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Abstract

English

Graphene, a monoatomic layer of carbon atoms arranged in a honeycomb
lattice, was successfully isolated for the first time in 2004. Fueled by the
exotic electronic and optical properties of this material, the scientific field
of graphene research has exploded. Many of those exotic properties are a
direct consequence of the relativistic, massless and chiral character of the
charge carriers, the so-called Dirac fermions. Therefore, the monoatomic
layer forms a solid-state playground to study quantum electrodynamics
(QED), where the carriers follow the physics of QED, but at the convenient
speed of 300 times smaller than the speed of light. In an externally applied
magnetic field an anomalous Hall effect can be observed, due to the non-
trivial Berry’s phase. The electronic bands split up into Landau levels with
a square-root dependence on magnetic field, unique for Dirac fermions.

Apart from the exciting possibilities to study relativistic physics in a solid,
graphene also has many promising aspects for future technologies. It
is the strongest known material and can withstand deformations up to
∼20%. The charge carrier mobilities found in graphene are remarkably
high. Although they vary somewhat from sample to sample, mostly de-
pending on the production method of the sample, mobilities of more than
200,000 cm2V−1s−1 were reported. With the use of an electrostatic gate
the ambipolar carrier density can be tuned, which opens up possibilities for
switchable or tunable electronics. Also the optical properties of graphene
attract attention for future applications. Importantly, it is transparent, of-
fering possibilities to use it for transparent and flexible electrical contacts.
With a gate the optical properties like absorption of light can be tuned.
Moreover, due to its two dimensional character strong matter-light inter-
actions and a high plasmon confinement are observed, in combination with
the tunability, graphene offers a large potential for the fields of plasmonics
and opto-electronics.

In this thesis we experimentally study the infrared magneto-optical proper-
ties of these ultimately thin films. The type of graphene investigated is sin-
gle and multilayer epitaxial graphene grown on a SiC substrate. Which is a
promising material due to the scalability of the production method. How-
ever, graphene grown on SiC is also very complex, due to grain bound-
aries, wrinkles and in the case of multilayer graphene a twisted stacking.



Many questions remain about the electronic structure and for instance the
influence of stacking and of the growth process on its properties.

The experiments reveal a giant Faraday rotation in highly doped single
layer graphene of several degrees. The spectra also show clear evidence
for plasmonic and magnetoplasmonic excitations. From the transmission
and Faraday rotation spectra the optical conductivity and a.c. Hall conduc-
tivity – the optical analogue of the d.c. Hall conductivity – are obtained,
respectively. We study these collective modes using an effective medium
approach and evaluate our results to existing theoretical calculations. Due
to the high doping of single layer epitaxial graphene, the cyclotron res-
onance observed for magnetic fields up to about 10 T is semi-classical
with a linear dependence on magnetic field. To probe individual Landau
level excitations with a square-root dependence on magnetic field, typi-
cal for Dirac fermions, much higher magnetic fields are needed. In order
to observe the crossover between the semi-classical cyclotron resonance
and the quantized Landau level transitions, we performed transmission
measurements in magnetic fields up to 32 T. These transmission spectra
are analyzed using the Drude-Lorentz formalism for the magneto-optical
conductivity. The results are discussed in the light of the effective single
particle model. Finally, we study magneto-optical spectra of low doped
multilayer epitaxial graphene. Due to the multilayer character of these
samples both semi-classical cyclotron resonance and transitions between
Landau levels can be observed simultaneously in the spectra. With the use
of the Faraday rotation we can disentangle the contributions of electron-
and hole-like charge carriers to the optical response. The spectra are ana-
lyzed using a multi-component Drude-Lorentz model. A clear discrepancy
is found between our results and the picture of multilayer graphene as a
stack of isolated monolayers.

Français

Le graphène, une couche monoatomique d’atomes de carbone ordonné
sous forme de maille de nid d’abeille, a été isolé pour la première fois avec
succès en 2004. Stimulé par les propriétés électroniques et optiques exo-
tiques, le domaine de recherche sur le graphène a connu un engouement
soudain. Beaucoup de ces propriétés découlent directement du caractère
relativiste, de sa masse effective nulle et de la chiralité de ses porteurs
de charge, communément appelé fermions de Dirac. En conséquence,
cette monocouche atomique forme un terrain d’étude dans la physique de
solide pour étudier l’électrodynamique quantique (EDQ), où les porteurs
de charge obéissent aux lois de l’EDQ mais leur vitesse est 300 fois in-



férieur à celle de la lumière. Sous l’influence d’un champ magnétique ex-
terne un effet Hall quantique anormale est observé, dû à la phase de Berry
non-triviale. Les bandes électroniques se séparent en niveau de Landau
avec une dépendance en racine carré du champs magnétique, typique pour
des fermions de Dirac.

En plus de pouvoir étudié la physique relativiste dans un solide, le graphène
peut déboucher dans de nouvelles futures applications. C’est le matériaux
le plus résistant connu et peut supporter des déformations jusqu’à 20%.
Les mobilités des porteurs de charge sont très élevées. Même si elles vari-
ent entre diffèrent échantillons des mobilités de 200 000 cm2V−1s−1 ont
été observées. Grâce à l’utilisation d’une grille électrostatique les porteurs
de charge ambipolaire peuvent être modifiés, ce qui permet des applica-
tions électroniques commutable et modifiable. Les propriétés optiques du
graphène sont également intéressantes en vue de futures applications. Sa
transparence peut aider à la réalisation d’électrode transparente et flexible.
Avec la grille il est également possible de modifié les propriétés optiques
tel que l’absorption. De plus, à cause de son caractère bi-dimensionnel
des fortes interactions lumière/matière et un fort confinement de plasmon
sont observés qui en combinaison avec ses propriétés ajustables offre un
large potentiel d’application dans le champs de la plasmonique et l’opto-
électronique.

Dans cette thèse nous étions expérimentalement les propriétés magnéto-
optiques infrarouges de ces couches minces. Les échantillons de graphène
mesurés sont des monocouches et des multicouches épitaxiés sur SiC qui
est une méthode de croissance prometteuse dû au fait quelle peut être ap-
pliqué à des grandes quantités. La structure du graphène sur SiC est néan-
moins très complexe à cause des joints de grain, la rugosité de la surface
et, dans le cas des multicouches, l’empilement torsadé. Des questions
restent ouvertes par rapport à la structure électronique et l’influence de
l’empilement et du processus de croissance.

Nous montrons dans nos expériences une rotation Faraday géante, de plu-
sieurs degrés, dans des échantillons fortement dopés. Les spectres démon-
trent aussi clairement la présence d’excitation plasmonique et magnéto-
plasmonique. Avec les spectres de transmission et de rotation Faraday
les conductivités optiques et la conductivité Hall CA - en analogie à la
conductivité Hall CD - sont extraites. Nous étudions ces modes collec-
tifs en utilisant une approche de milieu effectif et comparons nos résul-
tats à des calculs théoriques existants. À cause du fort dopage la ré-
sonance cyclotron jusqu’à 10 T est de nature semi-classique avec une
dépendance linéaire en champs. Pour étudier les excitations entre niveau
de Landau avec une dépendance en racine carré, des champs beaucoup
plus intenses sont nécessaires. Pour observer la transition entre le régime



semi-classique et quantique nous mesurons la transmission en champs
magnétique jusqu’à 32 T. Les spectres sont analysés à l’aide du formal-
isme Drude-Lorentz pour obtenir la conductivité magnéto-optique. Les
résultats sont interprétés en terme d’une représentation de particule effec-
tive unique. Finalement, nous nous penchons sur les spectres magnéto-
optiques de multicouces faiblement dopées. Dans ce cas nous obser-
vons les transitions semi-classiques (résonance cyclotron) et les transi-
tions quantiques entre niveaux de Landau. La rotation Faraday permet
d’identifier les contributions électrons et trous dans la réponse optique du
matériau. Les spectres sont analysés avec une approche Drude-Lorentz
à multi-composante. les résultats sont en désaccord avec la représenta-
tion de ces échantillons les considérant comme un empilement de mono-
couches isolés.
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1

Introduction

1.1 Graphene propelled into the limelight

Using tools as simple as scotch tape, tweezers and, most likely, a pair of gloves, back in

2004, Konstantin Novoselov and Andre Geim isolated a much sought after material [1].

This material, graphene, was already well-known due to an early theoretical interest

in its exotic properties or simply as a building block of graphite [2]. Simultaneously,

other groups were searching for ways of producing these single layers of carbon atoms

using more involved methods like the graphitization of SiC [3]. However, it was the

incredibly easy to use and inexpensive scotch-tape technique that propelled graphene,

together with its discoverers, into the scientific limelight.

Graphene is a one atom thick crystal of carbon atoms arranged in a honeycomb

structure and forms the building blocks of graphite. It can be separated from graphite

because the Van der Waals force between the layers in graphite is much weaker than

the in plane covalent bonds. Novoselov and Geim were the first to exfoliate one sin-

gle layer and therefore the first to successfully isolate a truly two-dimensional (2D)

material [1], gaining them the Nobel Prize in 2010.

The reasons for the enormous scientific interest in graphene are of both practical

and fundamental origin. The practical reason is the everlasting search for smaller and

faster electronic devices. The first steps towards technological implementation were

immediately made by Novoselov and Geim, who reported an electric-field effect in

graphene [1], fundamental for future applications. Soon after the first theoretical [4–7]

and experimental [8,9] reports of a tunable band gap in Bernal stacked bilayer emerged

(layers are rotated by 60◦ with respect to each other). In addition, it was shown that

strips of graphene of a few nanometers, much smaller than typical silicon-based de-

vices, can be used as a transistor [10]. More recently, graphene attracted the attention

1



1. INTRODUCTION

as a novel optoelectronic and plasmonic material for applications ranging from the ter-

ahertz to the visible spectral range [11–25]. One expects that plasmon waves can be

squeezed into a much smaller volume [21, 23] than in noble metals routinely used in

plasmonics and can also be manipulated by an external gate voltage.

Apart from the promising future of graphene for technological applications, the

first truly 2D crystal proves to be a play garden to probe relativistic physics in a solid.

In 1946, P. R. Wallace was the first to study the band structure of graphene and demon-

strate the unusual semi metallic behavior [2]. This study was a starting point to study

graphite (important for nuclear reactors in the post-World War time). About ten years

later, the Slonczewski-Weiss-McClure model was proposed, which provides a descrip-

tion of the electronic properties in this material [26, 27]. Altogether, before 2004 nu-

merous theoretical studies already appeared highlighting the unusual physics found

in a monoatomic layer of carbon (e.g. [28–30]). The large interest in graphene was

sparked by the prediction that the low energy dispersion is linear and therefore its low-

energy excitations are massless, chiral Dirac fermions [31]. In neutral graphene, the

chemical potential crosses exactly the Dirac point. The low energy dispersion resem-

bles the physics of quantum electrodynamics (QED) for massless fermions except for

the fact that the Dirac fermions in graphene move with a speed vF , which is 300 times

smaller than the speed of light c [32–34]. Therefore many of the unusual properties of

QED can be observed in graphene but at vF instead of c.
Indeed using angle-resolved photoelectron spectroscopy on single layer epitaxial

graphene, the energy dispersion was revealed to be linear, and therefore the quasi-

particles to be Dirac-like [35, 36]. Due to this linear band dispersion at zero magnetic

field, the optical conductivity of neutral graphene at zero temperature is universal over

a broad energy range [30,37–40], therefore also the absorption is constant and is simply

proportional to the number of layers. Altogether optical studies played a major role in

determining the properties of graphene: these studies revealed the effects of an external

electric field on the doping [41, 42] and showed the opening of a band gap in Bernal

stacked bilayer by an external electric field [41, 43, 44].

1.2 Graphene in a magnetic field
When placed in a magnetic field the Dirac fermions lead to new physical phenom-

ena [45, 46] such as the anomalous integer quantum Hall effect (IQHE) measured ex-

perimentally [47,48], a trademark of Dirac fermion behavior and a direct consequence

of the presence of a Landau level at zero energy. Importantly, the IQHE in graphene

can be observed at room temperature due to the large cyclotron energies of relativistic

electrons [49].

Experiments measuring cyclotron resonance played an important role in determin-

ing the fundamental properties of many materials. In 1955 the first measurements were

performed to determine the cyclotron masses of Si and Ge [50]. Later on, the line

shape of the cyclotron resonance was used to study scattering mechanisms in for ex-

2



1.3 Epitaxial graphene on SiC

ample 2D electron gasses [51,52]. Magneto-optical studies of the cyclotron resonance

transitions were the first to reveal the typical non-equidistant Landau levels with their

square-root dependence on field observed in low-doped graphene [53–55]. From these

experiments the Fermi velocity of the charge carriers could be extracted. The square-

root dependence of the Landau levels on field was confirmed by scanning tunneling

microscopy [56, 57]. Using magneto-optical spectroscopy, research groups addressed

electron-hole asymmetry [55], the possible existence of a band gap [58], scattering

mechanisms [59] and the coupling of cyclotron resonance to the K-phonon [60].

1.3 Epitaxial graphene on SiC
The size of the samples produced by the scotch tape technique used by Novoselov and

Geim are typically of the order of a few micrometers, rarely samples oof the order

of 1 mm were found [61]. Although the technique is inexpensive and offers a rela-

tively easy way to produce graphene, an industrial production of scalable samples is

not feasible for this method. Thence other methods to isolate of grow graphene are

actively explored. Alternative techniques include chemical vapor deposition (CVD)

of graphene on metal films [62–66], the unzipping of carbon nanotubes [67] and the

sonication of graphite in a liquid [68].

A different synthesis method is the thermal decomposition of SiC, which results

in epitaxial layers of carbon on top of the insulating substrate [3, 69, 70]. The SiC

substrate itself is a polar material which can be terminated by a carbon face or by a

silicon face. The sample properties of graphene grown on the carbon face differ from

the layers grown on the silicon face. The graphitization of the carbon face often leads

to multilayer graphene [3], while on the silicon face, the growth of each subsequent

layer is controlled by temperature, allowing for a more precise control over the layer

thickness [69,70]. Surprisingly, each carbon layer grown on the C-side shows the typ-

ical properties of isolated single layer graphene (crossing π bands). Layers grown on

the Si-side of SiC however, show a very different behavior. The carbon layer closest

to the substrate forms an insulating ‘buffer layer’, the properties of the second layer

correspond to the ones of single layer graphene, while subsequent layers are typically

Bernal stacked, which drastically changes the electronic structure [70]. The buffer

layer is a result of coupling between dangling bonds in the silicon terminated surface

of the SiC and the carbon atoms. However these bonds can be passivated by the inter-

calation of hydrogen between buffer layer and substrate, effectively transforming the

buffer layer into a graphene layer [71, 72].

Due to the vicinity of the polar SiC, the Dirac point in the graphene layers close to

the substrate is shifted away from the Fermi energy. In graphene grown on the C-face

the layers close to SiC are generally electron doped, as is graphene on a buffer layer on

the Si-face of SiC [73–75]. In contrast, hydrogen intercalated graphene on the Si-face

generally shows a large hole doping [71,76]. In the case of multilayer graphene on the

C-face, the outmost layers are close to neutral doping.

3



1. INTRODUCTION

Clear advantages of graphene grown on SiC are the scalability of the samples and

the direct growth on an insulating substrate, evading extra transfer steps, which com-

promise the quality of the graphene surface. The doping level of the graphene can be

tuned by, for example, the absorption of molecules [8, 77] or by the application of a

(top) gate [78, 79].

As was already mentioned, the layers in multilayer epitaxial graphene grown on the

C-face of SiC show the Dirac like properties typical for isolated single layer graphene.

Landau level spectroscopy performed on this type of graphene revealed a square-root

dependence of the Landau levels on magnetic field expected for monolayer graphene [53].

In contrast, the Landau levels in Bernal stacked bilayer graphene show a distinctly

different magnetic field dependence [80, 81]. This monolayer behavior was later con-

firmed by scanning tunneling microscopy measurements [57,82]. In addition, a Berry’s

phase of π and antilocalization was observed in transport measurements [83, 84]. Fi-

nally, angle-resolved photo emission spectroscopy showed that the band structure of

the individual layers is indeed Dirac-like [85].

The reason for the apparent single layer behavior in epitaxial multilayer graphene

is thought to be a twisted, non-Bernal, stacking of the layers, which effectively de-

couples the layers [86]. Consequently, multilayer epitaxial graphene on the C-side of

SiC is often thought of as a stack of independent graphene layers with a band struc-

ture resembling the one of isolated monolayer graphene. The influence of the twisted

stacking on the electronic structure received a lot of attention and much theoretical

progress was booked [4, 87–94]. It was predicted that in twisted multilayers the ef-

fect of the interlayer interaction is to decrease the Fermi velocity with respect to the

Fermi velocity in isolated monolayer graphene [88,90,91], which was indeed observed

experimentally in rotationally stacked bilayer graphene [95].

1.4 Magneto-optical spectroscopy on epitaxial graphene
In this work we study the magneto-optical properties of graphene, and in particular of

single and multilayer epitaxial graphene grown on SiC. The epitaxial graphene sam-

ples are provided by the group of Dr. Seyller1. Importantly, several elements of the

experimental techniques used for this work make our magneto-optical measurements

unique in the field of graphene research:

• Spectroscopic measurements of the rotation of polarization of light passing through

epitaxial graphene in a magnetic field, known as the Faraday effect, are per-

formed. Faraday rotation reveals the sign of the charge carriers involved in the

various optical transitions, so that it can be thought of as an optical analogue to

the d.c. Hall effect. From the Faraday rotation spectra we extract the optical Hall

conductivity. The Faraday rotation spectra are complemented with transmission

1The samples were produced by the group of Prof. Seyller at the Universität Erlangen-Nrnberg, the

group recently moved to the Technische Universitt Chemnitz.
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1.4 Magneto-optical spectroscopy on epitaxial graphene

spectra, from which we extract the diagonal optical conductivity. The simul-

taneous measurement of the diagonal and Hall conductivity allows for precise

analysis of the optical properties.

• Often in magneto-optical studies only the ratios between transmission spectra

at finite magnetic field and zero-field are obtained, providing information about

relative changes. With our experimental method, we are able to perform precise

measurements of the transmission, from which we extract the absolute diagonal

optical conductivity at every field, allowing an in-dept analysis of the optical

spectra.

The manuscript is organized as follows: in Chapter 2 we briefly review some theory

of optical spectroscopy and specifically discuss magneto-optics on thin films. In the

last part of the chapter the experimental methods are presented. Chapter 3 is devoted

to a more thorough introduction of the electronic and optical properties of graphene,

both for B=0 T and for an externally applied magnetic field. Among other, we discuss

cyclotron resonance in highly doped graphene, the quantized Landau levels in weakly

doped graphene. Next, we show how the charge carrier concentration of a graphene

sample can be determined from the optical spectra and how optics can be used to

obtain the layer thickness of a multilayer sample. The synthesis of graphene and more

specifically, of the samples used for the optical studies, epitaxial graphene on SiC, is

described in the last part of Chapter 3.

In the remaining part of the thesis, starting from Chapter 4, we present the results

of the experimental work. In Chapter 4 we concentrate on highly doped single layer

graphene grown on the silicon side of SiC and the results of transmission and Faraday

rotation measurements in fields up to 7 T. Faraday rotation measurements usually only

reveal relevant rotation angles for macroscopically thick samples. Up until our exper-

iments on single layer graphene, the thinnest structures showing measurable Faraday

angles were several nanometer thick two-dimensional electron gases [96]. Therefore,

we start by presenting the surprising results of these pioneering Faraday rotation mea-

surements carried out on a monoatomic thin graphene layer. Next, we discuss the

diagonal and Hall magneto-optical conductivity in the THz range, clearly showing

quasi-classical cyclotron resonance. The sign and value of the doping is determined

from the Hall conductivity and pronounced optical features caused by the surface mor-

phology are identified as plasmons and magneto-plasmons.

In Chapter 5 we present transmission spectra of highly doped single layer graphene

grown on the silicon side of SiC in magnetic fields up to 32 T. The high doping of the

sample combined with high magnetic fields allow for the observation of the crossover

between classical cyclotron resonance to the quantum regime where optical transitions

between the individual low index Landau levels are observed. Precise analysis of the

absolute optical spectra is performed and used to study the renormalization of the

Drude spectral weight by many body interactions, predicted and observed previously

in other studies [97–100].
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1. INTRODUCTION

In the last chapter of this thesis, Chapter 6, we present transmission and Faraday ro-

tation measurements on multilayer epitaxial graphene grown on the carbon face of SiC.

A detailed analysis of the optical spectra is performed, from which the doping levels

and the sign of the doping is extracted. Due to the importance of the twisted stacking

of the layers, magneto-optical spectroscopy has a clear advantage over surface probes,

such as angle resolved photo emission and scanning tunneling microscopy, since the

optical spectra contain contributions from all graphene layers. Results on two samples

with different layer number are discussed. Multiple components are identified in the

spectra, including quasi-classical cyclotron resonance, from a highly doped graphene

layer closest to SiC and transitions between Landau levels coming from weakly doped

layers. The Faraday rotation spectra facilitate the identification of coexisting electron

and hole-like Landau level transitions and reveals an electron-hole asymmetry of the

Fermi velocity. A detailed analysis of the optical intensity of the Landau level transi-

tions is given.
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2

Optical spectroscopy

2.1 Introduction

Optical phenomena in nature, like rainbows, the blue sky, halos near the sun or moon

and Fata Morganas have fascinated many throughout the centuries. In the recent cen-

tury this fascination had been turned into active employment of light: it has become an

important experimental probe to extract information about the physical properties of

materials in a non-invasive way. Well-known experiments from which the frequency

dependent properties of the material can be obtained include reflection, transmission,

ellipsometry and Raman scattering measurements. Optical experiments can be per-

formed from the terahertz range to the ultraviolet, covering different properties of –

and excitations in – the material, depending on their energy scale. External parame-

ters such as electric and magnetic fields, temperature and pressure can be applied and

changed during the optical experiment in order to study their effect on the optical ex-

citations. In particular, a (perpendicularly) applied external magnetic field breaks the

time-reversal symmetry of the system, in which case the so-called Faraday rotation

of the polarization state of the light can be observed. Measurements off the Faraday

effect form an important part of this thesis work.

In this chapter we briefly review the interaction of light with a material and the

material properties describing the optical response using Maxwell’s equations. The

optical conductivity, as well as the dielectric function and its relation to the refractive

index are discussed. We proceed with the classical Drude-Lorentz model for the op-

tical response of a solid, both with and without an externally applied magnetic field.

Thereafter, we discuss the Kubo-Greenwood formalism, derived from quantum me-

chanics.

The second part of this chapter, section 2.3, is aimed at connecting the fundamental
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2. OPTICAL SPECTROSCOPY

optical properties of thin 2 dimensional films, discussed in section 2.2, to experimental

parameters, such as transmission. The Fresnel equations will be used to derive several

relations to extract the real and imaginary parts of the optical conductivity of a thin

film on a substrate from the transmission spectra obtained in an optical experiment. In

the same sections we present the experimental techniques to obtain the transmission

spectra. In the last section, the Faraday rotation of the polarization state of light and its

direct relation to the optical Hall conductivity, as well as the experimental technique

to obtain Faraday rotation spectra will be discussed.

Additional information on the subject of optical properties of solids can be found

in many books and manuscripts, including Refs. [101–104].

2.2 (Magneto-) Optical properties of solids

In this section we will discuss briefly the interaction of light with solids, starting from

the Maxwell equations, which describe how charges and currents act as a source of

electric and magnetic fields. The propagation of the field inside the medium is found

to depend on the material specific refractive index. The refractive index is directly

related to the dielectric function and the conductivity of the material.

In subsection 2.2.2 the classical Drude-Lorentz model to describe the optical con-

ductivity is introduced. The model consists of a sum of Lorentz oscillators, each one

at a specific energy, with a specific width and broadening and, in the case that a finite

external magnetic field is present, a particular cyclotron resonance energy.

After the introduction of these macroscopic and classical models we will briefly

review the Kubo-Greenwood formula, which provides a microscopic, quantum me-

chanical description for the optical conductivity. Here we will concentrate the discus-

sion on the 2-dimensional case, valid for thin films. The Kubo-Greenwood formula

is based on linear response theory and provides a route to qualitatively take excitation

and interaction in the solid into account.

In the last subsections the Kramers-Kronig relations and the f -sum rule are re-

viewed. These relations follow from the analytic properties of the linear response

functions. The Kramers-Kronig relations connect the real and imaginary parts of the

complex optical conductivity (or dielectric function).

2.2.1 Electromagnetic interaction with matter

The macroscopic Maxwell’s equations relate the electric displacement field D, cur-

rent J , and magnetic induction B to an external electromagnetic perturbation. The
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2.2 (Magneto-) Optical properties of solids

Maxwell’s equations are:

∇ ·D = ρ, (2.1)

∇× E = −∂B

∂t
, (2.2)

∇ ·B = 0, (2.3)

∇×H = J+
∂D

∂t
, (2.4)

where ρ is the charge density. The electric displacement field D in the medium is re-

lated to the external electric field E. The magnetic induction B is related to the external

magnetic field H. The relations defining D and B are:

D = ε · E = ε0E+P, (2.5)

B = μ ·H = μ0H+M. (2.6)

Here P is the electric polarization of the material, caused by the microscopic electric

dipoles formed by bound charges. The magnetization density M is, in analogue to P,
caused by bound currents. The right hand side of eqn. (2.5) follows from the linear

relation P= ε0χeE, where χe is the electric susceptibility and ε = ε0(1+χe), where ε
is the complex dielectric function. For eqn. (2.6) the linear relation M= μ0χmH was

used, where χm is the magnetic susceptibility and μ = μ0(1 + χm).
The optical conductivity, σ, directly related to the dielectric function, ε, describes

the linear response of the charge carriers in a material to the externally applied electro-

magnetic (EM) field. Note that both σ and ε are frequency dependent. The relationship

between the electric field E, the conductivity and the current, Jcond, are expressed by

Ohm’s law:

Jcond = σ · E, (2.7)

where σ is the complex optical conductivity tensor, which we will discuss later in this

section.

The Maxwell’s equations together with eqns. (2.7), (2.5) and (2.6) fully describe

the propagation of the electromagnetic wave in the medium. The wave equation for

the transverse electric field propagating in a medium is [101]:

∇2E− ε1μ1
∂2E

∂t2
− σ1μ1

∂E

∂t
= 0. (2.8)

Here the subscript 1 denotes the real part of the complex quantity, the subscript 2

indicates the imaginary part.

The wave propagating in the medium is of the form E(r, t) = E0e
i(q·r−ωt), by

substituting this into eqn. (2.8), the dispersion relation is obtained:

q2 = μ1(q, ω)

(
ε1(q, ω) + i

σ1(q, ω)

ω

)
ω2

c2
, (2.9)
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2. OPTICAL SPECTROSCOPY

The wave vector q can also be expressed as:

q ≡ ω

c

√
με, (2.10)

where μ and ε are the complex magnetic and dielectric functions.

Comparing eqn. (2.10) with the dispersion relation, eqn. (2.9), the relationship

between the complex dielectric function and the conductivity can be deduced:

ε(ω) = ε1 + iε2 = ε1 + i
σ1

ω
. (2.11)

The optical conductivity itself must also be complex (σ ≡ σ1 + iσ2) and is related

to the dielectric function like:

σ(ω) = iω(1− ε(ω)). (2.12)

The refractive index n follows from eqn. (2.10):

n(q, ω) = n+ ik ≡ √με. (2.13)

Everywhere in this work we assume that μ = 1, and thus n =
√
ε.

As was already mentioned, the conductivity of an isotropic medium is a tensor.

