, namely σ1(ω) below Ωmin. However, due to the fact that the real and
imaginary part of the dielectric constant are related non-locally via the Kramers-
Kronig transformation, any change in one of them will a�ect the other in a broad
region of the spectrum. In particular, any change of σ1(ω) below Ωmin must in�uence
ε1(ω) at higher frequencies. Since the latter is measured independently (directly
by the ellipsometry above 0.75 eV cm−1 and indirectly via the re�ectivity in the
infrared), it puts constraints on the possible values of σ1(ω) below Ωmin and W (Ωc).
Obviously, these constraints are going to be the more tight the more accurately the
optical constants are determined in the accessible interval.
According to the KK relation

ε1(ω) = 1 + 8℘

∫ ∞

0

σ1(ω
′)dω′

ω′2 − ω2
(3.17)

the leading contribution of σ1(ω) below Ωmin to ε1(ω) above Ωmin is proportional
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Figure 3.20: c-axis optical spectra of Bi2223 at selected temperatures. Top panel:
normal incidence re�ectivity, middle panel: σ1(ω), bottom panel: ε1(ω).

to the integral
∫ Ωmin

0
σ1(ω)dω whereas ε1(ω) is much less sensitive to the spectral

details of σ1(ω) below Ωmin[40, 45]. For example, the contributions of the super�uid
condensate and of a narrow quasiparticle peak (provided that its width γ ¿ Ωmin)
to ε1 (and thus to the re�ectivity) at high frequencies are almost indistinguishable.
Therefore the value of the integral of W (Ωc) can be model-independently determined
from our experimental data, while resolving the details of σ1(ω) below 100 cm−1, for
example the separation of the super�uid density and quasiparticle spectral weight,
is not possible. In practice, the realization of the extra bounds on the value of
W (Ωc) using the additional information contained in the real part of the dielectric
function can be done via the aforementioned procedure of variational Kramers-
Kronig constrained �tting[39]. Essentially, this is a modeling of the data with a very
large number of narrow oscillators, which are added to the model dielectric function
until all the �ne details of the measured spectra are reproduced. Importantly, the
model function always satis�es the KK relations. Once a satisfactory �t of both
re�ectivity in the infrared region and ε1(ω) and ε2(ω) above 0.75 eV is obtained,
we use the integral of σ1(ω) generated analytically by this multi-oscillator model
as an estimate of the spectral weight. Since the number of oscillators is very large
and their parameters are all automatically adjustable, this procedure is essentially
model independent. The spectral weight as a function of temperature is shown in
Fig. 3.23, for di�erent cut o� frequencies.
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Figure 3.21: Real and imaginary parts of the sensitivity functions ∂εpseudo/∂εab and
∂εpseudo/∂εc de�ned in the text.

In order to illustrate that the measured spectra can indeed anchor the value of the
low frequency spectral weight without the need of the low-frequency extrapolations
of re�ectivity (as it would be the case in the conventional KK transform of re�ectiv-
ity), we performed the following numerical test. In the superconducting state, the
model contains a narrow oscillator centered at zero frequency which accounts for
the spectral weight of the condensate and a narrow quasiparticle peak. We arti�-
cially displaced this oscillator from the origin to a �nite frequency, yet below Ωmin.
The least mean square routine then readjusted all the other parameters in order
to produce a new best �t. After that the overall �tting quality (the mean-squared
error χ2) and the low frequency spectral weight remained almost unchanged with
respect to the initial values, which is indicated by the errorbar in Fig. 3.24, while
the re�ectivity below 100 cm−1 now shows a very di�erent behavior, as it is shown
in Fig. 3.25. This demonstrates that the details of σ1(ω) and R(ω) below 100 cm−1

are not essential for the determination of W (Ωc). In Fig. 3.26 we show an estimation
of the errorbars on the SW for a cut o� frequency of 8000 cm−1 performed with the
program Devin2 described in section 2.4.1. We use a set of data which spans the
frequency interval between 100 cm−1 and 20000 cm−1 with a resolution of 100 cm−1.
These data have been been obtained via a combination of normal incidence re�ectiv-
ity and ellipsometry. In the inset of the �gure one can see a portion of the spectrum
with the estimated error-bars. In the main �gure weshow the SW(Ωc=8000 cm−1)
as a function of the frequency interval provided to the program. In the topmost
panel one can see the SW as a function of the lowest frequency data-point given to
the program. It is clear from this graph that as one provides to Devin2 a data-set
in which the lowest frequency point is above the frequency cut o� of the integral,
the error-bars immediately explode, as expected from the previous examples with
generated data. Similarly, in the bottom panels, when the highest frequency point is
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Figure 3.22: Spectral weight as a function of temperature (for the cuto� of 1 eV) ob-
tained when a temperature dependent c-axis data were used to correct the ab-plane
pseudodielectric function for the admixture of the c-axis component. The tempera-
ture resolution in this plot is lower than in Fig.3.23 because the c-axis temperature
dependent data have a resolution of 5 K.

below the frequency cut o�, the error-bars tend to diverge. It is important to notice
that, a bit surprisingly, the most severe impact on the error-bars does not come from
the lowest frequency limit of the data-set, where the conductivity is the highest in a
metallic sample. In fact one can see in the �gure that estimating the integral to a cut
o� frequency which is above the measured data-range gives much larger error-bars.
This strengthen the idea described above, that any Kramers-Kronig consistent mul-
tioscillator model that �ts the entire data-set, can give very di�erent low frequency
extrapolations below the lowest measured data-point without large changes of the
SW. The analysis we provide in this section con�rms and gives a quantitative clue to
this observation. The reason is that while the value of the integral of σ1 is anchored
by the knowledge of both σ1 and σ2 because of the Kramers-Kronig relation, the
details of the integrand function outside the measured interval are not.

3.5.2 Super�uid density

Even though the described above procedure does not involve a separate determi-
nation of the condensate spectral weight, it is nevertheless interesting to estimate
the super�uid density and the penetration depth of Bi2223 as compared to other
cuprate. This is approximately given by the spectral weight of the δ-peak in the
Drude-Lorentz model (see Table 3.1). The condensate plasma frequency ωps is about
10300 cm−1 (∼ 1.3 eV), which corresponds to the penetration depth λ ≈ 0.15-0.16
µm. For comparison, the same procedure applied to our previous data on Bi2212
[19] gives ωps=9500 cm−1 and λ ≈ 0.17 µm. The stronger super�uid component of
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Figure 3.23: Integrated spectral weight as a function of temperature (plotted vs. T 2

for the reasons described in the text. The results corresponding to di�erent ranges
of integration are shown: (a) from 0 to 0.3 eV, (b) from 0 to 1 eV, (c) from 0 to 2.5,
(d) from 0.3 to 1 (e) from 1 to 2.5 eV.

Bi2223 as compared to Bi2212 correlates with a slightly higher plasma frequency of
the former. One should note that in Ref.[41] a smaller value ωps=9250 (8890) cm−1

was found along the a (b)-axis.
Another way to extract the super�uid density is to plot the value of (π/2)σ2(ω)ω
plotted as a function of frequency (Fig.3.27). The zero energy extrapolation of
this value represents the spectral weight of the condensate. This value is about
2.7± 0.2 · 106 Ω−1cm−2. After multiplying with the usual factor 120/π to make the
conversion to plasma-frequency squared, we obtain ωps/2πc = 1030 ± 40 cm−1, in
good agreement with the value extracted from the Drude-Lorentz �tting. Impor-
tantly, the reactive response of the low-lying quasiparticle peak cannot be separated
from the condensate using only optical data down to a few meV.
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Figure 3.24: Spectral weight W (Ωc, T ) at cut of frequency of 1.25 eV plotted as
a function of T 2. The errorbar is the maximum spread of the values of W (Ωc, T ),
obtained using three di�erent low energy extrapolations shown in the panels of
Fig.3.25.

Figure 3.25: Illustration of the numerical test described in the text: re�ectivity curves
down to zero frequency for di�erent positions of the low energy peak, from left to
right 0, 60 and 90 cm−1.

3.5.3 Temperature dependent redistribution of spectral
weight

It is important to establish the relevant cuto� energy in the spectral weight integral.
The optical conductivity of Bi2223 (see Fig.3.17) as well as the one of Bi2212[41, 19]
shows a minimum around 1 eV separating the Drude peak from the lowest-energy
interband transition, which is believed to be a charge transfer excitation. It is inter-
esting that such a separation is even more pronounced if wewe plot the di�erence be-
tween conductivity spectra at Tc and a high temperature: σ1(ω, 110K)−σ1(ω, 280K)
(see upper panel of Fig. 3.28). A sharp upturn below 20 meV, a dip at around 50
meV and a slow approaching of this di�erence to zero (while being negative) as the
energy increases can be attributed to the narrowing of the Drude peak [45]. How-
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Figure 3.26: Devin2 test on Bi2223: In the top panels we display the value of the
integral

∫ 8000

0
σ1(ω)dω as a function of Ωmin, where Ωmin is the lowest measured

data-point, while Ωmax is kept constant. One can see that when the lowest measured
data-point is above the cut-o� of the integral the errorbar explodes. The same test is
performed varying the highest measured frequency, in the bottom panel. The inset
shows the actual data with their error-bar.
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Figure 3.27: The value of (π/2)σ2(ω)ω plotted vs. frequency. The zero energy ex-
trapolation of this value represents the joint spectral weight of the condensate and
the low-lying quasiparticle peak.

ever, above the same characteristic energy of about 1 eV this monotonic trend totally
disappears. Instead, σ1(ω, 110K)− σ1(ω, 280K) shows a dip at 1.5-2 eV, which cor-
responds to the removal of spectral weight from this region, as the system is cooled
down. The di�erence σ1(ω, 25K)− σ1(ω, 110K) between the two spectra in the su-
perconducting state also shows that the e�ect of the narrowing of the Drude peak
does not noticeably extend above 1 eV (Fig. 3.28). We can learn more from the cor-
responding di�erences of the integrated spectral weight W (ω, 110K)−W (ω, 280K)
and W (ω, 25K)−W (ω, 110K) which are displayed in the lower panel of Fig. 3.28. In
order to separate the e�ect of the superconducting transition from the temperature
dependence already present in the normal state, we additionally plot the 'normal-
state corrected' spectral weight di�erence of the superconducting state relative to
the normal state WSC−WN calculated according to the procedure described in Sec-
tion 3.5.4. Not surprisingly, all curves show an intense spectral structure below ∼ 0.3
eV as a result of strong changes of the shape of the Drude peak with temperature.
However between 0.3-0.5 and 1.0-1.5 eV the spectral variation is weak and, impor-
tantly, both normal- and superconducting-state di�erences remain positive in this
'plateau' region. This indicates an increase of the intraband spectral weight as the
sample is cooled down and an extra increase in the superconducting state. Above
1.5-2 eV, the normal-state di�erence W (ω, 110K) −W (ω, 280K) decreases rapidly
and becomes negative, which suggests that spectral weight is transferred between
the charge-transfer and the intraband regions. In contrast, the superconducting state
di�erences (both normal-state corrected and not) continue decreasing slowly and re-
main positive up to at least 2.5 eV, which means that the Ferrell-Glover-Tinkham
sum rule is not yet recovered at this energy.
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Figure 3.28: Di�erence spectra of the in-plane optical conductivity and of
the integrated spectral weight. Top panel: σ1(ω, 25K)-σ1(ω, 110K) (solid line)
and σ1(ω, 110K)-σ1(ω, 280K) (dashed-dotted line). Bottom panel: W (ω, 25K)-
W (ω, 110K) (solid line), W (ω, 110K)-W (ω, 280K)(dashed-dotted line) and WSC −
WN , corrected for the normal state temperature dependence as descibed in the text
(dotted line).

Another way to visualize the spectral weight transfer is to plot W (Ωc) as a function
of temperature for di�erent cuto� energies. In Fig. 3.23(a-c) we present such curves
for Ωc = 0.3, 1 and 2.5 eV.
One can immediately notice that the curves W (0.3eV, T ) and W (1eV, T ), apart from
di�erent absolute values, have almost identical temperature dependencies; accord-
ingly, the integrated spectral weight between 0.3 and 1 eV (Fig. 3.23d) shows a very
little variation with temperature. This is, of course, a manifestation of the existence
of the discussed above 'plateau' region in the frequency dependent spectral weight
di�erences (Fig. 3.28). This observation is in line with the theoretical �ndings of
Wrobel et al[14] who pointed out that spectral weight integrated to the hopping
parameter t ∼ 0.3-0.4 eV is representative of the kinetic energy of the t-J model.
Above Tc, the spectral weight W (T ) for the cuto� of 1 eV increases gradually with
cooling down in a virtually T 2 fashion, which is most clearly seen when W (Ωc)
is plotted versus T 2 (Fig. 3.23a,b). A similar normal state behavior was observed
in optimally and underdoped Bi2212[19] and in La2CuO4[46]. Although a T 2 term
follows trivially from the Sommerfeld expansion for the temperature broadening
of the Fermi-Dirac distribution, the absolute value of this term turns out to be
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several times larger than what one expects from this expansion[30, 47]. The DMFT
calculations within the Hubbard model [47] showed that this may be caused by
strong correlation e�ects. On the other hand, it was recently pointed out[48, 49] that
the temperature dependence of the one-electron spectral function due to inelastic
electron-boson scattering contributes to the overall temperature dependence of the
optical sum rule much stronger than the Sommerfeld term. The extra contribution
though is predominantly T -linear if the boson energy is small[49].
At the superconducting transition the curve W (T ) shows a sharp upward kink (slope
change) close to Tc = 110 K. The same e�ect was observed in optimally and un-
derdoped Bi2212 [19]. In order to directly compare these data to the results of Ref.
[19], we plot in Fig. 3.24 the W (Ωc, T ) for Ω=1.25 eV together with the temperature
derivative. One should stress that the corresponding kinks are already observed on
the temperature dependence of directly measured optical constants (see Fig.3.18).
By extrapolating the normal state trend to T = 0 K, we can estimate the size
of the superconductivity induced spectral weight transfer in the intraband region:
∆W ≈ 0.8×105 Ω−1cm−2, which is about 1% of the total intraband spectral weight
(as shown by Fig.3.23).
Remarkably, the upward kink of W (Ωc, T ) at Tc is still observed for the cuto� of
2.5 eV (Fig. 3.23c) suggesting that superconductivity induced spectral weight trans-
fer involves energies above the charge transfer gap, as we could already see from
Fig. 3.28. In the context of the Hubbard model, the integrated spectral weight cor-
responds to the kinetic energy of the Hubbard hamiltonian [14] when the cut o�
frequency is set much higher than the U . One would be tempted conclude from the
superconductivity-induced increase of W(2.5eV) that also the total kinetic energy
of the Hubbard model is lowered below Tc, as observed in the cluster DMFT calcu-
lations [50]. Westress, however, that in order to make a de�nitive statement about
the kinetic energy in the Hubbard model one should extend the cuto� frequency
much higher than 2.5 eV. Unfortunately, the noise level at higher energies precludes
the observation of the small superconductivity-induced e�ects. Another problem is
that this range overlaps with strong absorption range due to charge transfer from
oxygen to copper and that those transitions may have temperature dependencies
for a variety of reasons which are not related to the kinetic energy lowering of the
charge carriers.

3.5.4 Temperature modulation analysis at Tc

The existence of relatively sharp kinks (slope discontinuities) at Tc on the curves of
the temperature dependence of various optical functions (see Fig.3.18) enables an
alternative way to quantify the superconductivity-induced spectral weight changes
which gives perhaps a better feeling of the error bars involved [51]. We recently
applied this procedure, which is essentially a temperature-modulation method, to a



The spectral weight transfer in cuprate superconductors 69

similar set of data on optimally doped Bi2212 [45].
In order to separate the superconductivity-induced e�ect from the large temperature
dependence in the normal state not related to the onset of superconductivity we
apply the 'slope-di�erence operator' ∆s de�ned as [51]:

∆sf(ω) ≡ ∂f(ω, T )

∂T

∣∣∣∣
Tc+δ

− ∂f(ω, T )

∂T

∣∣∣∣
Tc−δ

, (3.18)

where f stands for any temperature dependent function. In Fig.3.29 the slope-
di�erence spectra ∆sR(ω), ∆sε1(ω) and ∆sσ1(ω) are displayed with the error bars,
which we determined from the temperature dependent curves such as shown in
Fig.3.18, using a numerical procedure, described in Ref.[45]. Since ∆s is a linear
operator, the KK relation between ε1 and ε2 holds also for the slope-di�erence spec-
tra ∆sε1(ω) and ∆sε2(ω). Thus we can �t the latter spectra with a multi-oscillator
Drude-Lorentz model, which automatically satis�es the KK relations. If the number
of oscillators is large enough, the procedure becomes essentially model-independent.
Using the same dielectric function we can additionally calculate the slope-di�erence
spectrum of re�ectivity as it is related to ∆sε1(ω) and ∆sε2(ω):

∆sR(ω) =
∂R

∂ε1

(ω, Tc)∆sε1(ω) +
∂R

∂ε2

(ω, Tc)∆sε2(ω). (3.19)

The functions ∂R
∂ε1

(ω, Tc) and ∂R
∂ε2

(ω, Tc) can be derived from the analysis of optical
spectra at Tc[45].
The best �t of the slope-di�erence optical constants for Bi2223 is shown by the
solid curves in Fig.3.29. From this we also calculate the slope-di�erence integrated
spectral weight ∆sW (ω) =

∫ ω

0
∆sσ1(ω

′)dω′ as shown in Fig.3.29(a). At Ωc = 1
eV we obtain the value of ∆sW ≈ +1100 Ω−1cm−2K−1 which corresponds to the
superconductivity-induced increase of spectral weight, in agreement with the previ-
ous analysis.
To check that the value of ∆sW is well de�ned by the present set of experimen-
tal spectra we repeated the �tting routine while forcing ∆sW (Ωc = 1eV ) to be
equal to some imposed value ∆sW (Ωc)imposed. We did this for di�erent values of
∆sW (Ωc)imposed and monitored the quality of the �t, as expressed by the mean-
squared error χ2. In Fig. 3.30 we plot χ2 as a function of ∆sW (Ωc)imposed. The best
�t quality is, of course, achieved for the mentioned value ∆SW (Ωc)imposed ≈ 1100
Ω−1cm−2K−1. It is evident that the �t quality deteriorates rapidly as ∆SW (Ωc)imposed

is dragged away from this value. For example, the value of χ2 for the case
∆SW (Ω)imposed = 0 (which would be the full recovery of the sum rule at 1 eV)
is about 10 times larger than the optimal value; the corresponding data �t should
be regarded as unacceptable. As it was discussed in Ref.[45] and in this section, this
is due to the fact that any change of the low-frequency spectral weight inevitably
a�ects the value of ε1(ω) and R(ω) at higher frequencies.
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To compare the approach described in this Section and the one from previous Sec-
tion, we derive from the curve W (T ), plotted in Fig. 3.23 ∆sW (Ωc=1 eV)≈ 1500
Ω−1cm−2K−1. This is not far from the aforementioned value of 1100 Ω−1cm−2K−1

which quantitatively con�rms the central assertion of this section, namely that the
low frequency spectral weight increases below Tc.
As it was discussed in Ref.[45], the 'normal-state corrected' spectral weight di�erence
of the superconducting state relative to the normal state, WSC−WN can be estimated
from the slope-di�erence conductivity spectra:

WSC −WN ≈ αTc∆sW, (3.20)

where α is a dimensionless coe�cient. The choice of α is suggested by the tempera-
ture dependence of W (Ωc)[45]. Since we observe in both normal and superconducting
state a temperature dependence close to T 2 then we choose α = 1/2. The correspond-
ing curve WSC −WN is shown as a dotted line in Fig.3.28. One can see that it is
slightly smaller than the direct di�erence W (ω, 25K)−W (ω, T = 110K). The latter
fact is not surprising since the spectral weight in the normal state is increasing as a
function of temperature.

Figure 3.29: Slope-di�erential spectra of the complex dielectric function, obtained
experimentally (open symbols) together with the multi-oscillator �tting curves (solid
lines) as described in the text.
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Figure 3.30: The demonstration that ∆sW (Ωc) is well de�ned by the available data
(Ωc=1 eV). The mean squared error χ2 for the total �t of ∆sR(ω), ∆sε1(ω) and
∆sσ1(ω) (shown in Fig.3.29) as a function of ∆sW (Ωc)imposed. More description is
given in the text.

3.6 The doping dependence of the spectral weight
transfer in BSCCO

3.6.1 Optical properties of Bi2212 as a function of doping

In this section we concentrate on the properties of single crystals of Bi2212 at 4
di�erent doping levels, characterized by their superconducting transition tempera-
tures. The preparation and characterization of the underdoped sample (UD66K), an
optimally doped crystal (OpD88) and an overdoped sample (OD77) with Tc's of 66,
88 K and 77 K respectively, have been given in Ref. [19]. The crystal with the high-
est doping level (OD67) has a Tc of 67 K. This sample has been prepared with the
self-�ux method. The oxygen stoichiometry of the single crystal has been obtained
in a PARR autoclave by annealing for 4 days in oxygen at 140 atmospheres and
slowly cooling from 400 ◦C to 100 ◦C. The infrared optical spectra and the spectral
weight analysis of samples UD66 and OpD88 have been published in Refs. [19, 45].
The phase of σ(ω) of sample OD77 has been presented as a function of frequency in
a previous publication[52]. Here we present the optical conductivity of the samples
OD77 and OD67 for a dense sampling of temperatures, and we use this information
to calculate SW (Ωc, T ). The samples are large (4×4×0.2 mm3) single crystals. The
crystals were cleaved within minutes before being inserted into the optical cryostat.
The spectra were measured with a combination of visible light ellipsometry and
infrared re�ectivity, as described together with the procedure to get the optical
conductivity, in section 2.4.1.
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Figure 3.31: Re�ectivity spectra of Bi2212 at selected temperatures for di�erent
doping levels, described in the text.

The infrared re�ectivity is displayed for all the studied doping levels in Fig. 3.31. The
absolute re�ectivity increases with increasing doping, as expected since the system
becomes more metallic. Interestingly, the curvature of the spectrum also changes
from under to overdoping; this is re�ected in the frequency dependent scattering
rate as has been pointed out recently by Wang et al. [53].
In Fig. 3.32 we show the optical conductivity of the two overdoped samples of Bi2212
with Tc = 77 K and Tc = 67 K at selected temperatures. Below 700 cm−1 one can
clearly see the depletion of the optical conductivity in the region of the gap at low
temperatures (shown in the inset). The much smaller absolute conductivity changes
at higher energies, which are not discernible at this scale, will be considered in detail
below.
One can see the e�ect of superconductivity on the optical constants in the tem-
perature dependent traces, displayed in Fig. 3.33, at selected energies, for the two
overdoped samples. In comparison to the underdoped and optimally doped samples
[19, 54] where re�ectivity is found to have a further increase in the superconducting
state at energies between 0.25 and 0.7 eV, in the overdoped samples the re�ectivity
decreases below Tc or remains more or less constant. In the strongly overdoped sam-
ple one can clearly see, for example at 1.24 eV, that at low temperature ε1 increases
while cooling down, opposite to the observation on the optimally and underdoped
samples. These details of the temperature dependence of the optical constants in-
�uence the integrated SW trend as we will discuss in the following sections.
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Figure 3.32: In-plane optical conductivity of slightly overdoped (Tc= 77 K, left panel)
and strongly overdoped (Tc= 67 K, right panel) samples of Bi2212 at selected tem-
peratures. The insets show the low energy parts of the spectra.

3.6.2 The spectral weight transfer

As we discussed in the previous chapter, using the knowledge of both σ1 and ε1

we can calculate the low frequency SW without the need of the knowledge of σ1

below the lowest measured frequency[39, 54, 45]. When the upper frequency cut o�
of the SW integral is chosen to be lower than the charge transfer energy (around
1.5 eV), the SW is representative of the free carrier kinetic energy in the t-J model
[14, 54, 55]. Here we set the frequency cut-o� at 1.25 eV and compare the results
with the predictions of BCS theory and CDMFT calculations based on the t-J
model. In Fig. 3.34 we show a comparison between SW (T ) for di�erent samples
with di�erent doping levels. One can clearly see that the onset of superconductivity
induces a positive change of the SW(0-1.25 eV) in the underdoped sample and in the
optimally doped one[19]; in the 77 K sample no superconductivity induced e�ect is
detectable for this frequency cut o� and in the strongly overdoped sample we observe
a decrease of the low frequency spectral weight. In the righthand panel of Fig. 3.34
we also display the derivative of the integrated SW as a function of temperature.
The e�ect of the superconducting transition is visible in the underdoped sample and
in the optimally doped sample as a peak in the derivative plot; no e�ect is detectable
in the overdoped 77 K sample, while in the strongly overdoped sample a change in
the derivative of the opposite sign is observed.
The frequency ω∗p for which ε1(ω

∗
p) = 0 corresponds to the eigenfrequency of the

longitudinal oscillations of the free electrons for k → 0. ω∗p can be read o� directly
from the ellipsometric spectra, without any data-processing. The temperature de-
pendence of ω∗p is displayed in Fig. 3.35. The screened plasma-frequency has a red
shift as temperature increases, due to the bound-charge polarizability, and the inter-



74 The spectral weight transfer in cuprate superconductors

0.96

0.98

0.63

0.64

0.90

0.91

-0.2

-0.1

0.0

50 100 150 200

0.74

0.75

50 100 150 200
1.7

1.8

2.35

2.40

2.45

1.35

1.40

1.45

 

 

 

ε
1  

0.03 eV

0.8 eV

0.5 eV

R
ef

le
ct

iv
ity

0.1 eV

 
 

R
ef

le
ct

iv
ity

 ε
1

 

 

0.35 eV

 

 

Temperature (K)

1.24 eV

 

 

 ε
2

ε 2 
 

0.96

0.98

-1.4

-1.2

-1.0

50 100 150

0.79

0.80

0.81

1.6

1.7

1.8

1.9

0.66

0.67

0.68

1.6

1.7

50 100 150

1.3

1.4

0.94

0.95

0.96

 

 

 

 ε
1

ε
1  

0.03 eV

1.24 eV

0.8 eV

Temperature (K)

0.1 eV

0.350 eV

 

 R
ef

le
ct

iv
ity

 

 R
ef

le
ct

iv
ity

 

0.5 eV

 

 

 ε
2

ε 2 

 

 

Figure 3.33: Leftmost (rightmost) two columns: re�ectivity and dielectric function
of sample OD77 (OD67) as a function of temperature for selected photon energies.
The corresponding photon energies are indicated in the panels. The real (imaginary)
parts of ε(ω) are indicated as closed (open) symbols.

band transitions. Therefore its temperature dependence can be caused by a change
of the free carrier spectral weight, the dissipation, the bound-charge screening, or
a combination of those. This quantity can clarify whether a real superconductivity-
induced change of the plasma frequency is already visible in the raw experimental
data. In view of the fact that the value of ω∗p is determined by several factors, and
not only the low frequency SW, it is clear that the SW still has to be determined
from the integral of Eq. 3.5. It is perhaps interesting and encouraging to note, that in
all cases which we have studied up to date, the temperature dependences of SW (T )
and ω∗p(T )2 turned out to be very similar.
One can clearly see in the underdoped and in the optimally doped sample that
superconductivity induces a blue shift of the screened plasma frequency. In the 77
K sample no e�ect is visible at Tc while the 67 K sample shows a red shift of
the screened plasma frequency. The behavior of the screened plasma frequency also
seems to exclude the possibility that a narrowing or a shift with temperature of
the interband transitions around 1.5 eV is responsible for the observed changes in
the optical constants. If this would be the case then one would expect the screened
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Figure 3.34: Left panel: spectral weight SW (Ωc, T ) for Ωc = 1.24 eV, as a function
of temperature for di�erent doping levels. Right panel: the derivative (−∂SW (Ωc,T )

∂T
)

as a function of temperature for di�erent doping levels. For the derivative curves
the data have been averaged in 5 K intervals in order to reduce the noise.

plasma frequency to exhibit a superconductivity-induced shift in the same direction
for all the samples.

3.6.3 Predictions for the spectral weight using the BCS
model

In order to give an interpretation of these data we compare these experiments to
the SW calculated within the BCS model using an experimentally determined band
structure parametrization. As discussed in section 3.3, the band structure can have
a dramatic in�uence on the SW temperature dependence. In this paragraph we
verify that for the samples we measured optically, the relation between SW and
kinetic energy holds. Figures 3.12 and 3.13 make clear that, taking the ARPES-
determined band structure seriously, then the observed doping dependence of the
optical spectral weight change below Tc [56, 54, 37] cannot be explained by BCS
theory. In this respect the observations may be indicative of physics beyond BCS
theory. This remains true even if the hole doping is shifted by a small amount, that
is, if the measured samples actually have hole concentrations that are larger than
0.09 < δ < 0.21; then the spectral weight anomaly calculated here has almost the
opposite doping dependence compared with experiment [37].
On the other hand the band structure is a parametrization, and is reliant on a very
surface sensitive probe. As an example of what we consider a remote possibility, Fig.
3.13 indicates that if the doping levels for BSCCO are not as indicated, but rather
lie in the regime between the two van Hove singularities (i.e. approximately between
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Figure 3.35: Screened plasma frequency as a function of temperature for di�erent
doping levels.

n = 0.5 and n = 0.7), then the results will be very di�erent. Then 'underdoped'
would have a positive change below Tc (near n ≈ 0.7) while 'overdoped' would
exhibit a negative change (compatible with experiment, and with expectations based
on the negative of the kinetic energy) (near n ≈ 0.6). The corresponding slope above
Tc would, however, be inconsistent with experiment (not shown), but the slope is a
purely normal state property, and, like all other normal state properties, undoubtedly
requires electron correlations for a proper understanding. We view this possibility
as remote, however, since many studies have established this band structure and the
low doping scenario.
A more reasonable explanation comes from including e�ects considered in Ref. [29],
along with the Kordyuk et al. band structure. The proposal there was to include
the e�ect �rst observed in microwave measurements [57, 58], that the inelastic scat-
tering rate decreases signi�cantly below Tc. This has the e�ect of shifting the blue
points in Fig. 8, for example, upwards. Thus, the anomaly below Tc would agree
with experiment [56, 37], including a crossover from positive change for underdoped
samples to a negative change for overdoped samples. Furthermore, the slope above
Tc would always be negative, as observed. Finally, the magnitude of the slope would
increase as the anomaly becomes more BCS-like, also in agreement with experiment.
This was also found in the DMFT calculations [37], and further theoretical work and
experiments would be required, however, to disentangle band structure e�ects from
strong correlation e�ects. For example, the phenomenology of a collapsed scattering
rate is generally indicative of an electronic scattering mechanism being responsible
for superconductivity, so the DMFT calculations may be reconstructing the same
phenomenology; it would be interesting to examine the interplay between strong
correlation an band structure e�ects in these calculations. We should also remark
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that very early on Norman and Pépin [59] found that using a frequency dependent
scattering rate extracted from optical data gave rise to a crossover as a function
of doping very similar to what has been observed in experiment. Further work is
required to distinguish between these various scenarios.

3.6.4 Superconductivity induced transfer of spectral weight:
experiment and cluster DMFT calculations

In order to highlight the e�ect of varying the doping concentration, we have extrap-
olated the temperature dependence in the normal state of SW (Ωc, T ) of each sample
to zero temperature, and measured it's departure from the same quantity in the su-
perconducting state, also extrapolated to T=0: ∆SWsc ≡ SW (T = 0)−SW ext.

n (T =
0) In Fig. 3.36 the experimentally derived quantities are displayed together with the
recent CDMFT calculations of the t-J[55] model and those based on the BCS model
explained in the previous subsection. While the BCS-model provides the correct
sign only for the strongly overdoped case, the CDMFT calculations based on the t-J
model are in qualitative agreement with our data and the data in Ref [25], insofar
both the experimental result and the CDMFT calculation give ∆SWsc > 0 on the
underdoped side of the phase diagram, and both have a change of sign as a func-
tion of doping when the doping level is increased toward the overdoped side. The
data and the theory di�er in the exact doping level where the sign change occurs.
This discrepancy may result from the fact that for the CDMFT calculations the
values t′ = t′′ = 0 were adopted. This choice makes the shape of the Fermi surface
noticeably di�erent from the experimentally known one, hence the corresponding
�ne-tuning of the model parameters may improve the agreement with the exper-
imental data. This may also remedy the di�erence between the calculated doping
dependence of Tc and the experimental one (see righthand panel of Fig. 3.37). We
also show, in Fig. 3.38, the doping dependence of the plasma frequency and e�ective
mass compared to the CDMFT results. One can see that a reasonable agreement is
achieved for both quantities.

3.6.5 Normal state trend of the spectral weight

The persistence of the T 2 temperature dependence up to energies much larger than
what usually happens in normal metals has been explained in the context of the
Hubbard model [47], showing that electron-electron correlations are most likely re-
sponsible for this e�ect. Indeed, experimentally we observe a strong temperature
dependence of the optical constants at energies as high as 2 eV. In most of the
temperature range, particularly for the samples with a lower doping level, these
temperature dependencies are quadratic. Correspondingly, SW (T ) also manifests
a quadratic temperature dependence. For sample OD67 the departure from the
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Figure 3.36: Doping dependence of the superconductivity induced SW changes: ex-
periment vs. theory. Two theoretical calculations are presented: d-wave BCS model
and CDMFT calculations in the framework of the t-J model.

quadratic behavior is substantial; the overall normal state temperature dependence
at this doping is also much stronger than in the other samples.
In Fig. 3.37 the experimental SW (T ) is compared to the CDMFT calculations for
the same doping concentration. Since the Tc obtained by CDMFT di�ers from the
experimental one, (see Fig. 3.37) it might be more realistic to compare theory and
experiment for doping concentrations corresponding to the same relative Tc's. There-
fore we also include in the comparison the CDMFT calculation at a higher doping
level, at which Tc/Tc,max corresponds to the experimental one (see the right panel
of Fig. 3.37). We see that the experimental and calculated values of SW (T ) are in
quantitative agreement for the temperature range where they overlap. It is inter-
esting in this connection that, at high temperature, the curvature in the opposite
direction, clearly present in all CDMFT calculations, may actually be present in the
experimental data, at least for the highly doped samples. These observations clearly
call for an extension of the experimental studies to higher temperature to verify
whether a cross-over of the type of temperature dependence of the spectral weight
really exists, and to �nd out the doping dependence of the cross-over temperature.
The experimental data, as mentioned before, show a rapid increase of the slope of
the temperature dependence above optimal doping. This behavior is qualitatively
reproduced by the CDMFT calculations.
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3.7 The implications of the experimental observa-
tions

The superconductivity-induced increase of low-frequency spectral weight, which im-
plies the opposite to the BCS type lowering of the electronic kinetic energy, was pre-
viously observed in the under-doped and optimally doped bi-layer Bi2Sr2CaCu2O8

[19, 20, 45]. Recent studies[25, 37] show that this e�ect changes sign for strongly over-
doped samples of Bi2212, which then follows the trend of the BCS model. Hence the
'unconventional' superconductivity induced increase of low energy spectral weight
appears to be a property characteristic of the Bi-based multi-layer cuprates at and
below optimal doping, but not of the entire cuprate family for all doping levels.

3.7.1 Phenomenological implications of the e�ect

On the phenomenological level, recently an intriguing connection has been pointed
out between the superconductivity induced increase of W (T ) on the one hand, and
the drop of scattering rate on the other hand [29]. Since the former involves a spectral
weight integral over 1 eV, whereas the latter is measured at microwave frequencies,
these two experimental observations are seemingly unrelated. However, decreasing
the scattering results in sharpening of the occupation distribution in k-space. Hence a
decrease of scattering automatically implies a decrease of the average kinetic energy,
which in turn is observed as an increased W (T ) when the sample turns from normal
to superconducting. Since the standard BCS model (without a change in scattering)
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already predicts a superconductivity induced increase of the kinetic energy, the net
result of both e�ects (scattering rate change and intrinsic BCS e�ect) will depend
on the relative magnitude of these two e�ects. This explanation successfully relates
two classes of experiments, without directly relating either one of these experiments
to a particular pairing mechanism. The starting assumption of an anomalous drop
in scattering is at this stage a phenomenological one, and still requires a microscopic
explanation.

3.7.2 The dependence on the number of Layers per unit cell

Having data on both two layered and tri-layered materials we can verify whether the
SW transfer depends on the dimensionality of the material in any way. We observe
that the increase of spectral weight below Tc in Bi2223 is larger than in Bi2212[19].
We believe that this can be quite generally understood. It is well known that in the
BCS theory

∆Ekin ∼ ∆2
SC ∼ T 2

c . (3.21)

The �rst equality holds generally for situations where the electronic occupation
numbers 〈nk〉 are redistributed in an energy range ∆ around EF , whereas the second
is suggested simply by a dimensional analysis. Recent STM studies [42] indicate
that the SC gap is indeed larger in Bi2223 than in Bi2212 at a similar doping level.
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Assuming that Eq. (3.21) is also valid in Bi2212 and Bi2223 at optimal doping,
and Eq. (3.5) is exact, we obtain ∆WBi2223/∆WBi2212 = T 2

c,Bi2223/T
2
c,Bi2212 ≈ 1.6.

This ratio value matches the experimental observation, supporting the idea that the
spectral weight transfer is intimately related to the SC-induced redistribution of the
occupation numbers.