In particular, when an external magnetic field is applied the components of the tensor

become magnetic field dependent. In Cartesian coordinates the conductivity tensor is

given by:

σ(ω,B) =

(
σxx(ω,B) σxy(ω,B)
−σxy(ω,B) σxx(ω,B)

)
. (2.14)

Where on the diagonal of the tensor, σxx(ω,B), is the ‘optical conductivity’ or ‘diago-

nal conductivity’. The off-diagonal elements, σxy(ω,B), are only non-zero in the case

that the time-reversal symmetry is broken, by e.g. an externally applied magnetic field

B. σxy is referred to as the ‘off-diagonal’ or ‘optical Hall conductivity’.

The optical conductivity tensor has general symmetry properties. For the complex

diagonal and off-diagonal conductivity [105]:

σ∗xx(ω,B) = σxx(ω,B),

σ∗xy(ω,B) = σxy(−ω,B), (2.15)

For the real and imaginary parts, separately, is found that:

Reσxx(ω,B) = Reσxx(−ω,B), Imσxx(ω,B) = −Imσxx(−ω,B),

Reσxy(ω,B) = Reσxy(−ω,B), Imσxy(ω,B) = −Imσxy(−ω,B). (2.16)

The Onsager relations tell that the complex diagonal elements are symmetric in mag-

netic field:

σxx(ω,B) = σxx(ω,−B), (2.17)
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2.2 (Magneto-) Optical properties of solids

While the complex off-diagonal elements are antisymmetric in field:

σxy(ω,B) = σyx(ω,−B),

σxy(ω,B) = −σxy(ω,−B). (2.18)

For an isotropic material the magneto-optical conductivity tensor is diagonal in

the basis of circular coordinates, which is related to the Cartesian coordinates via the

relation:

σ± = σxx ± iσxy. (2.19)

The eigen modes of the electric field in the circular polarization are given by:

E±(r, t) =
1√
2

[
1
±i

]
E0e

i(q·r−ωt). (2.20)

Importantly, in this thesis we most often consider the conductivity of ultra thin

carbon layers. Therefore we need to distinguish the optical conductivity of bulk ma-

terials, the 3-dimensional conductivity, and the optical conductivity of thin films, the

2-dimensional conductivity. In the case of 3D conductivity the current J is a current

density per volume, while in the 2D case J is the current density per area. Similarly, in

the 3D case the carrier density n is per volume, while in the 2D case the carrier density

n is counted per area.

For a more thorough discussion of the Maxwell’s equations and the propagation of

waves in a medium see for example Refs. [101–104].

2.2.2 Drude-Lorentz model in a magnetic field
The classical Drude-Lorentz model for (optical) conductivity describes the excitations

in solids by considering the forces exerted on the charged particles in the solid. An

electro-magnetic wave consist of time-varying electric and magnetic fields, giving the

charged particles an oscillating motion. The force of the magnetic field is much smaller

than the electric force, therefore, we can neglect the Lorentz force in the case that only

the forces of the an electro-magnetic wave are considered.

However, when a static magnetic field (B field) is applied, the Lorentz force can

no longer be neglected. The charged particles rapidly oscillate due to the time-varying

electric field, while the static B field gives rise to a Lorentz force directed perpendicular

to the motion of the particle and direction of the field. The resulting equation of motion

for an electron with mass m is:

d2r

dt2
+ γ

dr

dt
+ ω2

0r = −
e

m
E(t) +

e

m
v ×B, (2.21)

where γ = 1/τ , and τ is the average relaxation time and ω0 is the eigenfrequency or

resonance frequency of bound electrons. The displacement of the particles is consid-

ered to be harmonic: x(t) = xe−iωt. Due to the presence of the magnetic field, the
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2. OPTICAL SPECTROSCOPY

motion of charge carriers in the x and y plane is coupled:

Ẍ + γẊ + ω2
0X =

−eEx

m
+ ωcẎ ,

Ÿ + γẎ + ω2
0Y =

−eEy

m
− ωcẊ, (2.22)

where ωc = eB/m, is the cyclotron resonance frequency. By moving to frequency

space, the time derivative becomes a simple multiplication, so that:

X(ω + iγ − ω2
0

ω
) =

eEx

mω
+ iωcY,

Y (ω + iγ − ω2
0

ω
) =

eEy

mω
− iωcX. (2.23)

Equation (2.23) is solved for the displacement inX and Y , from which then the current

is found: jx = neẋ = σxxEx+σxyEy, where in the 3-dimensional case n is the density

of charge carriers per volume, while in the 2-dimensional case (thin films) n is the

density of carriers per unit area. The current, jx, is found to be:

jx =
ne2Ex

m

γ − iω +
ω2
0

ω

ω2
c − (ω + iγ +

ω2
0

ω
)2
− ne2Ey

m

ωc

ω2
c − (ω + iγ +

ω2
0

ω
)2
. (2.24)

The diagonal (σxx(ω)) and off-diagonal (σxy(ω)) optical conductivities are obtained

by identification:

σxx(ω) =
ne2

m

γ − iω +
ω2
0

ω

ω2
c − (ω + iγ +

ω2
0

ω
)2
, (2.25)

σxy(ω) =
ne2

m

−ωc

ω2
c − (ω + iγ +

ω2
0

ω
)2
. (2.26)

Generally, many different excitations are present in the material, at distinctive en-

ergies ω0, with unique broadenings γ, cyclotron resonance energies ωc and spectral

weights D. In this case, eqns. (2.25) and (2.25), containing one single oscillator, can

not provide an accurate description of the optical conductivity. To take into account all

excitations a sum off all those contributions should be taken:

σxx(ω) =
n∑

i=1

2Di

π

γi − iω +
ω2
0,i

ω

ω2
c,i − (ω + iγi +

ω2
0,i

ω
)2
, (2.27)

σxy(ω) =
n∑

i=1

2Di

π

−ωc,i

ω2
c,i − (ω + iγi +

ω2
0,i

ω
)2
. (2.28)

Where we replaced ne2

m
with 2D

π
.
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2.2 (Magneto-) Optical properties of solids

Using relation (2.19), in the circular coordinates a simpler expression for the magneto-

optical conductivity can be found:

σ±(ω) =
n∑

i=1

2Di

π

i

ω ∓ ωc,i + iγi − ω2
0,i/ω

. (2.29)

Equations (2.27), (2.28) and (2.29) are used for the phenomenological data analysis in

the analysis of the experimental results in this work.

In the absence of magnetic field, eqn. (2.28) reduces to zero and from eqns. (2.29)

and (2.19) can be seen that σ+(ω) = σ−(ω) = σxx(ω), so that the Lorentz model for

optical conductivity is reduced to:

σ(ω) =
n∑

i=1

2Di

π

ω

i(ω2
0,i − ω2) + ωγi

, (2.30)

In the case of metals, an additional important modification can be made; the charge

carriers at the Fermi level move freely, such that the restoring force ω0 = 0. Conse-

quently, in an optical spectrum, the response of free carriers, the so-called Drude peak,

or Drude response, can be observed as a peak centered around zero energy. The fa-

mous Drude model for free carriers can be found from eqn. (2.30) when putting ω0

to zero and taking only one term in the sum. Similarly, the complete Drude-Lorentz

model directly follows from eqn. (2.30), where one of the terms in the summation has

ω0 = 0, and the remaining terms account for the finite frequency contributions:

σ(ω) =
2DD

π

1

γD − iω
+

n∑
i=1

2Di

π

ω

i(ω2
0,i − ω2) + ωγi

, (2.31)

whereDD and γD are the Drude weight and the broadening of the Drude peak, respec-

tively.

2.2.3 Kubo-Greenwood formula
A microscopic model for the optical conductivity can be derived from the point of

view of quantum mechanics, using the linear response formalism to arrive at the Kubo-

Greenwood formula. Here we will discuss the Kubo-Greenwood formula, which we

will later encounter again when we specifically discuss the optical conductivity of

graphene [106].

The conductivity is the linear response to a time-dependent perturbation:

H = H0 +H1(t), (2.32)

where H0 is the unperturbed, time-independent part of the Hamiltonian and H1(t) is

the perturbation of the system due to the time-dependent electric field. The electric

field induces a current density j(, t), dependent on the conductivity of the material.
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2. OPTICAL SPECTROSCOPY

Ohm’s law gives the relationship between electric field, conductivity and current den-

sity:

jα(t) =

∫ t

−∞
dt′σαβ(t− t′)Eβ(t

′), (2.33)

Using linear response theory the total current can be obtained, then by identification

the Kubo’s formula for the conductivity is found, which is in frequency space [106]:

σαβ(ω) =
ie2Nδαβ
V mω+

+
1

V �ω+

∫ ∞

−∞
dτθ(τ)〈[Jα(τ), Jβ(0)]〉eiω+τ , (2.34)

where V is the volume, N is the total particle density, τ = t− t′, θ(τ) is the Heaviside

function, J = −e∑i vi is the total current and vi is the particle velocity. ω+ ≡ ω+ iδ,
where δ is a infinitely small term added to assure convergence. −θ(τ)〈[Jα(τ), Jβ(0)]〉
is the many-body current-current correlation function.

Equation (2.34) can be simplified significantly by using single-particle states in-

stead of the many-body current-current correlation function:

σαβ(ω) =
e2

V

∑
nn′

f(En)− f(En′)

En − En′
V α
n′nV

β
nn′

i

ω − ωnn′ + i/τ
, (2.35)

where f(En) is the fermi distribution, En is the energy of the single particle state. We

introduced the velocity operator v = p/m, where p is momentum andm is the particle

mass and used V α
n′n = 〈n|vα|n′〉 and ωnn′ = ωn−ωn′ . Finally, iδ was replaced by i/τ ,

which is the finite lifetime interpretation.

In the case that we consider the conductivity of a thin film, σαβ,2D(ω), we have to

replace the volume V in eqn. (2.35) by the 2 dimensional volume V2D (area). We

also introduce the dimensionless universal optical conductivity: σ0 = e2/4�, and

rewrite the velocity operator as vα = 1
�

∂H0

∂qα
to arrive at a simple version of the Kubo-

Greenwood formula for the 2-dimensional conductivity:

σαβ,2D(ω) =
8σ0

V2D

∑
nn′

f(En)− f(En′)

En − En′
〈n|∂H0

∂qα
|n′〉〈n′|∂H0

∂qβ
|n〉 i

�ω − �ωnn′ + iγ
.

(2.36)

Where we also introduced an additional factor of two to take into account the spin

degeneracy, γ = �/τ is a phenomenological broadening and H0 is the single-particle

Hamiltonian which describes the energy levels of the system. Equation (2.36) forms

the starting point for deriving the magneto-optical properties of thin films, discussed

in section 3.3.3.

2.2.4 Kramers-Kronig relations
We have seen that the functions describing the response of a material to an external

field, the optical conductivity and the dielectric function, are complex tensors. In or-

der to obtain a full picture of the magneto-optical response of a material, one needs
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2.2 (Magneto-) Optical properties of solids

to determine every component of that tensor. However, as we will see later, optical

experiments often only provide the real part of one or more of those components of the

tensor, such as Reσxx(ω) and Re σxy(ω). Fortunately, the real and imaginary parts of

the linear response function turn out to be related by the Kramers-Kronig relations.

Although they are general relations revealing the direct relationship between the

real and imaginary parts of any causal response function, here we give the Kramers-

Kronig relations for the optical conductivity [101,102]:

σ
(1)
αβ (ω) =

1

π
P
∫ +∞

−∞

σ
(2)
αβ (ω

′)

ω′ − ω
dω′, (2.37)

σ
(2)
αβ (ω) = − 1

π
P
∫ +∞

−∞

σ
(1)
αβ (ω

′)

ω′ − ω
dω′. (2.38)

Here the superscript 1 (2) indicates the real (imaginary) part of the conductivity. The

subscripts α and β denote the cartesian coordinates x and/or y: for example, the term

σ
(1)
αβ (ω) can be σ

(1)
xx (ω) or σ

(1)
xy (ω). Thus, the Kramers-Kronig relations apply to the

real and imaginary parts of both σxx and σxy separately.

2.2.5 f -sum rule for optical conductivity

The Thomas-Reiche-Kuhn sum rule, or f -sum rule, tells us that the sum of the strengths

of all oscillators is proportional to the ratio of the electronic density to the mass of the

carriers [101]:

W =

∫ ∞

0

Re[σ(ω)]dω =
πne2

2m
, (2.39)

where W is the total spectral weight, or the area under Re[σ(ω)] up to infinite fre-

quency. A consequence of the f sum rule is that the optical conductivity is conserved,

even though spectral weight can be transferred between several oscillators at different

energies. The principle of conservation of spectral weight can be used to, for example,

analyze the strength of emerging optical transitions and the transfer of weight between

them. However, in general the optical conductivity is not determined up to infinite

frequency, therefore in practice, a frequency range must be chosen for the analysis of

spectral weight.

The f -sum rule is derived from the Kubo-Greenwood relations, discussed in the

previous section. However, in magnetic field, time-reversal symmetry is broken and

the eigenstates of the system are the circular polarized states. The real and imaginary

parts of the conductivity in the basis of left and right circular polarization do not satisfy

the Kramers-Kronig relations individually [107, 108]. The reason for this violations

is that the conductivities are not even in frequency and therefore causality does not

hold. Still an f -sum rule in the circular basis can be formulated, strictly valid for non-

magnetic materials: the average strength of the left and right circular polarizations is
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conserved and yields the total number of charge carries [109]:

D =

∫ ∞

0

(Re[σ(ω)+] + Re[σ(ω)−])
2

dω =

∫ ∞

0

Re[σxx(ω)]dω =
πne2

2m
. (2.40)

2.3 Experimental quantities

In the previous section we have introduced models for the (magneto-) optical conduc-

tivity. These models can be employed to analyze the conductivity of solids, so that

we can distinguish the different contributions of distinct excitations and learn about

their energy, broadening and weight. However, to be able to do this analysis, we first

need to experimentally determine the optical properties of a solid. In this section we

will discuss the experimental quantities – transmission, Fabry-Perot interference and

Faraday rotation – and how to obtain from them the optical conductivity. In the second

part of each section we will describe the experimental techniques and set-ups used to

measure the infrared transmission and Faraday rotation spectra in magnetic field.

The experimental work presented in this thesis is almost exclusively performed

on samples of thin graphene films grown on a thick SiC substrate. Both graphene

and the SiC substrate are transparent in the far infrared region; our region of inter-

est. Therefore, the experimental quantity most reliably obtained experimentally is the

transmission of the film on the substrate and the bare transmission of the substrate. In

an externally applied magnetic field, the transmission spectra are obtained as a function

of field. Apart from transmission, an additional experimental parameter, only finite at

non-zero magnetic field, is the Faraday rotation, which proves to be an important op-

tical quantity, not only for technical applications, but because it provides access to the

AC Hall conductivity.

In section 2.3.1 we first discuss the thin film approximation with which the real

part of the diagonal optical conductivity can be extracted from the experimental trans-

mission spectra. The second part of the section is dedicated to a description of the

experimental technique used to obtain the transmission as a function of magnetic field.

Section 2.3.2 demonstrates the extraction of the change in the imaginary part of the

diagonal conductivity relative to the magnetic field. The change in conductivity can

be found from Fabry-Perot oscillations in the high resolution transmission spectra of

the thin film on the substrate. Again, the second part of the section is dedicated to

a description of the experimental technique used to study the field dependence of the

Fabry-Perot interference. In the last section the principle of Faraday rotation in a solid

is introduced. Subsequently, we discuss the use of experimental Faraday rotation spec-

tra for extracting the real part of the AC Hall conductivity. The experimental method

is detailed in the end of section 2.3.3.

16



2.3 Experimental quantities

Figure 2.1: Schematic representation of the path of light transmitted through a thin film

on a substrate. The complex transmission and reflection coefficients are indicated. The

path of the first two internally reflected rays are also shown. For clarity the rays are tilted,

in the experiments however, near normal incidence was used.

2.3.1 Transmission of a thin film on a substrate
Theoretical background

The type of sample used in the experimental part of this work consists of a thin con-

ducting film on a thick insulating substrate, schematically shown in Fig. 2.1. The

substrate is characterized by its complex refractive index, Ns = ns + iks, where ns is

the real part of the refractive index and ks is the extinction coefficient, and its thickness

ds. Ns can be obtained from an optical experiment, while ds is measured with a mi-

crometer. The film has a two dimensional optical conductivity σf , which is the optical

property of interest and thus the subject of our study. The experimental quantities we

access are the transmission of the substrate, Ts, and the transmission of the film on the

substrate, Tf . The transmission ratio between sample and substrate,T = Tf/Ts, will

prove to be the key experimental quantity from which the conductivity of the film, σf ,

can be extracted. In this section we will derive expressions for T in terms of Ns, ds
and σf with the use of complex transmission and reflection coefficients.

Figure 2.1 shows the optical path of light impinging on the thin film + substrate

and shows the complex transmission and reflection coefficients, which are:

tvs =
2

Ns + 1
, tsv =

2Ns

Ns + 1
, tvfs =

2

Ns + 1 + Z0σf

, (2.41)

rsv =
Ns − 1

Ns + 1
, rsfv =

Ns − 1− Z0σf

Ns + 1 + Z0σf

, τs = exp

(
iω

c
Nsds

)
, (2.42)

where Z0 = 4π/c ≈ 377 Ω is the impedance of vacuum.

The light transmitted by the film is partially reflected internally at the substrate-

vacuum (v) interface and at the substrate-film interface. Several of these internal re-

flections in the substrate are shown in Fig. 2.1, their transmission is indicated as t(j),
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where j is the ray number. The complex transmission of the first ray (j = 0) is

t
(0)
f = τstvfstsv. The general expression of the complex transmission of every jth ray

has the form:

t
(j)
f = τstvfstsv(rsv rsfv τ

2
s )

j. (2.43)

The complex transmission of the substrate, t
(j)
s , can be found by replacing tvfs → tvs

and rsfv → rsv in eqn. (2.43).

If the substrate is flat-parallel and homogeneous, the internally reflected rays are

fully phase coherent, resulting in Fabry-Perot oscillations in the spectrum. In order

to compute the total transmission we simply add the transmission of every ray: tf =∑
j t

(j)
f . On the contrary, when phase coherence is destroyed by a wedged substrate or

a rough sample surface, the total transmission should be obtained by adding intensities.

In most of the experiments discussed in this work the spectral resolution was reduced

either at the time of the data acquisition, or by locally fitting the Fabry-Perot fringes

when analyzing the spectra, so that the internally reflected rays add up incoherently. In

the incoherent case the multiple rays add by power and not by electric field. The total

transmission coefficients of the sample, Tf , and the substrate, Ts, are given by:

Tf =
|τstvfstsv|2

1− |rsv rsfv τ 2s |2
, Ts =

|τstvstsv|2
1− |r2sv τ 2s |2

, (2.44)

from which the substrate normalized transmission can be found, using eqns. (2.41) and

(2.42):

T =
Tf

Ts

=

∣∣∣∣tvfstvs

∣∣∣∣
2

1− |r2svτ 2s |2
1− |rsfvrsvτ 2s |2

=
|Ns + 1|4 − |Ns − 1|4|τs|4

|(Ns + 1)(Ns + 1 + Z0σf )|2 − |(Ns − 1)(Ns − 1− Z0σf )|2|τs|4 . (2.45)

For a transmission experiment, the substrate must be at least partially transparent,

therefore the penetration depth (∼ 1/ks) must be large compared to the thickness of

the substrate and ks � ns in this case. With this in mind we neglect the imaginary

part of the refractive index, ks; Ns is substituted with ns, except in τs, which is used

to we define α = |τs|2 = exp(−2ωksds/c), note that here α is not to be confused

with the fine structure constant. Now, by decomposing the last relation in terms of the

conductivity, eqn. (2.45) can be written as:

T =

[
1 +

2

ns + 1

1 + α2r3

1− α2r4
Re (Z0σf ) +

1

(ns + 1)2
1− α2r2

1− α2r4
|Z0σf |2

]−1
, (2.46)

where the substrate-vacuum reflectivity coefficient is re-entered, using the short nota-

tion rsv = r = (ns − 1) / (ns + 1). The resulting relation is a function of both the

real and imaginary part of σf . However, from the experimentally obtained substrate

normalized transmission, only, the complex conductivity cannot be determined. The
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imaginary part of σf appears in the third term of eqn. (2.46), which has a significantly

smaller prefactor than the second term, in which only the real part of σ enters. There-

fore, we make an approximation and neglect the influence of Im[σf ].

As already mentioned in section (2.2.2), in a perpendicular magnetic field, the con-

ductivity and the transmission both become a tensor. In the basis of circularly polarized

light, these tensors are diagonal and eqn. (2.46) thus describes the transmission of left-

and right handed circularly polarized light separately, if σf is substituted with σf
± and

T with T±. For unpolarized light T = 1/2(T+ + T−). However, without experimental

scheme to obtain T±, at finite magnetic fields, we make an additional approximation

by neglecting the small influence of Re[σf
xy] on the transmission. Thus we obtain the

expression:

T ∼=
[
1 +

2

ns + 1

1 + α2r3

1− α2r4
Re (Z0σxx) +

1

(ns + 1)2
1− α2r2

1− α2r4
Re (Z0σxx)

2

]−1
.

(2.47)

With this relation, the optical conductivity of the thin film can be extracted by entering

the experimental substrate normalized transmission, the refractive index and the ex-

tinction coefficient of the substrate. When neglecting the quadratic part of eqn. (2.47)

the linear expression is found:

T ∼=
[
1 + 2Z0Re (σxx)

(
1

ns + 1
+

2ns

(ns − 1)2
|q|2

1− |q|2
)]−1

. (2.48)

where |q| ≡ (ns − 1) / (ns + 1)2 τ 2s . The last equation can be even more simplified

using the linear approximation (1 − x)−1 ≈ 1 + x, we arrive at the simple relation

(provided that Z0Re[σ
f
xx]� 1):

1− T ∼= 2Z0Re(σxx)

(
1

ns + 1
+

2ns

(ns − 1)2
|q|2

1− |q|2
)
. (2.49)

In the derivation of eqn. (2.47) we rely on the thin film approximation and, at zero

magnetic field, neglect the imaginary part of σxx. At finite magnetic fields, the approx-

imation becomes more severe by ignoring the influence of σxy on the transmission

ratio. In order to estimate the difference between the exact optical conductivity and

the one obtained from eqn. (2.47), we performed a numerical check. The details of the

procedure and the results are discussed in appendix B.1. The results of the numeri-

cal check show that eqn. (2.47) proves reasonably accurate, especially in reproducing

the peak positions in the optical spectra. At zero or low magnetic fields the spectral

weight is slightly overestimated depending on the amount of absorption in the film.

On the contrary, at higher magnetic fields, neglecting σxy result in an underestimation

of the spectral weight, where the level of deviation strongly depends on the amount of

absorption in the film and the cyclotron resonance energy.
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Figure 2.2: Experimental setup: a spectrometer is attached to a split coil superconducting

magnet and bolometer. A polarizer can be placed between spectrometer and magnet so

that the light of the spectrometer is linearly polarized before impinging on the sample.

With the use of a sliding cold finger the sample position can be changed.

Experimental method

All transmission spectra were measured using a commercial infrared Fourier transform

spectrometer from Bruker [110] equipped with a Hg-source for the terahertz regime

and a SiC Globar source for the infrared regime. Inside the spectrometer the light

from the source is directed to an interferometer. Firstly, the light is impinging on a

beamsplitter, which reflects a part of the light to a fixed mirror and the other part of

the light is transmitted and falls on a scanning mirror. When scanning the mirror, the

optical path of that light ray is varied, so that upon recombination of the two beams,

the one from the fixed mirror and the one of the scanning mirror, the beams interfere,

creating a time-dependent pulse. The resulting time-dependent signal is called the

interferogram. Below 12 meV (100 cm−1), a silicon beamsplitter was used, while for

higher frequencies a germanium coated 6 μm mylar beamsplitter is more suited. The

light beam leaving the interferometer is guided to a superconducting magnet with the

use of several mirrors, where it is focussed on the sample. The transmitted beam is

then focussed on a helium cooled silicon bolometer. The impinging light raises the

temperature of the silicon detector. The temperature change induces a change in the

resistance, which is registered as a function of time. The higher the intensity of the

light which hits the detector, the larger the change in resistance. The registered time

dependent amplitude is Fourier transformed to obtain the amplitude of the transmitted

light as a function of frequency. With the above mentioned sources (Globar and Hg-

source) and beamsplitters (silicon and Ge coated 6 μm mylar), used in combination
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Figure 2.3: Typical transmission spectra of graphene on SiC and a bare SiC substrate

measured with a resolution of 0.05 meV, T = 5 K and B = 3 T. a) Raw transmission spectra

of graphene on SiC (black line), the bare SiC substrate (red line) and transmission without

sample (blue line). b) Absolute transmission spectra of graphene on SiC and of the bare

SiC substrate. The inset in panel b shows a close-up of an absorption dip in the graphene

spectrum. The grey shaded areas at low and high energies in panels a and b indicate

the energy ranges where the combination of source, beamsplitter and bolometer, does not

supply enough intensity to provide useful optical spectra.

with the bolometer, the accessible range of optical energies ranges from about 1.0 meV

to about 85 meV, where the upper limit of 85 meV is, on one hand, determined by the

filter in the bolometer and on the other hand by the phonons in the substrate used in

our experiments.

The superconducting magnet is a commercial split-coil magnet from Cryogenic

Limited [111]. The magnet can deliver fields up to ±7 T. A sample and reference

substrate can be mounted simultaneously on a sliding cold finger and are inserted at

the top of the magnet into the sample chamber. The sample chamber can be filled

with helium gas of liquid providing a variable temperature between 2.2 and 300 K.

This type of sample insert is referred to as a ‘VTI’; Variable Temperature Insert. By

sliding the cold finger in the vertical direction, either the sample or the reference can be

placed in the path of the beam or both can be moved out of the optical path, while the

temperature inside the magnet stays unchanged. This system allows us to normalize

the transmission spectra of the sample to the bare transmission of the substrate or

transmission without reference and to avoid drift or other variations in the experimental

set-up as much as possible. Figure 2.2 gives a schematic impression of the ensemble

of the spectrometer, magnet, sliding cold finger and bolometer.

Typically we determine the transmission ratio T between sample and reference at

a fixed temperature and magnetic field. The absolute transmission of sample or refer-

ence is obtained by normalizing their spectra to the spectrum of the light that passes

the magnet when no sample or reference is placed in the optical path. The best en-

ergy resolution with which the spectra can be obtained is about 0.05 meV. Figure 2.3a

shows examples of transmission spectra taken with this high resolution on a (almost)
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Figure 2.4: Typical transmission spectra of graphene on SiC and a bare SiC substrate

measured with a resolution of 0.65 meV, at T = 5 K and B = 3 T. a) Raw transmission

spectra of graphene on SiC, SiC and without sample. b) Absolute transmission spectra

of graphene on SiC (black line), SiC (red line) and the transmission ration T between

graphene on SiC and the SiC substrate (green line). The intensity of the transmission light

in the grey areas is too low for a accurate extraction of the transmission spectra.

flat parallel sample, using a Hg-source and a 6 μmmylar beamsplitter. The grey shaded

areas below 6 meV and above 85 meV indicate photon energies where the intensity of

the signal is too low for an accurate extraction of the transmission. The amplitude of

the transmission spectra of the sample and reference oscillate strongly, which is due to

internal reflections (Fabry-Perot interference) in the SiC substrate. The origin of the

internal reflections is illustrated in Fig. 2.1, in section (2.3.1), and more extensively

discussed in section 2.3.2. Absolute spectra are obtained by normalizing the raw trans-

mission to the raw transmission of the set-up, so that the absolute transmission reflects

only the transmission of the sample or substrate, shown in Fig. 2.3b. Although the

absolute transmission of graphene on SiC is clearly different from the one of the bare

SiC reference, the analysis and interpretation of the spectra in Fig. 2.3b is complicated

by the presence of the pronounced Fabry-Perot oscillations.

The Fabry-Perot oscillations (or fringes) form a nuisance for the extraction of

Re[σxx] from the transmission spectra. Therefore, the oscillations must be removed

from the spectra. The removal of the fringes can be done in different ways. Either

every fringe in the high resolution spectra is locally fitted, which is the subject of the

next subsection, alternatively the spectra are measured with a lower spectral resolution

effectively canceling out the oscillations. Another way to get around the Fabry-Perot

oscillations is to destroy the phase coherence between the internal reflections by using

a wedged sample or a sample with large surface roughness.

Importantly, one can make use of the Fabry-Perot oscillations and extract relative

changes in Im[σxx] by analyzing the shift in the fringes for different magnetic fields,

as is discussed in sections (2.3.2).

Figure 2.4 shows the same transmission data as Fig. 2.3, measured with an ap-

proximately ten times lower resolution (the resolution is 0.65 meV). Crucially, the
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Figure 2.5: High resolution transmission spectra showing Fabry-Perot oscillations. (a)

Transmission of graphene on SiC for zero field and 3 T. (b) Close up of the spectra in (a),

the fringes at 3 T are shifted with respect to 0 T. The fringes number is indicated asM , the

period of the fringes is δωM , and the shift is ΔωM , the frequency at which constructive

interference is maximum is indicated as ωM .

Fabry-Perot oscillations in the substrate are averaged. The raw transmission spectra

in Fig. 2.4a now only show broad oscillations which stem from, among other, the

windows between source, the sample and the detector, but these are canceled when

the ratio between sample and reference is taken. The absolute transmission spectra,

Fig. 2.4b, reveal the effect of the graphene layer on the transmission, most clearly seen

in the ratio between the transmission of graphene on SiC and the bare SiC substrate

(green line in panel b). This sample-substrate ratio T , forms the input of eqn. (2.47),

with which Re[σxx] is obtained.

2.3.2 Fabry-Perot oscillations in the substrate
Theoretical background

A significant advantage of the thick substrate + thin film system, is that from the Fabry-

Perot oscillations in the substrate valuable information about the optical properties of

the film can be extracted. In order to observe Fabry-Perot oscillations, the internal

reflections of the light must be coherent; so that at selected frequencies constructive

and destructive interference occurs. High resolution transmission spectra of graphene

on SiC are shown in Fig. 2.5a for 0 and 3 T. The shape of the oscillations is described

by an inverse sine function [112]. Internally reflected waves interfere constructively

when their phase difference, ϕ, is equal to an integer times 2π. The phase difference

between the waves follows from the Fresnel relations (eqns. (2.42)). The phase is given

by the argument of the additionally obtained transmission coefficient:

ϕ =
2ωMdsNs

c
+ arg(rsfv) = 2πM, (2.50)
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where ωM is the frequency at which constructive interference occurs, M is the inte-

ger number of that maximum and rsfv is defined in Fig. 2.1. An externally applied

magnetic field changes the conductivity of the film, σf (ω), thus arg(rsfv). Conse-

quently the phase of internally reflected light is shifted, which introduces a change

in the Fabry-Perot interference. In Fig. 2.5b a close up of the transmission data from

Fig. 2.5a is plotted, showing a few individual oscillations. The fringes at 3 T are clearly

shifted in frequency with respect to the fringes at 0 T. Providing that the optical prop-

erties of the substrate stay unaltered by the field, the change ϕ with magnetic field is

directly related to the field derivative of Im[σf
xx(ω)]. This relation can be shown by

taking the field derivative of eqn. (2.50) and developing arg(rsfv), which is done in

appendix B.2. More precise, from the shift in maximum frequency normalized to the

oscillation period, ΔωM

δωM
= ξ, one can find ΔIm[σf

xx(ω)], according to:

ΔIm[
σxx

σ0

] =
ξ

α

n2
s − 1

ns

, (2.51)

where α is the fine structure constant and ns is the real part of the refractive index of

the substrate.

In deriving eqn. (2.51) several approximations were used, the impact of these sim-

plifications is determined by a numerical check, of which the details are discussed in

appendix B.3. Exactly extracted ΔIm[σf
xx(ω)] are compared with ΔIm[σf

xx(ω)] ob-
tained from eqn. (2.51) using the Fabry-perot oscillations from transmission spectra.

Experimental method

As mentioned above, the Fabry-Perot oscillations contain important information about

the relative changes in Im[σxx] of the film on top of the substrate. To extractΔIm[σxx],
the shift in the energy at which coherence occurs should be determined.

The Fabry-Perot fringes are best resolved when the spectra on the sample are nor-

malized to spectra of the ‘empty’ set-up. The sample must be as flat parallel as possi-

ble, since a wedge can reduce or completely cancel out the oscillations. Naturally, the

spectra must be obtained with a resolution several times higher than the period of the

oscillations. Figure 2.5a shows an example transmission spectra taken on graphene on

SiC which are normalized to the ‘empty’ set-up. The red curve corresponds to the nor-

malized transmission at a magnetic field of 0 T, while the black curve corresponds to B

= 3 T. In Fig. 2.5b a close-up of the absorption is shown. The Fabry-perot oscillations

measured at 3 T are clearly shifted with respect to the fringes at 0 T.

To analyze the change in the period the inverse of the normalized transmission is

fitted locally with a sine function. From these fits the period of the oscillation, the

average transmission, and the position of the oscillation as a function of the energy

is obtained. The average transmission is now free of fringes, and therefore can be

used as an input for eqn. (2.47), with which Re[σxx] is obtained. The positions of the

oscillations can be used to calculate the shift in the oscillations induced by an exter-

nally applied field, which is the input for eqn. (2.51), with which Im[σxx] is obtained.
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A related analysis of the interference fringes was performed in the thesis work of J.

Feenstra [112].

2.3.3 Faraday rotation of a thin film on a substrate

Theoretical background

Faraday rotation is the rotation of the polarization state of light by a medium placed in

a perpendicular magnetic field. The magnetic field breaks the time reversal symmetry

and the absorption and extinction coefficients for left and right handed circularly po-

larized light become different. Therefore, if linearly polarized light (which is a super-

position of left and right handed polarized light) propagates through such an optically

active material, the transmitted light gains an elliptical character with a rotated main

axis with respect to the polarization of the incident light. The effect was discovered by

Michael Faraday in 1846 and is known since as the Faraday effect [113]. Through the

years many materials showing the Faraday effect have been identified, and several of

them have found their way to applications in the fields like optical detectors, sensing

(measuring magnetic fields) and optical communication.

The material properties responsible for the rotation of the polarization plane of the

light is the difference in propagation speeds for left and right handed circularly polar-

ized light, therefore, the thickness of the material plays a crucial role in the magnitude

of the rotation. In many cases, the Faraday rotation is simply linearly proportional to

the sample thickness. In magnetic materials, the Faraday effect is closely related to

the Zeeman effect. When an external magnetic field is applied, the energy levels split

due to a coupling between field and the total angular momentum. Light can excite

charge carriers between the levels and interact with the spin of those carriers through

the magnetic field component of the radiation. Whether photons are absorbed by the

magnetically polarized material depends on their angular momentum, which can be

parallel or antiparallel to the magnetic polarization. Therefore the selection rules for

left and right handed circular polarized light are different and the Faraday effect is ob-

served. This type of interaction lies at the origin of the Faraday rotation observed in

for example EuTiO3 [114].

In graphene however, the origin of the Faraday rotation lies in the interaction be-

tween the electric field component of the electromagnetic radiation and the orbital

motion of the charge carriers. When an external magnetic field is applied, the electron

and hole bands of graphene split up into Landau levels (see section 3.3.1). Due to strict

selection rules for the dipole excitations between the Landau levels, the absorption of

left and right handed circular polarized light is different as soon as the Fermi energy

is shifted away from the Dirac point (see section 3.3.3), effectively causing Faraday

rotation of the polarization state of the light transmitted through the graphene.

In thin films, the Faraday rotation spectra are directly related to the optical Hall

conductivity, σxy, which is the ‘off-diagonal’ element of the magneto-optical conduc-

tivity tensor. The extraction of the optical Hall conductivity from the experimentally
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Figure 2.6: Scheme of light, indicated by the pink large arrow, transmitted by a sample in

a perpendicular magnetic field. (a) The green arrow on the left shows the initial linear po-

larization, which in the circular basis, consists of left and right handed circularly polarized

light, schematically represented by the red and blue circles. (b) In the sample the left and

right handed polarized light experiences different propagation and absorption, which is

shown by the unequal red and blue circles. (c) The net result after transmitting the sample

is elliptically polarized light with the main axis rotated over an angle θ with respect to the

original orientation of the linear light.

obtained Faraday rotation offers a route to study the magneto-optical properties of the

charge carriers in the sample. When combined with transmission measurements from

which the diagonal elements of the conductivity tensor can be extracted a full picture

of the real part of the optical properties of a material can be obtained.

Importantly, in parallel to the DC Hall effect, the optical Hall effect is sensitive

to the sign of the charge carriers, offering a valuable extra piece of information about

the sample under study. Additionally, with both the real diagonal conductivity and the

real Hall conductivity known, the magneto-optical conductivity in the basis of circular

polarization can be obtained by using the Kramers-Kronig relations.

Figure 2.6 shows schematically the evolution of the polarization state of light im-

pinging a material in a perpendicular magnetic field. Initially the light is linearly po-

larized (stage a), however, due to a different propagation velocity and difference in

absorption of left and right handed circularly polarized light (stage b, inside the sam-

ple) the polarization becomes elliptical and the plane is rotated over an angle θ (stage

c).

At zero magnetic field, when the time-reversal symmetry is not broken (txy of the

sample 0), the Faraday effect in the sample is zero. Therefore, when a polarizer and

an analyzer placed before and after the sample respectively, are crossed the intensity

of the light reaching the detector will be at minimum. When the polarizer and the

analyzer are parallel, the intensity detected will be maximum.

Figure 2.7 shows a model of the transmitted intensity for φ between 0 and π ra-

dian. Maximum intensities are observed at both 0 and π radian, when the angle of the
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Figure 2.7: Model of the intensity of the light arriving at the detector when the polarizer is

rotated 180◦ (π radian). The polarizer and analyzer are drawn schematically to indicated

the configurations.

incident light is parallel to the analyzer angle. The minimum intensity is observed at

(1/2)π rad, exactly when polarizer and analyzer are crossed.

With a finite magnetic field switched on, the polarization state of the light that ar-

rives at the detector is now influenced by the magneto-optical properties of the sample

(Fig. 2.8b). For an arbitrary angle, φ, between polarizer and analyzer the intensity can

be described using Jones vectors:[
Ex

Ey

]
out

=

[
1 0
0 0

] [
txx txy
−txy txx

] [
E0 cosφ
E0 sinφ

]
. (2.52)

After adding all internal reflections and taking the square the intensity is found:

I(φ) ∝
∑
j

|tjxx|2 cos2 φ+
∑
j

(tjxxt
j∗
xy + tj∗xxt

j
xy) cosφ sinφ+

∑
j

|tjxy|2 sin2 φ, (2.53)

Equation (2.53) can be rewritten by moving to double angles the following relations

are found:

I(φ) ∝
∑

j |tjxx|2 +
∑

j |tjxy|2
2

+ cos 2φ

∑
j |tjxx|2 −

∑
j |tjxy|2

2
+ sin 2φ

∑
j(t

j
xxt

j∗
xy + tj∗xxt

j
xy)

2
= I0 + I1 cos 2φ+ I2 sin 2φ. (2.54)

where

I0 =

∑
j |tjxx|2 +

∑
j |tjxy|2

2

I1 =

∑
j |tjxx|2 −

∑
j |tjxy|2

2

I2 =

∑
j(t

j
xxt

j∗
xy + tj∗xxt

j
xy)

2
. (2.55)
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This can be used to obtain the relation:

tan 2θ =

∑
j(t

j
xxt

j∗
xy + tj∗xxt

j
xy)∑

j |tjxx|2 −
∑

j |tjxy|2
. (2.56)

With the use of t± = txx ± itxy, we arrive at:

θ =
1

2
arg

(∑
j

tj−t
j∗
+

)
. (2.57)

To derive the relation between the conductivity of the thin film and θ, we develop

the last expression. The transmission coefficients tj− and tj∗+ (eqn. (2.43), see Fig. 2.1),

expressed in the diagonal basis of circularly polarized light, are substituted in the ex-

pression for θ, after which the sum over all j rays is performed in the incoherent way.

The real prefactor can be neglected, thus, the exact solution for the rotation is:

θ =
1

2
arg

(
t−,vfst∗+,vfs

1− r−,sfvr∗+,sfv|rsvτ 2s |2
)
. (2.58)

Again this expression is a function of the complex conductivity tensor, therefore we

assume that the real part of the optical Hall conductivity is the dominating term and

use the linear approximation, we obtain:

θ ≈ 1

ns + 1

1 + α2r3

1− α2r4
Re

(
Z0σ

f
xy

)
. (2.59)

This relation provides us with a direct relation between experimentally observed rota-

tion and the real part of the optical Hall conductivity.

Note that in principle every internal reflected ray (see Fig. 2.1) has its individual

Faraday rotation θ. Here we treated the substrate as incoherent, therefore the total

observed rotation is in fact an average of the rotations for constructive interference and

destructive interference. However, in the coherent case Fabry-Perot oscillations can be

observed also in the Faraday rotation spectra [115].

Experimental method

The Faraday rotation spectra are measured using a set-up similar to the one described

in the previous section. The important extra ingredients to enable the determination

of the Faraday rotation are two gold grid-wire polarizers. The first one is placed right

after the interferometer, but in front of the magnet, to linearly polarize the incident

infrared light. The second polarizer is placed directly in between the magnet and the

bolometer and functions as an analyzer of the polarization state of the transmitted light.

Figure 2.8a shows the set-up used for the Faraday rotation measurements, including

the rotating polarizer and the analyzer used to manipulate and analyze the polarization
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2.3 Experimental quantities

Figure 2.8: Schematics of the Faraday rotation set-up. a) The set-up of spectrometer,

magnet and detector used for the transmission measurements is upgraded with two polar-

izers. b) The light impinging on the graphene sample is linearly polarized. While passing

through the graphene in a perpendicular magnetic field, the polarization plane of the beam

is rotated over an angle θ. Simultaneously, the light becomes elliptically polarized due to

a difference in absorption of left and right handed circularly polarized light. The positive

direction of the magnetic field is along the z-axis.

state of the light. With the addition of the two polarizers, effectively the set-up is most

closely resembling a spectroscopic ellipsometry configuration. The influence of the

sample in magnetic on the polarization state of the light is schematically represented

in Fig. 2.8b.

The way to obtain the Faraday rotation angle for a fixed magnetic field is to mea-

sure optical spectra at a set of different polarizer angles, φ, and analyze the intensity

dependence on φ. The polarizer angles are chosen such that a minimum in the intensity

can be observed when the intensity is plotted as a function of polarizer angle. This ‘in-

tensity versus polarizer angle plot’ is made for each frequency separately. An example

of such a graph is shown in Fig. 2.9. The red arrows in the graph indicate the measure-

ment order: the first spectrum is measured with a polarizer angle of 5◦ with respect to

the vertical, the second measurement is taken at 115◦, the third spectrum is measured

at 10◦ and so on. This ‘zig-zag’ measuring order was introduced to compensate for

possible drifts in the signal over time, which would introduce a systematic error in

the ‘intensity versus polarizer angle plot’. After measurements have been taken at all

polarizer angles, the ‘zig-zag’ procedure is repeated in reverse order, starting with the

last measured angle, the blue arrows in Fig. 2.9 indicate this reverse measurement. In

total every polarizer angle is measured twice and when analyzing the data, the average

of the intensities measured at each polarizer angle is used.

Apart from drift in the signal, also the presence of (depolarizing) windows and the

non-ideal random polarization of the source must be taken into account. Therefore,

for the used set of polarizer angles, an additional calibration measurement is made:

the sample and the analyzer are removed from the set-up and transmission spectra are

taken at each polarizer angle, using the same ‘zig-zag’ method as described above.

Figure 2.10a shows the light intensity as a function of polarizer angle for an en-

ergy of 15 meV, measured on single layer graphene grown on the silicon side of SiC
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2. OPTICAL SPECTROSCOPY

Figure 2.9: An example of a measurement of the intensities of the signal, plotted as a

function of polarizer angle. The red and blue arrows indicate the order of measurements

done.

(see Chapter 6.5.1): the red triangles and black circles are measured with the sample

in place and correspond to fields of 7 and -7 T respectively. The blue triangles cor-

respond to the (scaled) intensity measured without analyzer and sample and reveals

the polarization dependence of the experimental set-up, unique at every energy, shown

here for 15 meV. In a next step, the intensities measured (at finite field) on the sample

are normalized to the set-up calibration curve. In Fig. 2.10b the normalized intensities

for 7 and -7 T are plotted, the solid lines correspond to a fit with a sine wave, used to

determine polarizer angle at which the intensity is minimum.

The inset in Fig. 2.10b shows a close up of the data and the fits near the mini-

mal intensities. The Faraday angle θ can be found from the fits by determining the

angle at which the intensity is smallest for both positive and negative magnetic field.

The difference between the ‘minimum intensity angles’ at positive and negative field

corresponds to 2 ×θ (here for 15 meV) and a field of 7 T).

Once the Faraday angle is found for a particular frequency, the normalization of the

intensity plots by the calibration curve and the fitting of the normalized intensity plots

is repeated for every energy for both positive and negative field, in this way complete

Faraday rotation angle spectra can be obtained.

Figure 2.10c shows the ‘minimum intensity angles’ for both +7 (red) and -7 T

(black) for the full energy range. The curves show strong oscillations caused by the

windows in the set-up. However, the influences of the windows are independent of

the sign of the magnetic field, while the rotation due to the sample is antisymmetric

with magnetic field. Therefore we take the difference in ‘minimum intensity angles’ at

positive and negative field effectively canceling all symmetric effects. The difference

between the curves shown in Fig. 2.10c, divided by two, is shown in Fig. 2.10d and

corresponds to the Faraday angle measured on single layer epitaxial graphene at 7 T.
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Figure 2.10: Model of the intensity of the light arriving at the detector when the polarizer

is rotated a full turn. The polarizer and analyzer are drawn schematically to indicated their

orientation.
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3

Graphene, a truly two-dimensional material

3.1 Introduction

Graphene is an one atom thick sheet of carbon atoms arranged in the famous honey-

comb crystal lattice. Each carbon atom has six electrons, two of which are forming a

closed 1s2 shell, the remaining four fill 2s and 2p states. Three of the valence electrons

are involved in sp2 hybridized orbitals, which form in-plane σ bonds to the three near-

est neighbors. The carbon-carbon distance is 1.42 Å and the bond angle is 120◦. The
σ bonds are responsible for the structure of graphene and for its unusual mechanical

and thermal properties [116]. The fourth valence electron remains in the half-filled 2pz
orbital orthogonal to the graphene plane and forms a π bond by overlapping with other

2pz orbitals. These delocalized π electrons determine the famous electronic properties

of graphene [31].

In this chapter we will discuss the electronic and optical properties of single layer

graphene. The discussion is divided into three main sections, the first, section 3.2,

introducing graphene without any kind of external field. The second part, section 3.3,

is focussed on the properties of graphene in an externally applied magnetic field. Both

sections end with a discussion of the optical and magneto-optical properties.

The last section of this chapter focuses on the different synthesis methods of graphene.

The type of graphene sample used for the experiments in this work is epitaxial graphene

grown on SiC. In section 3.4.1 the synthesis and the properties of single layer graphene

grown on silicon faced SiC are discussed, while the subject of section 3.4.2 is the syn-

thesis and the properties of rotationally stacked multilayer graphene grown on carbon

faced SiC.
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3.2 Graphene, without external fields applied

3.2.1 Tight-binding approach
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Figure 3.1: (a) Schematic representation of the honeycomb structure of the carbon atoms

in single layer graphene. (b) The tight-binding electronic band structure, the inset shows

the two linear π bands which cross at the Dirac point.

The hexagonal lattice of carbon atoms can be regarded as two offset triangular

sublattices A and B, as is schematically shown in Fig. 3.1a. The lattice vectors a1 and

a2, in real space, are:

a1 =
a

2
(3,
√
3), a2 =

a

2
(3,−

√
3). (3.1)

where a is the nearest neighbor distance (1.42 Å). The nearest neighbor vectors, indi-

cated in Fig. 3.1a as δ1, δ2 and δ3, are given by:

δ1 =
a

2
(1,
√
3), δ2 =

a

2
(1,−

√
3), δ3 =

a

2
(−1, 0). (3.2)

Wallace was the first to use the standard tight binding approach to calculate the elec-

tronic states of graphene [2], considering only the nearest-neighbor hopping parameter

γ0. The tight-binding Hamiltonian is a 2×2 matrix [2, 27, 117]:

H(k) =

(
0 γ0S(k)

γ0S
∗(k) 0

)
(3.3)

where k is the wave vector and S(k) is the overlap integral:

S(k) =
∑
δ

exp ikδ = 2exp
ikxa

2
cos

ky
√
3a

2
+ exp(−ikxa). (3.4)

The energies of the two π bands are found to be:

Eπ∗(k) = −Eπ(k)

= γ0

√
3 + 2 cos

(
ky
√
3a

)
+ 4 cos

(
ky
√
3a

2

)
cos

(
kx3a
2

)
. (3.5)
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3.2 Graphene, without external fields applied

The electronic band structure described by eqn. (3.5) is shown in Fig. 3.1b. Impor-

tantly, the two π bands cross at the inequivalentK andK ′ points of the Brillouin zone,

exactly at zero energy. In momentum space, positions of the K and K ′ points are(
2π
3a
, 2π
3
√
3a

)
and

(
2π
3a
,− 2π

3
√
3a

)
, respectively. The Hamiltonian can be expanded near

the K and K ′ points:

HK,K′(q) = �vF

(
0 qx ∓ iqy

qx ± iqy 0

)
(3.6)

where vF = 3aγ0/2 is the energy independent Fermi velocity and q is the momentum

measured with respect to the K and K ′ points. Hamiltonian (3.6) is equivalent to the

Dirac-Weyl equation in 2D, which is used to describe particles with zero rest mass

(relativistic) of spin 1/2 and with a Fermi velocity vF . For this reason, the low energy

quasiparticles in graphene are often referred to as “massless Dirac fermions”. The

K and K ′ points are the so-called Dirac points, close to which the band structure

is effectively described by Hamiltonian (3.6). The band energies following from the

eigen values of Hamiltonian (3.6):

Eπ∗(k) = −Eπ(k) ≈ vF�|q|, (3.7)

Since pristine graphene has one electron per carbon in the π band, at charge neu-

trality, this results in half filled bands. In this case, the Fermi energy lies at the Dirac

point (or charge-neutrality point). Although the density of states at the Dirac point is

zero, electrons from the hole bands (below the Dirac point) can be excited to the elec-

tron bands (just above the Dirac point) with zero excitation energy, therefore pristine

graphene is a zero-gap semiconductor.

The wave functions describing the bands near the K point are [31]:

Ψ±K(θq) =
1√
2

(
eiθq/2

±e−iθq/2
)
, (3.8)

where ± corresponds to the positive and negative solution for the two π bands and

θq = arctan(θx/θy) is the angle in momentum space. Importantly, the wave function

changes sign under a 2π rotation in k-space: Ψ±K(θq) = −Ψ±K(θq + 2π). The phase

difference for this cyclic loop is π and is often referred to as a Berry’s phase [118].

A direct consequence of the Berry’s phase in graphene is the existence of a zero en-

ergy Landau level and the Anomalous Quantum Hall effect, where the steps in the

conductivity are shifted by 1/2 with respect to the usual Quantum Hall effect [47, 48].

3.2.2 Ambipolar doping
In 2D electron gases the quadratic energy dispersion gives rise to a constant density

of states (DOS) [119]. The linear dispersion of the electronic bands in graphene gives
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3. GRAPHENE, A TRULY TWO-DIMENSIONAL MATERIAL

Figure 3.2: Model of the real part of the optical conductivity of (a) undoped and (b) doped

single layer graphene, with the Fermi level 100 meV below the Dirac point, a broadening

of 10 meV and at T = 10 K. The insets show the permitted optical transitions between hole

and electron bands.

rise to a strikingly different picture: the DOS is linearly dependent on the energy ε
(measured with respect to the Dirac point), and vanishes at the Dirac point [2]:

ρ(ε) =
gsgv|ε|
2πv2F�

2
, (3.9)

where gs = gv = 2, are the spin and valley degeneracies, respectively. The carrier

density, n, is found by integrating the DOS up to the Fermi energy, εF :

n =
ε2F

πv2F�
2
. (3.10)

Due to the fact that graphene is only one, or just a few, atomic layers thick, it can be

doped easily using an external gate, ionic liquids or by other external influences like

surface contamination or simply by being in the vicinity of polar material. Importantly,

due to the electron-hole symmetry of the bands and DOS, the Fermi energy can be

shifted through the Dirac point to select hole or electron doping, which is referred to

as ambipolar doping [1, 120]. An external gate and ionic liquid gating offer active

control over the carrier concentration in graphene, so that the Fermi energy can be

tuned continuously through zero energy. In contrast, surface contamination or the

presence of a substrate often shifts the Fermi level (far) away from charge neutrality.

As we shall see, it is vital to take the doping level and the sign of the charge carriers

into account when discussing the (magneto)-optical properties of graphene.

3.2.3 Optical properties
The relativistic low energy band dispersion of monolayer graphene gives rise to an

optical conductivity with a universal value, σ0 = e2/4�, which is, at zero temperature,
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3.2 Graphene, without external fields applied

independent of frequency: [30, 38, 39, 42, 46, 121, 122]

Reσ(ω) = σ0 ≡ e2

4�
. (3.11)

Figure 3.2a shows the universal conductivity of a single graphene layer for infrared

photon energies up to 0.75 eV. The inset shows schematically the π bands near the

Dirac point, the hole bands are occupied, while the electron bands are empty. The

arrows indicate the allowed optical transitions.

The transmission of the graphene film can be found using the Fresnel equations in

the thin film limit, where dfilm � λ (third relation of eqn. (2.41)). For free standing

graphene, Ns = 1 and the transmission coefficient is:

t =
2

2 + 4π
c
σ
=

2

2 + πα
, (3.12)

where α is the fine structure constant: α = e2/�c. The transmission, T = |t|2, of free
standing single graphene therefore is also frequency independent and can be expressed

as:

T =
(
1 +

πα

2

)−2
≈ 1− πα ≈ 0.977. (3.13)

The absorption of the free standing film is 1−T = 2.3%, and is strikingly large for a

single atomic layer [38, 39]. Therefore it is possible to see graphene with the bare eye

and identify the number of layers of a sample by just an easy, straightforward, optical

measurement under a microscope. However, this is strictly valid in the case that the

Fermi level lies exactly at the Dirac point.

Due to the presence of a substrate, the application of an external gate or surface

contamination, the Fermi level is often shifted away from the Dirac point. Figure 3.2b
shows the optical response for (hole) doped single layer graphene with εF = -100 meV,

a broadening, γ, of 10 meV and at T = 10 K. The inset shows a schematic represen-

tation of the π bands, the shifted Fermi energy and the allowed optical transitions. In

the spectrum the optical response of free carriers, or intraband transitions, can be ob-

served in the form of a Drude peak centered around zero energy. At higher energies,

but below a threshold of twice the Fermi level εF , the optical response is small, be-

cause optical transitions between the electron and hole bands, interband transitions,

are blocked [30,42,46,121,122]. Interband transitions are allowed above �ω = 2|εF |,
therefore the optical conductivity shows an onset at this value, while at energies above

2|εF | the conductivity converges to the universal conductivity σ0. At even higher pho-

ton energies the conductivity strongly deviates from the universal conductivity due to

the presence of a van Hove singularity in the DOS. The resulting peak in the opti-

cal conductivity however, is modified by excitonic effects, therefore the peak has a

Fano-like line shape [97, 123, 124].
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3.3 Graphene in magnetic field
By turning on a perpendicular magnetic field, electronic bands split up in quantized en-

ergy levels, called Landau levels (LLs). For a quadratic dispersion, the Landau levels

are equally spaced, are linearly dependent on magnetic field B and inversely propor-

tional to the cyclotron resonance mass, mc = eB/ωc [50, 119, 125, 126]. The rela-

tivistic dispersion of graphene gives rise to a very different Landau level spectrum; the

energies of Landau levels show a square root dependence on both Landau level number

n and B [30, 117]. As a result of this non-equidistant spacing of the Landau levels,

a spectacular series of absorption peaks, corresponding to transitions between various

levels can be observed in optical experiments [53, 54, 58, 127]. Another typical prop-

erty of graphene in a magnetic field is the existence of a Landau level (n = 0) at zero

energy, which is degenerate in electrons and holes. As a consequence, graphene shows

the half-integer quantum Hall effect [45, 46], first observed in exfoliated graphene

flakes [47, 48] and later in graphene epitaxially grown on SiC [78,79, 128].