3.7.3 The doping dependence of the e�ect

Considering our BCS calculations, one notices that the single band optical spec-
tral weight may behave very di�erently from the kinetic energy, both in the normal
state, and in the superconducting state. This occurs when one uses a band structure
more complicated than one involving nearest neighbour (nn) hopping only, since,
with nn hopping only, the two are identical. Thus, one cannot use the phrase, 'BCS-
like' behaviour for the optical spectral weight, but one can continue to use that
phrase for the kinetic energy. This means that a wide variety of dependency on
doping is in principle possible, due to band structure e�ects alone. This has a sig-
ni�cant impact on the interpretation of experimental results, as doping dependence
due to correlation e�ects, for instance, would have to be separated out either ex-
perimentally or theoretically. On the other hand, if one accepts the band structure
for, say, BSCCO, as determined by ARPES, then the spectral weight observations
[19, 60, 45, 54, 56, 37] remain anomalous, i.e. cannot be explained by BCS the-
ory alone. We have advanced a number of possibilities, and many others have been
proposed in the literature: doping levels may be shifted slightly compared to what
we think they are, in which case strong correlations well beyond BCS theory are
required to explain the observed trend with doping. A much stronger shift in doping
actually reproduces the observed trends in the superconducting anomaly, but not
in the normal state behaviour. Finally, including a scattering rate collapse below Tc

also qualitatively accounts for the data.
On a microscopic level regarding the connection between SW and kinetic energy, it
was shown that in the presence of strong electronic correlations this basic picture
has to be extended to take into account that at di�erent energy scales materials are
described by di�erent model Hamiltonians, and di�erent operators to describe the
electric current at a given energy scale [4, 61]. In the context of the Hubbard model,
Wrobel et al. pointed out[14] that if the cuto� frequency Ωc is set between the value
of the exchange interaction J ' 0.1 eV and the hopping parameter t ' 0.4 eV then
SW (Ωc) is representative of the kinetic energy of the holes within the t-J model
in the spin polaron approximation and describes the excitations below the on-site
Coulomb integral U ' 2 eV not involving double occupancy, while SW (Ωc > U)
represents all intraband excitations and therefore describes the kinetic energy of
the full Hubbard Hamiltonian. A numerical investigation of the Hubbard model
within the dynamical cluster approximation[50] has shown the lowering of the full
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kinetic energy below Tc, for di�erent doping levels, including the strongly overdoped
regime. Experimentally, this result should be compared to the integrated spectral
weight where the cuto� frequency is set well above U = 2 eV in order to take into
account all the transitions into the Hubbard bands. However, in the cuprates this
region also contains interband transitions, which would make the comparison rather
ambiguous.
Using Cluster Dynamical Mean Field Theory (CDMFT) on a 2×2 cluster Haule and
Kotliar [55] recently found that, while the total kinetic energy decreases below Tc

at all doping levels, the kinetic energy of the holes exhibits the opposite behavior
on the two sides of the superconducting dome: In the underdoped and optimally
doped cuprates the kinetic energy of the holes, which is the kinetic energy of the
t-J model, decreases below Tc. In contrast, on the overdoped side the same quantity
increases when the superconducting order is switched on in the calculation. This
is in agreement with the observations of Ref. [25] as well as the experimental data
in the present thesis. The good agreement between experiment and theory in this
respect is encouraging, and it suggests that the t-J model captures the essential
ingredients, needed to describe the low energy excitations in the cuprate, as well as
the phenomenon of superconductivity itself.
The Hubbard model and the t-J model are based on the assumption that strong
electron-electron correlations rule the physics of these materials. Based on these
models an increase of the low frequency SW in the superconducting state was found
in the limit of low doping [14] in agreement with the experimental results [19, 54].
The optical conductivity of the t-J model in a region of intermediate temperatures
and doping near the top of the superconducting dome has been recently studied
using CDMFT [55]. The CDMFT solution of the t-J model at di�erent doping levels
suggests a possible explanation for the fact that the optical spectral weight shows
opposite temperature dependence for the underdoped and the overdoped samples.
It is useful to think of the kinetic energy operator of the Hubbard model at large U
as composed of two physically distinct contributions representing the superexchange
energy of the spins and the kinetic energy of the holes. The superexchange energy of
the spins is the result of the virtual transitions across the charge transfer gap, thus,
the optical spectral weight integrated up to an energy below these excitations is
representative only of the kinetic energy of the holes. The latter contribution to the
total kinetic energy was found to decrease in the underdoped regime while it increases
above optimal doping, as observed experimentally. This kinetic energy lowering is
however rather small compared to the lowering of the superexchange energy. Upon
overdoping the kinetic energy of the holes increases in the superconducting state,
while the larger decrease of the super-exchange energy makes superconductivity
favorable with a still high value of Tc. In the CDMFT study of the t-J model, a
stronger temperature dependence of SW (T ) is found on the overdoped side. This
re�ects the increase in Fermi Liquid coherence with reducing temperature.
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At this point the most plausible explanation seems to be the one based on the cluster
DMFT calculations and the t − J model. In this respect we like to point out that
while for the normal state temperature dependence of the SW, a direct comparison
between the experiments and the calculations could be done; this is because the
theoretical SW was calculated integrating the optical conductivity given by the
solution of the t − J model, and the comparison to the experiment in this case is
quite direct. For technical issues though, the same kind of procedure could not be
applied in the superconducting state, therefore the changes in kinetic energy were
estimated by calculating the spectral function with and without superconductivity.
This is indeed less direct and several assumptions have to be made in the de�nition
of kinetic energy in order to compare to the experimental quantities. This does not
mean that the result cannot be taken seriously of course, but stresses the fact that
the kinetic energy we are referring to in these pages is not the real kinetic energy of
the particles but a sort of "restricted kinetic energy" which neglects the contribution
of some higher energies processes. In this sense we claim that the optical experiments
combined with the t−J model calculations can capture the essence of the low energy
physics in cuprates, but for a con�rmation of these result experimental data at
energies higher than 4 eV combined with the full Hubbard Hamiltonian are desirable.
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Chapter 4

The scaling properties of the optical
conductivity in the cuprates
superconductors

The electronic dynamics of the high-Tc cuprates is invariably featured by a large
optical spectral weight located in the mid-infrared range (∼ 0.5 eV), which coexists
with a relatively sharp Drude peak at low frequencies. The origin of this 'MIR band'
has been a subject of a long-lasting debate [8, 9, 4]. Since the band theory does not
predict strong optical interband transitions in this range [10, 11], it is commonly
assumed that the band represents a portion of the intraband electronic spectral
weight, which is pushed up to remarkably high energies by strong electron-electron
interactions or scattering on some bosonic excitations. In this section we will discuss
the nature of high-Tc electronic structure performing comparative analysis of the
normal state optical response of two Bi-based cuprates: Bi2212 and Bi2223.
We performed a detailed analysis of the scaling properties of the optical conductivity
and demonstrate that the experimental data do not support completely the quantum
critical scenario.
The power-law dependence of the optical conductivity σ(ω) ∼ (−iω)−α was indeed
observed in the cuprates near optimal doping in a certain range of frequencies (from
0.1 to 0.7 eV) [14, 12, 2]. The exponent α, however, turned out to be 0.65 - 0.7,
rather di�erent from 0.5, as given by the 'cold spot' model[6] and more close to the
predictions of the Luttinger Liquid model by Anderson [13]. In a recent paper [2] it
was suggested, that a universal power-law behavior of optical conductivity for ω > T
may be due to the proximity of a quantum critical point (QCP), where the electronic
system becomes scale-invariant. This behavior is not observed for the underdoped
and strongly overdoped samples of Bi2212. It is interesting to check whether or not
this tendency is preserved in the cuprates with di�erent number of CuO2-planes per
unit cell.
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In a recent publication, we pointed out two peculiar aspects of the infrared optical
conductivity in the normal state[2]:

• In the far infrared range the optical conductivity of optimally doped cuprates
is characterized by a universal ω/T scaling function of the form

σ(ω) = T−1g(ω/T ) (4.1)

where the function g(x) is to very good approximation given by g(x) =
C/(1 − ix) for x = ω/T < 1.5. A consequence of this behavior is a collapse
of the spectra when Tσ1(ω, T ) is plotted as a function of ω/T for di�erent
temperatures.

• At ω/T ≈ 1.5 a cross-over appears to take place to a power law behavior,
previously pointed out in Refs. [14, 12, 13]. For ω/T > 1.5 a collapse of the
spectra plotted versus ω/T required that the conductivity is multiplied no
longer with the temperature T , but with either T 0.5 or ω0.5. This change of
behavior is also evident from a plot of the phase of the optical conductivity
(arctan(σ2/σ1)), which displays a plateau with a phase angle of approximately
60 degrees for all temperatures and frequencies in access of kBT . In the same
frequency range the absolute value of the conductivity, | σ(ω) |, follows a power
law behavior,|σ(ω)| ∝ ω−2/3. Both the frequency dependence of | σ(ω) | and
of the phase angle are manifestations of the fact that the optical conductivity
follows approximately a power law for frequencies in the range T < ω < 0.7eV .

The exponent α = 2/3 is rather di�erent from 0.5, as given by the 'cold spot'
model[6] and closer to Anderson's result based on the concept of spin-charge
separation[13]. Experimentally the ω/T scaling and constant phase angle are most
closely obeyed for samples close to optimal doping, as displayed in Fig.4.1, 4.2 where
the modulus of the optical conductivity and its phase is plotted for Bi2212 and
Bi2223 at di�erent doping levels. As such they appear to be a direct manifestation
of quantum critical behavior when the doping is tuned to match exactly a quantum
phase transition. However, it remained unclear whether a single scaling function
could be de�ned covering both aspects 1) and 2) of the optical conductivity.
Here we extend the analysis of Ref. [2] by introducing a novel transformation, allow-
ing us to obtain the ω/T scaling function for all frequencies. The relations for this
transformation rely on the derivative with respect to temperature of the real and
imaginary part of the dielectric function. For such a procedure it is important to have
a dense sampling of temperature, excellent signal-to-noise ratio, and a very small
spurious time-dependent drift of the data, in particular in the frequency range below
1 eV. We will perform this analysis on the Bi2223 data discussed in the previous
chapter.
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Figure 4.1: The absolute value of the optical conductivity as a function of frequency

is plotted in a Log-Log graph. The power law behavior of the optical conductivity

is evidenced by a linear frequency dependence in a Log-Log scale. This is visible in

Bi2223 and Bi2212 close to optimal doping only

4.1 Novel transformation to obtain ω/T scaling

function

The basic assumption which we will investigate is whether the optical conductiv-
ity representing the free charge carriers follows a universal scaling relation of the
form[17]:

σ(ω, T ) =
1

T ν
g

(ω

T

)
; ν ≡ z

2− d
(4.2)
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Figure 4.2: The Phase of the optical conductivity (arctang(σ2/σ1(ω))) at di�erent

temperatures of Bi2223, Bi2212 is plotted. In the region where the powerlaw is

observed one expects to �nd a constant phase as a function of frequency. This is

observed close to optimal doping only.

where d is the relevant dimension and z the dynamical exponent [3]. As pointed
out by Philips and Chamon, T-linear resistivity requires the unphysical assumption
that the dynamical exponent z is negative. Consequently, no consistent account
of T-linearity is possible if the quantum critical modes carry the electrical charge.
Apparently, either the T-linear resistivity is not directly linked to a quantum phase
transition, or "quantum critical scenarios must relinquish the simple single scale
hypothesis to explain the resistivity law in the cuprates."[17] Despite this de�ciency
we will treat ν as an adjustable scaling parameter, which can have the value ν = 1.
It is clear that it is no longer justi�ed in this case to assume that ν = z/(2− d).
Before continuing we wish to make one general observation about the part of the
optical conductivity described by g(ω/T ): The integrated optical spectral weight is
proportional to T 1−ν . We already know that in the case of interest for this discussion
ν = 1, because at optimal doping the resistivity, ρ ∝ T ν , is a linear function of the
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temperature. Hence taken together ω/T -scaling and T-linear resistivity imply that
the integrated spectral weight presented by g(ω/T ) has a constant value for all
temperatures. Experimentally this is con�rmed by the collapse of Tσ(ω, T ) plotted
as a function of ω/T . Upon closer inspection, a few percent spectral weight variation
between Tc and 300 K is not excluded. The optical conductivity integrated between
0 and 1.25 eV is known to exhibit a temperature dependence proportional to 1−bT 2,
with b ≈ ·5 · 10−7K−2. In previous papers it has not yet been investigated how this
temperature dependence is distributed within the free-carrier contributions in the far
and mid-infrared. We will revisit this point in more detail at the end of this chapter.
We do note, however, that in order to include the possibility that the integrated free
carrier weight has a correction proportional to T 2, we have to multiply g(ω/T ) with
a factor 1− bT 2.
According to Ref. [2] the function g(ω/T ) obeys a Drude form, at least for ω/T < 1.5,
but here we are interested to �nd out more about the continuation beyond this range
of ω/T . One possible obstacle is, that at higher frequencies the scaling behavior
becomes overshadowed by 'regular' (i.e. unrelated to quantum critical behaviour)
contributions to the optical conductivity, notably in the range above about 1 eV
where interband transitions dominate the optical conductivity. Because interband
transitions present a �xed energy scale, for those high frequencies there is no shadow
of doubt that the temperature is not the only relevant scale in the optical conduc-
tivity. For frequencies below 1 eV, but still above kBT the situation is less clear:
Interband transitions are negligible in this range, but the optical conductivity in
this range strongly exceeds the values obtained by extrapolating the Drude behav-
iour seen in the far-infrared range. The observed σ(ω) below 1 eV therefore appears
to be an intrinsic part of the free carrier response. Yet, it needs to be established
from the experimental data whether this part is described by the same g(ω/T ) func-
tion which is found for ω/T < 1.5. Experimentally[15, 18] the optical conductivity
in the mid-infrared and visible part of the spectrum of optimally doped samples has
a temperature dependence of the form σ(ω, T ) = σ(0)(ω) + σ(2)(ω)T 2. In Fig. 4.3 of
the temperature dependence of σ1(ω) = ω/(4π)Imε(ω) and Reε(ω) are shown. The
non-monotonous temperature dependence in the normal state for frequencies below
1500 cm−1 is an immediate consequence of the fact that in this range the optical
conductivity is dominated by a Drude peak the width of which varies linearly as a
function of temperature. On the other hand the observed temperature dependence
up to 2 ·104 cm−1 vastly exceeds that of the extrapolated Drude peak, and moreover
has the wrong exponent: For ω À T the Drude function becomes σ1 ∝ T/(ω2 + T 2)
crosses over to a T-linear temperature dependence. Indeed this is seen for example
at 1200 cm−1, but at higher frequencies the temperature variation becomes dom-
inated by a T 2 term. Although this correction remains small relative to σ1 in all
cases, its presence in the experimental data motivates us to explore the following
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Figure 4.3: Temperature dependence of the ab-plane optical conductivity Bi2223 for

three selected frequencies.

decomposition of the optical conductivity

σ(ω, T ) =
1− bT 2

T ν
g

(ω

T

)
+ σ(0)(ω) + σ(2)(ω)T 2 (4.3)

4.1.1 Temperature independent regular conductivity

Because the T 2 corrections b and σ(2)(ω) are small, we will �rst work out the conse-
quences in the limit where they are zero. Since here we are interested in the behavior
near optimal doping, where the resistivity is T-linear, we consider the case where
ν = 1. Then Eq.4.3 reduces to

σ(ω, T ) = T−1g (ω/T ) + σ(0)(ω) (4.4)

In order to eliminate the temperature independent term σ(0)(ω), we start by taking
the temperature derivative of this expression. For the evaluation of dg/dω and dg/dT
we use the fact that the function g depends only on a single variable x, de�ned as
the ratio x = ω/T .

∂σ(ω, T )

∂T
= − 1

T 2

{
g +

ω

T
g′

}
= − 1

T 2

d

dx
(xg) (4.5)

Because xg is a function the ω and T dependence of which enters only as the ratio
x = ω/T , we are allowed to substitute ω for x in taking the derivative. Thus, using
the chain-rule: d(xg)/dx = −T−1d(xg)/dω. Inserting this for the righthand side
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of Eq.4.5 we obtain −Tdσ/dT = d(xg)/dω. The integration of both sides of this
equation results in an expression which relates xg(x) on one side of the expression
to the frequency-integral of dσ(ω)/dT on the other side. Multiplying both sides
with 1/x = T/ω �nally gives the following transformation of the complex optical
conductivity function

g(ω, T ) = −T 2

ω

∫ ω

o

dσ(ω′, T )

dT
dω′ (4.6)

In the above an important starting assumption was, that g(ω, T ) depends on the
ratio ω/T . It may therefore look somewhat strange that in Eq.4.6 we write it as a
function of frequency and temperature. However, we want to feed the experimentally
measured optical conductivity into the righthand side of the above transformation,
providing g on output. A priori there is no guarantee that the experimental optical
conductivity is of the form assumed in Eq. 4.3. In fact this is the model we like to
test by plotting the output of the transformation, g(ω, T ), as a function of ω/T for
di�erent temperatures.

4.1.2 Temperature dependent spectral weight of the scaling

function

If σ(2)(ω) is di�erent from zero in Eq.4.3 and b 6= 0, we have no analytical expression
for the transformation. However, it is possible, to perform a least-square �t of the
re�ectivity and ellipsometry data for all temperatures and frequencies at once, in-
serting in Eq.4.3 a multi-oscillator Kramers-Kronig consistent composition [19] for
the three terms g

(
ω
T

)
, σ(0)(ω) and σ(2)(ω).

4.2 Results
One can �nd the optical conductivity of Bi2223 in the previous chapter. Using the
extended Drude formalism, we can obtain the frequency-dependent scattering rate:

τ−1(ω) =
ω2

p

4π
Re

[
1

σ(ω)

]
, ε∞ = 4.5, (4.7)

The result, shown in Fig.4.4, indicates that the scattering rate has a power law type
frequency dependence τ−1 ∝ ωη with η ≈ 2/3 as for optimally doped Bi2212. The
plasma frequency ωp was taken to be 20600 cm−1, which gives m∗(ω)/m ≈ 1 at 1 eV.
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The phase of the optical conductivity, shown for a few temperatures in Fig. 4.2 is
close to 60 degrees and almost constant, which is also similar to the phase of Bi2212
at optimal doping.[2].
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Figure 4.4: In-plane frequency-dependent scattering rate of Bi2223.

We have applied Eq. 4.6 to the full set of spectra in the normal state (140-260 K in
1 K steps). The output for the g(ω, T ) is shown in Fig. 4.5. We see, that for a broad
range of values of ~ω/kBT the scaling-function is to a very good approximation
given by the expression

g(ω, T ) =
g(0)

1 + iA~ω/kBT
(4.8)

where A = 0.83 and g(0) = 1.67 · 106KΩ−1cm−1. This is also borne out by the
frequency dependent phase of this function, displayed in Fig. 4.6, which asymptoti-
cally approaches 90 degree for ω/T →∞. The curves for the di�erent temperatures
now show a good scaling collapse, also for ~ω/kBT > 1.5, where in the analysis of
Ref. [2] the curves started to separate. Note, that the imaginary part of g(ω, T ) has
more scatter than the real part, which is due to the fact that for low frequencies
the re�ectivity spectra depend in in leading order only on σ1. This is the so-called
Hagen-Rubens limit, where for a frequency independent σ1(ω) the optical re�ectivity
has a ω0.5 departure from 1.
The good collapse of our scaling function for large ~ω/kBT > 1.5 is clearly due to
the fact, that in our analysis we have removed a part of the optical conductivity
spectrum which is essentially independent of the temperature. This background,
which is obtained by subtracting Tg(ω, T ) from the experimental conductivity curves
for the temperatures indicated, σ(0), is displayed in Fig. 4.7. If the decomposition in
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Figure 4.5: Real and imaginary parts of the scaling function g(ω, T ) of Bi2223,

calculated for 4 di�erent temperatures from the experimental data using Eq. 4.6.

a T-independent part and an g(ω/T ) term would be perfect, these curves would lie
exactly on top of each other. In fact, we see that this works quite well, but a few
signi�cant changes remain. If we make instead the full decomposition using Eq. 4.3
as discussed in section4.1.2, we obtain almost identical result for g(ω/T ) and σ(0).
These results are presented in in Figs. 4.8,4.9,4.10.
The decomposition of the infrared spectra of the cuprates in a Drude-peak and a so-
called mid-infrared band has a long history, dating back to the beginning of the high
Tc era. In a series of papers it has been pointed out by Tanner, that if one splits up
the optical spectra this way, one �nds that about one quarter of the spectral weight
below 1 eV resides in the Drude peak, the rest is in the temperature dependent
background. Although our analysis is di�erent in detail, the experimental data do
lead us to make an even stronger conclusion: If we try to �t the data to a function
of the general form Tg(ω/T ) plus a constant background, the result returned for
Tg(ω/T ) is a simple Drude function with a T-linear scattering rate. That about one
third of the spectral weight or less resides in the Drude peak, is borne out by Fig.
4.12, where we display for T=245 K the spectral weight function

~2ω2
p(ω) = 8

∫ ω

0

Reσ(ω)dω (4.9)

for the two components.
This analysis leads to the following conclusions:

• Our result indicates that the constant value of the phase above 1000 cm−1 is
not a manifestation at high frequencies of the same g(ω/T ) function which
dominates the low frequency optical conductivity of the normal state.
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Figure 4.6: Phase of g(ω, T ) shown in Fig. 4.5
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Figure 4.7: Regular contribution of the optical conductivity σ(0)(ω, T ), calculated

by subtracting Tg(ω, T ) shown in Fig. 4.5 from the experimental spectra.

• Our result does not imply that the optical spectra of the cuprates should be
regarded as a sum of two independent terms, one of which is essentially a
constant of temperature and the other a Drude term.

• If the g(ω/T ) scaling collapse has something to do with quantum criticality,
then the constant phase above 1000 cm−1 has a di�erent origin, and vice versa.

• Our result does not imply that there is no frequency dependence in the scat-
tering rate.

The di�erent terms in Eq.4.3 are necessary to provide a continuation of g(ω/T )
for large ω/T . However, it seems overwhelmingly natural to interpret the entire
spectrum below 1 eV as the response of the free charge carriers. In this view, the
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a �t to the optical spectra at all temperatures between 140 K and 280 K from the

experimental data using Eq. 4.3.

mid-infrared peak would then correspond to the incoherent part of the optical re-
sponse, re�ecting excited states which, on a lower energy scale, condense into the
superconducting state. From a conventional point of view 1/τ(ω) then reveals the
'glue' which binds electrons into Cooper pairs[20]. A more radical view is that the
power law frequency dependence of the optical conductivity reveals an unconven-
tional state of matter on an energy scale in excess of the scale where coherent
transport is possible[21].