3.3.1 Landau levels: quantum regime

The energies of the discrete Landau levels can be found by considering Hamilto-

nian (3.6) with an additional electromagnetic (EM) perturbation [129]:

p =⇒ Π = p+ eA(r), (3.14)

where A(r) is a vector potential generating the magnetic field B. Replacing the mo-

mentum p with eqn. (3.14) is called a Peierls substitution and is valid as long as the

magnetic length, lB

lB =

√
�

eB
, (3.15)

is much larger than the lattice spacing =
√
3a = 0.24 nm.

With the help of commutation relations the momentum operators Πx and Πy can

be related to the ladder operators:

Π− = Πx − iΠy =

√
2�

lb
b, (3.16)

Π+ = Πx + iΠy =

√
2�

lb
b†. (3.17)

These expressions are than substituted in the Hamiltonian in the absence of field. Con-

sidering only the π electrons, eqns. (3.16) and (3.17) replace p = �q in Hamilto-

nian (3.6):

HB =

√
2�vF
lb

(
0 b
b† 0

)
. (3.18)
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The eigen values and states can be found by solving the systems of equations:

√
2�vF
lb

bψ1 = Eψ2, (3.19)

√
2�vF
lb

b†ψ2 = Eψ1. (3.20)

If b† acts on eqn. (3.19), we find:

b†bψ1 =

(
ElB√
2�vF

)2

ψ1, (3.21)

where b†b is the number operator: b†b|n〉 = n|n〉. The square of the energy E is

a function of n, therefore discreet energy levels, so-called Landau levels, are found

[30, 117]:

En = sgn(n)
√

2|n|�vF
lb

= sgn(n)
√

2�v2F |enB|, (3.22)

where n is the LL number, which is a positive integer for electron-like LLs and a

negative integer for hole-like LLs and e is the electron charge. Note that the symbol n
is also used for carrier density. From eqn. (3.22) follows that for the level with n = 0 the

LL energyE0 = 0, moreover, due to electron-hole symmetry, the n = 0 LL is degenerate

for both electrons and holes. In addition, the LLs spectrum is non-equidistant. The LL

energies following from eqn. (3.22) are shown in Fig. 3.4 as a function of magnetic

field, for n = ±1,±2,...±7.

3.3.2 Cyclotron resonance: classical regime
Charge carriers can be excited from a filled Landau level, below the Fermi energy, to

an empty LL, above the Fermi energy, on the condition that the absolute difference in

LL number n is equal to one. Since the LLs are non-equidistant, a different doping

level results in a change in the transition energy, or cyclotron resonance energy. If the

LLs close to the Fermi energy have high quantum number, the so-called quasi-classical

cyclotron is observed, which is typically for highly doped graphene. On the contrary,

in low doped graphene the LLs close to the Fermi energy have small quantum number,

therefore the transitions are in the quantum regime. In this case, the typical square-root

dependence of the LL transition energy on the applied magnetic field can be observed.

In Fig. 3.3 examples of cyclotron resonance transitions are shown. The Fermi

energy, indicated by the green dashed line, is shifted away from charge neutrality, as

is the case in highly (electron) doped graphene. The blue arrows show the allowed

transitions between the LLs for various magnetic fields. For clarity, only LLs with n
up to 20 are shown. The observed transitions take place between LLs with high index,

therefore these excitations give rise to semi-classical cyclotron resonance. In practice,

in many graphene samples the doping level is shifted far away from the Dirac point,
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Figure 3.3: Schematic representation of the electron-like Landau levels (up to n = 20) for

single layer graphene, with vF = 106 m/s. The Fermi energy, indicated by the green dashed

line, is shifted far away from the Dirac point. The blue arrows correspond to cyclotron res-

onance transitions between Landau levels, shown here starting from the 12→13 transition,

for clarity the transitions for lower magnetic fields are not shown, but are allowed.

therefore quasi-classical cyclotron resonance is often observed even at very high fields

(B ∼10 T).

Quasi-classical cyclotron resonance can be described using the cyclotron massmc,

which is given by [130]:

mc =
�
2

2π

[
∂A(E)

∂E

]
εF

, (3.23)

where A(E) = πq(E)2, is the momentum space area enclosed by the orbit of energy

E. With the linear band dispersion, eqn. (3.7), the area can be expressed as A(E) =
π(E/(vF�))

2, and the cyclotron mass becomes:

mc =
εF
v2F

. (3.24)

The cyclotron resonance energy is described by the expression for classical cy-

clotron resonance, ωc = eB/mc. Thus, the cyclotron resonance energy in highly

doped graphene is dependent on the Fermi velocity and inversely dependent on the

Fermi energy [30, 127]:

ωc =
eBv2F
εF

. (3.25)

Importantly, eqn. (3.25) shows that, in the semi-classical regime, ωc is linearly depen-

dent on the magnetic field.

3.3.3 Magneto-optical properties
Experimentally, the Landau levels in graphene have been observed in the form of op-

tical transitions between full and empty Landau levels in infrared spectroscopy exper-
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Figure 3.4: Model of the Landau level energies showing the typical square-root like de-

pendence on magnetic field, levels n = 0, ±1, ±2, ...±7 are shown. The green dashed

line indicates the Fermi level. Allowed optical transitions between the LLs are shown as

arrows. The blue arrows correspond to the selection rule Δ|n| = +1, while the red ar-

row corresponds to Δ|n| = −1. The transition corresponding to the blue arrow labeled

with ∗ is an intraband transition, while the arrows labeled with the � symbol are interband

transitions.

iments [53, 54] and directly by scanning tunneling spectroscopy experiments [56, 57].

Since the Landau levels in graphene are not equidistant, a spectacular series of peaks

at different frequencies can be observed in the infrared absorption spectra. The optical

transitions between the LLs in graphene can be of two types: interband transitions,

where carriers from the hole-like LLs are excited to the electron-like LLs and intra-

band transitions, where carriers from the filled hole(electron)-like LLs are excited to

empty hole(electron)-like LLs. Since in graphene the hole and electron bands have

the same symmetry, the selection rule for the optical transitions between the initial LL

(ni) and the final LL (nf ) is the same for both the intra- and interband transition, which

is [131, 132]:

Δ|n| = |nf | − |ni| = ±1, (3.26)

In Fig. 3.4 an example of the allowed optical transitions between LLs is shown

in the case of electron doping, with: ε1 < εF < ε2. The blue arrows in Fig. 3.4

all correspond to transitions with Δ|n| = +1, while the red arrow is an example

of a transitions with Δ|n| = −1. The excitation from the filled n = 1 LL to the

empty n = 2 LL corresponds to an intraband transition, indicated by the ∗. For the

intraband transitions the sign of Δ|n| signals the type of doping: interband transitions

with Δ|n| = −1 are only allowed when εF < 0: p-doping. All other transitions,

labeled with �, are interband transitions.

The optical conductivity of graphene in a magnetic field can be obtained using

the Kubo formalism, detailed in section 2.2.3. Relatively simple analytical expres-

sions for σxx(ω,B) and σxy(ω,B) can be obtained when the scattering width, γ, is
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assumed to be independent of Landau level number and assumed to be independent on

frequency [127,131]:

σxx(ω,B) =
e2v2F |eB|(�ω + iγ)

πci
×

∞∑
n=0

{
[f(En)− f(En+1)] + [f(−En+1)− f(−En)]

(En+1 − En)2 − (�ω + iγ)2
1

En+1 − En

+
[f(−En)− f(En+1)] + [f(−En+1)− f(En)]

(En+1 + En)2 − (�ω + iγ)2
1

En+1 + En

}
,

(3.27)

And for σxy(ω,B) the Kubo formalism results in:

σxy(ω,B) =
e2v2F eB

π

∞∑
n=0

([f(En)− f(En+1)]− [f(−En+1)− f(−En)])×{
1

(En+1 − En)2 − (�ω + iγ)2
+

1

(En+1 + En)2 − (�ω + iγ)2

}
.

(3.28)

where f(En) = 1/[exp((En − εF )/T ) + 1], is the Fermi distribution and En is the

energy of the nth LL, given by eqn. (3.22). The expression for σxx(ω,B) is an even

function of εF , magnetic field B and frequency ω. σxy(ω,B) is an odd function of εF ,
B and ω. A direct consequence of the odd symmetry is that for half filling of the zero

LL: εF = 0, the optical Hall conductivity σxy(ω,B) = 0.
Figure 3.5b shows σxx(ω,B) obtained from eqn. (3.27) with ε1 < εf < ε2, vf =

106 m/s, a field of 4 T and a scattering width of 10 meV. The corresponding LLs and

the optical excitations are shown in Fig. 3.5a. In the spectrum, peaks centered around

the transition energies are observed. At high energies, the transitions become closer

in energy, so that the peaks merge and the conductivity converges to the universal

conductivity.

Figure 3.5d shows the optical Hall conductivity obtained using eqn. (3.28), corre-

sponding to the LL system shown in panel a. Spectral features can be observed at the

transition energies of the 1→ 2 and the −1→ 2; the inflection points at the center of

the spectral features coincide with the transition energies. However, at higher energies

the transitions cancel out and therefore, σxy(ω,B) goes to zero. This cancelation is

due to the fact that the spectral feature resulting from a transition with Δn = +1 is

precisely opposite in sign to the feature stemming from the transition with Δn = −1.
Since, at high energies both the −n → n + 1 and the −n − 1 → n transitions are

allowed, their combined contribution to σxy(ω,B) is zero. Importantly, the sign of the

slope at the resonance energy reveals the type of charge carrier. For electron doping (as

in this example) the slope is positive, while for p-doped graphene the spectral feature

has a negative slope at the resonance energy.
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Figure 3.5: (a) Schematic representation of the Landau level energies, levels n = 0,

±1, ...±4 are shown. The green dashed line indicates the Fermi level. Allowed optical

transitions between LLs are shown as arrows. The blue arrows correspond to absorption

of RCPL (left handed circularly polarized light), while the red arrow corresponds to ab-

sorption of LCPL (left handed circularly polarized light). (b) The real part of the optical

conductivity, resulting from the system shown schematically in (a). (c) The real part of the

conductivity in the basis of RCPL. (d) The real part of the optical Hall conductivity. (e)

The real part of the conductivity in the basis of LCPL.

The optical conductivity in the basis of circularly polarization can be obtained from

σxx(ω,B) and σxy(ω,B) using the relation σ± = σxx ± iσxy. In Fig. (3.5)c and e, the

real part of σ+(ω,B) and σ−(ω,B) are shown for the LL system shown schematically

in panel a. The peaks observed in σ+(ω,B) originate from the transitions with Δn =
+1 and correspond to the absorption of right-handed circularly polarized light (RCPL).

On the contrary, peaks observed in σ−(ω,B) originate from the transitions withΔn =
−1 and correspond to the absorption of left-handed circularly polarized light (LCPL).

In the classical regime where the cyclotron resonance is linearly dependent on the

external magnetic field (see section 3.3.2), expressions for the optical conductivity can

be obtained from the Kubo formula by studying the weak field limit [122]. Simi-

lar relations for the optical conductivity in the classical regime can be obtained using

Boltzmann’s theory of transport [133]. It was shown that the spectral shape of the opti-

cal excitations in the diagonal and off-diagonal components of the optical conductivity

tensor are described by the Drude-lorentz model [122, 133], discussed in section 2.2.2

(eqns. (2.27) and (2.28)).

3.4 Graphene synthesis

Graphene was first isolated using the famous ‘scotch-tape technique’ in 2004 [1]. In

this method thin layers of carbon are removed from graphite crystals with scotch tape.
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Then the layers on the scotch tape are thinned down further by e.g. folding the tape

several times, effectively cleaving the flakes. Finally the scotch is pressed onto a sub-

strate and removed again, leaving behind a few or just one layer of carbon.

A typical substrate used is doped silicon with an insulating layer of SiO2, which en-

hances the visibility of the flakes on the substrate and functions as a gate dielectric for

electric field effect measurements. However, other substrates can be used like quartz,

diamond, chlorinated silicon, TEM grids etc. A promising substrate, only recently

applied successfully, are thin flakes of boron nitrite (BN) [134], which is insulating

and has a honeycomb structure with a lattice constant close to the one of graphene.

Although the deposition of exfoliated graphene on (also) exfoliated BN results in even

smaller samples, the quality, and in particular the mobility, of the graphene is convinc-

ingly higher.

After the deposition of the exfoliated flakes on the substrate, the samples are

searched for under a microscope, which can be quite a lengthy work due to the small

sample size. The number of layers of the selected flakes can be determined by op-

tical contrast [38, 39], by Raman spectroscopy [135] or by atomic force microscopy

(AFM). The size of the flakes forms the main challenge when working with this tech-

nique: most flakes are just a few micrometer, larger flakes of about 100 micron width

can be found, but these are rare. However, exfoliation provides the highest quality

samples with single crystal domains, specifically now with the successful employment

of BN as a substrate. In addition, the ‘scotch-tape technique’ proves to be a method

feasible in any lab equipped with an optical microscope and scotch tape, and therefore

is one of the most used synthesis technique to produce graphene.

The successful implementation of graphene in future commercial applications in (nano)

technology, strongly depends on the feasibility and costs of large-scale fabrication.

With this in mind, many groups (and companies) focussed their work on finding a

recipe to grow graphene on an unlimited scale. Many different approached have been

demonstrated, from which commonly used methods are now: Chemical Vapor De-

position (CVD) on metal foils [62–66] and the graphitization of SiC [3, 70]. Other

synthesis methods, not discussed here, include molecular beam epitaxy (MBE), the

un-zipping of carbon nanotubes and cleaving graphite in liquids.

CVD of carbon on metal foils of copper or nickel can produce large scale graphene

sheets of relatively high quality. To grow the graphene, a metal, used as a catalyst, is

placed in a furnace in which a carbon gas flow is directed to the metal surface. At high

temperature the carbon is absorbed by the metal surface, however, when cooling down,

the carbon is released by the metal forming a graphene layer on top of the metal. The

source of carbon can be almost anything, but typically used sources include methane,

ethylene and solids like poly methyl methacrylate (PMMA). After growth, the metal is

etched away and the film can be transferred to an arbitrary (insulating) substrate using a

polymer like PMMA or PDMS, applied on the graphene film in advance. Typically, the

mobility of CVD grown graphene ranges between 1000 and 7000 cm2/Vs and due to

the transfer between the metal foil and insulating substrate the films tend to be doped.
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Figure 3.6: (a) Bufferlayer (b) Hydrogen passivation transforms the bufferlayer into a

graphene layer. (c) Graphene on top of a bufferlayer. These figures are reproduced from

Ref [71].

Epitaxial growth of graphene on silicon carbide (SiC) provides a second route

to obtain large scale graphene. One of the advantages of this synthesis technique is

that samples are directly grown on insulating, transparent SiC. The SiC is annealed

at around 1500◦C, either in vacuum or an argon atmosphere. At this temperature the

silicon is desorbed from the SiC, leaving behind an excess of carbon which forms

layers of graphene on the SiC surface. However, a nuance should be made: SiC is

a polar material consisting of layers of silicon and carbon, therefore, the surface can

be terminated at either the silicon (SiC(0001)) or the carbon (SiC(0001̄)) side, which

strongly influences the sublimation process and ultimately, the growth of the graphene

layers. For this reason, in the next sections and chapters a distinction is made between

epitaxial graphene on the C-side and on the Si-face.

After the CVD growth or exfoliation of graphene flakes additional steps can be

taken for the specific needs of the experiment. The graphene layer can be transferred

to a suitable substrate, electrical contacts can be applied by lithography and freely

suspended graphene can be obtained by etching away the substrate. In addition, the

sample can be annealed to reduce surface contamination, or the reverse: ad-atoms can

be applied to actively influence the doping level of the graphene.

The experimental work presented in this thesis is performed on graphene epitaxially

grown on SiC. Therefore, the next sections are focussed specifically on the properties

and preparation of epitaxial graphene grown on the Si-side (section 3.4.1) and the C-

side ((section 3.4.2)) of SiC.

3.4.1 Single layer graphene on SiC(0001)

As mentioned above, the surface termination of SiC strongly influences the epitaxial

growth of graphene on SiC. The graphitization of the silicon terminated side of SiC is a

slow and self-limited process, for which high temperatures, between 1150 and 1450◦C,

are required [69]. The self limiting nature of the growth makes it easy to obtain one

single carbon layer, the so-called buffer layer, shown in Fig. 3.6a. The buffer layer
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Figure 3.7: (a) ARPES data on a hydrogen intercalated monolayer epitaxial graphene

sample. (b) Optical absorption, 1 − T , in the mid infrared range showing the onset of

optical transitions at twice the Fermi level. The green dashed line indicates twice the

Fermi level, the black line is a fit using a phenomenological function to find the center

frequency of the onset structure.

is a honeycomb carbon (6
√
3×6

√
3) surface reconstruction, where about 30% of the

carbon atoms are covalently bonded to the silicon in the SiC, so that the formation

of the π-bands, characteristic for graphene, is precluded [69, 70]. When heated up

to higher temperatures, more silicon is desorbed so that a second carbon layer forms,

shown in Fig. 3.6c. The carbon atoms in the second layer are decoupled electronically

from the buffer layer and SiC and therefore, form the first layer of graphene [70].

A different route to obtain electronically decoupled graphene on the Si-face of SiC

is to grow the buffer layer and subsequently intercalate hydrogen in between the carbon

layer and the SiC surface [71, 72]. The hydrogen breaks the covalent bonds between

the silicon and buffer layer and therefore the buffer layer is transformed in a single

decoupled graphene layer, shown in Fig. 3.6b. Hereafter we will refer to this type of

epitaxial monolayer graphene as ‘hydrogen intercalated’ graphene.

Due to the difference in synthesis the graphene on a buffer layer and the hydro-

gen intercalated graphene display slightly different properties. Importantly, the doping

found for graphene on a buffer layer is typically electron like [73–75], while the hy-

drogen intercalated graphene is generally hole doped [71, 76]. Whereas the doping

level of the graphene on a buffer layer strongly varies from sample to sample and can

be close to the Dirac point, the Fermi energy of the hydrogen intercalated graphene

is often shifted as far as 300 to 350 meV away from the neutrality point. The Fermi

level can be extracted from angle resolved photo emission spectroscopy (ARPES) ex-

periments, which visualizes the occupied bands. Figure 3.7a shows results of ARPES

measurements on a hydrogen intercalated monolayer. The ARPES results reveal that

εF is located below the Dirac point in the hole bands. The difference in energy between

Fermi level and Dirac point can be found by extrapolating the bands; for this sample

εF ≈ -0.27±0.1 eV. The large errorbar stems from the uncertainty in the extrapolation.
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The doping of the sample can also be estimated using an optical technique: mid

infrared spectroscopy reveals the onset of interband transitions at �ω = 2|εF |, as is

explained in section 3.2.3. Figure 3.7b shows the experimentally obtain absorption (1-

T ) of one of the samples used in our experiments. A clear edge, resulting from the

finite doping level can be observed. From a phenomenological fit, the black curve in

Fig. 3.7b, the value of the Fermi level is found: |εF | = 0.34 eV, which corresponds to

a carrier concentration n ≈ 8× 1012 cm−2 (eqn. (3.10)). Where we used an estimated

Fermi velocity of 106 m/s. For the work reported in this thesis hydrogen intercalated

graphene was used. The samples were provided by the group of T. Seyller from he

university of Erlangen, Germany.

For the synthesis of graphene layers on the silicon side of SiC, commercial 6H-SiC

wafers are hydrogen etched, so that the SiC surface consists of smooth terraces, only

showing atomic steps. For the etching, the wafers are heated to 1150◦C in an atmo-

sphere argon at a pressure of 1 bar and a flow of 0.5 litre/min. Then, the atmosphere

is changed to hydrogen and the wafer is heated further to 1450◦C for 15 minutes using

the same pressure and flow, after which the wafers are cooled down in an argon atmo-

sphere. At this stage the wafers are ready for graphitization, or ready to be used as a

reference substrate.

The next step to synthesize hydrogen intercalated single layer graphene, is the

graphitization of the silicon side of the SiC at 1450◦C in an argon atmosphere at a

pressure of 1 bar, with a gas flow of 0.1 litre/min, for 15 minutes. At this temperature

the buffer layer is formed on top of the SiC. Then, the silicon dangling bonds are

passivated by hydrogen intercalation, which is done at 600◦C for 75 minutes in an

atmosphere of 900 mbar and a flow of 0.9 litre/min purified hydrogen. The layer

thickness of the graphene is estimated by X-ray photoemission spectroscopy (XPS).

Also the carbon side of the samples is checked by XPS to be graphene free.

To produce graphene on buffer layer grown on SiC the hydrogen etched wafers are

annealed for 15 minutes at 1650◦C in an argon atmosphere at 1 bar using a flow of

0.1 litre/min. The higher temperature, with respect to the growth temperature of the

buffer layer, is needed for the growth of the second carbon layer.

3.4.2 Multilayer graphene on SiC(0001̄)

When started from the carbon terminated surface, the desorption of silicon from the

SiC is fast and happens at moderate temperatures. During this process many graphene

layers, easily up to 100 layers, can be obtained [3,136]. Although this type of graphene

has many layers, magneto-optical spectroscopy revealed a Landau Level spectrum typ-

ical for single layer graphene [53], which was later confirmed by scanning tunneling

microscopy (STM) measurements [57,82]. In addition, a Berry’s phase of π and weak

antilocalization was observed in transport measurements [83, 84]. Finally, ARPES

showed that the bandstructure of the individual layers is indeed cone-like and there-

fore resembles the electronic structure of a stack of uncoupled single layers [85].
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Figure 3.8: (a) A schematic picture of multilayer graphene on the carbon side of SiC (b)

Moire pattern of two rotated honeycomb lattices. Courtesy, website NIST.

The electronic decoupling of the layers is generally assigned to the rotational stack-

ing of the layers [86]. Many theoretical studies contribute to the understanding of the

influence of stacking on the electronic structure and Landau levels [4, 87–93]. Im-

portantly, it was predicted that layer twisting affects the interlayer interaction, and

effectively reduces the Fermi velocity with respect to its ‘bare’ value in monolayer

graphene [88, 90, 91]. Since the rotation between the layers varies randomly from

layer to layer, the Fermi velocity is expected to be different for carriers in different

graphene layers. Nevertheless, no complete theory able to quantitatively describe the

effects of twisted stacking on the band structure at arbitrary rotation angles exists even

for bilayer graphene.

An additional complication typical for multilayer graphene is that the substrate in-

duces a strong shift in the Dirac-point energyED with respect to the chemical potential

in the layers close to the SiC. The shift is strongest in the layer closest to the SiC and

decreases for every subsequent layer. Therefore, different charge densities and carrier

mobilities are found in the layers depending on their distance from the substrate.

The growth conditions of epitaxial graphene were constantly improving in the last

years, which resulted in an enhanced mobility of charge carriers [3,71,72,75,83,137].

Generally, the synthesis process of multilayer graphene starts with hydrogen etching

the carbon terminated side of 6H-SiC, similar to the etching treatment for the synthesis

of single layer graphene on the Si-face. However, the carbon terminated surface of the

commercial SiC wafers is less flat than the silicon terminated surface, therefore the

hydrogen etching is performed at a temperature of 1600◦C, for 20 minutes. Next, the

now clean and flat carbon terminated side is graphitized in an argon atmosphere, at a

pressure of 100 mbar and a gas flow of 0.1 litre/min. The graphitization of the SiC

takes place at around 1650◦C; when kept at this temperature for 90 minutes, roughly

17 - 20 rotationally stacked layers will cover the surface.

The back side of the substrate is checked for graphene using X-ray photoemission

spectroscopy (XPS), which is also used to estimate the number of graphene layers. Al-

ternatively the number of layers can be estimated by measuring the optical absorption

of the stacked layers with optical microscopy over a large area using a spot size of only
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10×10 μm2. We assume that each graphene layer absorbs 1.5% of light at 1 eV, which

is the value expected for monolayer graphene on SiC, provided that the chemical po-

tential does not exceed 0.5 eV. This absorption value is lower than the absorption of

2.3% of free-standing graphene, because the refractive index of SiC is larger than 1

(see eqn. (2.41)).
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Figure 3.9: (a) XPS data on multilayer graphene on the C-side of SiC, (Felix Fromm,

University of Erlangen). (b) Distribution of the MIR absorption obtained on 800 random

spots on the same multilayer graphene sample. The black curve is a Gaussian fit.

Figure 3.9a shows an example of XPS data taken on a thick multilayer graphene

sample. The strong peak at a binding energy of about 284.4 eV is attributed to graphene,

while the weak peak at a binding energy of about 282.6 eV corresponds to SiC. From

the ratio of the areas under the two peaks the number of graphene layers can be ex-

tracted. In this particular case the deduced number of graphene layers is 19 1.

In Fig. 3.9b the distribution of layer thicknesses obtained using MIR absorption is

plotted for the same sample. The distribution was obtained by measuring the absorp-

tion on 800 random spots on the sample. The line in Fig. 3.9b is a Gaussian distribution

fitted to the histogram, which indicates an average coverage of 19.8 layers of graphene.

The slightly larger number of layers revealed by infrared microscopy can be related to

an underestimation of the absorption of one layer. In addition to the number of layers,

optical absorption provides information about the width of the distribution, which is

quite large of these samples.

1Private communications; Felix Fromm
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Single-layer epitaxial graphene on SiC

4.1 Introduction
Up to now the thinnest structures showing the Faraday rotation were several nanome-

ter thick two-dimensional electron gases [96]. As the rotation angle is proportional to

the distance traveled by the light, an intriguing issue is the scale of this effect in single

layer graphene - the ultimately thin object in condensed matter physics. In the first

part of this chapter, section 4.3.1, we demonstrate that a single atomic layer of carbon

turns the polarization by several degrees in modest magnetic fields. From the optical

spectra, both Faraday rotation and transmission, clear signs of (magneto-) plasmonic

excitations are observed, the origin of the plasmon-radiation coupling is studied by

atomic force microscopy and polarized transmission measurements, presented in sec-

tion 4.3.3. In the subsequent sections, the analysis of the magneto-optical properties

is developed by extracting the magneto-optical conductivities from the Faraday rota-

tion spectra and transmission spectra. The plasmon spectral weight, carrier scattering,

the plasmon energy, the cyclotron resonance energy, the cyclotron mass as well as the

Fermi velocity are extracted.

Apart from the giant Faraday rotation, one of the central result of this chapter is that

intrinsic defects couple light to terahertz plasmons in graphene. Importantly, in sec-

tion 4.4.5 we show using simulations that the Faraday rotation is strongly influenced

by the plasmonic resonance. Thus, once one can actively ‘program’ the plasmon en-

ergy, for instance by controlling the defects, one can control the energy region of the

Faraday rotation. Therefore, in the conclusions we argue that our experimental re-

sults show that epitaxial graphene is a promising candidate for future optoelectronic

The results in this chapter are published in I. Crassee et al. Nature Physics 7, 48 (2011) and

I. Crassee et al. Nano Letters 12, 2470 (2012).
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technologies.

All the experimental results present in this chapter are obtained on hydrogen in-

tercalated single layer graphene epitaxially grown on the silicon side of SiC. The

magneto-optical experiments are performed in moderate magnetic fields: up to 7 T.

Measurements done at higher fields, up to 32 T, will be the topic of the next chapter.

4.2 Sample and experimental details

The graphene samples are prepared by graphitization of a SiC substrate with a thick-

ness of about 370 μm and a surface area of 10×10 mm2. The synthesis method

of the single layer graphene is discussed in section 3.4.1. The back sides of the

samples are always checked to be free of graphene using x-ray photoemission spec-

troscopy. The reference substrate is prepared from the same SiC wafer. ARPES mea-

surements on similar samples, see Fig. 3.7a, show that the Fermi level in this type of

graphene is shifted below the Dirac point. Using optical spectroscopy in the mid in-

frared range, it was found that the sample used in our study has a Fermi energy, εF =

-0.34± 0.01 eV (see Fig. 3.7b in sec. 3.4.1), which corresponds to a hole concentration

n = ε2F/(π�
2v2F ) ≈ 8× 1012 cm−2 [138], where vF ≈ 106 m/s is the Fermi velocity.

All magneto-optical measurements are done in the Faraday geometry (magnetic

field and propagation of light normal to the sample) using a Fourier transform infrared

spectrometer connected to a split-coil superconducting magnet, as described in sec-

tions 2.3.1 and 2.3.3. The infrared Fourier transform spectrometer is equipped with a

mercury source and silicon beamsplitter to access the low terahertz (THz) frequencies,

while for the far infrared range a globar source and 6μ mylar beamsplitter was used.

With this combination of sources and beamsplitters the accessible frequency range is

1.5 meV to 85 meV. The superconducting split-coil magnet delivers fields up to 7 T.

The measurements presented in this chapter are done at temperatures between 5 and

10 K.

4.3 Results

4.3.1 Giant Faraday rotation

Figure 4.1a shows the Faraday angle θ measured on single layer graphene at 5 K in

magnetic fields up to 7 T in the far-infrared range. The spectra show a strong depen-

dence on the magnetic field: the observed spectral structure becomes larger and shifts

to higher energies with increasing field. Measurements on the bare substrate did not

reveal any Faraday effect, hence the rotation comes exclusively from the carbon mono-

layer. At 7 T, the maximum Faraday rotation exceeds 0.1 radians (∼ 6 degrees), which

is an unexpectedly large effect for just a single atomic layer [138]. It is much larger

than the fine-structure constant (∼ 10−2), which is the predicted scale for the Faraday
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Figure 4.1: (a) The Faraday angle θ for fields up to 7 T at 5 K. The inset presents the

magnetic field dependence of θ(B) at �ω =10 and 27 meV. The dashed lines are linear

fits of the data points between 0 and 5 T. (b) the transmission ratio T (B)/T (0) at the same

fields. In the inset the absorption spectra 1− T (B) for B = 0 T and 7 T are shown.

angle, associated with the quantized Hall conductance [139–142]. The inset shows the

field dependence of θ at 10 and 27 meV. At low fields, the rotation is linearly depen-

dent on field; at an energy of 10 meV the angle increases with a slope of +18.5 mrad/T,

while at 27 meV the angle decreases with -4.5 mrad/T.

The transmission spectra at corresponding fields also reveal a strong magnetic field

dependence, most easily seen in the zero-field normalized transmission T (B)/T (0),
shown in Fig. 4.1b. The spectra show a dip moving to higher energies with increasing

field. The inset shows the absorption (1-T ) at 0 and 7 T. A strong peak is observed,

shifting from energies below 10 meV, to about 22 meV at 7 T. As we will see later, this

peak is associated with quasi-classical cyclotron resonance.

The doping, εF = -0.34 eV, found from mid-infrared absorption measurements, in

combination with the relatively low magnetic fields used in these experiments put the

cyclotron resonance in the classical regime: the Fermi energy is far from the Dirac

point, so that the allowed optical transition are between LLs with large quantum num-

bers [58, 122]. In Fig. 4.2a the hole-like Landau levels (up to n = -30 for clarity) are

plotted as a function of field, using vF = 106 m/s. The Fermi energy, determined for

the single layer graphene sample, is indicated by the red dashed line. The allowed

optical transitions are shown in the close-up in Fig. 4.2b with blue arrows. Clearly

for the Landau levels involved in the excitations |n| � 1. Therefore, the Dirac quasi-

particles are expected to exhibit the classical cyclotron resonance effect, as discussed

in section 3.3.2, with a linear dependence on the magnetic field. The strength of the

oscillator is determined by the total density of carriers: the higher the doping level,

the larger the cyclotron peak in the transmission spectra and the larger the Faraday

rotation.

Importantly, the Faraday rotation spectra not only depend on the total density of
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Figure 4.2: (a) Magnetic field dependence of the hole like Landau levels, with n = -1 to
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layer graphene sample. (b) Close-up of the Landau levels around εF , the blue arrows

indicate the allowed optical transitions between the Landau levels.
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Figure 4.3: (a) The Drude Lorentz model for the diagonal (black line) and Hall conductiv-

ity (red line), with ωc = +20 meV (electron doping). (b) The same Drude-Lorentz model

for the diagonal (black line) and Hall conductivity (red line), with ωc = -20 meV (hole

doping). The curves were obtained from eqns. (2.25) and (2.26)

charge carriers but also reveal the sign of those charge carriers in the graphene layer.

The spectral feature corresponds to an antisymmetric structure, where the absolute

cyclotron resonance energy, |ωc|, coincides with the position of the maximum absolute

slope |dθ(ω)/dω|, or the inflection point. The sign of the slope at the inflection point

matches the sign of ωc. Figure 4.3a shows the real parts of σxy(ω) (red line) and

σxx(ω) (black line) for ωc = +20 meV obtained using the Drude-Lorentz model for

the magneto-optical conductivity (eqn. (2.25) and eqn. (2.26)). The peak in σxx(ω)
is centered around |ωc|, which coincides with the inflection point in σxy(ω). At the

inflection point dσxy(ω)/dω > 0, signaling n-type doping. Since Re σxy(ω) ∝ θ(ω),
the sign of dσxy(ω)/dω matches the sign of dθ(ω)/dω. In Fig. 4.3b the same model

is plotted, however now ωc = -20 meV: hole-type doping. σxx(ω), the black line in

both (a) and (b), is entirely unchanged. However, the sign of the slope at the inflection

point in σxy(ω) (red line) is opposite: dσxy(ω)/dω < 0. Clearly, σxy(ω) and thus θ(ω),
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Figure 4.4: (a) Terahertz absorption spectrum of graphene on SiC at T = 7 K measured

using unpolarized light. (b) terahertz absorption spectra at T = 7 Kmeasured using linearly

polarized light. The polarization state of the impinging light was rotated with respect to

the sample.

unmistakeably reveal the sign of the carriers. Coming back at Fig. 4.1a: the negative

slope at the inflection point in the Faraday rotation spectra is an unmistakable signature

of hole doping in hydrogen intercalated single layer graphene.

The unexpectedly large rotation observed is directly related to the high doping typi-

cal for single layer epitaxial graphene and opens up new pathways for future graphene-

based technologies. In addition to the practical side of this newly identified property,

the Faraday rotation spectra offer optical, thus no need for electrical contacts, access

to fundamental properties of graphene, such as the sign of the charge carriers.

4.3.2 Optical response in the terahertz: plasmons in graphene

After the observation of the giant Faraday rotation in single layer graphene [138], we

extended the spectral range of our measurements of the Faraday angle and transmission

spectra down to terahertz (THz) frequencies in order to do more quantitative analysis

on the data. The goal of these measurements was to better determine the shape of the

Drude peak, however, by doing these measurements we were in for a large surprise.

The low frequency absorption at zero magnetic field, shown as the orange curve

in the inset of Fig. 4.1b resembles strongly a Drude response, a peak centered around

zero energy, which is the optical signature of free carriers. However, the complemen-

tary experiments in the THz regime show that the Drude absorption is absent. Instead a

strong peak at around 1.6 THz (6.5 meV) is observed. Figure 4.4a shows the substrate

normalized absorption (1-T ) measured at 7 K at zero field with unpolarized light [143].

The deviation from the Drude behavior is associated with the presence of a confine-

ment potential acting on the free carriers and the corresponding plasmonic absorption.
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A similar resonance was observed in graphene micro-ribbons in the polarization per-

pendicular to the ribbons [20] and in graphene dots [144]. The micro-ribbons and

dot-like structures break the translational symmetry in the graphene, which results in

a shift of the Drude peak to higher frequencies.

Figure 4.4b shows the absorption measured at 7 K at zero field using linearly po-

larized light [143]. The polarization state of the light was rotated with respect to the

graphene sample. The peak position in the spectra appears at different energies for

different rotation of the polarization state. Therefore the polarized optical absorption

shows that the THz resonance peak is related to the sample morphology. Importantly,

the peak position remains at finite energy for every polarization.

4.3.3 Origin of the plasmonic resonance
To couple electromagnetic radiation to a plasmon mode, the translational invariance of

the system needs to be violated. In two-dimensional systems, typical ways to break the

symmetry are placing an external grid in the vicinity of the sample [145] and making

stripe or dot-like periodic structures inside the system [24,146–148]. In graphene, this

coupling has recently been achieved by pattering it in the shape of ribbons [20], in a

periodic array of dots [144] and by using a metallic atomic force microscopy (AFM)

tip in scattering-type scanning near field optical microscopy [22].

Importantly, the samples used in this study were not patterned or otherwise shaped

to break translation symmetry. In order to clarify the origin of the confinement that

causes the plasmonic resonance, we performed vibrating cantilever atomic force mi-

croscopy (AFM) imaging to extract topographic and phase information of the graphene

on SiC. Figure 4.5a shows a topographical height image of a 10 × 10 μm2 area of the

sample. The dominating structures are the terraces due to the miscut angle of SiC sub-

strate [75, 149, 150]. Due to these terraces the translation symmetry in the graphene

is broken and therefore plasmons can be excited. Their irregular shape as compared

to morphologies observed earlier [75] is related to the specific graphitization tempera-

ture. Measurements on different spots of the sample show that the terraces are oriented

in the same direction across the entire sample.

Closer inspection of the AFM images also reveals numerous wrinkles in graphene,

such as the ones indicated by the arrows in Fig. 4.5b. The wrinkles are formed due to

the relaxation of strain in graphene during the cooling down after graphitization [151,

152], and are most probably an additional cause of the broken translational symmetry

in the graphene. Figure 4.5c presents the map of the oscillation phase of the cantilever

on the same area as in Fig. 4.5b. The phase delivers information about specific material

properties which affect the interaction between tip and sample. Sharp changes in the

height profile, due to the steps and the wrinkles are clearly observed. The dark spots

in the phase correspond to regions without graphene, as was determined by Raman

spectroscopy.

Figure 4.6 shows height profiles for the lines marked in Fig. 4.5a. Profiles 1 to

3 correspond to the steps in the SiC substrate, while traces 4 to 7 are taken across
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Figure 4.5: Topographic height (a) of a 10×10 μm2 region of epitaxial graphene on SiC

used for optical experiments. (b) and (c): Close-ups of the region in (a) marked by dashed

rectangles, where (b) is the height map, while (c) is the corresponding phase. Arrows point

to graphene wrinkles.

the wrinkles on the terraces and show that these wrinkles have a height of less than

1 nm, which is in agreement with previous work [151]. The regions of homogeneous

graphene have a typical size of about one micrometer throughout the whole sample.

The results of the polarized optical transmission experiment already revealed a

strong anisotropy in the plasmon resonance energy, which correlates with the angle of

the linear polarization state with respect to the sample. The spectrum corresponding

to 0◦ in Fig. 4.4b is the transmission obtained with the polarization axis parallel to

the substrate terraces, as indicated in Fig. 4.5a, while the 90◦ spectrum in Fig. 4.4b

corresponds to transmission obtained with the polarization axis perpendicular to the

substrate terraces. Thus, the absorption maximum is at about 1.7 times higher energy

for the electric field perpendicular to the terraces than for the parallel orientation. The

excitation of the plasmon parallel to the terraces is likely due to the rough shape of

the SiC step edges. But it cannot be excluded that the wrinkles, which are randomly

oriented, are an additional cause of translational symmetry breaking in the graphene.

Indeed, near-field optical measurements show that wrinkles scatter plasmons as effec-

tively as the steps in the substrate 3 .

From the AFM imaging we conclude that the broken translational invariance in

graphene epitaxially grown on SiC is a result of intrinsic defects uniformly distributed

over the layer, caused by substrate terraces and thermal relaxation after the graphitiza-

tion process [75, 76, 151, 152]. The correlation between the polarized optical absorp-

tion curves and the orientation of the terraces in the substrate shows that the terahertz

plasmon resonance peak is related to those morphological structures.

3Private communications: J. Chen et al. unpublished.
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Figure 4.6: Height profiles along selected lines marked in Fig. 4.5, corresponding to

terraces (1-3) and wrinkles (4-7).

4.3.4 Terahertz magneto-optical response: magnetoplasmons in
graphene

Figures 4.7a and b show the Faraday rotation and transmission spectra measured at

5 K in fields up to 7 T [143] using unpolarized light. Because of the anisotropy of

the sample, the curves and the plasmon energy in Fig. 4.7 are effective averages over

all polarizations. The absolute Faraday rotation observed in these measurements is

somewhat lower compared to the Faraday rotation observed in Fig. 4.1a, which is

probably due to an increased surface contamination. The Faraday rotation spectra in

Fig. 4.7a show a decrease in rotation angle at energies towards zero, which was not

observed previously in Fig. 4.1a. The THz transmission spectra in Fig. 4.7b show that

the dip observed at zero field splits in to two modes, one of which moves towards lower

energy and the other moves towards higher energy with increasing field. This strong

dependence on the magnetic field stands in drastic contrast to conventional plasmonic

materials like gold, where the carrier mass exceeds the free-electron mass, leading to

at best a weak dependence on magnetic field [153].

With the use of the thin film relations for the diagonal conductivity (section 2.3.1)

and the optical Hall conductivity (section 2.3.3), the real parts of the magneto-optical

conductivity spectra are extracted from the transmission and the Faraday rotation spec-

tra, respectively. The optical Hall conductivity σxy(ω), normalized to the universal

conductivity σ0 = e2/4� is shown in Fig. 4.7c. The normalized diagonal conductiv-

ity σxx(ω), is plotted in Fig. 4.7d. Clearly, the plasmon resonance centered at about

6.5 meV at 0 T splits into two modes, with one increasing and the other decreasing

with B. The black dashed lines in Fig. 4.7c and Fig. 4.7d are fits to the conductivity

curves using an effective medium model, as discussed in section 4.3.5.

In order to get further insight into the character of the two modes we extracted
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Figure 4.7: (a) The Faraday rotation spectra, extended to THz energies, for fields up to

7 T and (b) substrate normalized terahertz transmission spectra of graphene on SiC. The

diagonal (c) and Hall (d) conductivities normalized to σ0 = e2/4�. The offset of the

curves in (c) and (d) are indicated by lines of the same color. The dashed lines in (c) and

(d) are fits to the data.

the imaginary part of the Hall conductivity Imσxy(ω) from the real part of the Hall

conductivity Reσxy(ω) with the use of the Kramers-Kronig relations (section 2.2.4).

Next, the real parts of the optical conductivity for left and right handed circularly po-

larized light, σ±(ω) = σxx± iσxy are obtained directly from Reσxx(ω) and Im σxy(ω).
σ−(ω) and σ+(ω) are plotted in Fig. 4.8a and b respectively. One can clearly see that

in each of the two circular polarizations only one mode is present. The peak positions

in σ−(ω) and σ+(ω) are denoted ω+ and ω− respectively, since the first increases and

the latter decreases with B. Figure 4.8c shows the field dependence of ω+ and ω−.
The field-induced splitting of the plasmon peak resembles strikingly the appear-

ance of collective resonances observed previously in disk-shaped quantum dots of

two-dimensional electron gases based on GaAs heterostructures [146, 148]. To il-

lustrate the comparison; Fig. 4.8d shows the energies of the two modes reported in
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tion of field. (d) magnetoplasmon energies observed in a heterostructure of a 2DEG by

Allen [146]

Ref. [146], even the energy scale of the plasmon resonance is comparable to the exci-

tation observed in Figs. 4.8a, b and c. The surface of liquid helium is another example

of a system on which bound 2D electrons show plasmon and magneto-plasmonic res-

onances [154, 155]. For both the electron gas in the GaAs heterostructures and the

surface of liquid helium, the upper and lower branches were attributed to the so-called

bulk and edge magnetoplasmons, respectively, with resonance frequencies [146]:

ω± =

√
ω2
c

4
+ ω2

0 ±
|ωc|
2

, (4.1)

where ω0 is the plasmon frequency at zero field, ωc = ±eB/m is the cyclotron fre-

quency (positive for electrons and negative for holes) and m is the cyclotron mass.

At high fields, where |ωc| � ω0, the upper branch becomes essentially the usual cy-

clotron resonance with a linear dependence on magnetic field, while the lower branch

represents a collective mode confined to the edges [156] with the energy inversely

proportional to the field.
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4.3.5 Effective medium approach
In the specific case of an array of disk shaped quantum dots, the effective medium

Maxwell-Garnett approach [146] can be used to derive the magneto-optical response

of such a system. Details of the Maxwell-Garnett approach can be found in ap-

pendix B.4. For a filling factor f of one, the effective medium model describing (mag-

neto)plasmonic resonance simply reduces to the phenomenological Drude-Lorentz

model for magneto-optical conductivity, where the plasmon resonance energy at zero

field is ω0.

The spectra of σxx(ω) and σxy(ω) at each magnetic field were simultaneously fitted

using eqns. (2.27) and (2.28) (see section 2.2.2). The dashed black lines in Fig. 4.7c

and d show the fitted Drude-Lorentz model containing one resonance peak (n = 1 in

eqn. (2.27) and eqn. (2.28)):

σxx(ω) =
2D

π

γ − iω +
ω2
0

ω

ω2
c − (ω + iγ +

ω2
0

ω
)2
, (4.2)

σxy(ω) =
2D

π

−ωc

ω2
c − (ω + iγ +

ω2
0

ω
)2
. (4.3)

The parameters ω0, ωc, γ and D were treated as adjustable during fitting. We also

added a small frequency independent background term σb ≈ 3.5 σ0 to the real part of

the diagonal optical conductivity. The background is discussed in section 4.4.3.

The experimental data including all important spectral features are well repro-

duced, which shows that the plasmon structure and the splitting of the mode in mag-

netic field can be quantitatively described by the phenomenological Drude-Lorentz

formula [146, 157]. The good comparison between model and data might come as a

surprise, for several good reasons. First of all, the effective medium approach lead-

ing to the Drude Lorentz formula is strictly valid for electronically isolated disk like

quantum dots. In addition, the epitaxial graphene is anisotropic and the size of the

homogeneous regions of graphene is certainly distributed. Moreover, the plasmon

confining edges originating from the defects in epitaxial graphene seem rough and

complex. Despite its seemingly inapplicability, the phenomenological Drude-Lorentz

model can quantitatively reproduce the optical spectra. Note, quantitatively: notice-

able deviations, especially in the fits to σxy(ω), demonstrate the inevitable limitations

of this simple model.

In order to scrutinize the applicability of the Drude-Lorentz model to describe the

magnetoplasmon resonance in systems other than regular arrays of disk-shaped dots

with finite thickness, we fitted the phenomenological model to numerical spectra repro-

duced from Ref. [158] for magnetoplasmonic resonance in a lattice of square graphene

patches. The numerical results for the optical Hall conductivity for two different pat-

terns with lengthL are shown in Fig. 4.9a with open symbols, for both results T=5 K, B

= 7 T, vF = 106 m/s, γ = 10 meV and εF = 0.34 eV. The black lines in Fig. 4.9a are fits

to the spectra using the Drude-Lorentz relation for σxy(ω) (eqn. (2.28)), where n = 1
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Figure 4.9: (a) Numerical spectra of Reσxy(ω) showing magnetoplasmonic resonance

in a array of square graphene patches, reproduced from Ref. [158] (open symbols), fitted

with the Drude-Lorentz model in magnetic field (black lines). (b) schematic representation

of the modeled graphene sample.

(one oscillator) and ω0, ωc, γ andD were treated as adjustable parameters. Apart from

the weak second order resonance seen in the curve for L = 1.1 μm at around 30 meV,

the numerical spectra are well reproduced. This demonstrates that the applicability of

eqn. (2.27) and eqn. (2.28) is not restricted to the case of an array of disk-shaped dots

with finite thickness.

Supported by the ability of the Drude-Lorentz model to quantitatively describe

magnetoplasmonic resonance in graphene, we use the fit results to extract the plasmon

spectral weight D, the plasmon energy ω0, the cyclotron resonance energy ωc and the

scattering rate γ at every magnetic field.

4.4 Discussion

4.4.1 Cyclotron resonance energy
Figure 4.10 shows the field dependence of ω0 and ωc extracted from the fitting pro-

cedure. The bare plasmon frequency is essentially constant, with an average value of

about 6.5 meV. The cyclotron frequency is almost perfectly linearly dependent on the

field, with a slope �|ωc|/B = 2.1 meV/T. According to the relation, |ωc| = |eB|/m, the

cyclotron mass is about 5.5 % of the free electron mass me. Also shown in Fig. 4.10,

are the energies of the two magnetoplasmon modes, ω±, which are calculate with the

results for ω0 and ωc and the relation for the magnetoplasmon energies, eqn. 4.1. They

are very close to the peak positions in σ± (Fig. 4.8a,b,c).

The linear dependence of the cyclotron resonance energy perfectly agrees with the

classical cyclotron resonance expected from Dirac-like charge carriers in graphene at

high doping [30]. The cyclotron mass depends on doping according to the relationm =
|εF |/v2F . Using |εF | = 0.34 eV, and m = 0.055me, the Fermi velocity of the charge

carriers can be obtained: vF = 1.04 × 106 m/s. This number matches remarkably well
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Figure 4.10: The magnetic field dependence of the plasmon energy �ω0, cyclotron reso-

nance energy �|ωc| and magnetoplasmon energies �ω±. The dotted line is a linear fit to

the cyclotron energy.

the Fermi velocity obtained by other methods [159].

4.4.2 Plasmon and magnetoplasmon resonance energies
The plasmon energy, �ω0 = 6.5 meV, contains important information about the con-

finement causing the plasmon excitation. In the particular case of isolated quan-

tum dots, the plasmon resonance energy is predicted by the effective medium ap-

proach [146,157,160]:

ω2
0 =

3π2ne2

2mdκ
, (4.4)

where κ = (1 + εSiC)/2 ≈ 5 is the average dielectric constant of the surrounding

media and d is the dot diameter. For graphene, where the effective mass m = |εF |/v2F
and the charge density n = ε2F/πv

2
F , eqn. (14) can be rewritten:

ω2
0 =

3πe2|εF |
2dκ

, (4.5)

From which can be seen that the plasmon energy is square-root dependent on the Fermi

energy of the graphene layer.

From the topographic height maps measured by AFM, we found that the mean size

of the homogeneous graphene regions is about 1 μm. If we naively use eqn. (4.5)

and use |εF | = 0.34 eV, the predicted plasmon energy is 15.2 meV. This is more than

twice the experimentally observed value. The discrepancy between the experimen-

tally observed plasmon energy and the predicted energy is certainly not surprising.
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Figure 4.11: (a) Magnetic field dependence of the plasmon spectral weightD (hexagons),

and the background term σb (diamonds). The open squares correspond to the experimental

optical conductivity Dint, obtained from integration of the spectra. (b) Field dependence

of the broadening γ (circles) of the plasmon resonance.

Clearly, the graphene regions are not shaped in dots, but have a complex and rough

shape. Moreover, the defect lines separating the homogeneous regions are very nar-

row, which means that the regions cannot be seen as ‘isolated’. Due to the narrow

separation, electromagnetic coupling between neighboring graphene regions is likely

to play an important role in the confinement of the carriers. Such a coupling causes

a redshift [157, 161–163] of the plasmon energy as compared to the case of uncou-

pled particles, this redshift of the plasmon energy is commonly observed in plasmonic

nanostructures.

The two magnetoplasmon branches (ω±), found from ω0 and ωc correspond to the

collective behavior of the charge carriers in the graphene [156]. The upper branch, of

which the energy increases with magnetic field is approaching the cyclotron resonance

energy and corresponds to carriers performing cyclotron motion confined to the ho-

mogeneous graphene regions. As was seen in Fig. 4.8a, the ω+ mode is visible as a

peak in Reσ−(ω). The resonances showing up in Reσ−(ω) are due to hole-like charge

carriers, which is in agreement with the fact that the graphene is p-doped.

However, although the graphene is hole doped, the lower magnetoplasmon mode,

ω−, of which the resonance energy depends on 1/B, is only present in Reσ+(ω),
signaling electron-like behavior, as can be seen in Fig. 4.8b. The seemingly electron-

like behavior of the mode originates from the collective resonance of hole-like carriers

which are effectively confined to the edges of the regions [164].
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4.4.3 Spectral weight

Figure 4.11a shows the spectral weight D of the plasmon resonance peak and the am-

plitude of the background conductivity as a function of magnetic field, obtained by

fitting the effective medium model to Reσxx and Reσxy. The spectral weight of the

plasmon peak shows a small decrease with magnetic field. Likely, the slight field de-

pendence D is not associated with a true decrease of the intraband spectral weight. A

second method to extract the plasmon spectral weight is to do straight forward integra-

tion of the plasmon peak in the optical spectra. The open squares in Fig. 4.11a corre-

spond to the integrated optical conductivity, from 2 to 85 meV,Dint =
∫
Reσxx(ω)dω.

Indeed Dint is roughly constant with field. The decrease in D extracted from the fit-

ting is likely related to the slight increase of the background conductivity with field.

The increase in the background effectively compensates the decrease of D. Another

reason for the slight decrease in D could be the use of the thin-film relation to extract

the optical conductivity from the transmission. As is shown in appendix B.1., for in-

creasing magnetic field the use of relation eqn. (2.47) results in an underestimation of

the conductivity and thus of the spectral weight. The effective underestimation of the

spectral weight can be as large as 7% for a peak with an original spectral weight of

0.6 eV.

The value of �D/σ0 extracted from the fitting is about 0.52 eV. This is somewhat

smaller than the expected value of 2|εF | = 0.68 eV. The difference can only be partially

explained by the fact that the thin film relation underestimates the spectral weight. An

incomplete coverage of the SiC substrate by graphene could be related as well (see

Fig. 4.5b), however the discrepancy can also be due to the presence of the background

term σb.

The observation of the background is quite unexpected. Although it may partially

be due to an experimental uncertainty in the transmission normalization procedure,

it cannot be excluded that σb is related to the low spectral weight of the plasmon

resonance. Possibly, the spectral weight is renormalized by electron-electron [46],

electron-phonon interactions [165, 166] or excitations of higher harmonic plasmon

resonances [157, 160, 163]. Therefore the spectral weight of the plasmon resonance

could be effectively transferred to other energies, forming a background. A second

possibility is that the negative charge removed from the graphene monolayer forms

a conductive layer in SiC. The electron gas at the substrate-graphene interface could

cause a strongly damped Drude peak, manifesting itself as a background in the far

infrared range. Notably, a certain optical background below the onset of interband

absorption was present in exfoliated monolayer graphene on Si/SiO2 [42].

4.4.4 Scattering rate

Similar to the dependency of the plasmon spectral weight, the scattering rate, plotted

in Fig. 4.11b, is decreasing at high magnetic fields. The broadening, �γ, is about 10

to 12 meV, surprisingly, this is more than two times smaller than observed by another
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Figure 4.12: A simulation of the effect of the plasmon energy and the scattering on the

Faraday rotation. (a) Faraday rotation for �γ = 11 meV for different values of �ω0 = 0,

6.5, 20, and 40 meV. (b) Faraday rotation for �ω0 = 20 meV and different values of �γ =

11 and 5.5 meV. Both in (a) and (b) the magnetic field is 1 T.

group [100] on epitaxial graphene on SiC.

The true intrinsic electron scattering is likely to be even smaller than 10 meV, since

the spectral feature is additionally broadened by the distribution of sizes and shapes

of the homogeneous regions. However, thanks to the square-root dependence of the

plasmon energy on the size of the homogeneous regions, ω0 ∝
√
1/d, the effect of the

distribution in the size of the homogeneous regions is relatively weak, so that still a

reasonably sharp resonance is observed.

The origin of the decrease in scattering rate with increasing magnetic field is also

most likely related to the variation in the size of the homogeneous graphene regions.

At high magnetic fields the energy of the peak is less influenced by the (broadened)

plasmon energy but more and more by the well defined cyclotron resonance energy,

therefore the effect of statistical distribution is weaker at high fields.

4.4.5 Influence of magnetoplasmons on the Faraday rotation
The large Faraday effect, relatively low absorption and magnetoplasmons make graphene

a promising material for novel applications in optoelectronics. One could think of ex-

ploiting the Faraday effect and magnetoplasmonic resonance to construct optical rota-

tions, isolators and waveguides.