4.2.1 Anisotropic scattering rate model

Another possible explanation for the powerlaw observed in the optical conductivity
is the anisotropic scattering rate model. The determination of ε∞ necessary for the
previous analysis is somewhat ambiguous; since the �rst interband transitions reside
at rather low energies (∼ 2 eV). Therefore, in addition to the simple conductivity
phase analysis, it is instructive to �t the full set of our optical data (re�ectivity in the
far- and mid-infrared and ellipsometrically-obtained ε1 and ε2 at higher frequencies)
with a causal (Kramers-Kronig consistent) dielectric function including the response
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of the core electrons ε∞, the low-lying interband transitions εinter and an intraband
conductivity σintra, which shows a power-law dependence in a certain frequency
range:

ε(ω) = ε∞ + εinter(ω) +
4πi

ω
σintra(ω). (4.10)

The powerlaw function
σ(ω) = A(−iω)−α. (4.11)

taken literally, is not suitable for σintra, since it diverges at low frequencies and is not
integrable at high frequencies. The latter fact even precludes the determination of
the plasma frequency. Therefore, we need to introduce physically sensible low- and
high-frequency cuto�s in a Kramers-Kronig consistent fashion. A simple example of
a function which satis�es these requirements, was given in Ref.[5]; initially, it has
been derived in the context of the anisotropic scattering rate model, but proposed
to be of a more general use, especially in cases of a non-Fermi-liquid behavior:

σ(ω) =
ω2

p

4π

i

(ω + iγmin)α(ω + iγmax)1−α
(4.12)

(in order to match formula (4.11), we used a two times larger α than in the original
paper [5]). Here we shall elaborate on a di�erent expression for the optical con-
ductivity, which, however, has very similar analytical properties to (4.12). Since at
this point we do not stick to any microscopic theory and only assume a power-law
behavior, our derivation will be rather phenomenological.
In the following we shall use the fact that a power-law optical conductivity can be
represented as a power-law scattering-rate distribution of Drude functions:

(−iω)−α =
sin πα

π

∫ ∞

0

f(γ)dγ
i

ω + iγ
, where f(γ) = γ−α. (4.13)
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Figure 4.10: Regular contribution of the optical conductivity σ(0)(ω, T ), calculated

by �tting the optical spectra at all temperatures between 140 K and 280 K from the

experimental data using Eq. 4.3.

We begin with the low-frequency cuto�. It has to provide a �nite value of the DC
conductivity. Obviously, σ(ω) given by (4.13) diverges as ω → 0 because the integra-
tion goes over arbitrarily small scattering rates. On the other hand, the minimum
scattering rate (Planckian dissipation) is given by the temperature:

γmin(T ) ≈ kBT/~. (4.14)

The breakdown of the power law at low frequencies can be also caused by the
self-energy e�ects, due to the interaction of electrons with phonons or (and) with
the spin-resonance mode. Therefore, as a �rst approximation we should start the
integration from γmin and replace γ with γ− γmin in the distribution function f(γ).
Since γmin can be larger than the value (4.14), we should treat it as a free �tting
parameter.
An upper estimate of the high-frequency cuto� is given by the bandwidth, which is
of the order of 2 eV. The easiest way to introduce it is to limit the integration in
(4.13) to γ < γmax, also treated as a model parameter. This leads us to the following
expression for the intraband conductivity:

σintra(ω) = A
sin πα

π

∫ γmax

γmin

(γ − γmin)−αdγ
i

ω + iγ

=
ω2

p

4π

i

ω + iγmin

F (1, 1− α, 2− α,
γmax − γmin

iω − γmin

), (4.15)

where F (a, b, c, z) is the hypergeometric function. Here ωp is the usual plasma fre-
quency: ω2

p = 8
∫∞
0

σ1,intra(ω)dω.



102
The scaling properties of the optical conductivity in the cuprates

superconductors

0 5000 10000 15000
-8

-6

-4

-2

0

2

4
 

 

R
e 

σ(2
) (ω

) 
  (

10
-4
 K

-2
Ω

-1
cm

-1
)

Wavenumber (cm-1)

Figure 4.11: The term in the decomposition of the optical conductivity presented in

Eq. 4.3 which has a temperature variation proportional to T 2.

Although formula (4.12) and (4.15) look rather di�erent, they can be easily compared
in terms of the scattering-rate distribution function f(γ). One can show that (4.12)
corresponds to f(γ) = (γ− γmin)−α(γmax− γ)α−1 for γmin < γ < γmax and f(γ) = 0
elsewhere, while (4.15) corresponds to f(γ) = (γ − γmin)−α for γmin < γ < γmax

and f(γ) = 0 elsewhere. The di�erence is only in the extra multiplier (γmax−γ)α−1,
which diverges at γmax and supplies an 'enhanced weight' to scattering rates close
to γmax in case of formula (4.12). Since, generally speaking, we do not see obvious
reasons for such an enhancement, the expression (4.15) seems to be slightly more
justi�ed, although both formulas remain purely phenomenological.
Let us brie�y discuss properties of the introduced conductivity (4.15), assuming that
γmin ¿ γmax. They are essentially the same as the ones of ([2]), which are described
in [5]. In the Hagen-Rubens regime ω ¿ γmin the standard behavior of re�ectivity
R = 1− (2πω/σDC)1/2 is observed with the DC conductivity :

σDC ≈ π(1− α)

sin πα

ω2
p

4πγmax

(
γmin

γmax

)−α

, (4.16)

Well within the cuto� interval (γmin ¿ ω ¿ γmax) the conductivity (4.15) is a
powerlaw:

σintra(ω) ≈ π(1− α)

sin πα

ω2
p

4πγmax

(−iω

γmax

)−α

. (4.17)

At high frequencies ω À γmax again a Drude form is recovered:

σintra(ω) ≈ ω2
p

4π

i

ω + iγeff

, where γeff =
1− α

2− α
γmax ≈ 0.25− 0.3γmax. (4.18)
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Table 4.1: Parameters, obtained by �tting optical data with formulas (4.10) and

(4.15) for Bi2223 at 260 K. All values, except the ones for α and ε∞, are given in

cm−1. ε∞ is found to be 2.5 for both equations.

ωp α γmin γmax ω1 ωp1 γ1 ω2 ωp2 γ2

eq. 11 22200 0.6 76 31500 19000 8700 7770 36500 37500 19000

eq. 14 24700 0.58 71 91200 19150 8200 7370 36340 36500 18000

We modeled optical spectra of Bi2223 and Bi2212 using the dielectric function (4.10)
with expression (4.15) for the intraband response. The interband response was mod-
eled with two Lorentz oscillators. The �tting parameters for the optimally doped
samples are presented in Table 4.1; the quality of the �t in the infrared region is
depicted in �gure 4.13, together with the temperature dependence of the model pa-
rameters for both formula 4.12 and 4.15. The quality of the �t is at least as good
as the one achieved in the two component scenario; there is hardly any di�erence
between the �tting quality using equation 4.12 or 4.15.
This model has several advantages over the previous models reported; it gives the
best �t to the data with the minimum number of free parameters and it is possible
from this model to calculate the exponent of the power-law conductivity: σ = Cω−α.
The exponent α is found to be around 0.63, in optimally doped samples, in very good
agreement with the value extracted from the quantum critical analysis of the data. In
Fig. 4.13 one can see the infrared re�ectivity together with the best multicomponent
�t for samples with di�erent doping levels. Remarkably, the �tting quality using this
model decreases moving away from optimal doping and it is particularly bad in the
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Figure 4.13: The infrared re�ectivity of Underdoped Bi2212, Optimally doped Bi2212

and Bi2223 and overdoped Bi2212 is displayed together with the best �t based on

the anisotropic scattering rate model.

strongly overdoped sample. This observation suggests that the powerlaw behavior
of the optical conductivity and the anisotropy of the scattering rate on the Fermi
surface are intimately related; we shall point out a close connection between these
results and very recent ARPES measurements [1] in the discussion.
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Chapter 5

The strange case of MnSi

Traditionally, MnSi is considered as a weakly itinerant ferromagnet[1, 2], i.e. the
spin-polarization is modeled as a relative shift of bands of delocalized Bloch-states
for the two spin-directions. At ambient pressure MnSi orders heli-magnetically below
TC=29.5 K, and becomes ferromagnetic in a magnetic �eld exceeding 0.6 Tesla. The
Hall e�ect and the negative magneto-resistance[3] in the ferromagnetic phase agree
well with the theory of spin-�uctuations in itinerant ferromagnetism[1]. Also the
inelastic neutron scattering data have been interpreted in this framework[4, 5, 6, 7,
8]. The saturation moment of the magnetically ordered phase is 0.4 µB per Mn atom.
On the other hand, ab initio calculations based on the Local Density Approximation
(LDA) indicate a tendency of the Mn-atoms to form a moment close to 1 µB if the
real lattice constant for MnSi (4.558 Å) is used[19, 20]. A �t of the susceptibility in
the paramagnetic phase to a Curie-Weiss law gives 2.2 µB per Mn atom[30].
Recently, several properties of MnSi have been discovered which had not been antic-
ipated on the basis of the itinerant model and which remain to be fully understood:
Above 14.6 kbar the material enters a phase with partial heli-magnetic order along
the (1,1,0) direction[31], where the resistivity is proportional to T3/2 in contradiction
to standard notions of a Landau Fermi liquid[32]. A further indication of anomalous
low energy scale properties follows from the non-Drude infrared optical conductivity
at ambient pressure[33], proportional to (iω)−1/2. The resistivity suggests that the
magnetic scattering is the main source of scattering in MnSi [33]. MnSi shows an
itinerant ferromagnetic behavior with a low ordering temperature and it is the ideal
playground to investigate in detail the microscopic nature of band magnetism. I will
show that di�culties can be encountered already in the description of its ground
state. What behaves as a common metal hides important correlations e�ects.
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5.1 Overview on the B20 crystal structure in nature
The geometrical properties:

The B20 crystal structure attracted our attention because of its peculiar geo-
metric characteristics. In fact, we will show that this space group has a marked
tendency to give frustrated geometry, in particular when the stoichiometry is 1:1,
but also in other cases. The crystal structure of MnSi belongs to the T4 P213 space
group[34, 35]. Together with MnSi several other compounds involving a transition
metal and a Si atom have been found to have the same crystal structure[35].
The unit cell contains 4 Mn atoms at crystallographically equivalent positions.

Figure 5.1: Left panel: The T4 P213 crystal structure for TM-mono silicides. Right
panel: Mn sublattice of MnSi. The corners of the triangles, all of which are equilat-
eral, correspond to the positions of the Mn-atoms.

The sub-lattice of transition metal atoms, displayed in Fig. 5.1, reveals that the
basic structural element is an equilateral triangle of 3 Mn atoms. The structure is
corner-sharing: Each Mn-atom connects 3 triangles, which occur with 4 di�erent
orientations along the body-diagonals of the cubic unit cell. The singly connected
loops of the structure shown in Fig. 5.1 contain an odd number of bonds. The
structural similarity to the pyrochlore[36, 37], Kagome[38, 39], Gadolinium Gallium
Garnet[40], and the β-Mn lattices[41, 42] is a peculiarity that has been overlooked
so far.
Geometric frustration:

As far as geometric frustration is concerned, there is a remarkable similarity
between the Mn sublattice in MnSi and the Mn2+ sublattice in β-Mn (β-Mn is
a Mn crystal in which two sublattices of respectively Mn2+ and Mn3+ ions are
intercalated). The latter has been found to be a frustrated quantum magnet by
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means of transport and magnetic measurements[41, 42, 43]. Taking a closer look
(the Mn2+ sublattice of β-Mn is displayed in Fig. 5.2) one realizes that while for
MnSi, in Fig. 5.1, the �rst bonds loop connecting one atom with itself is made of
three bondings, the next is made of 5, then 7, etc. In β-Mn the second shortest loop
is already made of an even number of bondings, 4. This means that this particular
structure, the P4132 (213), is less frustrated than the P213 of MnSi, according to a
de�nition of the degree of frustration based on similar arguments[44].

Figure 5.2: Left panel: The Mn2+ sublattice of β-Mn. Right panel: the unit cell of
PdF2, gray balls are Pd ions, the green ones are Fluorine. The magnetism of PdF2
is depicted with red arrows.

As mentioned above, MnSi orders helimagnetically below 30 K. In MnSi helimag-
netism has been explained in terms of the Dzyaloshinskii-Moryia interaction. How-
ever, this interaction is known to be small in the system. While we do not want
to question this interpretation, we would like to point out that, since the ordering
temperature is so low, many di�erent e�ects could play a role in the magnetism of
MnSi. On general grounds, the exchange interaction in MnSi gives an energy scale
around 300 meV, the transition temperature is about 30 K (2-3 meV, comparable
to the value of the Stoner boundary), and the local moment is strongly reduced
in the ordered state (0.4-0.5µB) with respect to the paramagnetic state (2.2 µB).
These observations evidence that a competition between di�erent processes is taking
place. Di�erent exchange interactions in di�erent directions is a plausible scenario.
This anisotropy combined with the spin-orbit interaction leads to the Dzyaloshinskii-
Moryia interaction; both the anisotropy and the spin orbit interaction are found to
be small but not negligible in MnSi, see the discussion of the NMR experiments in
section 5.5.1. Geometric frustration could also play a role, however, given the three
dimensionality of the B20 structure, its investigation is complicated. It is di�cult to
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�nd a smoking gun indicating that frustration plays a role, because the aforemen-
tioned triangles are oriented in four di�erent directions. In a scattering experiment,
one would like to use a geometry that allows to look at the response of the triangles
lying in a certain direction, since four orientations are found in 3 dimension this is
not possible. There will always be an admixture of the response coming from trian-
gles oriented in other directions not perpendicular to the considered one. Moreover,
the itinerant character of MnSi complicates the theoretical analysis of this aspect.
An overview of other B20 materials:

Given the complexity of the magnetism observed in MnSi, it is interesting
also to take a look at other materials that share this peculiar crystal structure.
Some indications of what is relevant for MnSi's magnetism could come from the
behavior of related materials. B20 binary compounds have not been investigated
much so far, for this reason we report the Density of States of some of them
in order to have a rough idea whether something unexpected emerges form
these other materials or not. Here we focus on those which are composed by
just two elements in the ratio 1/1. This is because in this case the sublattice
of each element will have the frustrated geometry discussed above. It has been
found [45] that for two elements in order to crystallize in the P213 space group
a condition on the ratio between the atomic radii has to be satis�ed. In par-
ticular the ratio rA/rB has to be larger than 0.77 and smaller than 1.365. We
list all known P213 binary compounds, and one can see that they all satisfy this rule.
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Figure 5.3: Left panel: The density of states of AuBe. Right panel: The density of
states of HfSn.
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Compound a (Å) rA/rB

HfSn 5.594 1
CrSi 4.629 0.96
CrGe 4.789 0.92
MnSi 4.557 0.98
TcSi 4.775 1.02
ReSi 4.775 1.04
FeSi 4.488 0.96
FeGe 4.7 0.98
RuSi 4.703 0.24
RuGe 4.846 1.01
OsSi 4.729 0.97
CoSi 4.447 1.02
RhSi 4.675 0.94
RhSn 5.132 1.01
NiSi 4.446 0.85
PdGa 4.89 0.94
PtAl 4.864 0.91
PtGa 4.91 0.97
PdHg 5.22 0.915
PtMg 4.863 0.94
AuBe 4.668 1.25

The interatomic distance for these compounds is between 2.2 and 3 Å, which means
that when this structure is formed the bond length is rather small. Consequently,
the orbitals of the elements involved in the bonding hybridize strongly, and these
compounds usually have a very covalent nature. In the case of transition metal
mono silicides, for example, one has elements with the tendency to localize elec-
trons, transition metals, forming rather covalent bonds with silicon. This unusual
interplay between localization and covalency, together with the geometrical frustra-
tion of the transition metal sublattice, leads to several unexpected phenomena as
will be discussed in the following sections. In the list of compounds above, there are
many systems whose electronic structure is unknown, besides the elementary elec-
tron counts that one can do knowing the formula unit. On the other hand, among
the studied ones, some transition metal mono-silicides have shown non Fermi Liquid
behavior[3, 33]. In Fig. 5.4 one can see a classi�cation of several non-octet binary
compounds in terms of their density-functional radii[69]. Non-octet compounds are
those whose outer electronic shell is not composed by �lled s and p orbitals (octet).
The B20 binary compounds are found all in a con�ned region of this plot, except for
AuBe, which is a metal with low density of states close to the Fermi level, see Fig.
5.3. In Ref. [69] a theoretical motivation is discussed for the fact that the B20 binary
compounds are formed when the ratio between the radii discussed above is satis�ed.
Di�erent crystal structures are found to form preferentially when similar conditions
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on the relative radii are satis�ed, giving the possibility to �nd systematics among
them.

Figure 5.4: Structural separation plot for the 81 binary nonoctet compounds. This
graph has been taken from Ref. [69]

In Fig. 5.5 one can see the e�ect of the chemical pressure on the transition metal
ion in the density of states predicted by LMTO calculations for RSi, where R = Mn,
Tc, Re. MnSi is found to be ferromagnetic, while TcSi and ReSi are not. The gap
in the density of states, which causes FeSi to be an insulator, is found to be larger
in TcSi than in MnSi; accordingly, a similar gap has been observed in RuSi [70],
which is exactly one element below Fe in the periodic table. This observation sup-
ports the idea that FeSi and RuSi are band insulators, stressing the importance of
the itinerant character of the Transition-Metal mono-silicides. In Fig. 5.5 the e�ect
of the chemical pressure on the Si ion in the density of states predicted by LMTO
calculations for MnR, where R = Si, Ge, Sn, is displayed. MnGe and MnSn are also
ferromagnetic, while the aforementioned gap in the density of states disappears.
MnGe and MnSn have never been grown to the best of my knowledge, but given the
systematic classi�cation given above they could exist. At last, we report the density
of states of HfSn which is the only B20 binary compound known which contains a
transition metal of the fourth group, in Fig. 5.3. This material is metallic according
to LMTO calculations, it is not spin polarized and has the Fermi energy exactly in
a peak of the DOS.
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Figure 5.5: Left panel: The spin polarized TM - d-density of state and the Si p-density
of state for MnSi, TcSi and ReSi. Right panel:The spin polarized Mn - d-density of
state and the Si,Ge,Sn p-density of state for MnSi, MnGe and MnSn.

One may go further and ask what happens relaxing the condition, for example, on
the stoichiometry being 1:1. The overall point of view I proposed above required an
inspection of the periodic table, it is easy to imagine how many more compounds
one can �nd considering also formulas of the kind AB2 AB3 etc. We do want to
point out a few more interesting examples of the B20 crystal structures found in
nature: Following the simple argument about the bond length, one can intuitively
think that in the case of magnetic elements these materials should have fairly large
exchange energies. This is true in MnSi, while the magnetic ordering temperature
is much lower than the exchange value would suggest. This has been interpreted as
a signature of weak itinerant magnetism. However, the same e�ect could be due to
geometric frustration or competing ordering mechanisms. In the high pressure phase
of PdF2, one observes the B20 crystal structure again; this time though, due to the
stoichiometry 1:2 between the transition metal and the F atom, the transition metal
sublattice is not a corner sharing triangular network. One can see in Fig. 5.2 that the
palladium sublattice (gray balls) forms an edge sharing equilateral triangles network
(much less frustrated then the corner sharing one). In this compound neutron scat-
tering experiments revealed an antiferromagnetic ordering, as depicted in Fig. 5.2,
perpendicular to Pd planes which are ferromagnetically ordered squares. The Neel
temperature of this material is around 200 K, which is fairly high. My suggestion is
that here frustration does not lower the magnetic ordering temperature considerably
because of the edge sharing network geometry. I want to stress that this is just a
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speculation, PdF2 to my best knowledge has been studied very little so far 1.