Simulations using the Drude Lorentz model for the magneto-optical conductiv-

ity, shown in Fig. 4.12, demonstrate that magnetoplasmons control the energy range in

which the Faraday rotation is maximum. Figure 4.12a, presents models for the Faraday

rotation of homogeneous graphene (ω0 = 0), the rotation in the presence of plasmons

such as the one observed in our sample (6.5 meV) and for higher plasmon energies (20

and 40 meV). Clearly, the Faraday angle is maximum close to the magnetoplasmon

resonance and therefore can be controlled not only by magnetic field but also by ω0.
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A way to increase the plasmon energy is to decrease the size of the homogeneous re-

gions, which could be done, for example, by varying the miscut angle of the substrate.

Similarly, in more conventional plasmonic materials the Faraday and Kerr angles are

enhanced close to the plasma resonance [153, 167]. For example, recently Kerr rota-

tion on the order of 10−4 to 10−3 radians was observed in an array of Au disks [153].

The rotation observed in graphene is more than 2 orders of magnitude larger, which is

a direct consequence of the much smaller cyclotron mass, even though the carrier den-

sity per unit cell is also much lower than in noble metals. Here the measurements were

performed at low temperature to maximally resolve the magnetoplasmonic spectral

structures. However, in the classical limit (graphene with high doping) the Fermi-

Dirac thermal filling factors play only a minor role in the optical conductivity, the

amount of rotation in this regime is not expected to be significantly reduced at elevated

temperatures. Moreover, in the quantum regime, where inter Landau level transitions

are observed, the Faraday rotation persists at room temperature [168]. Thus we expect

the magnetoplasmonic phenomena to survive at room temperature.

Figure 4.12b demonstrates a method to increase the amplitude of the Faraday ro-

tation for a fixed plasmon energy. By reducing the electronic scattering, the rotation

can be significantly increased. Rotations above 0.1 radians by just one atomic layer at

a modest field of 1 T, where the energy range can be controlled via plasmons do not

seem to be out of experimental reach. Therefore the combination of magnetoplasmons

and the Faraday effect is even more promising for applications.

4.5 Conclusion
A giant Faraday rotation was observed in monolayer epitaxial graphene; θ > 0.1 rad,

which is much larger than initially predicted [139–142]. The Faraday rotation is

strongly enhanced near the resonance energy. Although in two-dimensional electrons

gases the cyclotron resonance gives rise to comparable absolute rotations [96,142], the

rotation comes from an effective layer which is about one order of magnitude thicker

than mono-atomic graphene. Moreover, while in 2DEGs the cyclotron frequency is

doping independent, in graphene it can be tuned with doping as seen from eqn. (3.25).

Therefore, for low doped graphene, higher resonance energies can be achieved at the

same fields.

The Faraday effect and the associated magneto-optical Kerr effect are widely used

in optical communication, data storage and computing. For these applications a large

rotation is desirable. The amplitude of the Faraday rotation is strongly determined by

the charge scattering rate. Lower scattering results in a sharper resonance peak so that

larger rotations are observed. Therefore it is important for future technologies to grow

cleaner samples with higher mobilities.

However, the Faraday rotation is not only promising for future technologies but

also provides a powerful contact-free tool to obtain experimentally the optical Hall

conductivity and which can distinguish the type of the charge carrier. With access to
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both the optical conductivity and the optical Hall conductivity the full magneto-optical

conductivity tensor is obtained. Furthermore, with the help of the Kramers-Kronig

relations, the magneto-optical conductivity in the basis of left and right handed circular

polarization can be extracted.

After careful analysis of the optical conductivity and the optical Hall conducitiv-

ity, we found that morphological defects on the nanoscale such as atomic steps in SiC

and wrinkles in epitaxial graphene produce a remarkably strong plasmon resonance

in the terahertz energy range. This resonance has essentially the same origin as the

plasmon peak observed in patterned two-dimensional electron gases and in nanostruc-

tured graphene. The important difference, however, is that the confinement potential

in epitaxial graphene is intrinsic and does not require special lithographic patterning,

with the risk to reduce the carrier mobility.

The presence of the plasmon dramatically changes the optical spectra. We used the

phenomenological Drude Lorentz model for magneto-optical conductivity to fit the

data, allowing us to determine the plasmon spectral weight, the cyclotron resonance

energy, the plasmon energy and the carrier scattering. Indeed, the cyclotron resonance

energy shows an almost perfect linear dependence on the magnetic field, as predicted

for highly doped graphene. The energies of the two magnetoplasmon modes were

calculated from the plasmon energy and the cyclotron resonance energy and match the

peak positions on the resonances observed in σ−(ω) and σ+(ω).
In the view of future applications one needs to be able to actively control both

the amplitude of the Faraday rotation and the energy region of maximum rotation,

preferably at a moderate constant magnetic field. The amplitude can be maximized

by minimizing the carrier scattering rate. Importantly, ambipolar doping of graphene

offers a way of reversing the sign of the Faraday rotation, so that fast tunable magneto-

optical devices could be envisioned. A promising way of controlling the energy range

in which the rotation is maximum is provided by the dependence of the Faraday ro-

tation on the plasmon energy. One can think of controlling the plasmon energy by

varying the preparation of the substrate and the graphitization process.

In recent years, the field of terahertz science and technology has made a rapid de-

velopment, fueled by the huge potential of terahertz radiation in imaging, spectroscopy,

biomedical sciences, and integrated circuits. For those applications, THz plasmonic

components like waveguides, based on surface plasmons are proposed due to the sub-

wavelength confinement especially suitable for ultra small devices. However, waveg-

uides purely based on plasmonics usually are two-way waveguides; light can propagate

in the forward and the backward direction. For functional devices as isolators, rotators,

switches and splitters used for example in laser technology, one-way waveguides are

of great importance. These one-way waveguides could be realized with the help of

Faraday isolators and Faraday mirrors. Therefore, the strong magneto-optical effects

found in graphene, combined with its excellent plasmonic properties, makes the mono

atomic material a perfect candidate for future terahertz technology.
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Single-layer epitaxial graphene at high magnetic fields

5.1 Introduction
In this chapter we continue our work on doped single layer epitaxial graphene grown

on the silicon side of SiC in which the silicon dangling bonds were passivated by hy-

drogen. Whereas, in the previous chapter the high doping of the graphene, even at 7 T,

firmly kept the optical transitions observed in the classical limit, showing cyclotron res-

onance linearly dependent on field. Here, we report magneto-transmission experiments

at much higher magnetic fields, up to 32 T, directly revealing the classical-to-quantum

crossover of the cyclotron resonance in graphene, as will be shown in section 5.3.

The high magnetic field spectra allow us to observe steps in the cyclotron reso-

nance energy at integer filling factors, from which the carrier density (section 5.4.1)

is directly extracted. Next, we study the effect of carrier scattering and a distribution

of the Fermi energy on the classical to quantum crossover by comparing the experi-

mental data to model data using the Kubo formula (section 5.4.2). The cyclotron mass

and the Fermi velocity are extracted, which are vital in obtaining the Fermi energy

(section 5.4.3).

In the last part of this chapter we contribute to the ongoing discussion about the

renormalization of the Drude spectral weight in graphene [97–100]. The spectral

weight of the cyclotron resonance obtained from the fits is compared to the predicted

spectral weight based on the effective single-particle picture [31].

In this chapter we will indicate Landau level indices not with the commonly used

n, but with the symbol m. This change in notation is restricted to this chapter and

made to avoid confusion in the discussion about the carrier density n.

Most of the results presented in this chapter were published in M. Orlita et al. New Journal of
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Figure 5.1: (a) Substrate normalized transmission spectra. The red curves correspond

to B = 0, 5, 10, 15, 20, 25 and 30 T. (b) Real part of the optical conductivity extracted

from the transmission spectra. The curves have an offset of 5σ0 per Tesla. The red curves

corresponds with the red transmission curves in (a). The black dashed lines on top of the

spectra are fits using the Drude Lorentz model for the magneto-optical conductivity.

5.2 Experimental details

A single layer of carbon was grown by thermal decomposition of the silicon terminated

substrate of 6H-SiC, hydrogen intercalation between buffer layer and substrate was

used to passivate the silicon bonds. A more detailed discussion of the growth process

this given in section 3.4.1. As was shown in the previous chapter, this type of epitaxial

graphene is highly p-doped, with a Fermi energy |εF | ∼ 0.3 eV, which was found from

mid infrared transmission measurements visualizing the 2|εF | onset in the absorption.

The high field transmission measurements were done at the Grenoble High Mag-

netic Field Lab (LNCMI). Fields up to 32 T were delivered by a resistive coil. The

sample and the bolometer were placed in the center of the coil and kept at 1.8 K.

The light from a globar, modulated by a Fourier transform spectrometer, was lead to

the sample via light-pipe optics. The size of the sample was 5 mm2, of which about

4 mm2 was exposed to the light.

From the substrate normalized transmission T (B), the real part of the optical con-

ductivity, Re σxx(ω), was obtained for each magnetic field, using the thin film relation

(eqn. (2.47)). The details concerning eqn. (2.47) are discussed in section 2.3.1, while

its limitations are shown in appendix B.1.

Physics 14, 095008 (2012).
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Figure 5.2: (a) Magnetic field dependence of the hole-like Landau levels (m = -1, -2,...

-13), where vF = 106 m/s. The Fermi energy (325 meV), indicated by the black dashed

line, which was determined for this specific sample (see section 5.4.1). The blue arrows

correspond to optical transitions between adjacent Landau levels. At integer filling factors,

indicated by the red dashed lines, the Fermi energy crosses the Landau levels. (b) Color

plot of the experimental conductivity spectra, the dashed red lines show the filling factors

also indicated in (a). The grey dashed lines correspond to the excitation energies of optical

transitions between the Landau levels.

5.3 Results: classical to quantum crossover

The substrate normalized transmission is shown in Fig. 5.1a, for fields from 0 to 32 T,

where between 0 and 20 T the spectra were measured at every Tesla and between 20

and 32 T the spectra are taken at every half Tesla. However, for clarity only spectra at

integer fields are shown in Fig. 5.1a and b. The red lines correspond to B = 0, 5, 10,

15, 20, 25 and 30 T. In Fig. 5.1b the real part of the optical conductivity extracted from

the transmission spectra, is presented. The curves are offset with 5σ0 per Tesla, the red

curves correspond to the same fields as the red curves in Fig. 5.1a: B = 0, 5, 10, 15, 20,

25 and 30 T. In agreement with previous studies on highly doped graphene [138, 169,

170], quasi-classical cyclotron resonance is observed; the cyclotron resonance energy,

roughly corresponding to the peak position in σxx(ω), shows a linear dependence on

the magnetic field. However, at low magnetic fields (∼ B < 10 T), the peak position

in σxx(ω) is strongly influenced by the plasmon energy, as was shown in the previous

chapter.

At high magnetic fields, the resonance peak in σxx(ω) still follows an overall linear-

in-B evolution. However, when studying the spectra in Fig. 5.1b closely one can see

that the peak position shows some deviations from a linear evolution. Whereas for

the low magnetic fields the Fermi energy is rapidly crossing the Landau levels when

the field is increased, at higher fields (∼13 T) the range of magnetic fields between
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adjacent filling factors becomes much larger, so that the square-root dependence of the

Landau levels can be observed. This gradual crossover between linear and square-root

evolution is best seen in Fig. 5.2a and b. Figure 5.2a showd the energies of the hole-

like Landau levels for index m = -1 to -13 as a function of magnetic field (with vF =

106 m/s). The (constant) Fermi energy is indicated by a black dashed line. One can

see that at low fields the Fermi energy often crosses Landau levels, selecting different

optical transitions between the Landau levels. The crossing between εF and a Landau

level corresponds to an integer filling factor, indicated by the red dashed lines. At high

fields the magnetic field range between the adjecent integer filling factors becomes

larger. In Fig. 5.2b the experimental conductivity spectra are plotted in a contour plot.

For fields above ∼ 13 T, steps in the resonance energy are observed, which is a clear

sign of the approaching quantum regime. The observed cyclotron resonance corre-

sponds to optical transitions between adjacent Landau Levels, where the Landau level

excitation energies have a
√
B-dependence. The energies of the hole-like transitions

L−m−1 → L−m, indicated by the light grey dashed lines in Fig. 5.2b, are:

ωc = E−m−1 − E−m = −E1(
√
m+ 1−√m), (5.1)

where E1 =
√

2�v2F |eB| is the energy of the first Landau level and m is a positive

integer corresponding to the absolute number of the Landau levels.

The red dashed lines in Fig. 5.2b are placed at the magnetic fields where the cy-

clotron resonance energy shows a step-like structure: at Bm = 11.5, 13.5, 16, 20 and

27 T (placed at identical fields as the filling factors in Fig. 5.2a). This sequence of

field values matches the simple rule |m|Bm = constant (with |m| = 7, 6, 5, 4 and 3) and

allows us to identify the filling factors ν = -4m, which correspond to the half-filled last

occupied Landau Level.

The conductivity spectra in Fig. 5.1b were fitted with the phenomenological Drude-

Lorentz formula for the magneto-optical conductivity using one oscillator (eqn. (2.27),

where n = 1). Although at B = 0 T no peak at finite energy is observed directly in the

experimental spectra. The presence of a plasmonic resonance can be readily observed

in Fig. 5.2; the peak energy does not extrapolate to zero energy at B = 0 T, but to

about 5 meV. Therefore for the fits we used a field independent plasmon energy, ω0, of

5 meV. From the fitting the cyclotron resonance energy, ωc, the spectral weight and the

broadening of the transition, γ, are extracted. Figure 5.3a shows ωc as a function of

field, the energy steps, also visible in the contour plot (Fig. 5.2b), are clearly present.

The dashed lines correspond to the same fields are the lines in Fig. 5.2b. Figure 5.3b

shows both the spectral weight of the resonance and the broadening as a function of

field.
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Figure 5.3: Results of the fitting with the phenomenological model for the magneto-

optical conductivity; (a) the cyclotron resonance energy. Note that ωc was obtained by

fitting the optical spectra with the Drude-Lorentz model, while ω0 was fixed at 5 meV. (b)

The spectral weight and the broadening of the optical transition. The dashed lines in both

graphs are placed at integer filling factors.

5.4 Discussion

5.4.1 Carrier concentration

The sequence of steps observed in the cyclotron resonance energy at mBm = constant,

is compatible with two possible scenarios. Either the Fermi level in graphene is pinned

by electronic states in the SiC substrate, in other words, εF = const =
√
2�v2F |emBm|,

or alternatively, the carrier density remains constant with varying B. Even though

charge transfer between the substrate and graphene cannot be excluded (εF = con-

stant), one would expect to see a large influence of the charge transfer on the spectral

weight of the cyclotron resonance. In epitaxial graphene on silicon terminated SiC,

this effect has not been observed so far.

Importantly, for both scenarios, the carrier density at B = 0 and at every Bm is n =
4emBm/h = (7.9±0.2)×1012 cm−2. This value of the carrier density was extracted

entirely from the Landau level occupation, thus completely independent of vF and

εF . This represents a significant advantage over previous studies of graphene in the

quasi-classical regime [138,170].

5.4.2 Distribution of the Fermi energy

The observation of individual filling factors in the experimental data, revealed as well-

defined steps in the position of the cyclotron resonance peak in Fig. 5.2 is a first in-

dication of the high homogeneity of the Fermi energy. The conditions to observe the

steps in the cyclotron resonance energy are that (i) the carrier scattering has to be low

and (ii) the distribution of Fermi energy has to be small throughout the entire sample.
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Figure 5.4: Color plot of the model conductivity for (a) T = 10 K, (b) T = 50 K and (c) T

= 100 K.

In the previous chapter, we have seen that the broadening in this type of graphene

is about 12 meV at 0 T and decreases to about 10 meV at 7 T. The fitting results ob-

tained with the high magnetic field spectra show a similar trend for the broadening:

at low fields the broadening is about 13 meV, while it drops down to almost 7 meV

before stabilizing at high fields at around 10 meV. The decrease of the broadening at

high fields is due to the smaller influence of the plasmon energy on the cyclotron res-

onance transition, therefore sample inhomogeneity plays a smaller role at high fields.

However, the broadening could also be caused (for some part) by a distribution in the

chemical potential across the graphene. Notably, strong doping inhomogeneity and

electron-hole puddles were observed in graphene on a Si/SiO2 substrate [171].

To visualize the influence of spatial variations in the chemical potential we mod-

eled the magneto-optical conductivity of an isolated graphene layer using the Kubo

formalism for single layer graphene (see sections 3.3.3 and 2.2.3), for fields from 0.4

to 35 T. The carrier scattering, γ, is assumed to be independent of Landau level number

and energy. The Fermi energy of the graphene was fixed at 325 meV. In the model for

the optical conductivity (eqn. (3.27)) the effects of plasmons and magneto-plasmons

are not incorporated, however at high magnetic fields the cyclotron resonance energy

is much larger than the plasmon energy and therefore the spectra are dominated by

cyclotron resonance and Landau level transitions.

Figure 5.4 shows color plots of the model σxx(ω) for a fixed broadening of 10 meV.

To account for a distribution in the Fermi energy in the graphene layer the temperature

was varied from 10 to 50 and 100 K. The Fermi-Dirac distribution, which takes into

account the effect the Fermi energy and the temperature, forms a linear term in the

Kubo formula (eqn. (3.27)), therefore raising the temperature has a similar effect as

introducing a distribution in Fermi energy (note that we assume the Fermi energy to

be temperature independent).

In Fig. 5.4a, T=10 K, which corresponds to a variation in the Fermi energy of only

about 0.9 meV. The step-like structures in the model are somewhat sharper than the

ones observed in the experimental data, while γ corresponds to the average broaden-
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ing extracted from the spectra. By increasing the temperature in the model the step-like

structures become less sharp, as is observed in Fig. 5.4b, where T = 50 K, and Fig. 5.4c,

where T = 100 K. In comparison with the experimental data, shown in Fig. 5.2, a tem-

perature of about 50 K shows the best match between model and experiment, whereas

100 K clearly shows less sharp structures than observed in the experiment. The Fermi

energy spread corresponding to 50 K is about 4.6 meV, which is remarkably small for

graphene on a substrate and underlines once more the quality of epitaxial graphene.

Note that the actual spread in Fermi energy might be somewhat smaller or larger since

the exact distribution curve is not known.

5.4.3 Cyclotron mass, Fermi velocity and Fermi energy
Using the classical relation for cyclotron frequency, ωc = eB/mc, the cyclotron mass

can be extracted from the magnetic field dependence of the cyclotron resonance energy,

plotted in Fig. 5.3a. From ωc(B) we find that mc = 0.058±0.01 me, where me is the

free electron mass. This is in close agreement with the cyclotron mass extracted in the

previous chapter (mc = 0.055 me) from low field (≤ 7 T) measurements on a similar

sample.

Using the relation |εF | =mcv
2
F (eqn. (3.24)), together with |εF | = �vF

√
π|n|, we ob-

tain an expression for vF depending onmc and the carrier density n: vF = �
√

π|n|/mc.

The carrier density, n = (7.9±0.2)×1012 cm−2, was determined previously in sec-

tion 5.4.1 and for the cyclotron mass we use mc = 0.058±0.01 me. We find that vF
= (0.99±0.02)×106 m/s. In a next step, using either |εF | = mcv

2
F or |εF | = �vF

√
π|n|,

the Fermi energy, |εF | = 325±5 meV, is extracted.

5.4.4 Spectral weight
The optical conductivity can be described using the simple model of non-interacting

Dirac-fermion quasiparticles with the characteristic linear dispersion. Such an effec-

tive single-particle picture [31] correctly reproduces the measured strength of interband-

absorption processes with the characteristic onset at 2|εF | and the constant universal

conductivity, σ0 = e2/4� [38–41,172,173]. In the light of the effective single-particle

picture the Drude spectral weight, D =
∫∞
0

σintra(ω)dω, can be expressed as:

D =
E2vF

√
π|n|

2�
=

π|n|e2
2mc

=
2σ0|εF |

�
(5.2)

where mc = |εF |/v2F . The experimental measurements available so far [99, 100] are

in conflict with this prediction. They suggest a suppression of the Drude weight up

to 40% (notably, in graphene samples with high carrier concentrations). Therefore,

it is an open question whether the effective single-particle picture correctly describes

the dynamical conductivity of graphene. These doubts are additionally fostered by a

startling report on non-vanishing absorption below the 2|εF | threshold for interband
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processes [42, 174]. Importantly, a discrepancy between the experimental spectral

weight and the weight expected based upon the effective single-particle picture could

point at interactions between quasiparticles in graphene.

According to the effective single particle model, the expected Drude weight found

from the experimentally obtained Fermi energy D�/σ0 = 2|εF | = 650±10 meV. Addi-

tionally, the Drude weight can also be directly extracted from our data by estimating

the area under optical excitation in σxx(ω). To account for the partial transfer of the

Drude weight into the lower magneto-plasmon branch, the spectra were fitted with

the Drude-Lorentz formula, assuming the confined-plasmon frequency of ω0 = 5 meV

(see section 5.3). The fits directly reveal the spectral weight of the cyclotron resonance

peak, which is plotted in Fig. 5.3b as a function of field. The spectral weight extracted

from the fits is slightly varying around 600 meV, which is smaller than the expected

spectral weight based on the Fermi energy. We note that the Drude weight is fully

transformed into the strength of the cyclotron resonance absorption in the classical

limit and, with a good precision, into the strength of inter-Landau-level transitions in

the quantum limit.

In order to compare both estimates of the Drude weight, the following corrections

should be taken into account: (i) the coverage of the substrate by graphene is probably

not 100% but around 95% (see AFM measurements on the similarly prepared sample

discussed in section 4.3.3 of the previous chapter), (ii) the hydrogenization process

to passivate silicon dangling bonds is not always complete: a small part of the sam-

ple remains covered only by the ‘Bufferlayer’ [175], (iii) bilayer graphene may also

appear at selected locations [76] and last (iv) the area below the experimental σxx(ω)
spectra, extracted using the thin film relation (eqn. (2.47)), is suppressed with respect

to the Drude weight, the underestimation for these spectral weights and fields could be

up to 7%, see appendix B.1. All these considerations show that deducing the Drude

weight from the fit could result in an underestimation of the real spectral weight by

approximately 5 to even 15%. Therefore, we find that our two independent estimates

of the Drude weight agree with each other and should conclude that we do not observe

any significant deviation from the validity of the effective single particle model. These

findings are in excellent agreement with a recent theoretical work [98], which predicted

based on many-body diagrammatic perturbation theory that the Drude weight in doped

graphene should be in close agreement with the effective single-particle picture due to

a competition between self-energy and vertex corrections.

Our findings on the cyclotron resonance spectral weight thus do not support re-

cent transmission studies [99, 100] in which a significant suppression of the Drude

weight in comparison with the effective single particle expectation has been reported.

The reason for this discrepancy remains unclear at the moment, although we believe

that at least some part of the suppression of the Drude weight reported in [99] might

stem from the normalization procedure used, in which the Drude-type absorption of

graphene in the regime of electron-hole puddles (when the sample is neutral on aver-

age) is neglected [171]. For a more detailed discussion of the Drude spectral weight in

single layer epitaxial graphene on SiC see Ref. [176].
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5.5 Conclusion
To conclude, we observed the evolution of an optical transition in single layer epitax-

ial graphene from the quasi-classical cyclotron resonance into the quantum-like tran-

sitions between individual Landau levels. The optical spectra, plotted as a function of

field, clearly reveal step-like structures at integer filling factors. The carrier density

was extracted directly from the Landau level degeneracy at these filling factors.

The magneto-optical conductivity was fitted using the phenomenological Drude-

Lorentz model, from which the cyclotron resonance energy, the broadening and the

spectral weight were found for all magnetic fields. The cyclotron resonance energy

shows the same step-like structures already observed in the conductivity, which are

associated with the occupation level shifting from a high Landau level to a lower one.

The broadening of the optical transition proves to be small. By using a model of

the conductivity of graphene we show the effects of larger broadening and a possible

distribution of the Fermi energy across the sample. From the modeling we conclude

that this spread should be as small as ∼ 4 to 5 meV to observe the clear step-like

structures, whereas the Fermi energy itself is about 325 meV. This incredibly small

variation underlines the good quality of single layer epitaxial graphene.

Last, it was shown that the oscillator strength of the cyclotron resonance found

from the fitting procedure is in a good agreement with the Drude weight expected

from the effective single-particle picture, where D = 2|εF |σ0. Therefore, the single-

particle-like picture is sufficient to account for our data. This stands in contrast with

earlier optical studies of the Drude weight [99, 100], which observed a suppression of

the weight.
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6

Multi-component optical conductivity in multilayer
graphene

6.1 Introduction

The electronic properties of epitaxial graphene grown on Si- and C-faces of SiC,

are markedly different [86,177]. Importantly, multilayer epitaxial graphene on the car-

bon face shows a number of electronic features typical of isolated monolayer graphene

as revealed by infrared spectroscopy [53], scanning tunneling microscopy (STM) [57,

82], angle-resolved photoemission spectroscopy (ARPES) [85] and quantum Hall ef-

fect [128]. In particular, the Landau levels in this material demonstrate a square-root

dependence on the perpendicular magnetic field B and the level index n.

It is generally believed that such an effective electronic decoupling of the layers is

a result of a twisted, non-Bernal stacking of the C-face grown graphene layers. Signifi-

cant progress in theoretical understanding of the influence of stacking on the electronic

structure and Landau levels was made [4,87–94]. However, no complete theory able to

quantitatively predict the effect of twisting on the band structure at an arbitrary stack-

ing angle exists at the moment even for bilayer graphene. In practise, many layers are

present with a random rotation between each pair of neighboring layers. Moreover,

the substrate induces a strong variation of the Dirac-point energy ED with respect to

the chemical potential and therefore a very different density and mobility of carriers

in different layers. More experiments are needed to understand the complex electronic

structure of this system and establish favorable conditions for applications.

In parts of this chapter we follow closely our work the published in I. Crassee et al., Phys. Rev. B

84, 035103 (2011).
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In this chapter we present an extensive magneto-optical study of multilayer epi-

taxial graphene grown on the carbon side of SiC, by combining the Faraday rotation

measurements with the transmission spectra and extracting both the diagonal and Hall

optical conductivity. Spectra were measured on a ‘thin’ multilayer sample, with on

average a coverage of 6 graphene layers (section 6.3) and a ‘thick’ multilayer sam-

ple, with about 17 rotationally stacked layers (section 6.4). For the 6 layer sample,

also the dependence of optical spectra on temperature and environmental (surface)

doping are studied. Different magneto-optical contributions, such as cyclotron reso-

nance and Landau level transitions, are disentangled and studied quantitatively using

a multi-component cyclotron model. This analysis allows us to analyze optical inten-

sities of the various transitions and make comparison to theoretical models. The most

unexpected result of this study is the anomalously small spectral weight found for the

optical transitions between the lowest Landau levels (section 6.5.3), which clearly does

not agree with the picture of multilayer graphene as a stack of isolated mono layers.

6.2 Experimental details
The type of epitaxial graphene under investigation in this chapter is rotationally stacked

multilayer graphene grown on the carbon side of SiC. All samples are prepared on a

SiC substrate with a typical thickness of about 370 μm and a surface area of 10×10mm2.

The backsides of the samples were checked to be free of graphene by x-ray photoe-

mission spectroscopy (XPS). The reference substrate is prepared from the same SiC

wafer. The two samples from which experimental results are presented in this chapter

have about 6 and 17 graphene layers, respectively. The layer thickness was determined

by XPS and by mid infrared microscopy on random spots on the sample. The layer

closest to the SiC interface is highly electron doped, while in subsequent layers the

Dirac point is shifted towards the Fermi energy. The outmost layers are close to neu-

tral doping. More details and the synthesis method of multilayer graphene on SiC were

discussed in section 3.4.2.

The Faraday rotation θ(ω) and magneto-optical transmission T (ω) were measured

in the energy range between 8 and 85 meV. The optical transmission was measured

with respect to the bare SiC substrate without graphene. The optical spot had a diam-

eter of 5 mm. During the experiment both the field dependence (at T = 5 K) and the

temperature dependence (at B = 3 T) of the optical spectra were measured.