5.2 Transition Metal mono-silicides Phase diagram
The transition metal mono silicides family crystallizes in the B20 structure. CrSi,
MnSi, FeSi, CoSi and NiSi belong to this family. CrSi has not been studied exhaus-
tively while NiSi stabilizes in the B20 structure only when small fractions of Al are
substituted on the Ni site[45]. In the lower panel of Fig. 5.6, we show the phase
diagram for the compositions ranging from Mn to Fe to Co silicide[3]. Depending
on the substitution ratio of the transition metals one can �nd helimagnetism, in
MnSi, in FexCo1−xSi around x = 1/2 and MnxFe1−xSi around x = 0.9. The mag-
netism in these compounds has been described in the framework of weak itinerant
ferromagnetism[1]. FeSi is a small gap semiconductor and CoSi is a diamagnet. In
this thesis we will focus our attention on the stoichiometric compound MnSi, and I
will discuss some related issues in FeSi and CoSi. For this purpose, in the topmost
panel of Fig. 5.6, I display the phase diagram of MnSi as obtained by transport
measurements [32]. In MnSi the helimagnetic ordering is found at ambient pressure
below 30 K. This ordered state is destroyed above 14 kbar of hydrostatic pressure.
In the high pressure region a non Fermi Liquid behavior is found in transport; this
region corresponds to a particular magnetic phase observed with neutron di�raction
in recent experiments under pressure[31]. These experiments have shown that the
magnetic ordering is not suppressed by pressure, but a new state is formed with pe-
culiar characteristics: while in the ordered phase the axis of the helixes, which have
a 180 Å pitch, are all oriented among each other, above 14 kbar the helixes still exist
but their orientation is random. MnSi shows a negative magnetoresistance, which
can be explained by a suppression of spin �uctuations in magnetic �elds in the con-
text of Moriya's spin �uctuation theory for weak itinerant ferromagnets[1]. On the
other hand, very similar magnetic properties are observed in Fe1−xCoxSi where mag-
netoresistance is shown to be positive[3]. Later in this chapter, some data measured
in very high magnetic �eld, where also MnSi shows a positive magnetoresistance,
will be presented.

5.3 MnSi electronic structure
Nascimur uno modo, multis morimur. Transition metal mono silicides share the same
band structure, but because of the di�erent position of the Fermi energy they show
very di�erent properties. For example MnSi is a good metal, FeSi is a semiconductor
and CoSi is a bad metal. In this section the electronic structure responsible for this

1I would like to mention that solid CO and NH3 are also B20 compounds
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Figure 5.6: Upper panel: phase diagram for MnSi, taken from Ref. [32]. Lower panel:
phase diagram for the silicides series, taken from Ref. [3]

variety of behaviors is discussed.

5.3.1 Band structure calculations

The band structure for MnSi, FeSi, FexCo1−xSi and CoSi has been reported by
Nakanishi in Ref. [48]; I display these results in Fig. 5.7. One can see that MnSi
and FexCo1−xSi have several bands crossing the Fermi level and behave as good
metals, while FeSi has a small gap of 130 meV and it is a semiconductor; CoSi
has a low density of states at the Fermi level and is a bad metal. In MnSi the
minimum for the LDA energy is found for a moment around 1µB per Mn atom, far
too high with respect to the experimental value of 0.4. Usually LDA calculations are
performed changing the lattice parameter in order to match the experimental value
for the ordered moment[20]. A detailed study of the Fermi surface of MnSi has been
reported in Ref. [19]. In the range between -11 and 4 eV one can see the 36 bands
present in the unit cell of MnSi: a unit cell contains four formula units of MnSi,
each Si atom contributes 4 electrons (3s2, 3p2) to the valence band, each Mn atom
contributes 7 electrons (4s2, 3d5) to the valence band. These 11 states × 4 formula
units /2 spins give 22 bands. Together with the Si and Mn empty states one has 36
valence-conduction bands. The Si 3s bands are found between -11 and -6.5 eV, the
Si 3p ones are between -6.5 and -3 eV below the Fermi energy and over 1 eV above
the Fermi level. The 3d bands are con�ned between -3.5 and 1 eV, the width of
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Figure 5.7: The band structure of MnSi, FeSi, FexCo1−xSi and CoSi. Graph taken
from Ref.[48].

the 3d bands has been estimated to be around 2 eV, performing a band calculation
excluding the Si atoms from the crystal. A remarkable feature observed in this study
is that because of the particular symmetry of the B20 structure, the bands tend to
stick together at certain symmetry points. In Fig.5.8 one can see that at the X,
M and R point several bands merge into a degenerate one. The B20 structure can
be thought of as a deformation of the rocksalt one. This simple cubic structure
becomes the B20 when distorted along the [1,1,1] direction. One can calculate the
band structure for a rocksalt MnSi in order to see the e�ect of the particular B20
deformation on the electronic structure. Usually in cubic crystals �at bands are
observed, as seen in the rocksalt MnSi; this e�ect is due to the cancelation of some
d−d hopping processes in a cubic environment, and is a cause of localization. In the
rocksalt structure the degeneracy at the X and M point is also lifted while at the
R point no splitting is observed; the dispersionless bands are modi�ed by the B20
deformation and a more conventional dispersion for a metal is found, even if some
tendency to �atten is observed around the high symmetry points. This particular
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band sticking around high symmetry points has consequences on the Fermi surface
topology. Once the spin polarized Fermi surface is calculated for the majority and

Figure 5.8: The band structure of MnSi in its B20 symmetry (left panel) and in the
rocksalt symmetry(right panel). Graph taken from [19]

minority spin bands, one can plot the corresponding Fermi surfaces. In Fig. 5.9 we
show the two spin polarized Fermi surfaces which are given by three bands each,
these graphs are taken from Ref. [19]; the three contributions are plotted separately.
One can see two main features: for the majority spin surfaces one has two "jungle
gym" type of surfaces which do not intersect the zone faces perpendicularly; the
normal situation is restored when one considers the summation of these surfaces.
In fact, as one can see in the graph the two jungle gym surfaces have opposite
curvatures at the zone faces. This though, could have e�ects on the cyclotron orbits
observed in the de Haas van Alphen measurements, which I will discuss in the next
paragraph. In the minority spin surfaces one observes strong nesting phenomena,
the authors suggest that this could have an impact on the scattering processes[19].

5.3.2 De Haas van Alphen measurements, Positron Annihi-
lation Spectroscopy, Optics

Experimental studies of MnSi Fermi surfaces have been carried out by means of
low energy and high energy probes. In this section I will discuss the main results
obtained by means of the low energy experiments. The Positron Annihilation
Spectroscopy (PAS) data have been obtained very recently and allow an extensive
comparison between the theoretical Fermi surface and the experimental one. In
1986 Taillfer, Lonzarich and Strange reported the de Haas van Alphen spectra
(dHvA) of MnSi[2]. They identi�ed three main dHvA frequencies and compared
them to the predicted orbits around the Fermi surface. In table 5.1 I show the
comparison between the experimental cyclotron frequency and masses and the
calculated values. One can see that while the frequency of the orbits is in good
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Figure 5.9: The spin polarized Fermi surfaces of MnSi. In the left panel the majority
spin bands and in the right panel the minority spin bands. Graph taken from [19]

Table 5.1: The dHvA experimental orbits together with the predictions of LDA
calculations

Frequency (MG) Cyclotron masses (m0)
orbit Exp. Calc. Exp. Calc.

α 0.7 0.3 2.4 0.5
η 29 30.7 8 2.4
µ 64 68 14.5 3

agreement with the theory, the masses are far higher than the theory could predict
and are the highest cyclotron masses reported for a transition metal, as the authors
point out. The average mass enhancement factor is found to be around 4, in
agreement with the enhancement factor of the linear coe�cient of speci�c heat[49]
and optical measurements[33]. Moreover in order to interpret these experiments
a rigid shift of the bands was needed in order to match the experimental observations.

The experimental investigation of MnSi Fermi surface has been carried out by means
of Positron Annihilation Spectroscopy (PAS) by J. Laverock and S. Dugdale in Bris-
tol. PAS is a well established technique that is particularly suitable for 3D materials
where large high quality single crystals are available. In particular, while the dHvA
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Figure 5.10: The theoretical (right panel) and experimental (left panel) radial
anisotropy of the momentum density for the (a,b) [001] direction, (c,d) [101], (ef)
[102]. Data measured by J. Laverock and S. Dugdale in Bristol, obtained in private
communications.
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technique is very sensitive to impurities, PAS is relatively una�ected by impurities
as long as they do not cause the formation of vacancies or other open-voulme type of
defects. MnSi is a very good candidate since large single crystals can be grown with
residual resistivity as low as a few µΩ/cm. For a detailed description of this tech-
nique I suggest reference [50] and references therein. First, we show a comparison
between the experimentally determined momentum density and the calculated one,
Fig. 5.10. Due to the e�ect of the particular B20 symmetry, the [100] and the [001]
directions are not equivalent. The B20 structure arises from a set of point group
operations which are simple rotations about the [111] direction. Because of this, the
usual re�ection plane that maps (px, py, pz)→(px, py,−pz) is no longer there. This
happens even if in the paramagnetic state time-reversal restores the inversion cen-
ter in the reciprocal space2, (px, py, pz)→(−px,−py,−pz). The agreement between
the theoretical anisotropy of the momentum density and the experimental one is
qualitatively good, however, some deviations are observed especially in the relative
intensities of the prominent features. The radial anisotropy of the momentum den-
sity, displayed in Fig. 5.10, has components coming from both �lled and un�lled
bands. Some of these components are coming from the Fermi surface, therefore it
is possible to recover the shape of the Fermi surface from the momentum density
distribution. The results of this procedure are shown in Fig. 5.11 together with the
LMTO paramagnetic calculation performed for a lattice constant of 4.39 Å. One can
see that the experimental Fermi surface is signi�cantly di�erent from the theoreti-
cal one. It is remarkable that the experimental Fermi surface is almost identical to
the minority spin Fermi surface in the ferromagnetic state reported in Ref.[19]. An
agreement between the LMTO result and the experiment is obtained considering
a rigid shift of the bands of 0.2 eV. However, this approach does not conserve the
number of particles.
The purpose of this short report on the PAS experiment, is to show that band
calculations can capture some of the features of the electronic structure of MnSi.
However, consistent with previous XAS and XPS results, some important deviations
are present.
By means of optical spectroscopy it has been shown [33] that the low frequency
(10-100 meV) re�ectivity does not obey the Hagens-Ruben dependence usually ob-
served in metals. Accordingly the scattering rate shows a non Fermi-liquid frequency
dependence and the low temperature e�ective mass is enhanced by a factor of 4, in
agreement with the dHvA experiments.

2This anisotropy is due to the way in which positrons probe the electronic structure in this
peculiar symmetry. No electronic anisotropy is observed.
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Figure 5.11: Left panel: The Fermi surface originating from the di�erent bands cross-
ing the Fermi level calculated with LDA. Right panel: The experimentally derived
Fermi surfaces. Both data and experiments are obtained from J. Laverock and S.
Dugdale in Bristol, private communications.
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5.3.3 X-ray Absorption Spectroscopy, Core level photoemis-
sion and Valence band photoemission,

In this section we investigate the electronic structure of MnSi by means of high
energy probes. We will show results obtained by X-ray Absorption Spectroscopy
(XAS), core level photoemission (XPS) and valence band photoemission (VBP).
While the low energy properties of MnSi have been seen to match fairly well with
the single particle picture, although an indication of correlation e�ects already come
from the optics experiments, we will show that on a higher energy scale the electron-
electron correlation e�ects manifest themselves dramatically. In order to substantiate
these �ndings we will show a systematic study of the family MnSi, FeSi and CoSi. The
last has never shown any unexpected property and accordingly we succeed describing
the spectra measured on CoSi by means of the single particle approximation. We
will show that the correlation e�ects are evident in MnSi and FeSi while they are
absent in CoSi.
MnSi, FeSi and CoSi high quality single crystals were measured. All samples were
characterized by x-ray di�raction, EDX elemental analysis and electrical resistivity.
The residual resistivity of all MnSi samples was less than 2 µΩcm. We will describe
in detail the experimental procedure for the MnSi samples. All other compounds
have been measured in the same conditions.
The experiments were performed at the BACH beam line [51] of the ELETTRA
synchrotron in Trieste. XAS was performed in total electron yield (TEY), measuring
roughly the �rst 50 Å of the surface, and total �uorescence yield (TFY), measuring
down to 200 nm in the bulk. The XAS spectra were normalized to the incident photon
�ux, the resolution in TEY was 150 meV and 400 meV in TFY. The �uorescence
experiments were done recording the �uorescent decay of Mn 3d −→ 2p and 2p −→
3s levels on a CCD detector.
Large single crystals were cleaved in situ prior to the measurements in order to
obtain clean surfaces; the surface quality was checked with XPS, shown in Fig.
5.12. The base pressure in the measurement chamber was 1 · 10−10 mbar. XAS and
XPS spectra were recorded at room temperature within minutes after cleaving. The
contamination of the surface before and after cleaving was checked by oxygen and
carbon 1s photoemission. The cleaved surface of the sample was scanned spatially
with steps of 100 µm and XPS was recorded at each position. This analysis showed
that a signi�cant carbon contamination is present on the border of the sample. This
contamination a�ects dramatically the shape of the TEY XAS. Only at least 150 µm
away from the sample's border, where the XPS reveals a very clean surface, we could
have a TEY spectrum in agreement with the TFY one, representative of the bulk
properties of the material. In the XPS spectra, recorded in the middle of a cleaved
sample, the oxygen and carbon 1s lines are completely suppressed with respect to
the non cleaved sample, as shown in Fig. 5.12. The analysis of the surface revealed
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Figure 5.12: XPS spectra of MnSi before and after cleaving. In the right part of the
�gure one can see the high resolution spectra of the Mn 3s levels measured with an
incident photon energy of 418 eV and the Si 2p levels measured with an incident
photon energy of 196 eV before cleaving and 142 eV after cleaving; in the left part a
survey from the Si 2s to the O 1s is displayed measured at 655 eV incident photon
energy. The blue curve represents the spectrum after cleaving, the red curve was
recorded before cleaving. After cleaving the high binding energy component of the
Si 2p line is suppressed , the Mn 3s level splitting diminishes and the C and O 1s
lines are also suppressed.

that carbon, MnO and SiO2 are the main contaminants. The XPS of Si 2p levels
shows a component around 102 eV associated to SiO2; the Mn 3s splitting on the
sample before cleaving was 6.3 eV, in agreement with earlier reports for MnO [52].
In the cleaved sample the high binding energy peak of the Si 2p level is suppressed,
the Mn 3s levels splitting diminishes to a much smaller value and the carbon and
oxygen 1s lines are suppressed.
In Fig. 5.13 we display the Mn L2,3 XAS spectrum of MnSi measured both in TEY
and TFY; one can see that the two spectra are almost identical, indicating that
we are probing indeed the bulk. The two main peaks correspond to the 2p1/2 (642
eV) and 2p3/2 (653 eV) spin-orbit split components of the 2p core level. In a one
particle picture these two edges have the same spectral shape, as illustrated by a
�rst principles calculation using the Local Density Approximation (LDA, black line
in Fig. 5.13). Self consistent LDA-LMTO (Local Density Approximation - Linear
Mu�n Tin Orbital) calculations have been performed for 64-atom supercells; one
of the Mn atoms has a core hole. The groundstate of the calculation was ferromag-
netic, adopting three di�erent states of magnetic polarization characterized by local
moments of 0.4, 0.8 and 1 µB, labelled as such in Fig. 5.13. The XAS spectrum
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Figure 5.13: Left panel: Mn L2,3 edge measured XAS together with atomic multiplet
calculation for a 3d6 ground state. The TFY experiment has a resolution of 0.4
eV (red open symbols); the TEY experiment has a resolution of 0.2 eV (blue open
symbols). Middle panel: the experimental spectra are plotted together with the Mn
mixed valence atomic multiplets calculations in a cubic crystal �eld (black line);
below this line is possible to see the contribution from the di�erent con�gurations.
The dark blue line represents the superposition of the d4, d5, d6 and d7 con�gurations
with the weights given by the binomial distribution in table 5.2, which correspond to
the non interacting particle picture. Right panel: the LDA calculations are plotted
for 3 di�erent value of the lattice parameter together with the experimental spectra.

corresponds to a broadened sum of the unoccupied local spin Mn-d DOS functions.
A known problem of band calculations in MnSi is the predicted value of the local
moment on the transition metal atom [20]. This quantity is strongly dependent on
the unit cell dimension and tends to be higher then the measured one when the lat-
tice constant has the experimentally determined dimension of 4.558 Å. We checked
the in�uence of this e�ect on the XAS spectrum in 3 cases, changing the lattice
constant: the local moment of Mn is 0.4 µB (the experimentally measured value)
for a lattice parameter a = 4.36, 0.8 for a = 4.5 and 1 µB for the measured lattice
constant a = 4.55. This is shown in the right panel of Fig. 5.13; this e�ect weakly
modi�es the XAS spectrum and cannot explain the strong departure from the mea-
sured one. It is evident that LDA calculations are narrower and cannot replicate
the XAS spectra for MnSi. In the middle panel of Fig. 5.13 we compare the experi-
mental spectra with atomic model calculations performed with a standard computer
program [53]. We calculate the XAS spectra for several di�erent con�gurations: Mn
3d4, 3d5, 3d6, 3d7 and d8 in a cubic crystal �eld environment of 2.4, 2.6 and 3 eV.
Furthermore least mean square �ts to the data of the weighted superposition of 4
single valence spectra, d4, d5, d6, d7 and d5, d6, d7, d8 were performed. The least mean
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square routine tends to give a negligible weight to the d4 and d8 con�gurations.
We estimate the error bars of this approach as the maximum spread of values ob-
tained for the d5, d6, d7 con�gurations in the two cases for the 3 mentioned values of
the crystal �eld. The crystal �eld is estimated from the band splitting observed in
the high symmetry points of the band calculations [19]. In the best �t the relative
weights of the di�erent valences are found to be: 0%d4, 21%d5, 55%d6, 24%d7, 0%d8

in a crystal �eld of 2.6 eV. In Fig. 5.14 we plot the inverse of the χ2 obtained �tting
the experimental data to the combination of d4 + d5, d5 + d6, d6 + d7 and d7 + d8

respectively. This calculation shows that the �tting quality is peaked around the
d6 con�guration and supports the conclusion that a large contribution to the XAS
spectrum comes from the 3d6 con�guration.

Figure 5.14: We display the inverse χ2 for the �ts to the experimental data of the
superposition of d4 + d5, d5 + d6, d6 + d7 and d7 + d8 respectively.

In the left panel of Fig. 5.13 we display a calculation for an atomic 3d6 ground state;
this simple calculation also does not represent satisfactorily the experiments. The
better agreement between the experiments and the atomic multiplet mixed valence
calculation emphasizes two important properties of the electronic con�guration of
MnSi: (i) the dominant con�guration is 3d6; (ii) experimentally, the valence �uctu-
ations are given by:

p(N) = P (N0) · exp[−(
N −N0

δN
)2] (5.1)

where δNexp = 0.92 and N0 = 6. For non interacting particles distributed over 10
3d bands, having the average occupation of 6 electrons (N0 = 6), P(N) is given by
the binomial equation:

PNI(N) = 0.6N0.410−N10!
1

N !(10−N)!
(5.2)
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(NI = non interacting), which is to a very good approximation given by Eq. 5.1 with
N0 = 6 and δNNI = 2.3. Thus the value δNNI

δNexp
= 2.5 gives a measure of the valence

suppression in the ground state. In table 5.2 we show the probability of having
N electrons on an ion as a function of the occupation number in a LDA picture,
together with the experimental �ndings. In Fig. 5.16 one can see the �t to Eq. 5.1
for the experimentally derived P(N) and the theoretical ones. The sharp suppression
of valence �uctuations in the ground state of Mn observed experimentally is likely
the consequence of the on-site Coulomb interaction in the 3d shell of Mn. For the
d6 con�guration of Mn Ueff = F0 − J − C = 1eV [54], where F0 is the intra-
shell Coulomb repulsion, J is the intra-shell exchange interaction and C takes into
account all the multipole contributions of the Coulomb and exchange interaction.
The overall 3d band-width of MnSi is about 6 eV, but this value in part re�ects a
relative shift of the di�erent group of bands, representing the crystal �eld splitting.
The width of each of the sub-bands is approximatively 2.5 eV, hence U = 0.4W in
this compound. This value implies that MnSi has to be considered as an itinerant
system. On the other hand the valence �uctuations should be strongly suppressed
as compared to the non interacting picture, and this indeed corresponds to what we
observed experimentally.
The same procedure is applied to the XAS spectra of FeSi and CoSi. A weighted
superposition of 3d6, 3d7, 3d8 for Fe and 3d7, d8, d9 con�gurations for Co, in a cubic
crystal �eld environment of 2.4 eV is �tted to the data. The resulting spectra are
shown in Fig. 5.15. One can see that while in MnSi and FeSi the LDA calculations
do not reproduce the measured XAS spectra, CoSi data are in good agreement with
the single particle calculations. Accordingly, in CoSi the superposition of the di�er-
ent valence con�gurations closely resembles the LDA calculation. We display in Fig.
5.16 the theoretical and experimental P(N) for all the three compounds, the full-
width half maximum of these distributions are displayed in Fig. 5.17. One can see
that while in the non-interacting particles scenario the valence �uctuations distribu-
tion is narrowing moving toward higher d-occupancy, experimentally we observe the
opposite trend. The result of this is that in CoSi the experimental and the theoret-
ical curve are rather close. This is consistent with the fact that the non-interacting
particle approach can reproduce very well the XAS spectra of CoSi.
This approach is not an exact treatment of the XAS process, because it neglects the
so called interference e�ects [55]. In fact, we calculate the XAS process for the single
con�gurations d5, d6, d7 etc..which represent the spectra associated to the transitions:
2p6 3d5 −→ 2p5 3d6, 2p6 3d6 −→ 2p5 3d7, 2p6 3d7 −→ 2p5 3d8, etc... Strictly speaking,
a linear combination of these spectra does not represent the process 2p6 (3d5, 3d6,
3d7) −→ 2p5 (3d6, 3d7, 3d8). In the presence of a core hall in fact, the energy of
the di�erent states are shifted, causing the interference e�ects, as such that the
relative weights of the di�erent con�gurations in the overall process are going to be
di�erent than what one would estimate starting from the single valence scenario.
On the other hand, this e�ect is not going to modify the shape of the single valence
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Figure 5.15: The XAS spectra of Mn, Fe and Co are displayed together with cluster
LMTO calculations and mixed valence calculations based on the Cowan code[53].
The con�gurations mixed are d5,d6,d7 in Mn, d6,d7,d8 in Fe and d7,d8,d9 in Co

spectra themselves; we know that the XAS spectra for di�erent con�gurations have
spectral weight at di�erent energies, for example the 3d4 con�gurations has spectral
weight between the two spin-orbit split components which is not present in the 3d5

spectrum [62]. For this reason, it is improbable that the interference e�ects can cause
other con�gurations to be relevant component of the superposition of states that
we consider. We believe that these e�ects could certainly cause somewhat di�erent
numbers for the weights of the con�gurations without a�ecting our main conclusions.
On the other hand, our approach allows one to �t the data to the multiple valence
calculations with a small number of �tting parameters, 6 in the case of 3 valences.

In Fig. 5.18 we present the photoemission spectrum of the Mn 3s core level measured
at an incident photon energy of 418 eV and the �uorescence spectrum measured at
a photon energy of 660 eV; since photoemission is a very surface sensitive technique,
we cross check our results acquiring the corresponding �uorescence spectrum when
possible. The Mn 3s photoemission shows a shoulder on the high energy side of
the spectrum. Most likely, the mixed valence ground state we discussed before is
responsible for this weak shoulder visible in the 3s spectrum. The asymmetry of the
3s photoemission in insulating Mn compounds, such as MnO, MnF2 or manganites,
has been shown to be caused by the many-body interaction between the core-hole
and the localized 3d electrons [52, 57]. In this case the role of the exchange inter-
action is predominant and, when the orbital moment does not contribute to the
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Table 5.2: Theoretical P(N) assuming non interacting particles, [PNI(N)], experi-
mental P(N) obtained from the mixed-valence �t to the XAS spectrum, [Pexp(N)].
The values of ∆(N) correspond to the shift of the energies E(2p −→ 3dN+1), with
respect to the output of the Cowan code, of the �nal state multiplets; the cubic
crystal �eld parameter was 2.6 eV for all con�gurations.

N PNI(N) Pexp(N) ∆(N)
0 0.0001 - -
1 0.0015 - -
2 0.011 - -
3 0.042 - -
4 0.111 - -
5 0.193 0.21 2
6 0.251 0.55 0.38 eV
7 0.215 0.24 3.72 eV
8 0.121 - -
9 0.04 - -
10 0.006 - -

total magnetic moment of the charge carriers, a direct relation between the 3s level
splitting and the spin magnetic moment is valid. On the other hand, it is well known
that this relation doesn't hold any longer in more metallic systems [58]. When the
electronegativity of the ligand atom decreases, the charge transfer satellites and the
screening of the �nal state become more important, as a result it is not possible any
longer to attribute the peaks in the 3s spectra to pure spin states. Usually, in more
covalent systems, the 3s levels splitting is smaller than what one would expect in
the localized scenario because of these e�ects. We believe that this is the case in
MnSi, whose metallic behavior re�ects the covalent nature of the Mn-Si bonding.
On the other hand, if one crudely uses the knowledge that the 3s level splitting is
proportional to (S+1) where S is the Spin local moment, one �nds a local moment
between 1.9 and 2.5 µB which is in good agreement with the measured paramag-
netic moment of MnSi. This, together with the new NMR data (discussed in section
1.5.1), might as well suggest that a localization is indeed taking place among the 3d
electrons in MnSi.
In Fig. 5.18 and 5.19 we compare the experimental valence band photoemission spec-
tra with the LDA calculations. The calculations includes the radial matrix elements
but ignores the k-conservation between initial and �nal states. This is a reasonable
approximation in the limit of large photon energy[59]. In MnSi, in the calculation a
peak is evident around 2.8 eV away from the Fermi edge, a similar feature is visible
in the experimental spectrum, although its position is only 1.8 eV away from the
Fermi edge. The valence band photoemission spectra have been collected using three
incoming photon energies: 86 eV, 104 eV and 196 eV and no appreciable changes
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Figure 5.16: (Left panel: The theoretical and experimentally derived values of P(N)
are plotted together with the �t to Eq. 5.1. From these �ts we extract the values for
δN and thus δNNI

δNexp
= 2.6. Right panel: The theoretical and experimentally derived

values of P(N) are plotted together with the �t to Eq. 5.1 in MnSi, FeSi and CoSi.

where observed. Also in this case the agreement between the calculation and the
experiment is not satisfactorily. The valence band photoemission on MnSi has al-
ready been reported together with the LDA calculation in Ref. [60]. The authors
point out that the major deviations from the raw spectra and the calculations are
ascribable to the on site Coulomb repulsions, in agreement with our conclusion. In
FeSi the agreement with band calculations is also poor, while for CoSi a good match
is found.
Our observations evidence the fact that in this class of materials it is not justi�ed to
neglect completely the electron electron correlations. The discrepancy between the
single particle scenario and the experiment is corroborated by the comparison in Fig.
5.13 (a) of the LDA-prediction of the XAS spectrum to the experimental data. It
would be tempting to attribute this discrepancy to the fact that XAS is a high energy
probe, and that the observed spectra correspond to the �nal state with an extra
core-hole present. However, (i) both in the band-calculation as well as in the atomic
multiplet calculations shown in Fig.5.13 (a) the presence of the core-hole has been
taken into account, (ii) theoretically these spectra are expected to be a very sensitive
�ngerprint of the initial state electronic con�guration, (iii) the same concerns would
apply to the transition metal oxide family, where XAS has been quite successful
probes of the magnetic properties [62, 63, 64, 65]. Moreover, also valence band
photoemission, where no core hole is present, is inconsistent with the LDA approach.
The cross check of the results by means of di�erent techniques, electron counting
and photon counting techniques, make us con�dent that we are indeed probing the
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electronic structure of bulk MnSi. Our estimated value for U/W around 0.4 classi�es
MnSi in a class of materials where none of the two approximations is particularly
good: completely neglecting the electron-electron interactions or considering them
as dominant. The helical magnetic structure of MnSi has been explained in terms of
the Dzyaloshinskii-Moryia interaction; the interplay between spin-orbit coupling and
exchange interaction can result in an anisotropic exchange interaction, responsible
for the helical magnetic structure in low symmetry crystals. For this to happen the
motion of the conduction electrons must have a �nite orbital component, for example
a 3d5(6S) ground state would be rather unfavorable in this context, having a null
orbital moment. Our observations are compatible with this picture, providing an
experimental support to the microscopic model.
The occupation of the Mn d-orbitals in MnSi is somewhere between 6 and 7, close to
what one would expect in the LDA scenario. Accordingly, adding one more electron
to the system would imply an occupancy between 7 and 8 for FeSi and between 8 and
9 for CoSi, as experimentally con�rmed. This is indeed visible in Fig. 5.17, where one
can see that the experimental distributions P(N) get narrower moving from Mn to
Co and becomes closer to the non interacting ones. Simultaneously, one observes also
that the non interacting distributions are slightly narrowing moving from Mn toward
Co. The combination of these two e�ects is such that in CoSi both the mixed valence
calculation and the cluster LMTO give very similar results. One should realize also
that moving toward the right of the periodic table the di�erence in electronegativity
between the transition metal ion and Si becomes smaller. This implies that the TM
d orbital is more hybridized by the Si 2p in CoSi than it is in MnSi. This, together
with the previous observations, suggests that LDA is a more correct model than the
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Figure 5.18: Left panel: Valence Band photoemission measured at an incident photon
energy of 104 eV together with LDA calculations. Right panel: Photoemission (blue
open symbols) measured at 418 eV incident photon energy and �uorescent (red open
symbols) spectra of Mn 3s levels measured at 660 eV incident photon energy.

atomic multiplets based calculations for CoSi. All these observations, together with
the bulk of other evidences for TM mono-silicides to be rather itinerant systems,
show that Coulomb repulsion are likely to be a perturbation of the non interacting
particle scenario. Still it is remarkable to notice that such a perturbation can have
a very profound e�ect on the XAS and VBP spectra in MnSi and FeSi.

5.4 MnSi transport, magneto-transport and ther-
moelectric properties

5.4.1 Resistance and magneto-resistance

The phase diagram of MnSi has been investigated widely by resistivity
measurements[30, 3, 32]. Above TC the resistivity is described by the formula[33]
ρ = ρsatT/(T0 + T ) which for T À T0 = 180K approaches the Mott-Io�e-Regel
limit, ρsat =287µΩcm. The rapid rise towards saturation corresponds to a strong
dissipation of the charge transport. The abrupt drop of the electrical resistivity when
the material is cooled through TC suggests that this dissipation is due to a coupling
to magnetic �uctuations, see Fig. 5.20. The magnetoresistance of MnSi has been
measured in Ref. [3] together with the magnetoresistance of FexCo1−xSi, displayed
in Fig. 5.20. The commonly used description of MnSi in terms of a weak itinerant
ferromagnet, suggests that the electrons contributing to the charge transport and to
magnetism are the same. In this scenario a negative magnetoresistance is expected
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Figure 5.19: (The valence band photoemission spectra for MnSi, FeSi and CoSi
together with the cluster LMTO calculations. The data on FeSi are taken from Ref
[61]

because of the suppression of spin �uctuations by the magnetic �eld, which are one
of the scattering channels for electrons and sometimes the most important one. In
colossal magnetoresistance Manganites, the carriers contributing to the transport
and those contributing to the magnetism are di�erent and the scattering of the itin-
erant electrons on the localized ones gives rise to a positive magnetoresistence. In
the low carrier density compound FexCo1−xSi it has been argued that positive mag-
netoresistance is caused by a combination of disorder and correlation e�ects. The
parent compound of FexCo1−xSi is an insulator, FeSi, known to have local moments.
Upon Co doping the system becomes metallic and eventually orders helimagneti-
cally below 35 K. The presence of local magnetic moments in this system has been
con�rmed by neutron scattering experiments[66], even if strong similarities to the
weak itinerant ferromagnets are observed. In this framework the positive magnetore-
sistance observed in FexCo1−xSi is explained by correlation and localization e�ects.
Recently, we investigated the magnetoresistence of MnSi up to very high magnetic
�elds, 28 T. A rectangular sample of 4×1×0.2 mm was prepared starting from a
large single crystal grown with the �oating zone technique. The contacts were sol-
dered with Indium in a typical 4 point geometry and the sample was attached to
the cold �nger of a dilution He cryostat. The magnetic �eld of a dissipative magnet
was swept between 0 and 28T in the temperature region between 90 and 4 K. In
Fig.5.21, we show the results of these measurements. In the top left panel one can
see the resistivity as a function of temperature for magnetic �elds ranging between
0 and 28 T with a step of 1.75 Tesla. One can see that our data are in very good
agreement with those measured earlier in Ref. [3] where 4K and 5 T was the limiting
condition, shown in Fig. 5.20. In the right panel of Fig. 5.21, one can see that at
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Figure 5.20: The magnetoresistance of FexCo1−xSi (left panel) and MnSi (right
panel). Graph taken from Ref. [3]

low temperature and very high �eld the magnetoresistance changes sign and be-
comes positive, i.e. resistivity increases when increasing the magnetic �eld, the very
same behavior has been observed both for the geometry with the current parallel
and perpendicular to the external magnetic �eld. In the lower left panel I show the
derivative with respect to magnetic �eld of the resistivity which shows a pronounced
minimum where the magnetoresistance changes concavity and a zero crossing at the
lowest temperatures. In the lower right panel we show the �eld of the zero crossing
of magnetoresistance with respect to temperature. This last graph may suggests
the presence of a transition between di�erent behaviors at zero temperature as a
function of magnetic �eld.

5.4.2 Speci�c heat and thermal expansion

Speci�c heat measurements have been carried out on MnSi in Ref. [49] in the tem-
perature range between 1.4 and 40 K and magnetic �elds up to 3.5 T. These mea-
surements show a second order phase transition occurring around 29 K, which is
the magnetic ordering phase transition. In Fig. 5.22 I show the speci�c heat versus
temperature taken from Ref. [49]. From these measurements the authors estimated
a value for γ = 85×10−4calK−2. The values for γ in pure Mn are found to be around
γ = 40×10−4calK−2, while the value estimated within a free electron approximation
for Mn is γ = 1.5× 10−4calK−2. In transition metals the large discrepancy between
the free electron γ and the measured value is due to the fact that their Fermi surface
can be very di�erent than the one given by the free electron approximation. In fact,
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Figure 5.21: The high �eld magnetoresistance of MnSi: in the top left panel one can
see the resistivity as a function of temperature for di�erent �elds. In the top right
panel one has the resistivity as a function of �eld for di�erent temperatures. In the
bottom left panel we display the �eld derivative of the resistivity as a function of
�eld and we show that a sign change happens at low temperature and high magnetic
�eld. In the bottom right panel we display the zero crossing of the derivative as a
function of magnetic �eld.

the d bands, which cross the Fermi level in transition metals, are much narrower
than the usual free electrons conduction bands. Accommodating more electrons in a
narrower energy region gives a higher density of states, which can explain the much
higher value found for the γ coe�cient, which is proportional to the density of states.
This argument certainly applies also to MnSi where we have seen that the Fermi
surface has mostly a 3d character, but electron-electron correlation e�ects are evi-
dent given the fact that γ for MnSi is twice as high as for pure Mn while the average
bandwidth of the 3d bands is similar. The magneto-volume e�ect in MnSi has been
interpreted in terms of the spin �uctuation theory, although discrepancies have been
observed. Matsunaga et al show that the main contribution to the magnetovolume
e�ect are coming from the Stoner excitations. The value for the magneto-elastic cou-
pling constant is found to be around KCH = 1.49, rather close to the one measured
in other weak itinerant ferromagnets, such as ZrZn. These data are interpreted in
the framework of the spin �uctuation theory, but I would like to point out some
important discrepancies: (i) the magnetovolume e�ect in spin �uctuation theory is
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Figure 5.22: Speci�c heat measurements on MnSi from Ref. [49]

explained by the large temperature dependence of the spin density in weak itiner-
ant magnets. Such a strong temperature dependence in the spectrum of the spin
wave has not been unambiguously observed ([8] and related references) and there
are even theoretical arguments against it [68]. (ii) the magnetization dependence of
the volume changes predicted by the spin �uctuation model strictly speaking is not
respected[67], but is in surprising agreement with the plain Stoner theory. This sug-
gest that the magnetovolume e�ect is mostly due to the band polarization, while on
the other hand, the contribution of the spin �uctuation below the Stoner boundary
is not clear. More details about the connection between the magnetovolume e�ect
and the Stoner excitations will be given in the following section where I will discuss
very recent neutron scattering experiments carried out to study in detail the para-
magnetic scattering of MnSi, and therefore the dumped spin waves in the Stoner
continuum.

5.5 MnSi magnetic properties
MnSi orders helimagnetically below 29.5 K. The helical spin arrangement is similar
to the one observed in other compounds, MnO2, Tb, Dy, Ho, but its periodicity is
much longer, around 180 Å. This magnetic structure has been investigated by means
of small angle neutron scattering, polarized inelastic neutron scattering [9, 10, 11],
NMR [12], and neutron scattering under pressure [31]. The helixes in MnSi are ob-
served below an applied magnetic �eld of 0.6 T and are oriented along the [111]
direction with a q vector of 0.035 Å−1. The magnetic ordering becomes ferromag-
netic for higher magnetic �elds. The crystal structure discussed in section 5.1 of
MnSi has a screw axis which for all known samples is left-handed; the magnetic
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chirality is found to be also left handed [10], leading to the positive sign of the anti-
symmetric exchange interaction in MnSi. The origin of this magnetic structure has
been explained in terms of the Dzyaloshinskii-Moriya interaction[13]; the anisotropic
antisymmetric exchange interaction resulting from the interplay between spin-orbit
coupling and exchange interaction in low symmetry crystals has been observed in
MnSi by means of Electron Spin Rotation experiments [14]. Under an applied pres-
sure of 14 kbar the net magnetization is found to vanish [30], and a partially ordered
phase is observed with neutron scattering [31] for which several theoretical expla-
nations have been proposed [15, 16, 18]. This very interesting phenomenon will not
be discussed in further detail. We will focus our attention on the paramagnetic
scattering of MnSi, which is of great interest for the description of the band mag-
netism. MnSi in fact, is considered to be a weak itinerant ferromagnet, in which the
magnetic ordering is driven by the spin polarization of the electronic bands. Such
a kind of magnetic behavior can be described by the Stoner model and presents
many di�erences with respect to the usual Heisenberg picture for localized magnets.
The Curie-Weiss behavior of the magnetic susceptibility in the paramagnetic state,
which originates naturally from the Heisenberg model, is also observed in weak itin-
erant ferromagnets and it is not predicted by the standard Stoner model. This model
also fails in estimating the Curie temperature of these materials. Several proposal
have been made to circumvent these problems, among which the spin �uctuation
theory by Moriya[1] has been the most successful in describing the magnetism of
MnSi. The aim of the following section is to extensively test this model and verify
its microscopical implications.