6.3 Results on 6 layer graphene
The substrate normalized transmission and Faraday rotation observed in multilayer

graphene, as plotted in Fig. 6.1a and b, are strikingly different from single layer

graphene. Apart from the low energy resonance, both the Faraday angle and absorption

spectra show additional, strongly field dependent resonance structures at higher ener-
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Figure 6.1: Magneto-optical spectra of 6 layer graphene at 5 K for several magnetic fields

up to 7 T. The curves in all panels are offset. Larger offsets correspond to higher magnetic

fields. Panels (a) and (b) show the measured substrate normalized transmission and the

Faraday rotation spectra, respectively. The red and black arrows in panel (b) point at the

0 → 1 and the 1 → 2 Landau level transitions. In panels (c) and (d) the reals parts of

σxx(ω) and σxy(ω) (solid lines) and multi-component fits (black dotted lines), normalized

to the universal conductivity σ0 are plotted. The curves are offset for clarity. The offset

per curve is indicated by the straight dashed lines on the right hand side of the graphs.

gies, indicated by the arrows in Fig. 6.1b. As was found in previous studies [53, 54],

these spectral features correspond to optical transitions between individual LLs. The

series of transitions with energies E1 − E0 and E2 − E1 can be identified from the

spectra.

The spectral features observed in the Faraday rotation show an antisymmetric

structure, where the inflection point in the curve corresponds to the peak position ob-

served in the transmission spectra, see section 3.3.3. The slope at this point coincides

with the sign of the cyclotron frequency and reveals the polarity of the charge carriers

involved in the transition [138]: a positive (negative) slope signals electron (hole) like

carriers. For epitaxial graphene on the Si side of SiC we found a negative slope and

hole doping. On the contrary, the sign of the slopes observed in the Faraday rotation

measured on epitaxial graphene grown on the C side of SiC is (mostly) positive. There-

fore the Faraday rotation results (mostly) from optical transitions between electron like

Landau levels, such as the 0 → 1 and the 1 → 2 transitions indicated in Fig. 6.1b by

the red and black arrows respectively. The low frequency part of the spectra features

a cyclotron-resonance like structure, similar to the data on single layer graphene, but

with opposite sign of the charge carriers.

The real parts of the diagonal, σxx(ω), and Hall, σxy(ω), optical conductivities
can be directly obtained from the transmission and Faraday rotation spectra by using

the general thin-film approximation, taking internal reflections in the substrate into

account. For the details concerning the thin film relations, see sections 2.3.1 and 2.3.3.

The spectral features observed in multilayer graphene are several times weaker than
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Figure 6.2: The diagonal (a) and Hall (b) optical conductivity at 3 T and 5 K, normalized

to the universal conductivity σ0, for 6 layer graphene. Also plotted: results of the multi-

component modeling described in the text. The components in the graph are the individual

contributions needed to create the total fit shown by the black dotted line on top of the

data. The components in panel (b) have an offset indicated by the blue dashed line at

the right side of the graph. Panels (c) and (d): the optical conductivities in the circular

basis σ+(ω) and σ−(ω) corresponding to the absorption of right and left circular polarized

light respectively. In the insets the low-index LL transitions allowed in the corresponding

polarizations are shown.

the absorption observed in monolayer graphene, therefore we can use the linear thin

film approximation, eqn. (2.49). We reduced the spectral resolution to 1 meV in order

to suppress the Fabry-Perot interference in the substrate.

The obtained magneto-optical conductivities are plotted in Fig. 6.1c and d. The

diagonal conductivity spectra clearly show a Drude like response at the low energies,

which evolves into cyclotron resonance in magnetic field, signaling high doping. At

higher energies a peak with a square-root dependence on field emerges, which origi-

nates from Landau level transitions. Similarly, the off-diagonal conductivity shows a

large structure at the low energies corresponding to the cyclotron resonance. In addi-

tion, the Landau level transitions are clearly visible at higher energies.

82



6.3 Results on 6 layer graphene

6.3.1 Magneto-optical conductivity at 3 T and 5 K

Figure 6.2 shows the magneto-optical conductivity spectra at B = 3 T and T = 5 K.

The diagonal and Hall conductivities, normalized by σ0, are plotted as solid lines in

Fig. 6.2a and 6.2b. The rich structure of the spectra indicates the presence of multiple

optical transitions. The absorption at low energy, shown by the arrow, corresponds to

quasi-classical CR coming from the highly doped graphene layer closest to the SiC

substrate [138]. At about 60 to 70 meV, a strong peak in σxx(ω) is observed that

matches the energy of the 0 → 1 or −1 → 0 LL transitions at this field. The Hall

conductivity displays a ‘zig-zag’ shape in this spectral range, suggesting that there are

multiple components contributing to the optical response. In addition, a structure is

present at about 27 meV, most clearly seen in σxy(ω), resulting from the 1 → 2 LL

transition.

In order to disentangle different contributions to the magneto-optical spectra we

used a multi-component model, eqn. (2.27) and eqn. (2.28), where the total conduc-

tivity is given by a sum of separate cyclotron resonances. Each of the i components

has a cyclotron frequency, ωc,i, a spectral weight Di and a broadening γi, while the

resonance frequency ω0,i = 0. Physically speaking, each component can describe ei-

ther a quasi-classical cyclotron resonance or a transition between individual Landau

Levels separated by energy |�ωc,i|. Notably, σxx(ω) does not depend on the sign of the

charge carriers, unlike σxy(ω), where the sign can be derived directly from the spectral

shape [138]. In σxx(ω) each component results in a peak centered at |ωc,i|. In σxy(ω)
however, it shows an antisymmetric structure, where |ωc,i| corresponds to the inflection

point in the curve, see section 3.3.3. A negative slope at this point reveals hole doping,

while a positive slope corresponds to electron like doping.

The spectra σxx(ω) and σxy(ω) were simultaneously fitted using eqns. (2.27) and

(2.28), while allowing the parameters ωc,i, Di and γi to change freely. The fitting

curves are shown in Fig. 6.2a and 6.2b, as black dotted lines. We found that a minimal

model describing satisfactorily the spectral structures contains six components, which

are shown separately in the same panels by additional curves.

Interestingly, it was necessary to introduce at least three components with transition

energies between 60 meV and 70 meV to describe the structure in this range. Two of

the resonances are electron like, which we designate as LL0→1,a and LL0→1,b, and

one is hole like, referred to as LL−1→0 (the symbol LLi→j is used to designate the LL

transition between levels i and j). Note that all these transitions are actually at different

energies, which is clearly seen already from the presence of three inflection points in

the optical Hall conductivity. A fourth component is at about 27 meV and corresponds

to the electron like LL1→2 transition. The fifth component with a small value of �ωc

= 9 meV originates from a quasi-classical electron like cyclotron resonance. Finally,

there is a component with zero cyclotron frequency and large scattering, which forms

a broad absorption background present in σxx(ω), but absent in σxy(ω). The possible

origin of this background will be discussed in section 6.5.3.
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6.3.2 Basis of circular polarized light

The absorption of right- and left-handed circular polarizations (which are shown in the

insets of Fig. 6.2c and 6.2d) is described by the real parts of σ+(ω) and σ−(ω) respec-
tively. This basis provides an intuitive way to present the magneto-optical conductivity

showing individual LL transitions, which are active for strictly one circular polariza-

tion or the other [127, 131, 159]. In particular, for right circularly polarized light,

transitions between electron like Landau levels with n ≥ 0, such as LL0→1, LL1→2

etc, are active, provided that the chemical potential is in between the corresponding

Landau Levels. Similarly, for left circularly polarized light, transitions between hole

like Landau levels, (LL−1→0, LL−2→−1, etc.) are excited. (Note that also transitions

between electron- and hole like Landau levels are optically allowed. However, for

the magnetic fields used, these transitions are beyond the experimental spectral range,

except at 0.5 T, where rather weak contributions from LL−1→2 and LL−2→1 could be

observed.)

The magneto-optical conductivity in the basis of circular polarization can be ob-

tained using eqn. (2.19), as discussed in section 2.2.2. From eqn. (2.19) one can see

that the imaginary part of σxy(ω) is needed to obtain the real part of the magneto-

optical conductivity in the circular basis. Experimentally, Im[σxy(ω)] is directly re-

lated to the ellipticity of the transmitted light. However, in the present experiment the

error bars on the ellipticity are larger than the ones on the Faraday angle. Therefore,

we extract the imaginary part of σxy(ω) and the real part of σxx(ω) using the multi-

component fitting discussed in section 6.3.1. Instead of directly applying eqn. (2.19)

to the experimental data, we use the fitting results to plot σ±(ω).
Figure 6.2c and 6.2d show the magneto-optical conductivity at 5 K and 3 T ob-

tained from the fitting results shown in Figs. 6.2a and b. The electron like transitions

LL0→1,a, LL0→1,b, LL1→2 as well as the cyclotron resonance peak are visible in σ+(ω),
while the hole like LL−1→0 transition manifests itself in σ−(ω). Because of the small

value of ωc and a relatively large scattering, the cyclotron resonance component has

also a tail in σ−(ω). The absorption background contributes equally to σ+(ω) and

σ−(ω).

6.3.3 Dependence on magnetic field

The magnetic field dependence of σxx(ω) and σxy(ω), measured at 5 K, is shown in

Figs. 6.1c and 6.1d. Indeed a multi-component character of the spectra can be observed

at the different fields, even though the resonances show a strong field dependence. The

six component model described in section 6.3.1 was used to fit σxx(ω) and σxy(ω)
simultaneously for every field. The multi-component fits, shown as black dotted lines

in Figs. 6.1c and 6.1d, are used to calculate the magneto-optical conductivities in the

basis of right and left handed circularly polarized light according to eqn. (2.19), which

are plotted in Figs. 6.3a and 6.3b, respectively.

Similarly to what was already observed in Figs. 6.2c and 6.2d, one can see that
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Figure 6.3: The model-derived magneto-optical conductivity of 6 layer graphene at 5 K,

in the basis of right (a) and left (b) circular polarization normalized to the universal con-

ductivity σ0, for several magnetic fields up to 7 T. The curves in all panels are offset as

indicated by the dashed lines. Larger offsets correspond to higher magnetic fields.

σ+(ω) (Fig. 6.3a) shows a somewhat more rich structure than σ−(ω) (Fig. 6.3b).

Whereas in σ−(ω) only one peak corresponding to the hole like LL−1→0 transition

is clearly distinguishable, in σ+(ω) cyclotron resonance transitions linear in field and

at least three Landau level transitions at higher energies are present.

6.3.4 Temperature dependence

The temperature dependence of σxx(ω) and σxy(ω) at a field of 3 T is shown in

Fig. 6.4a and 6.4b, respectively. In both sets of curves, the low energy cyclotron

resonance structure changes only weakly with temperature. The Landau level transi-

tions however, show a very different temperature dependence. In σxx(ω) the structure

originating from the combination of the LL0→1,a, LL0→1,b and LL−1→0 transitions is

preserved at all temperatures, although at elevated temperatures the individual peaks

are about 3 meV broader than at low temperatures as obtained from the multi com-

ponent fits shown as the black lines in the same graphs. The spectral weight of the

LL0→1,a, LL0→1,b and LL−1→0 transitions is almost temperature independent. How-

ever, in σxy(ω), the spectral features corresponding to the Landau level transitions are

strongly diminished at high temperatures and almost disappear at room temperature.

The extinction of the spectral structures corresponding to the Landau level transi-

tions in σxy(ω) with warming up is due to the simultaneous presence of electron and

hole like Landau level transitions as seen in the graphs of σ+(ω) and σ−(ω), plotted
in Fig. 6.4c and 6.4d. The separate Landau level transitions are not much affected by
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Figure 6.4: Magneto-optical conductivity of 6 layer graphene at 3 T, normalized to the

universal conductivity σ0, for several temperatures between 5 K and 300 K. The curves in

all panels are offset as indicated by the dashed lines. Larger offsets correspond to higher

temperatures. Panels (a) and (b) show the measured spectra of σxx(ω) and σxy(ω) (solid
lines) and multi-component fits (black dotted lines, only at 5, 100 and 200 K). In panels

(c) and (d) the model-derived σ+(ω) and σ−(ω) are shown.

temperature, but at high temperatures, the electron- and hole- like components that

have slightly different Fermi velocities overlap more, due to the increased broadening.

In σxy(ω) the contributions are subtractive and more overlap results in weaker spectral

structures. On the other hand, in σxx(ω), which is unsensitive to the sign of the charge

carriers, the contributions are additive and the transition peak appears less affected.

6.4 Results on 17 layer graphene
Similar to the magneto-optical measurements on the 6 layer graphene sample, we per-

formed transmission and Faraday rotation measurements on 17 layer epitaxial graphene

for fields up to 7 T and at a fixed temperature of 5 K. The real parts of the diagonal,

σxx(ω), and Hall, σxy(ω), optical conductivities were obtained from the transmission

and Faraday rotation spectra by using the general thin-film approximation, taking in-

ternal reflections in the substrate into account (see sections 2.3.1 and 2.3.3). As for the

6 layer sample, we used the linear thin film approximation, eqn. (2.49). Importantly,

when measuring the transmission spectra, this time we did not reduce the spectral res-

olution in order to suppress the Fabry-Perot interference in the substrate, instead we

used the best resolution to obtain the full interference spectra.

We locally fitted every inverse Fabry-Perot oscillation in the high resolution trans-

mission spectra with a sine function. From the local fit we obtained the average trans-

mission spectra without interference, which can be used to extract the real part of

σxx(ω). Additionally, the fit to the interference fringes provides experimental access

to the imaginary part of σxx(ω), as is described in section 2.3.2. The real parts of the

obtained magneto-optical conductivities are plotted in Fig. 6.5a (Reσxx(ω)) and b
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Figure 6.5: 17 layer epitaxial graphene: the real parts of the diagonal (a) and Hall (b)

optical conductivity, normalized to the universal conductivity σ0 at 5 K for fields up to 4 T,

measured at 5 K. In (a) the arrows highlight the multi component character of the Landau

level transition. In (b) the arrows point out the two inflections points with opposite slope.

All curves are offset for clarity, with an offset of 60σ0 per Tesla.

(Reσxy(ω)), for fields up to 4 T, at which the LL0→1 and LL−1→0 transitions are still

fully resolved.

The real part of the diagonal conductivity, shown in Fig. 6.5a, clearly reveals quasi-

classical cyclotron resonance at the low energies. Additionally, individual Landau level

transitions, with a square-root dependence on field, are observed at the higher energies.

Similar to the Landau level transitions seen in the 6 layer graphene sample, the struc-

ture in σxx(ω) consists of multiple peaks, most clearly seen at the high magnetic fields

(as is pointed out by the arrows at 4 T). The multi component character of the Landau

level transitions can also be seen from the Hall conductivity, shown in Fig. 6.5b: one

can clearly see a structure with two inflections points (see the arrows at 4 T), indicat-

ing at least two Landau level transitions with opposite sign of the charge carriers and

different Fermi velocity.

The imaginary part of the diagonal conductivity obtained from the interference

analysis are plotted as the difference spectra between finite magnetic field and zero

field, Im (σxx(ω,B)−σxx(ω, 0)), in Fig. 6.6. The solid lines correspond to the exper-

imentally obtained data, for fields up to 4 T, at a temperature of 5 K. The dashed lines

are obtained by a direct Kramers-Kronig transformation of the spectra of Reσxx(ω)
(see section 2.2.4). Clearly, the experimental spectra of Im (σxx(ω,B) − σxx(ω, 0))
obtained independently from Reσxx(ω) and the curves obtained via the Kramers-

Kronig relations match very well. However, around the cyclotron resonance at low
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Kronig transformation of the real part of σxx(ω). All curves are offset for clarity, with an

offset of 100σ0 per Tesla.

energies and at the structure corresponding to the Landau level excitations, the dashed

lines show some deviations from the experimental spectra. This discrepancies could

be caused by the extrapolation of Reσxx(ω) at the low and high energies, which can

strongly affect the non-local Kramers-Kronig transformation. Therefore, whenever

possible, an independent experimental determination of supplementing optical param-

eters such as transmission and interference fringes is highly beneficial for the complete

extraction of the complex optical properties.

6.4.1 Basis of circular polarized light
To extract the magneto-optical conductivity in the circular basis, we followed a dif-

ferent approach than for the 6 layer graphene: instead of fitting the diagonal and Hall

conductivity, we performed a direct Kramers-Kronig transformation (section 2.2.4) on

the real part of the Hall conductivity to extract Im σxy(ω). With the use of eqn. (2.19)

the conductivities in the basis of right- (revealing electron-like transitions) and left-

(revealing hole-like transitions) handed circularly polarized light were found. σ+(ω)
and (b) σ−(ω) are plotted in Fig. 6.7a and b, respectively.

In σ+(ω) (Fig. 6.7a) both the cyclotron resonance, at low energy, and the LL0→1

transition at higher energies, are clearly present. Moreover, similarly to the 6 layer

sample, the LL0→1 transition seems to consist of at least two components, which is

most clearly seen at the high fields. However, in σ−(ω) (Fig. 6.7b), in which the

LL−1→0 transition can be observed, one can also see that the Landau level transition is
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Figure 6.7: The magneto-optical conductivity in the basis of circular polarization of 17

layer graphene; with (a) σ+(ω) and (b) σ−(ω), normalized to the universal conductivity σ0
at T = 5 K, for fields up to 4 T. The black dashed lines are fits to the LL0→1 (a) and LL−1→0

(b) transitions, using the Drude-Lorentz model for the magneto-optical conductivity. All

curves are offset for clarity, with an offset of 60σ0 per Tesla.

clearly a superposition of at least two LL−1→0 transitions with different Fermi velocity.

Whereas in the 6 layer graphene sample we observed only one single hole-like Landau

level transition.

In order to analyze the multi component LL0→1 and LL−1→0 transitions, the magneto-

optical conductivities were fitted in the region of those Landau levels using a multi

component Drude-Lorentz model for the magneto-optical conductivity. We followed

the same procedure as was detailed in section 6.3.1, with the exception that here we

fitted σ+(ω) and σ−(ω) instead of σxx(ω) and σxy(ω). The fits to the Landau level

transitions are shown in Fig. 6.7a and b as the black dashed lines. The results obtained

from the fits are plotted in Fig. 6.11 and discussed in section 6.5.2.

6.5 Discussion

6.5.1 Cyclotron resonance transition and plasmonic resonance

The field dependence of fitting parameters associated with the quasi-classical cyclotron

resonance observed in the 6 layer graphene sample are shown in Fig. 6.8. Like the cy-

clotron resonance observed in highly doped single layer graphene grown on the silicon

face of SiC (see chapter 6.5.1), the energy of the cyclotron resonance is almost linear

in field, as seen in Fig. 6.8a. However, at low fields a departure from the linear depen-

dence can be seen, which is most likely due to the presence of plasmonic resonance.
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Figure 6.8: Parameters of the cyclotron resonance transition as a function of magnetic

field obtained from the multi-component fits to σxx(ω) and σxy(ω) of Fig.6.3 (6 layer

graphene). (a) The transition energies of the cyclotron resonance. The solid lines is a fit

using eqn. (3.25). (b) Spectral weight of the cyclotron resonance peak. (c) The broadening

of the cyclotron resonance transition. Errorbars in all figures are the standard deviation of

several fitting results. The error bars in panel (a) are within the symbol size.

Note that the fitting was done with ω0 = 0. We will come back to plasmonic resonance

in the end of this section.

The observation of cyclotron resonance in both the 6 layer and the 17 layer epi-

taxial graphene samples reveals a high doping in at least a part of the graphene layers.

Like in single layer graphene, the Landau levels close to the Fermi energy have high

index, so that when sweeping the magnetic field the transition energy follows a linear,

instead of square-root, dependence on fields [30, 122]. In this case the cyclotron fre-

quency is inversely proportional to the Fermi energy, as is see from eqn. (3.25). Using

eqn. (3.25) and taking as an estimate vF = 1.0 × 106 m/s we obtain εF = 0.24 eV for

this particular sample, which corresponds to a carrier concentration n = ε2F/πv
2
F�

2 =
4.2 × 1012 cm−2.

The spectral weight, D, of the cyclotron peak, shown in Fig. 6.8b, is field indepen-

dent within the experimental accuracy. As was discussed in the previous chapter, in

the absence of interactions, the Drude weight in a single graphene layer is related to

εF :
�D
σ0

= 2|εF | (eqn. (5.2)). This provides εF = 0.16 eV and accordingly n = 1.9×
1012 cm−2, which are significantly smaller than the values based on the linear depen-

dence of the cyclotron frequency. Possibly, interactions renormalize the Drude weight

and spread the missing weight over a large spectral range. In our fits this missing

weight might be ‘absorbed’ by the broad background component mentioned above.

On the other hand, we obtain a reduced Drude weight based on the assumption that for

the bottom layer vF = 1.0× 106 m/s. A smaller Fermi velocity (by about 20%) would

make the cyclotron resonance and the Drude weight match according to eqn. (5.2) and

eqn. (3.25).
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The scattering rate, γ, (Fig. 6.8c) of the cyclotron peak is field independent and

equal to about 14 meV. Using the semi-classical relation:

μ =
|ωc|
γ|B| , (6.1)

we find a mobility of about 2000 cm2/Vs, based on the experimental values of the

scattering rate and the cyclotron frequency. Magneto-transport measurements show

that the carrier density and mobility in multilayer graphene are correlated [178]. The

values of n and μ that we obtain here for the cyclotron resonance fall on the generic

dependence found in Ref. [178].

As mentioned above, the magnetic field dependence of the energy of the cyclotron

resonance hints at the presence of plasmonic resonance in multilayer graphene grown

on the carbon side of SiC. In chapter , the plasmon in single layer graphene was re-

vealed by polarization dependent THz transmission spectroscopy, showing a clear ab-

sorption peak at finite energy, while the energy of the absorption peak was clearly

correlated with the polarizer angle (section 4.3.2). Grain boundaries in the graphene

layer were visualized using AFM topography images, and it was found that the po-

larization dependence of the plasmon energy matches the anisotropy revealed by the

AFM maps. Unfortunately, AFM topography images made on multilayer graphene

only reveal grain boundaries in the top most layer, but not the structure of the lowest

graphene layer giving rise to the cyclotron resonance.

However, polarization dependent THz transmission measurements performed on

the 6 layer graphene sample do indeed reveal an absorption peak at finite energy, as

can be seen in Fig. 6.9. Two observations can be made: (i) the spectra are strongly

polarization dependent and (ii) there is a transmission dip (absorption peak) between

3 and 5 meV depending on the polarization. Therefore this sample also shows a clear

deviation from the Drude behavior at low enough frequencies, similar to graphene on

the silicon face of SiC. The absorption peak is observed at somewhat lower energy than

the plasmon resonance found in Si-face monolayer graphene. This peak might have a

similar plasmon origin as in the case of monolayer graphene, however, the presence of

many layers with different doping levels makes it difficult to tell from which layer this

absorption peak is originating. Thus we cannot unambiguously conclude on its origin.

6.5.2 Landau level transitions
Next we discuss the field dependence of the lowest-index Landau level transitions in

6 layer graphene: the electron-like LL0→1,a, LL0→1,b and the hole-like LL−1→0. From

σ+(ω) and σ−(ω), see Fig. 4.8, it is particularly evident that the two electron like

and the hole like resonances have a similar magnetic field dependence. The ener-

gies of these Landau level transitions, shown in Fig. 6.10a, clearly follow the square-

root dependence on magnetic field typical of massless Dirac fermions (eqn. (3.22)),
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Figure 6.9: Terahertz transmission of 6 layer graphene on the C face of SiC for different

polarizations at 5 K and 0 T. The zero position of the polarizer is chosen randomly.

in accordance with previous observations in similar epitaxial graphene samples [53]

and exfoliated monolayer flakes [54, 55]. From σ+(ω) and σ−(ω) obtained on the 17

layer graphene, similar conclusions can be drawn. It is clear that the two electron like

and two hole like resonances follow the typical square-root dependence on magnetic

field (Fig. 6.7). The energies of all the low-index Landau level transitions observed

in 17 layer graphene, namely LL0→1,a, LL0→1,b, LL−1→0,a and LL−1→0,b, are shown in

Fig. 6.11a and b.

Fitting the field dependence of the Landau level transition energies using eqn. (3.22)

provides the Fermi velocities listed in Table 6.1; for both samples, they show a spread

of about 10%. The difference between the Fermi velocities found from the electron

like LL0→1 and hole like LL−1→0 transitions is only about 2%. However, the presence

of multiple distinct inflection points in σxy(ω) corresponding to the energies of the

Landau level transitions, is a clear sign that the transition energies and therefore the

Fermi velocities are different.

6 layer graphene 17 layer graphene

Transition vF (m/s) Transition vF (m/s)

LL0→1,a 1.02 × 106 LL0→1,a 1.02 × 106

LL0→1,b 1.11 × 106 LL0→1,b 1.10 × 106

LL−1→0 1.09 × 106 LL−1→0,a 1.03 × 106

LL1→2 1.01 × 106 LL−1→0,b 1.09 × 106

Table 6.1: Fermi velocities found for different Landau level transitions in 6 layer and 17

layer graphene samples.
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Figure 6.10: Parameters of various Landau level transitions as a function of magnetic

field obtained from the multi-component fits to σxx(ω) and σxy(ω) shown in Fig.6.3 (6

layer graphene). (a) The transition energies of the LL0→1,a (squares) and the LL0→1,b

(triangles) transitions. The lines are a fit using eqn. (3.22). (b) The transition energies of

the hole-like LL−1→0 transition. The line is a fit using eqn. (3.22). (c) The sum of the

spectral weights of the LL0→1,a and the LL0→1,b transitions. (d) Spectral weight of the

LL−1→0 (circles) transition peaks. (e) The corresponding broadening of all the Landau

level transitions. In (e) the colors and shapes of the dots correspond to the legend in (a)

and (b). The errorbars in all figures are the standard deviation of several fitting results.

The error bars in panel (a) are within the symbol size.

The spectral weights of the lowest-index Landau level transitions, plotted in Figs. 6.10c

and d for 6 layer graphene (obtained by fitting σxx) and shown in Fig. 6.11c and d for

17 layer graphene (obtained by fitting σ+ and σ−), increase with magnetic field. Their

magnetic field dependence is in qualitative agreement with an increase of the num-

ber of states within each Landau level with magnetic field [53, 127]. Consistently, the

spectral weights observed in the 17 layer graphene is larger than the ones observed in

6 layer graphene. However, a closer look at the absolute values of the spectral weights

reveals a strong reduction with respect to the theoretical expectation for ideal graphene

monolayers, this will be discussed in more detail in the next section (section 6.5.3).

For both samples, the broadening of the Landau level transitions is about 2 to

4 meV and magnetic field independent (Fig. 6.10e and Fig. 6.11e).

6.5.3 Anomalous spectral weight of the Landau level transitions

Since only transitions between occupied and empty levels are allowed, the simultane-

ous presence of 0→1 and 1→2 transitions and the low-frequency cyclotron structure in

multilayer graphene arises from a variation of the Fermi energy across different layers.

The layer closest to the substrate is highly doped [73]; the doping in subsequent layers

decreases exponentially with layer number. The most strongly doped innermost layer

gives rise to cyclotron resonance, as in single layer graphene on the silicon terminated

93



6. MULTI-COMPONENT OPTICAL CONDUCTIVITY IN MULTILAYER
GRAPHENE

0

50

100

150

0 1 2 3 4
0

2

4

0 1 2 3 4
0

50

100

150
0

20

40

60

80

0 1 2 3 4
0

20

40

60 D
/σ

0 (m
eV

)

b

B (T)

γ (
m

eV
)

d

b

 B (T)

 

c

 (0 - 1,a)
 (0 - 1,b)

Tr
an

si
tio

n 
en

er
gy

 (m
eV

)

 (-1 - 0,a)
 (-1 - 0,b)

a

 

B (T)

Figure 6.11: Parameters of various Landau level transitions as a function of magnetic field

obtained from the multi-component fits to σ+(ω) and σ−(ω) shown in Fig.6.7 (17 layer

graphene). (a) The transition energies of the electron-like LL0→1,a (squares), LL0→1,b

(circles) transitions. (b) The transition energies of the hole-like LL−1→0,a (triangles)

and LL−1→0,b (triangles down) transitions. The solid lines in (a) and (b) are fits using

eqn. (3.22). (c) Sum of the spectral weights of the electron-like LL0→1,a and LL0→1,b

transition peaks. (d) Sum of the spectral weights of the hole-like LL−1→0,a and LL−1→0,b

transitions. (e) The broadening of the four Landau level transitions. In (e) the colors and

shapes of the dots correspond to the legend in (a) and (b).

side of SiC. Meanwhile, the individual inter-LL transitions originate from the weakly

doped layers, which are in the quantum regime, as can be seen from the square-root

dependence of the transition energies on magnetic field. Note that the activation of dif-

ferent Landau level transitions may also be caused by a spatial doping inhomogeneity.