5.5.1 Magnetic susceptibility NMR and µSR

The usual �ngerprints of weak itinerant ferromagnetism are (I) a low ordering tem-
perature (29.5 K for MnSi), (II) a strong reduction of the magnetic moment from
the paramagnetic to the ordered phase (in the paramagnetic phase MnSi shows a
moment of 2.4 µB while in the ferromagnetic phase the ordered moment is only
0.5 µB, according to the most recent estimates.), (III) the lack of saturation in the
magnetization under applied magnetic �eld, (IV) a Curie-Weiss temperature de-
pendence of the paramagnetic susceptibility and (V) a temperature dependence of
the NMR relaxation rate (1/T1) of the magnetization which resembles that of a
localized Heisenberg magnet but with a much smaller absolute value. The magnetic
susceptibility of MnSi has been reported by Wernick et al [30] in high magnetic �eld.
There is lack of saturation even for �elds as high as 8 T. The Curie-Weiss law of the
susceptibility has also been reported up to temperatures as high as 500 K [12] and
explained in the context of the spin �uctuation theory. We will discuss this point
later in the section dedicated to the neutron scattering experiments.
MnSi has already been studied in the paramagnetic phase by means of 55Mn NMR
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[12], nevertheless only few relaxation rate data have been obtained. A report based
on µSR measurements of 1/T1 showed that the spin �uctuation model could explain
both the high temperature NMR data and the divergence of 1/T1 close to Tc, a
large gap in the experimental data however existed between 200 and 50 K [21].
Recently it has been claimed that below Tc the µSR data do not follow the spin
�uctuation theory [22]. Here we cover the gap in the earlier data of 1/T1 by means
of 29Si NMR measurements. The problem is that in these metallic compounds one
has to work on powder samples to allow a suitable irradiation with the RF �eld.
55Mn NMR powder spectra are very broad owing to the sizeable anisotropy in the
hyper�ne coupling and the measured relaxation rates strongly depend on which
part of the spectrum is irradiated. 29Si nuclei, on the other hand, are characterized
by a dominant hyper�ne coupling which is isotropic. Hence, even in a powder the
spectrum remains rather narrow and allows a more accurate determination of the
nuclear spin-lattice relaxation rate. Only upon decreasing the temperature towards
Tc the rapid increase in the spin susceptibility yields a broadening of the line and
eventually causes the disappearance of the signal. Hereafter we present a study of
the temperature dependence of the local static uniform spin susceptibility and of
the low-energy excitations in MnSi, by means of 29Si NMR spectra and nuclear
spin-lattice relaxation rate measurements.
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Figure 5.23: Left panel: Temperature dependence of 29Si NMR paramagnetic shift
in MnSi powders for H = 1.57 Tesla. Right panel:Temperature dependence of 29Si
NMR linewidth in MnSi powders for H = 1.57 Tesla.

The same crystals described in the XAS experiments were crushed and grinded into
powders in order to allow a better penetration of the radiofrequency (RF).
NMR measurements were performed by using standard RF pulse sequences. 29Si
NMR powder spectra were obtained from the Fourier transform of half of the echo
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signal after a π/2−τ−π pulse sequence. Only at low temperature the line broadening
prevented the full irradiation of the spectra. In this case the spectra were obtained
by recording the echo amplitude upon sweeping the irradiation frequency. The spec-
tra were observed to be nearly Gaussian and to sizeably shift to lower frequencies
on cooling, indicating a strong and negative hyper�ne coupling (Fig. 5.23). Also a
sizeable increase in the linewidth was detected on decreasing the temperature (Fig.
5.23), suggesting a non-negligible anisotropy in the hyper�ne coupling. Eventually,
below 50 K the broadening is so strong to prevent the observation of the NMR
signal. As the broadening is associated with the paramagnetic shift anisotropy it
is convenient not to work at high �elds. In fact, all measurements were performed
at H = 1.57 Tesla. It is noted that both the shift and the linewidth follow the
same temperature dependence of the static uniform susceptibility, measured with
a MPMS-XL7 SQUID magnetometer (Fig. 5.24). The susceptibility χ0 = M/H,
with M the magnetization, was observed to follow a Curie law above the ordering
temperature, with a Tc = 29.5 K and a Curie constant consistent with a magnetic
moment of 2.46µB per Mn atom, namely the one expected for localized S = 1 spins.
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Figure 5.24: Left panel: Temperature dependence of the static uniform molar suscep-
tibility χ0 = M/H in a MnSi single crystal, where M is the magnetization measured
with a SQUID magnetometer. Right panel: Recovery of 29Si nuclear magnetization
after a saturating pulse sequence, at T = 90 K. The dashed line is the best �t
according to a single-exponential recovery.

The nuclear spin-lattice relaxation rate 1/T1 was estimated from the recovery of nu-
clear magnetization m(t) after a saturating RF pulse sequence. The recovery law was
a single exponential (Fig. 5.24), namely y(τ) = 1 − [m(τ)/m(∞)] = exp(−(τ/T1)),
as expected for an ensemble of I = 1/2 nuclei in a homogeneous system. The corre-
sponding temperature dependence of 1/T1 is reported in Fig. 5.25. One notices that
1/T1 progressively increases upon cooling. Also the characteristic decay rate of the
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echo amplitude 1/T2, after a π/2− τ − π pulse sequence was observed to be nearly
exponential, suggesting that the relevant dephasing processes are associated with
fast �uctuations, as the ones involved in nuclear spin-lattice relaxation.
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Figure 5.25: left panel: Temperature dependence of 29Si nuclear spin-lattice relax-
ation rate in MnSi for H = 1.57 Tesla. The dashed line is the best �t according
to Eq. 5.9 in the text. The vertical line indicates the ordering temperature. Right
panel: 29Si paramagnetic shift plotted versus the macroscopic susceptibility. The
slope directly yields the hyper�ne coupling.

The hyper�ne hamiltonian can be written in the form H = −γ~~IA~S, with I and S
the nuclear and electron spin, respectively. The paramagnetic shift of the NMR line
∆K = (ωR/ωL) − 1 (ωR the resonance frequency and ωL the reference resonance
frequency of the nucleus) can be written in terms of the macroscopic static uniform
spin susceptibility χ0

∆K =
Aχ0

gµBNA

+ δ (5.3)

where A is the 29Si hyper�ne coupling and δ the chemical shift, which is expected
to be almost negligible here. Hence, by plotting ∆K vs. χ0, leaving the temperature
as an implicit parameter, it is possible to determine A and δ (see Fig. 5.25). It
was found that A = −91.3 ± 1.5 kOe and δ = 0 ± 30 ppm. It is noticed that A
is twice the corresponding value in kOe/µB, i.e. 45.65 kOe/µB. Such a hyper�ne
coupling is quite strong for 29Si and indicates a sizeable hybridization of Si p and
Mn d orbitals. The magnitude of A and its negative sign put severe constraints on
MnSi electronic band structure. According to LDA calculations the hyper�ne �eld
on Si is found to be -34 kOe, when the lattice parameter is 4.39 Å(the same used for
the simulation of the positron spectra), which gives the experimental value of the
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local moment, 0.5 µB; if a = 4.5 Å, closer to the experimental value of 4.55 Å, the
hyper�ne �eld is found to be around -57 kOe and the local moment is 0.85 µB per Mn
atom. The corresponding value per Bohr magneton is about 67 kOe. The hyper�ne
�eld on Si is therefore increasing when the moment on Mn is increased, as one would
expect, but the absolute value is underestimated by the LDA calculation. In the right
panel of Fig.5.26 we display the evolution of the hyper�ne �eld according to LDA
calculations as a function of the lattice parameter and the magnetic moment per Mn
atom. One can see that the hyper�ne �eld measured experimentally is approached
when the lattice parameter is increased slightly above its experimental value and the
magnetic moment approaches the paramagnetic moment given by the Curie-Weiss
law of the magnetic susceptibility.
In the magnetically ordered phase, for T → 0 29Si zero-�eld resonance frequency
is known to reach νlow = 20 MHz [25, 26]. By taking the value estimated for the
hyper�ne coupling it is now possible to make a precise estimate of Mn magnetic
moment for T → 0. One �nds that < µ >Mn= 0.518 ± 0.009µB. This value is
sizeably reduced with respect to the magnetic moment estimated from the Curie
constant; such a reduction has been interpreted in the framework of spin �uctuation
theory, but it could also reveal a relevant role played by the geometric frustration
discussed in the previous sections.
The broadening of the line on cooling is due to the shift anisotropy which yields a
broadening proportional to χ0. Again, by plotting the broadening of the line vs. the
macroscopic spin susceptibility it is possible to estimate the anisotropic terms of the
hyper�ne coupling. It is found that Aaniso ' 4.2 kGauss. This anisotropy, even if
small when compared to the main isotropic coupling, is too strong to be justi�ed by
a simple dipolar coupling with localized Mn spins and might be associated with an
anisotropic transfer of the electron polarization to the nuclei through p electrons.
Now we turn to the discussion of the low-energy excitations in the light of the results
obtained from 1/T1 measurements. In the presence of a relaxation mechanism driven
by the �uctuations of the local �eld at the nuclei one can write

1

T1

=
γ2

2

∫
eiωRt < h+(t)h−(0) > dt , (5.4)

where h± are the transverse components of the hyper�ne �eld at the nucleus. Since
for 29Si the hyper�ne hamiltonian is dominated by a transferred isotropic coupling,
one can rewrite the previous equation in the form

1

T1

=
γ2A2

2

∫
eiωRt < S+(t)S−(0) > dt =

=
γ2A2

2

kBT

~
1

N

∑

~q

χ”(~q, ωR)

ωR

(5.5)
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where the last equation arises from the low-frequency limit of the �uctuation-
dissipation theorem. Following Ishikagi and Moriya [27] it is convenient to write
the dynamical spin susceptibility in terms of two characteristic parameters T0 and
TA which characterize the width of the spin excitations spectrum as a function of
frequency and as a function of ~q, respectively. For a ferromagnetically correlated
system one has that[27, 28]

χ(q, ω) =
πT0

αQTA

x

kB2πT0x(y + x2)− iω~
(5.6)

where x = q/qD, with qD a Debye-like cuto� wave-vector, αQ is a dimension-
less interaction constant, close to unity for strongly correlated systems, and y =
1/2αQkBTAχ(0, 0). Here the susceptibility is per spin and in 4µ2

B units and has the
dimensions of the inverse of an energy, while TA and T0 are in Kelvin. From the
previous expression one can derive χ”(~q, ωR)/ωR by taking the limit ωR → 0, since
~ωR ¿ kBT0. Then, by integrating χ”(~q, ωR)/ωR over ~q, in a sphere of radius qD,
one derives

1

T1

=
γ2A2

2
T

3~
4πkBTAT0

1

αQ

1

2y(1 + y)
(5.7)

Now, since TA À T [27, 28] in the T-range of interest y ¿ 1 and one can simplify
the previous expression in the form

1

T1

' γ2A2 3~
8π

(
T

T0

)χ(0, 0) (5.8)

This expression is equivalent to the one derived by Ishikagi and Moriya if one takes
into account that their hyper�ne coupling constants are in kOe/µB. It should be
noticed that since χ0 = 4µ2

Bχ(0, 0)NA, one can write ∆K = 2µBAχ(0, 0) and hence

1

T1T
' γ2A

3~
16πµB

(
1

T0

)∆K (5.9)

Hence by plotting 1/T1T vs. ∆K a linear behaviour is expected and from the slope
it is possible to derive T0, which corresponds to a characteristic frequency for the
spin �uctuations. Indeed (see Fig. 5.26) a linear behaviour is observed and a value
for T0 ' 71± 3 K is derived. This value is much smaller than the one estimated by
Ishikagi and Moriya in their previous analysis.
It is also noticed that in a magnetic �eld a �attening and eventually a decrease of
1/T1 is expected for T ¿ T0 [28, 23, 29]. The absence of this �attening seems to
indicate that even at 50 K this temperature limit has not been reached in agreement
with our estimate of T0. The quantity T0 is a characteristic energy of the spin
�uctuations and should represent the energy scale in which most of the contribution
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Figure 5.26: Right panel: the hyper�ne �eld as a function of the lattice constant
according to LDA calculations. Left panel: 29Si 1/T1T is plotted against the para-
magnetic shift in order to evidence the validity of Eq. 5.9.

to the susceptibility due to the spin waves is contained. According to spin �uctuation
theory:

T0 = Γ0q
3
B/2π (5.10)

Where q3
B = (6π2/v0) and v0 = 23.73 is the atomic volume for Mn. The parameter Γ0

is determined by the width and dispersion of the spin waves and can be deduced from
neutron experiments. According to previous estimates Γ0 = 50meV Å−3 while we
estimate in our data a value of 70 meV meVÅ−3, see Fig. 5.37 and related discussion.
Given these numbers, T0 should be around 230 K, somewhat higher than our estimate
based on NMR experiments. Previously, the value of T0 has been estimated from the
theoretical formula 5.10 using Γ0 derived from neutron experiments [8], while it has
never been estimated directly from NMR measurements. In a previous NMR report
on 55Mn NMR [12], no value was estimated for T0. In a later experiment[21], the
qualitative temperature dependence of 1/T1 has been investigated by means of 55Mn
NMR and µSR experiments. The results have been interpreted in the framework of
Moryia's spin �uctuation theory but an explicit value for T0 has not been given.
In spin �uctuation theory qB is the average-zone boundary vector. In our view,
it is more understandable to calculate it using the unit cell volume, rather than
the atomic volume. If one uses a ν0 = 90Å3 instead of ν0 = 23.7Å3, used in spin
�uctuation theory, T0 = 70 K and the consistency between neutron experiments
and NMR is restored. If this is the case, the estimate of the ordering temperature
given by spin �uctuation theory is not so good anymore. In fact, the transition
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temperature is estimated by means of the equation:

Tc = 1.419p3/2
s (

A

α0

ν0)
3/4Γ

1/4
0 (5.11)

which, with for Γ0 = 70 meVÅ−3 and ν0 = 90Å3, gives a Tc around 100 K. At this
point it is relevant to discuss the role of the parameter qB in the spin �uctuation
model. The underlying idea in this model is that long wavelength (small q) and low
energy spin waves play a major role. The inverse static susceptibility is obtained
integrating over q in a sphere of diameter qB the dynamical susceptibility obtained
from band theory. A Curie-Weiss law for χ0 is found for small values of qB. Increasing
qB results in a curvature of the susceptibility versus temperature which departs
from the C-W behavior. Therefore, in our opinion the C-W law emerging from the
spin �uctuation model is less natural than believed and it is questioned by our
experimental observations.

5.5.2 Neutron scattering

A very powerful probe for magnetic systems is neutron scattering. The cross section
per unit of energy and solid angle for the electromagnetic interaction between the
neutron magnetic moment and the magnetic moments present in a solid is given by
the formula:

d2σ

dΩdE′ =
kf

ki

(γr0)
2 | g

2
F (Q) |2

∑

α,β

(δα,β −QαQβSα,β(Q,ω)) (5.12)

Where Q = kf − ki and ~ω = Ef − Ei are the momentum and energy transfer.
γ = 1.913 and g ' 2 are the spectroscopic g-factors of the neutron and magnetic
atom. F(Q) is the magnetic form factor and depends on the atom present in the
solid. In Eq. 5.12 the quantity S(Q,ω) contains the spin correlation function:

Sα,β(Q,ω) =
1

2π~

∫
dteiωt 1

N

∑
i,j

< Sα
i (t)Sβ

j (0) > e−iQ(Ri−Rj) (5.13)

Using the �uctuation-dissipation theorem one can relate the spin correlation function
to the spin susceptibility by the formula:

S(Q,ω) =
1

1− e−β~ω
χ′′(Q,ω)

π(gµB)2
(5.14)

with β = 1/kBT . One can see from these equations that with a neutron scattering
experiment it is possible to have direct information on the imaginary part of the
spin susceptibility as a function of energy and momentum. In itinerant magnets,
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Figure 5.27: Experimental setup of the MAPS spectrometer

the spin susceptibility has been investigated by means of the RPA (random phase
approximation) method. In this model the imaginary part of the spin susceptibility
is given by:

χ′′(Q,ω) =
Imχ0(Q,ω)

[1− IReχ0(Q,ω)]2 + [IImχ0(Q,ω)]2
(5.15)

where I is the intra-atomic interaction and χ0 is the susceptibility of the non inter-
acting electron gas. χ0 can be calculated analytically and well de�ned spin-waves
with a quadratic dispersion are predicted by this model. A detailed comparison be-
tween this model and MnSi has been performed in Ref.[4]. In MnSi, one needs to
go beyond this approach in order to explain the Curie-Weiss law of the magnetic
susceptibility and the peculiar properties of the paramagnetic scattering. This is
done by Moryia's spin �uctuation theory, where the spin susceptibility is given by
the formula:

χ(Q,ω) =
χ0(Q,ω)

1− Iχ0(Q, ω) + λ(Q, ω)
(5.16)

The additional term with respect to the RPA formula λ(Q, ω) is producing the
Curie-Weiss behavior observed experimentally.
This theory makes a number of predictions for the low energy spin-waves, which
have been studied in detail in literature [4, 5, 6, 7], as well as for the Stoner excita-
tions, which have been studied up to 20 meV energy transfer. We extend this study
measuring the paramagnetic scattering of MnSi up to energy transfer as high as 400
meV in order to investigate the microscopic origin of the band magnetism of MnSi.
We performed inelastic neutron scattering experiments on a single crystal of MnSi
on the MAPS time-of-�ight spectrometer in ISIS[46]. The sample was the very same
single crystal measured in Ref. [4], which has been largely characterized in the fol-
lowing 30 years.
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Figure 5.28: Top left: S(Q,ω) in the plane de�ned by the [110](Qh) and [001](Ql)
directions with θ = 90o. Top right: the same cut is projected onto the energy and
the Qh axis. Bottom left: A cut in the Qh direction at a constant Ql gives a magnetic
peak at an energy transfer of 9 meV. Bottom right: a contour plot taken from Ref.
[4] shows the dispersion of the magnetic excitations in the Qh direction.

The neutrons were delivered by a pulsed spallation source operating at 50 Hz repe-
tition rate. Once the pulse is generated the phase of a Fermi chopper with respect
to the pulse creation time selects the neutrons with a given kinetic energy, while the
frequency of the chopping determines the energy resolution. The neutrons scattered
by the sample impinge onto a 16 m2 detector composed by 576 bars 1 m long and 2.5
cm in diameter �lled with 3He. The distance between the sample and the detector
is 6 m. The temperature of the sample was controlled by a closed-cycle cryostat, all
the experiments were performed at room temperature and 10 K. A pictorial repre-
sentation of the experimental apparatus is depicted in Fig. 5.27 For a given sample
orientation and incident neutron energy, the coordinates given by the position sen-
sitive detector and the time of �ight are mapped by a software into a portion of
the four-dimensional space of momentum transfer (3 dimensions) and energy trans-
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Figure 5.29: Top left: The directions in the reciprocal space in which we plot the
dispersion.

fer (one dimension). In order to cover a larger part of this space di�erent sample
orientations and incident energies are used. In low dimensional systems the task of
�lling the momentum- transfer energy-transfer space is simpli�ed by the possibility
of neglecting the dispersion of the magnetic excitations in certain directions; this is
not the case for MnSi, with the result that a total amount of data of 2.07 Gb needed
to be collected in order to have a reasonable survey of the magnetic scattering. This
data-set is composed of di�erent scans where the incident neutron energy and the
sample orientation are varied. The details of the performed scans are given in table
5.3:
In earlier neutron scattering reports[4, 5, 6, 7], it has been shown that the magnetic
scattering has the highest structure factor around the points [110], [111] and [210] in
reciprocal space[4]. This has been con�rmed by the polarization analysis performed
in a later publication [7], demonstrating that the scattering observed in these region
is indeed magnetic in origin. In our experiment, when the incident beam is paral-
lel to the [110] direction the magnetic scattering is in a favorable position for the
detector, while rotating the sample by 90 degrees the acoustical phonons dominate
the detected scattering. These are the two main orientations that we have chosen in
order to characterize both the magnetic and the phonon scattering.
The measurements are corrected for the inhomogeneity of the detector sensitivity
and other non ideality, by taking a reference run without the Fermi chopper on a
vanadium sample. The software HOMER then converts the raw data into absolute
units. The data are visualized with the aid of the software MSLICE which allows
to plot 2D and 1D cuts in the momentum-energy space. We display in Fig. 5.28 an
example of three slices performed on the data-set collected with incident neutron
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Table 5.3: The largest part of the data were collected with the incident beam parallel
to the [110] orientation of the sample. The angle θ is the angle with respect to this
geometry.

θ (deg) incident energy (meV) temperature (K)
0 50 10
0 75 10
0 100 10
0 125 10
0 150 10
0 200 10
0 300 10
0 400 10
0 50 300
0 100 300
0 400 300
0 30 10
65 22 10
90 30 10
60 40 10
90 50 10
90 75 10
90 100 10
-35 100 10
-24 150 10
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Figure 5.30: All the experimentally obtained peaks position are plotted together
with the theoretical dispersion according to formula 5.17.

energy of 40 meV and the sample rotated by an angle of 60 degrees with respect
to the [110] direction, in order to have the [110] point in the center of our detector
array. In this particular slice the magnetic scattering around the [110] point is visible,
therefor a direct comparison to the data reported in literature is very easy. In the top
left panel of Fig. 5.28 the data are projected onto the axis [110][001][1-10] (named for
simplicity Qh, Ql, Qk) and a slice perpendicular to Qk at the height Qk = 0 is taken.
Consequently, one can see a map of the scattering in the plane de�ned by the [110]
and the [001] vectors. Given the geometry of this experiment, care has to be taken to
the fact that the energy is varying throughout this 2D plot. In particular, the energy
transfer is constant on concentric contours; the red contour labeled "0 meV" in the
�gure represents the elastic scattering from the sample (0 energy transfer), a contour
labeled "20 meV" is given by the inelastic scattering on an almost dispersionless
optical phonon. It is possible to project the data onto the energy axis as well, in
this way one can plot a sort of dispersion, top right panel, keeping in mind that the
4th dimension, in this case the axis [001], is implicit in the graph. This results in a
distortion of the dispersion, whenever the dispersion in the implicit direction is not
negligible, as is the case for MnSi. In the bottom left panel of Fig. 5.28 one can see
a cut parallel to the [110] direction performed in the plane Qh, Ql with Ql = 0. The
energy transfer at the peak position can be found by an appropriate software, given
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Figure 5.31: We show a zoom at low energy of the peaks in Fig. 5.30.

the geometry of the experiment and the 3 coordinate of momentum transfer. In this
way one can get the dispersion of the magnetic excitations in the direction [ξ, ξ,0]. It
has to be noted that the energy transfer is not constant along the cut plotted in the
bottom left panel of Fig. 5.28. On the other hand, one can see that this particular
cut is almost tangential to the constant energy circular contours visible in the top
left panel of the �gure. Furthermore, when the peaks are narrow, as in this case, the
energy variations underneath the peak can be safely neglected. In general, not all
the cuts performed in the data analysis are tangential to constant energy contours.
Care has been taken in giving an errorbar on the width and position of these peak
that takes into account this e�ect. In the bottom right panel of Fig. 5.28 one can
see a contour plot of the scattering around the [110] point reported in Rf. [4]. One
can visually compare this graph to the top right panel of the �gure. For a more
quantitative comparison, one should notice that the 1D cut reported in the bottom
left panel of the �gure shows a peak around the position (0.2,0.2,0), in reduced q
units, at an energy transfer of 9 meV. Correspondingly, if one imagines a cut of the
contour plot of the bottom right panel of the �gure at an energy transfer of 9 meV a
peak around ξ = 0.2 is expected. This comparison makes a good connection to the
previous reports and is a good starting point for the following analysis. In the work
in Refs. [4, 5, 6, 7] the low energy magnetic excitations have been studied. The onset
of the Stoner continuum has been estimated around 3 meV and the scattering within
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Figure 5.32: The peak positions obtained from the scans where the sample was
rotated by 90 degrees with respect to having the [110] direction parallel to the
incident beam and the peaks obtained from the other scans that could be addressed
as phonons are displayed together with the phonon dispersion lines calculated by
LDA on a 3×3×3 cluster.

this continuum could be studied only up to an energy transfer of 16 meV because
of the presence of the optical phonons between 20 and 60 meV which complicate
enormously the analysis. In our experiments we could reach energy transfer as high
as 400 meV, allowing us to study the excitations in the Stoner continuum well above
the phonon region.
Using the procedure described above we determined the peak position of the mag-
netic excitations as well as the phonons in the directions indicated in Fig. 5.29. In
Fig. 5.30, 5.31 we display the dispersion of all the magnetic and phonon peaks ob-
tained from the systematic analysis of the 20 data-sets aforementioned in the energy
transfer range between 0 and 350 meV and 0 between 0 and 80 meV respectively.
Together we plot the dispersion for the magnetic excitations as described by the eq.
5.17, obtained in the context of Moriya's spin �uctuation theory[7].

S(Q,ω) =
~
π

1

1− e−~ω/kT
× C′ωq

Γ2
0q

2[k2
0(T/Tc − 1) + q2]2 + ω2

(5.17)
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Figure 5.33: Comparison between the peak positions obtained by di�erent trajecto-
ries of the cuts in the 4D space. The continuous black line is obtained cutting the
scattering function at constant energy, the gray line is obtained from constant q cuts
and the dots are obtained from cuts along trajectories which are neither constant
energy nor constant q.

As one can see, many points in the dispersion graphs are originating from the acousti-
cal and the optical phonons at low energy. In order to separate them from the mag-
netic scattering we use the same argument of Ref. [4], by orienting the crystal in
such a way that either the magnetic scattering or the phonon scattering has a large
structure factor in the region observed by the detector. In particular, as the sample
is oriented with the [110] direction parallel to the incident beam, we are observing
around high magnetic structure factor points in k-space. Otherwise, rotating the
sample by 90 degrees, we observe high phonon structure factor points, (square sym-
bols in the graphs). The optical phonons, visible as almost dispersionless lines in
Fig. 5.30, 5.31, give very intense scattering in all points of the k-space and are dif-
�cult to distinguish from the magnetic scattering. Together with the considerations
about the structure factor, we use calculations of the phonon dispersion made using
plane-waves and ultrasoft pseudo-potentials on a 3× 3× 3 atoms supercell. In this
calculation the lattice parameter is 4.5 Åand gives a local moment around 0.8 µB

per Mn ion. The results of these calculations are displayed in Fig. 5.32, where one
can see that a reasonable match with the experiments is obtained. Some departures
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Figure 5.34: A selection of peak positions that we could attribute to magnetic exci-
tations with their width in momentum transfer.

are observed, as was the case for the PAS spectra and the estimate of the Hyper�ne
�eld.
Below the optical phonon energies, the obtained magnetic scattering dispersion,
displayed in Fig. 5.34, is in good agreement with previous reports, as already shown
by Fig. 5.28. Due to the particular geometry of this experiment, at higher energy
transfer where the peaks are much broader, the departure between the experiment
and the analytical dispersion is signi�cant. We veri�ed that this is mostly due to
the distorted trajectories of our cuts in the 4D space by projecting the formula
5.17 into a dataset similar to those experimentally acquired. This simulated dataset
is than sliced with the software mslice in the very same way as the experimental
data and in Fig. 5.33 one can see the result of this procedure: the two continuous
lines correspond to the dispersion of the maxima in Eq. 5.17 taken analytically at
constant q or constant energy respectively; the closed symbols are obtained with the
software mslice. As one can see, close to the zone boundaries very broad scattering
is observed and the peak position can have a very large spread in energy. One has to
keep in mind that the intensities at these energies are very small, therefor the main
contribution to the magnetic susceptibility is coming from the scatterig below 100
meV.
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In Fig. 5.35 we show the width of these excitations in reduced q units; at low energy
and low momentum transfer well de�ned spin waves are observable in the Stoner
continuum, as already pointed out in Ref. [4], at higher energies and momentum
transfer they broaden until they reach the width of one Brillouin zone around 100
meV.
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Figure 5.35: The width of the magnetic excitations in momentum transfer as a
function of the energy transfer is plotted for di�erent directions in the reciprocal
space

The errorbar given on the width of the magnetic excitations takes into account the
aforementioned problem that our cuts are not exactly constant energy nor constant
q cuts. Since energy is varying throughout a cut like the one shown in the bottom left
panel of Fig. 5.28, as the peaks broaden the error on the width increases, as shown
by the errorbars in Fig. 5.35. In order to obtain the width in energy, we performed
some cuts parallel to the energy transfer axis. This time the implicit quantity in the
mono-dimensional plot is the momentum transfer along 1 axis. The energy width of
the magnetic excitations is displayed in Fig. 5.36 for the directions ΓX and ΓM . In
the left panel of the �gure one can see the neutron counts as a function of energy
for a particular point in the ΓM or ΓX direction; in the right panel the dispersion
is displayed, and the vertical errorbar indicates the width of the peak. Once more,
the high energy peaks are very broad in k-space, meaning that in this case the
momentum transfer is somewhat ill de�ned.
In the context of the spin �uctuation theory, it has been predicted that the width
of these magnetic excitations follows the law:

Γ = Γ0q[k(T )2 + q2] k(T )2 = k2
0(T − Tc) (5.18)
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Figure 5.36: The width in energy of the magnetic excitations is estimated by per-
forming cuts parallel to the energy transfer axis. The results are plotted along the
ΓM direction (Left panel) and the ΓX direction (right panel).

This peculiar q-dependence has been observed in Ref. [7] with a Γ0 = 50meV 3 and
a k2

0 = 0.0325−2. Following Ref. [7], we plot the width of our magnetic excitations
against (k2 + q2)q in Fig. 5.37 for the data taken at 300 K. One can see that a good
agreement is found with the previous report, even though we estimate a value for
the parameter Γ0 around 70 meV 3 rather than 50.

Figure 5.37: The line-width of the magnetic excitation is plotted against (k2 + q2)q
in order to compare our results to those of Ref. [7].

It has been argued that the temperature dependence of the low energy spin-waves,
is responsible for the Curie Weiss law of the magnetic susceptibility. A Curie-Weiss
like temperature dependence of these spin waves has been observed, but only in a
limited temperature range [7]. The temperature dependence of the paramagnetic
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scattering in MnSi has been studied in Ref. [8]. In the energy range between 0 and
20 meV, no signi�cant temperature dependence has been observed of the magnetic
excitations in the Stoner continuum. This observation was in good agreement with
the predictions of Moryia's spin �uctuation theory. In this framework, Eq. 5.17
represents a universal function able to describe the paramagnetic scattering even
above Tc. In our experiments we could extend this study up to very high energy, we
display in Fig. 5.38 the results obtained from 3 scans performed at room temperature
with the incident beam parallel to the [110] direction. One can see that while at low
energy it is di�cult to see any signi�cant di�erence with respect to the data at
low temperature, simply because the changes are smaller than our experimental
errobar, the high energy part of the spectrum is signi�cantly di�erent. In particular,
the magnetic excitations at high momentum transfer moved to lower energy transfer
with respect to the 10 K spectra.

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

 SCR       50 meV
 400 meV
 100 meV

1/2,1/2,1/21/2,0,00,0,01/2,1/2,1/21/2,1/2,01/2,0,00,0,01/2,1/2,0

 E
ne

rg
y 

(m
eV

)

    
T = 300 K

X

  

RR ΓMΓM X

 

Figure 5.38: The peak positions obtained from the room temperature scans.

We display directly in Fig. 5.39the dispersion of the magnetic excitations at room
temperature and 10 K together with the results obtained from the simulation based
on eq. 5.17.
One can see that a signi�cant temperature dependence is observed, especially around
the R point (1,1,1) in the experiment. The theory however, predicts a weak tem-
perature dependence of the Stoner spectrum, even of the opposite sign of the one
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Figure 5.39: The dispersion of the magnetic excitations is plotted for two tempera-
tures: 300 K (red) and 10K (blue). The continuous lines represent the predictions of
Moryia's theory at the two temperatures, while the closed dots are the experimental
points.
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observed experimentally. It is remarkable that the strongest temperature dependence
is observed around the (1,1,1) point, which is the easy axis of the magnetization in
the ordered phase.
Our neutron scattering experiments extend the previous reports on the paramagnetic
scattering of weak itinerant ferromagnets. We �nd a good experimental agreement
with previous reports, especially considering the very di�erent experimental set up.
We �nd a reasonable agreement with the scattering function proposed in the con-
text of Moryia's spin �uctuation theory, however, we point out that already in Ref.
[4], a good representation of the experimental data was obtained by calculating the
scattering function of a spin polarized electron gas within the Random Phase Ap-
proximation (RPA). The reason to re�ne the theoretical analysis was the need to
explain the Curie-Weiss law of the magnetic susceptibility, which is typical of local-
ized moments systems, and whose microscopic origin in itinerant magnets is hard
to understand. The observation of a Curie-Weiss like temperature dependence of
the spin waves strongly suggested that these are responsible for the behavior of the
susceptibility, however, the large and positive magneto-volume e�ect above Tc[67]
and the temperature dependence of the magnetization in an applied magnetic �eld
[67] suggest that the Stoner excitations play a crucial role in the temperature de-
pendence of the magnetization. Our observation of a large temperature e�ect on the
Stoner scattering questions the ability of the spin wave model to account for the
Curie-Weiss law of the susceptibility. In the spin �uctuation theory the spectrum of
the Stoner continuum is supposed to be almost temperature independent, in contrast
with our observations. The conclusion that band e�ects are important in the temper-
ature dependence of the magnetic susceptibility, calls for a thorough investigation
of the model proposed by Hirsch [68], where the Cuire-Weiss law of the susceptibil-
ity was explained assuming a temperature and magnetization dependent narrowing
of the bands. We point out here, that a more extensive analysis of these data is
still going on. In particular a thorough separation between cuts taken on di�erent
trajectories in the 4D space has to be done in order to have a better comparison
to the theoretical models. As we discussed previously, in order to be able to put
the data in absolute units and perform a detailed analysis of the magnetic moment
as a function of energy, we need to reliably subtract the phonon background from
the data; the preliminary results in this respect are rather encouraging, however the
discrepancy observed in the phonons calculations might originate from the di�culty
that LDA has describing MnSi electronic structure. As we discussed commenting the
PAS data, the paramagnetic FS shows a close resemblance to the ferromagnetic FS,
moreover, the very same shape of the FS is peculiar because it has several nesting
vectors. This observation could have an impact on the phonon dispersion as well as
on the spectrum of the magnetic excitations. Therefore, a theoretical modeling of
the magnetic susceptibility that takes into account the real band structure of MnSi
is very desirable.



158 The strange case of MnSi

5.6 Conclusions
This study aimed to understand the microscopic origin of the band magnetism ob-
served in MnSi and some other compounds. To begin with, we have shown that
the single particle description of MnSi is only partially valid, some deviations have
been observed by means of low energy probes such as positron annihilation and De
Haas van Alphen measurement; moreover, strong departures are observed in high
energy spectroscopies like XAS or XPS. These deviations are ascribable to electron-
electron correlation e�ects, which is not surprising considering the very same nature
of Mn which is right in the middle of the transition metal series. What is more
puzzling is to understand the microscopic nature of these deviations. If the descrip-
tion of MnSi as a weak itinerant ferromagnet would indeed be fully applicable, the
d-electrons would be delocalized in bands and the typical e�ects of the interaction
between the core-hole states and the conduction electrons (atomic multiplets or core
level photoemission satellites) would be absent. A remarkable coincidence is also the
fact that, if one treats the Mn 3s level photoemission spectrum as the result of the
interaction between localized 3d states and the 3s core hole, one �nds a localized
moment of 2.4 µB. This is in very good agreement with the value obtained by a �t to
the Curie-Weiss of the magnetic susceptibility. Based on previous neutron scatter-
ing observations, this behavior has been ascribed to spin �uctuations. However, our
NMR and neutron scattering experiments suggest that the estimate of Tc given by
spin �uctuation theory is higher than the experimentally observed one. A detailed
estimate of some microscopic parameters also questions the origin of the C-W law
predicted by this model. Moreover, we found that the temperature dependence of the
Stoner excitations is not following the prediction of the spin �uctuation theory and
questions the possibility that spin waves are responsible for the Curie-Weiss behav-
ior of MnSi. Several suggestions have been made in order to provide a microscopic
clue to these observations. It has been proposed that magnetization and temperature
dependent band narrowing e�ects are playing a role in itinerant magnetism[68]; very
recently, we proposed that frustration might play a role in the B20 crystal structure,
and some theoretical investigation has been made on this aspect of the B20 structure
[15]. Given the detailed description of the electronic structure that we can obtain
experimentally from our study (PAS, XAS, XPS), together with the information
about the magnetism obtained by means of NMR and inelastic neutron scattering,
a de�nitive microscopic description of MnSi's magnetism should be possible.
We believe that this might be an ideal playground to study the properties of itinerant
magnets in general, which are one of the less understood and yet more interesting
materials.
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Chapter 6

Conclusion and �nal remarks

We have investigated the properties of di�erent strongly correlated electron systems.
One of the milestones of solid state physics is the theory of Fermi liquids, which could
account for several e�ects of the Coulomb repulsions in condensed matter systems.
Nowadays, many new materials as well as new experiments on known systems, ques-
tion the ability of this theory to properly account for electron-electron correlations.
Among them, cuprates superconductors and transition metal mono-silicides have at-
tracted much attention and are the subject of this thesis. When encountering "non
Fermi-liquid" behavior one could ask himself what is the origin of the violation of the
Fermi liquid "dictata". As we discussed in the introduction, the Fermi liquid theory
assumes that very close to the Fermi surface, the Pauli principle limits the phase
space for the electron-electron scattering processes and the dominant scattering is
still the electron-lattice one. This scenario though is based on the starting point that
the system can still be described by a set of single particle states. Clearly, Coulomb
repulsions can lead to many-body e�ects that can invalidate this statement. This
brings us to the second key point of the Fermi liquid theory, which says that if the
new set of "something" states, have the same characteristics as a set of "single parti-
cle states" and obey the Pauli exclusion principle, then these "something" are called
quasi-particles, and they behave as single particles with renormalized properties. In
this work we have shown two systems where this picture appears to break down in
di�erent ways: in the case of MnSi, some discrepancies have been reported at high
pressure between the single particle approximation and the experimental observa-
tions. On general grounds, LDA calculations can describe the main properties of
the transition-metal mono-silicides, the electronic gap in FeSi and the ferromagnetic
ground state of MnSi for example. However, a detailed description of MnSi mag-
netism, for which the role of Coulomb repulsions is crucial, is not yet satisfactorily
achieved within this context.
In the cuprates instead, the very same description of the low energy physics by
means of the t−J model is a non Fermi liquid scenario, where the many-body entities
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(singlets) forming the RVB soup are clearly not quasi-particles as in a Landau Fermi
Liquid. To conclude I like to point out my opinion that once one has established
a violation of the standard Fermi liquid scenario it becomes very important to try
to classify this violation and compare it to what happens in other systems. Finding
systematics and trends could be useful for the theoretical task of classifying and
characterizing "non-Fermi liquid" systems.
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Living far from home.....: Quando ti metterai in viaggio per Itaca
devi augurarti che la strada sia lunga
fertile in avventure ed esperienze
Sempre devi avere in mente Itaca

Raggiungerla sia il pensiero costante.
Soprattutto non a�rettare il viaggio;

fa che duri a lungo, per anni, e che da vecchio
metta piede sull'isola, tu, ricco
dei tesori accumulati per strada

senza aspettarti ricchezze da Itaca.
Itaca ti ha dato il bel viaggio,
senza di lei mai ti saresti messo

in viaggio: che cos'altro ti aspetti?
When you will leave to Itaca

You must hope that it will be a long way
Rich of adventures and experiences

You must keep in mind Itaca constantly
To reach it must be your goal.
However, do not hurry up

Let the journey last for years and you, old,
will get on the island together

with the treasures you found on the way.
Do not expect more from Itaca.
Itaca gave you the nice trip,

Without her you would never have left:
What more do you want?

Kostantinos Kava�s
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All'ombra di cipressi e dentro l'urna
confortate di pianto è forse il sonno
della morte men duro?
..
..
Sol chi non lascia eredità d'a�etti
Poca gioia ha dell'urna; e se pur mira
Dopo l'esequie, errar vede il suo spirito
Fra'l compianto de' templi acherontei,
o ricoverarsi sotto le grandi ale
del perdono d'Iddio ma la sua polve
lascia alle ortiche di deserta gleba
ove ne donna innamorata preghi,
ne passeggiar solingo oda il sospiro
che dal tumulo a noi manda Natura.

Ugo Foscolo. "Dei Sepolcri