The maximum Faraday angle for multilayer epitaxial graphene on the carbon side

of SiC is smaller than in the monolayer epitaxial graphene on the silicon side of SiC,

because the innermost layer in multilayer graphene is weaker doped than the hydrogen

intercalated graphene layer on the silicon terminated side of SiC.

The nearly perfect square-root dependence of the LL transition energies on mag-

netic field found in previous work [53, 159] and confirmed by the present measure-

ments (Fig. 6.3a and Fig. 6.4a) is a signature of massless Dirac dispersion inherent to

monolayer graphene. The same field dependence of the Landau levels is obtained by

STM [57, 82]. Accordingly, ARPES measurements [85] show multiple Dirac cones

from individual layers. As a result of these observations, multilayer graphene on the

C-side of SiC is often regarded as a stack of twisted monolayers, electronically de-

coupled from each other due to random rotational stacking. However, some of our

observations is difficult to fit into a simple picture of completely isolated monolayers.

One of them is a significant (about 10%) spread of the Fermi velocity in the same

sample. This issue we will discuss in more detail in section 6.5.4.

It is important to compare not only the energies but also the optical spectral weights

D of the Landau level transitions with theoretical expectations [127, 131]. Experi-
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Figure 6.12: Total spectral weight of the LL0→1 and LL−1→0 transitions observed in

6 layer graphene (open circles) and the sum of the spectral weights of the LL0→1 and

LL−1→0 transitions observed in 17 layer graphene (open triangles). The solid line is the

theoretical prediction for the spectral weight of ideal monolayer graphene with the chem-

ical potential between E−1 and E1.

mentally, we obtain the weights from the multi-component spectra fitting, described in

section 6.3.1. Let us consider the spectral weights of only the LL0→1 and LL−1→0 tran-

sitions. Assuming that the Fermi energy is between the first electron and hole Landau

levels (E−1 andE1), the total weight of these transitions in one single layer of graphene

is given, according to the Kubo formalism for non-interacting Dirac fermions, by the

transition energy itself [127]:

�D/σ0 = 2(E1 − E0) = 2
√

2e�v2F |B| (6.2)

This dependence on magnetic field for vF = 1.0 × 106 m/s is plotted in Fig. 6.12

as a solid line. The symbols in Fig. 6.12 show the sum of the experimental spectral

weights of the electron-like LL0→1 and hole-like LL−1→0 transitions, where the circles

correspond to the total spectral weight observed for 6 layer graphene and the triangles

to that observed in 17 layer graphene.

The total spectral weight observed in the low index LL transitions of the 6 layer

sample is about two times smaller than the theoretical expectation for only a single

graphene layer with its chemical potential is between E−1 and E1. In reality it is likely

that the number of layers in the 6 layer graphene sample that satisfy the condition

for the chemical potential is larger, which would make the deviation even stronger.

Similarly, the total spectral weight observed for the 17 layer sample is about equal to

the theoretical expectation for a single graphene layer with its chemical potential is

between E−1 and E1. As sample has about 17 graphene layers, one would expect the

largest part (at least more than half of the layers) to have its chemical potential between

E−1 and E1. Therefore also for this sample a considerable part of the spectral weight

seems to be ‘missing’ from the LL0→1 and LL−1→0 transitions. At magnetic fields
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Figure 6.13: The effect of environmental doping on the Landau level transitions at B =

3 T and T = 5 K for 6 layer graphene. (a) The contributions of the LL0→1,a and LL0→1,b

transitions to σ+(ω). (b) The contribution of the LL−1→0 transition to σ−(ω). In both (a)

and (b), the red dash-dotted lines correspond to the measurement series as a function of

temperature at constant magnetic field (Fig. 6.4), while the blue solid lines correspond to

the measurement series as a function of magnetic field at constant temperature (Fig. 6.3).

The curves are derived from the multi-component fits of the experimental data.

above 2 T, the total spectral weight is increasing more rapidly than expected, which

might be due to the fact that parts of the graphene with high doping start to contributed

to the LL0→1 and LL−1→0 transitions.

Possibly related to the ‘missing’ spectral weight in the lowest index Landau level

transitions is the presence of the optical absorption background found from the fitting

results of the phenomenological cyclotron multi-component model, see section 6.3.1.

This component has a substantial spectral weight spread over a broad frequency range.

The existence of the background shows that a significant amount of the charge carriers

in the graphene layers neither fall into well defined CR nor LL transitions and signals

a departure from the isolated monolayer description. In terms of the optical sum rule,

the missing spectral weight of the LL transitions is transferred to the background. An

intriguing question is whether this transfer is caused by interlayer coupling or by many-

body effects within individual layers, such as electron-electron and electron-phonon

interactions.

One should notice that the mobility and density of carriers in epitaxial graphene

show a large variation from sample to sample, even when they are prepared under sim-

ilar conditions [178]. This shows that the interlayer twist angle, which is at the moment

difficult to control experimentally, is a crucial parameter affecting the electronic and

therefore optical properties of epitaxial graphene.

6.5.4 Effects of environmental doping

In the case of the 6 layer graphene sample, two separate measurement series were

performed. Within each measurement series, the optical absorption and the Faraday
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rotation were measured one after another with a shortest possible delay. During the

experiments the sample was in a He gas flow; between the production and the ex-

periments, as well as between the first and second series, it was stored in desiccated

air.

A careful inspection of the two series of measurements (Figs. 6.3 and 6.4) shows

that the spectra from the different series taken at the same experimental conditions

(5 K and 3 T) are not precisely the same, especially close to the LL0→1,a, LL0→1,b and

LL−1→0 transition energies. It is reasonable to assume that the difference is due to the

effect of the environmental molecular contamination [77]. In the case of multilayer

graphene, the electronic properties of the outmost layer are most strongly modified,

although one cannot exclude a certain effect on inner layers as well. Due to this surface

contaminations, the data presented in this chapter, which were published in Ref. [168]

differ somewhat from data presented in Ref. [138], although the same sample was

used.

Fig. 6.13a shows the contributions of the LL0→1,a and LL0→1,b transitions to σ+(ω),
for both measurements at 5 K and 3 T. The low energy LL0→1,a transition with vF =

1.02 × 106 m/s is unaltered by the surface contamination. However, the high energy

LL0→1,b transition with vF = 1.11 × 106 m/s shows a clear change: the structure is

much sharper in the second measurement (blue line). In Fig. 6.13b the contribution of

the LL−1→0 transition to σ−(ω) is plotted for both measurements. Similar to LL0→1,b, it

shows a sharpening in the second measurement (blue line). The fact that both LL0→1,b

and LL−1→0 transition peaks are changed with environmental doping suggests that

these transitions originate from the bands in the outmost graphene layer, which is most

affected by surface contamination. The LL0→1,a transition with the lowest vF is un-

changed by the environmental doping, therefore it might come from deeper graphene

layers. Thus we attribute the largest values vF = 1.09 - 1.11 × 106 m/s to the outmost

graphene layer, while the smallest values, vF = 1.01 - 1.02 × 106 m/s, correspond to

the inner layers, where the transitions LL0→1,a and LL1→2 are active due to a weak

electron doping. It was theoretically predicted [88, 90, 91] that in rotationally stacked

graphene layers the effect of the interlayer interaction is to reduce the Fermi velocity

with respect to its ‘bare’ value in monolayer graphene. The variation of vF between

the outer and inner layers can thus be attributed to the effect of layer twisting and a

randomness of the rotation angles between various layers.

From Fig. 6.10c one can see that the spectral weights of the electron-like LL0→1,b

and the hole-like LL−1→0 transitions are approximately equal, which indicates a bal-

ance between electrons and holes in the top layer. The Fermi velocity of the electrons

(1.11 × 106 m/s) in that layer is slightly larger than the one of the holes (1.09 ×
106 m/s). Similar results were found for exfoliated monolayer graphene [55] and few

layer CVD graphene [95] graphene.

The asymmetry between electrons and holes was experimentally shown to depend

on the relative rotation between subsequent graphene layers [95], where a large (small)

rotation between the layers gives a small (large) asymmetry. The electron-hole asym-

metry found in both the 6 and the 17 layer graphene samples (about 2%) is much
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smaller than the one found in Ref. [95], which might be due to different rotation an-

gles between the layers in the used samples.

6.6 Conclusions
In conclusion, we used magneto-optical infrared Hall spectroscopy to study the charge

dynamics in multilayer epitaxial graphene grown on the C-side of SiC in magnetic

fields up to 7 T. Two samples were studies, one with 6 layers of graphene and the

other with about 17 layers of graphene. The diagonal and the Hall conductivities were

extracted from the absorption and the Faraday rotation spectra, respectively. The latter

is sensitive to the sign of charge carriers that allowed us to distinguish electrons and

hole-like transitions. For the 6 layer graphene, the mobility and charge density of

electrons were found from the quasi-classical cyclotron resonance, which makes this

technique a useful contactless characterization tool.

The spectra of the 6 layer sample were fitted using a multi-component model,

eqn. (2.27) and eqn. (2.28), which provided excellent fits at each field to σxx(ω) and

σxy(ω) simultaneously. This analysis revealed the coexistence of optical transitions

between individual Landau levels with a square-root dependence of the transition en-

ergies on magnetic field as expected for isolated monolayer graphene and a quasi-

classical cyclotron resonance showing a linear magnetic field dependence. The obser-

vation of both cyclotron resonance and individual Landau level transitions is a clear

indication of the doping variation across the layers.

For the 17 layer sample, σ+(ω) and σ−(ω) were extracted by direct Kramers-

Kronig transformation of the data. Similarly to the 6 layer sample, the magneto-optical

conductivity revealed the coexistence of transitions between individual Landau lev-

els with a square-root dependence of the transition energies on magnetic field and an

electron-like cyclotron resonance.

For both samples, we found the simultaneous presence of at least two distinct peaks

due to electron-like transitions between Landau levels 0 and 1. The separation between

these peaks corresponds to a difference between the Fermi velocities of about 10%.

Also hole-like transitions between Landau level -1 and 0 are observed. The effect of

the surface contamination on the spectra tells that both electrons and holes are present

in the top layer and that the electrons have slightly higher Fermi velocity than the holes

(by 2%). The variation of the Fermi velocity is probably related to random twisting

angles between graphene layers.

The spectral weight of the Landau level transitions is shown to be significantly

reduced with respect to the theoretical expectation for a stack of fully decoupled

graphene monolayers, assuming the picture of non-interacting electrons within each

layer. This absence of spectral weight was detected in both the 6 and the 17 layer

graphene sample. This missing spectral weight correlates with the presence of an un-

expected broadband optical absorption, which is also inconsistent with this simplified

theoretical model.
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Although the transition energies of the Landau level transitions clearly follow the

magnetic field dependence expected for isolated graphene, in order to come to a com-

plete picture of the complex electronic structure of multilayer graphene we need to

understand the variation of the Fermi velocity, and most importantly the small optical

spectral weight of the Landau level transition and the broad absorption background

in relation to the twist angle of the layers. Therefore, a systematic study of samples

where this angle is experimentally controlled, is required.
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Conventions

A.1 Summary of symbols and short-hand notations
Table (2) summarizes the short-hand notations used in the main text and sums up the

meaning of symbols used.

Notation Explanation

T substrate normalized transmission or Temperature

B magnetic field

θ Faraday rotation angle

LL Landau level

n Landau level number or carrier density

m Landau level number (only in chapter 5)

En Landau level energy eqn. (3.22)

LLn→n+1 Transition between electron like LLs

LL−n−1→−n Transition between hole like LLs

ωc Low doping: energy of the LL transition ωc = |En+1(−n)| − |En(−n−1)|
High doping: quasi-classical cyclotron resonance energy eqn. (3.25)

vF Fermi velocity

εF Fermi energy

mc cyclotron mass

α fine structure constant

MIR mid infrared

FIR far infrared

THz terahertz

ARPES Angle-Resolve Photoemission Spectroscopy

XPS X-ray Photoemission Spectroscopy

AFM Atomic Force Microscopy

RCPL Right handed circular polarized light

LCPL Left handed circular polarized light

SiC(0001) silicon terminated silicon carbide

SiC(0001̄) carbon terminated SiC

Table 2: Clarification of the short-hand notations and symbols used in the discussions.
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Appendices

B.1 Numerical check of the thin film relation for Re[σxx]
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Figure 14: Refractive index, ns, and extinction coefficient, ks, of the SiC substrate, used

in the multilayer model.

In the derivation of eqn. (2.47) we rely on the thin film approximation and, at zero

magnetic field, neglect the imaginary part of σxx. At finite magnetic fields, the approx-

imation becomes more severe by ignoring the influence of σxy on the transmission

ratio. In order to estimate the difference between the exact optical conductivity and

the one obtained from eqn. (2.47), here we introduce an exact optical model for a thick

substrate and thin film. The model directly provides the exact optical conductivity of

the thin film and with the use of the Fresnel equations the substrate normalized trans-

mission T is found exactly. The exact transmission ratio T is used as an input for

eqn. (2.47), from which the approximative thin film conductivity is obtained. The ex-

act and the approximative result are then compared. This comparison is made for both

zero and finite externally applied magnetic fields.

To start with, the Lorentz model (eqn. (2.30)) is used to model the optical proper-

ties of SiC, used as the thick substrate. From the model, the refractive index, ns and

extinction coefficient, ks, can be extracted, which are shown in Fig. 14. The thick-
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Figure 15: (a) T = Tf+s/Ts for various peak positions and a constant weight of 600 meV,

obtained from the model and used as input for eqn. (2.47). (b) T = Tf+s/Ts for various

weights and a fixed peak position of 40 meV, obtained from the model and used as input

for eqn. (2.47). (c) The real part of the optical conductivity normalized to the universal

conductivity σ0 = e2/4�, for various peak positions. The solid curves are the exact model

curves, the dashed lines are obtained from T shown in (a) using eqn. (2.47). (d) The real

part of the optical conductivity for various peak weights, the solid curves are the exact

model curves, the dashed lines are extracted using eqn. (2.47) and T shown in (b).

ness of the substrate was 360 μm. At zero field the optical properties of the thin film

were modeled using one Lorentz oscillator (eqn. (2.30)) with ω0 varied between 0 and

65 meV, the weight of the peak was varied between 0 and 700 meV and the broadening

was fixed at γ = 10 meV. Next, we (use RefFit [179] to) solve the Fresnel equations

for this model system and extract the transmission of the film on the substrate, Tf , the

bare substrate, Ts to access T = Tf/Ts.

Figure 15a shows T for ω0 = 0, 20, 40 and 60 meV, with fixed spectral weight

(600 meV). In Fig. 15b T is shows for the peak weights of 50, 200, 400, 600 and

700meV, with a fixed peak position (ω0 = 40meV). In Fig. 15c the results forRe[σxx/σ0]
are plotted for various ω0, the solid line represents the exact conductivity, while the

dashed line is the result obtained by eqn. (2.47). The positions and the shape of the

peaks are accurately reproduced by the approximation. The results for varying spectral

weight are shown in Fig. 15d.

To estimate the difference between the exactRe[σxx/σ0] and result from eqn. (2.47)
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Figure 16: (a) Difference in the peak area from eqn. (2.47) with respect to the exact peak

area in percentage for varying ω0. (b) Difference in percentage for varying absorption

strengths with a fixed peak position at ω0 = 40 meV.

the area under the curve was integrated to obtain the spectral weight of the peak. Fig-

ure 16a shows the difference in area of eqn. (2.47) with respect to the exact area, as

a function of ω0, for a fixed peak intensity of 200, 400 and 600 meV. For all peak

intensities the spectral weight is overestimated by eqn. (2.47) and almost independent

of ω0. In Fig. 16b, the deviation in the peak area is shown as a function of the weight

of the peak in the exact model, for ω0 = 10, 20 and 40 meV. It can be seen that the

deviation indeed coincides for different ω0. For small model peak intensities the spec-

tral weight is clearly more accurately reproduced: at a spectral weight of 200 meV the

overestimation is just a bit more than 1%. However, for a model peak intensity of 600

meV the deviation has increased to about 3%.

At finite magnetic field the approximation made is somewhat more prominent, due

to the additional neglecting of σxy. Here we estimate the error made at finite magnetic

fields. Firstly, the substrate + film model is expanded to include cyclotron resonance.

For the model of the substrate the same parameters were used as above (see Fig. 14 for

the substrate parameters). The optical properties of the thin film were modeled with

a cyclotron resonance peak with ω0 = 0 meV, ωc was varied from 0 to 65 meV, the

spectral weight was varied between 0 and 700 meV and γ = 10 meV.

Figure 17a shows T for ωc = 0, 20, 40 and 60 meV, with a fixed spectral weight of

600 meV, while in Fig. 17b additional transmission spectra for the peak weights of 50,

200, 400, 600 and 700 meV, with a fixed cyclotron resonance energy (ωc = 40 meV) are

shown. Figure 17c shows Re[σxx/σ0], plotted for various ωc; the solid lines represent

the exact solution, while the dashed lines are the results obtained from eqn. (2.47) and

the transmission curves shown in (a). Like for zero magnetic field (Fig. 15), the posi-

tions of the peaks are accurately reproduced. On the contrary, the peak intensities are

clearly underestimated by the approximation. The results for varying spectral weight,

shown in Fig. 17c, show a similar underestimation of peak intensity.

The exact and approximated conductivity curves are integrated to estimate their

deviation in the intensity of the peaks as a function of cyclotron resonance energy

and absorption. Figure 18a shows the difference in peak intensity with respect to

the exact intensity as a function of cyclotron resonance energy, for different exact
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Figure 17: (a) T = Tf+s/Ts for various magnetic fields and a constant peak intensity of

600 meV, obtained from the model and used as input for eqn. (2.47). (b) T = Tf+s/Ts

for a fixed magnetic field (ωc = 40 meV) and various peak intensities, to be used as input

for eqn. (2.47). (c) The real part of the optical conductivity normalized to the universal

conductivity σ0 = e2/4�, for various magnetic fields. The solid curves are the exact model

curves, the dashed lines are obtained from the T spectra shown in (a) and eqn. (2.47). (d)

The real part of the optical conductivity for various optical weights, the solid curves are

the exact model curves, the dashed lines are obtained from the spectra shown in (b) and

the approximation.

intensities 200, 400 and 600 meV. For all optical weights, eqn. (2.47) results in an

overestimation of the optical spectral weight at small magnetic fields (small ωc), as

was also found for zero magnetic field (see Fig. 16a). However, with increasing ωc the

deviation due to neglecting σxy is growing and finally results in an underestimation of

the optical spectral weight, which eventually saturates for high magnetic fields. The

saturation value depends strongly on the weight of the cyclotron peak. In Fig. 18b the

difference in peak intensities with respect to the exact intensity is plotted as a function

of the model spectral weight, for ωc = 10, 20 and 40 meV. For small peak weights the

underestimation is small, however, the deviation grows steadily for larger absorption.

This effect is most significant for higher cyclotron resonance energies. Therefore, the

higher the magnetic field (is higher ωc) and the larger the absorption, the more severe

will be the error introduced by neglecting the influence of σxy on T .

In conclusion, the real part of the optical conductivity of a thin film on a sub-
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Figure 18: (a) Difference in percentage between the optical spectral weight of the con-

ductivity extracted from the thin film approximation (eqn. (2.47)), compared to the exact

optical weight, as a function of ωc, for peak intensities of 200, 400 and 600 meV. (b)

Difference in percentage between the approximative and exact optical spectral weight as

a function of peak intensities, plotted for cyclotron resonance energies, ωc = 10, 20 and

40 meV.

strate can be extracted from the transmission ratio between film and substrate, when

the complex refractive index and the thickness of the substrate are known. Equa-

tion (2.47) proves reasonably accurate, especially in reproducing the peak positions in

the optical spectra. At zero or low magnetic fields the spectral weight will be slightly

overestimated depending on the amount of absorption in the film. On the contrary,

at higher magnetic fields, neglecting σxy result in an underestimation of the spectral

weight, where the level of deviation strongly depends on the amount of absorption in

the film and the cyclotron resonance energy.

B.2 Derivation of the thin film relation for Im[σxx]

In section 2.3.2, the imaginary part of the optical conductivity is related to the period of

Fabry Perot fringes in a spectrum. The shift in the period is linked to the conductivity

of the film on top of the substrate, the condition for constructive interference then leads

to the thin film approximation (eqn. (2.51)):

ΔIm

(
σxx

σ0

)
=

ξ

α

n2
s − 1

ns

, (3)

where the ξ function is the shift of the Fabry-Perot period normalized to the period,

α is the fine-structure constant and ns is the real part of the refractive index of the

substrate.

The condition for constructive interference is found from the phase:

ϕ =
2ωMdsNs

c
+ arg rsfv = 2πM, (4)

where ωM are frequencies at which maxima (constructive interference) occurs (see

Fig. 2.5b), ds is the thickness of the substrate,Ns is the complex refractive index of the
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substrate, rsfv is the reflection coefficient of light reflecting from the substrate onto the

film back to the substrate (see Fig. 2.1), andM is the integer number of the maximum.

To obtain an expression for arg rsfv, the Fresnel relation for thin films is rewritten,

using a linear approximation:

rsfv =
Ns − 1− Z0σf

Ns + 1 + Z0σf

≈ Ns − 1

Ns + 1

[
1− Z0σf

(
1

Ns − 1
+

1

Ns + 1

)]

=
Ns − 1

Ns + 1
− Z0σf

2Ns

(Ns + 1)2
.

(5)

To determine the argument of rsfv, we use that arg r = arctan[ Imr
Rer

] ≈ Imr
Rer

, and neglect

the real part of Z0σf in the second term of eqn. (5), which is valid for Z0σf � 1.

arg rsfv ≈ −Im[Z0σf ]
2Ns

(Ns + 1)2
Ns + 1

Ns − 1
= −Im[Z0σf ]

2Ns

N2
s − 1

. (6)

The change in the interference condition with magnetic field is found by evaluating the

field derivative:
2dsNs

c

dωM

dB
+

d

dB
(arg rsfv) = 0, (7)

and thus:
2dsNs

c

dωM

dB
= Z0

2Ns

N2
s − 1

dIm[σf ]

dB
. (8)

Assuming that the changes with field are small, we obtain:

ΔωM =
cZ0

ds

1

N2
s − 1

ΔIm[σf ]. (9)

In order express the left hand side of eqn. (9) in terms of ξ = ΔωM/δωM , the expres-

sion is divided by the period, δω = πc
dsNs

of the fringes:

ξ =
ΔωM

δωM

=
Z0

π

Ns

N2
s − 1

ΔIm[σf ]. (10)

By substituting Z0 with 4π/c, expressing the conductivity of the film in terms of the

universal conductivity, σ0 = e2/4� and introducing the fine-structure constant α =
e2/c�, eqn. (2.51) from section 2.3.2 is found.

B.3 Numerical check of the thin film relation for ΔIm[σxx]

In the derivation of eqn. (3) we rely on the thin film approximation, a linear approxi-

mation is utilized, the influence of σxy is neglected and we assume that the contribution
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Figure 19: (a) Transmission of graphene on SiC with cyclotron resonance absorption at

0, 10, 30 and 60 meV, here the Fabry-Perot oscillations are unresolved. (b) ξ function for

ωc = 10, 30 and 60 meV. (c) ΔIm[σxx] found from ξ for ωc = 10, 30 and 60 meV, with

respect to ωc = 0.

of Re[σxx] to the ratio Imr
Rer

is small enough to ignore. In this section we estimate the

impact of these simplifications by comparing the exact optical conductivity, ΔIm[σf ],
and the one obtained from eqn. (3), using the information of the Farbry-Perot oscilla-

tions in the transmission spectra.

The Lorentz model (eqn. (2.30)) is used to model the optical properties of SiC, used

as the thick substrate. From the model, the refractive index, ns can be extracted, which

is shown in Fig. 15a. The thickness of the substrate was 360 μm. A Drude-Lorentz

model with finite ωc (eqn. (2.25)) was used to generate the magneto-optical conductiv-

ity of the thin film. The model directly provides the exact optical conductivity of the

thin film and with the use of the Fresnel equations the transmission T of the film on the

substrate is found. The substrate is treated as fully coherent, therefore Fabry-Perot os-

cillations dominate the transmission, an example can be seen in Fig. 2.5 (section 2.3.2).

With the use of the fitting routine described in section 2.3.2, the Fabry-Perot fringes

are fitted locally. From the fitting results the average transmission amplitude, the pe-

riod of the fringes and the number of fringes as a function of energy are found. This

procedure is followed for a number of different curves: the conductivity of the film is

generated with varying cyclotron resonance energies (varied from 0 to 65 meV), while

keeping the spectral weight of the resonance fixed at 600 meV. The broadening, γ, was
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fixed to 10 meV.

Figure 19a shows the average transmission amplitude extracted from the fit to the

Fabry-Perot oscillations for ωc = 0, 10, 30 and 60 meV. At zero field a clear Drude

response is recognized from the dip in the transmission centered around 0 meV. With

increasing ωc, the dip in the transmission shifts to higher energies. The small, sta-

tionary dip around 25 meV is caused by a weak phonon in the SiC substrate. At high

energies the transmission is strongly decreased by a strong phonon in the SiC at around

100 meV. The average transmission extracted from the Fabry-Perot oscillations can be

normalized to the transmission of bare SiC and subsequently serve as the input for

eqn. (2.47) to extract Re[σf ].
Figure 19b shows the ξ function for ωc = 10, 30 and 60 meV, which serves as the

input for eqn. (3) to obtainΔIm[σf ], plotted in Fig. 19c as the open symbols. The solid

lines in Fig. 19c correspond to the exact solution of ΔIm[σf ] which follows from the

initial magneto-optical model.

Although ΔIm[σf ] extracted from the Fabry-Perot fringes shows some deviations

from the exact result, the spectral features are very well reproduced. Even the absolute

value is not significantly suppressed or enhanced. Keeping in mind that at the lower

energies eqn. (3) generally results in an overestimate, while at the higher energies

ΔIm[σf ] is underestimated, the experimentally obtained curves can be utilized, for

example, to check the Kramers-Kronig consistency of difference data sets.

B.4 Maxwell-Garnett Approach
The effective medium approximation is a standard approach to calculate optical prop-

erties of inhomogeneous media. In the case of isolated quantum dots of a two di-

mensional electron gas, the Maxwell-Garnett effective medium model results in the

following relation [146]:

σeff(ω) =
f σ(ω)

1 + C iσ(ω)/(dωκ)
. (11)

Here σ(ω) is the intrinsic conductivity of the electron gas, κ = (ε1 + ε2)/2 is the

average dielectric function of the surrounding media, f is the filling factor, d is the dot

diameter and C is a geometrical parameter related to the depolarization factor of the

dots. For the circular shape, the exact value for C is 3π2/2 [157, 160].

The optical conductivity of a homogeneous 2D electron gas or of highly doped

graphene in magnetic field, assuming constant scattering, is given by:

σ±(ω) =
ne2

m

i

ω ∓ ωc + iγ
, (12)

where n is the density, m is the mass, ωc is the cyclotron frequency and γ is the

scattering rate of the charge carriers. Using eqn. (11), we obtain the following effective
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conductivity:

σeff,±(ω) =
fne2

m

i

ω ∓ ωc + iγ − ω2
0/ω

, (13)

which has a Lorentzian shape with a resonant energy given by:

ω2
0 =

Cne2

mdκ
. (14)

One can see that the plasmon spectral weight, D =
∫∞
0

Reσxx(ω)dω = fπne2/2m, in

eqn. (13) is reduced with respect to the Drude weight in eqn. (12) by the filling factor.
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