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Chapter 1

Introduction

Optical spectroscopy is one of the oldest techniques used to determine the proper-
ties of materials [1]. Nowadays it is used in an ample variety of fields (e.g. biology,
physics, chemistry, astrophysics, materials science, paint restoration, forensics)
and materials (e.g. polymers, ferromagnets, organics) in different forms (e.g.
solids, liquids, gases). In the work presented in this thesis, optical spectroscopy
has been used in different materials of current interest in solid state physics. This
introductory chapter describes why optical spectroscopy is important and what
can be learnt from it. Furthermore, a brief review of the materials studied in this
thesis will be presented. Finally the scope of the present work will be outlined.

1.1 Optical Spectroscopy: Why?

In a dictionary-like definition, it can be said that optical spectroscopy is the use of
light to investigate the properties of a material. For the purposes of this work, it
has been used to determine the optical conductivity, σ(ω), of the material under
study and from there investigate its electronic structure or electronic properties.
The question is then, why is optical spectroscopy a good tool to such investigation?
To answer this question, I would like to follow A. J. Millis [2] and A. Chattopad-
hyay et al. [3] who have stated the answer in a simple way. In the first place let us
consider the (complex) optical conductivity which simply describes the response
of a material to an electric field (for more details see Chapter 2):

J(ω) = σ(ω)E(ω) (1.1)

In other words, the optical conductivity describes how the electrons move in re-
sponse to an electrical field and, therefore, it can give information about the
mechanism associated with this motion. In strongly correlated systems, at low
frequencies, the dominant process is the motion from one site to other. This

1
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Figure 1.1: (a) Localized moments: Heisenberg model. (b) Itinerant magnetism: Stoner
and Hirsch models (adapted from References [4] and [5]).

motion is the result of the interplay between repulsive electron-electron interac-
tions (localizing effect) and wave function hybridization (delocalizing effect). This
interplay is the essence of strong correlations.

1.2 Magnetism and Strong Correlations

1.2.1 Localized vs. Itinerant Magnetism

The ultimate origin of magnetism in solids is the magnetic moment of their in-
dividual atoms (and which originates from the spin and angular momenta of the
electron). However, the main question is how this microscopic magnetism gives
rise to the macroscopic magnetism of solids appearing in some materials below a
transition temperature, called Curie temperature, TC . There are two main and
opposite streams: localized and itinerant models. The former models start with
the electronic states localized in real space, while the latter start with those states
localized in reciprocal space [4]. Both situations are schematically represented in
Fig. 1.1.

The idea of localized moments is the most intuitive one. It was introduced by
Weiss, he argued that the individual magnetic moments interact between them
and therefore can align. He represented this interaction by a mean molecular field.
Heisenberg attributed this field to the quantum mechanical exchange interaction
between neighboring atoms. If Si is the atomic spin operator at a given site, the



1.2. MAGNETISM AND STRONG CORRELATIONS 3
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Figure 1.2: Thermal excitation in a itinerant polarized system (after Ref. [4]). It
consists of a spin flip excitation of an electron across the Fermi level. This excitations
produce a spin density density fluctuation.

Heisenberg model for magnetism is:

H =
∑
i,j

JijSi · Sj (1.2)

where Jij is the interatomic exchange interaction constant. Within this model,
the Curie-Weiss law (i.e. χ−1 ∝ T −TC , where χ is the magnetic susceptibility) is
naturally explained. Moreover, materials considered as having localized moments
are expected to have a saturation magnetization, µS , which is an integer multiple
of the Bohr magneton, µB .

On the other hand, magnetism in metals is usually explained from an itinerant
picture. One of the main reasons to invoke a different mechanism is that the
saturation magnetization, µS , is not an integer multiple of µB

∗. In the Stoner
model, magnetism in metals arise from a splitting between the up- and down-
spin bands and it is favored when the density of states is high at the Fermi
level. However, in this form, the Stoner model fails to reproduce the measured
TC and the observed Curie-Weiss law above it. Improvements to this theory have
been made that take into account the effect of spin fluctuations (see Fig. 1.2) in
a self consistent renormalized (SCR) manner [4]. It is claimed [4] that one of
the achievements of SCR theory is the description of several properties of weak
itinerant ferromagnets. Several features define this kind of ferromagnets:

a. Low Curie temperature. Usually, less than 50 K.

b. They follow a Curie-Weiss law quite precisely in the temperature interval
TC < T < 10 TC .

∗Other mechanisms involving localized moments can also predict non integer values of µS .
For example the combination of of spin-orbit interaction and crystal field. Other example is
given in Ref. [6] where a Kondo-like mechanism is described and which is responsible for the
screening of part of the magnetic moment.
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Figure 1.3: Temperature dependence of ρDC in ZrZn2. (a) Data from Ref. [8] (b) Anal-
ysis by Moriya [4] showing the expected temperature dependencies for spin fluctuations
below and above TC , respectively.

c. The magnetization inferred from the Curie-Weiss law is several times the
saturation magnetization.

It usually appears in materials whose components are not magnetic in elemental
form like ZrZn2 and ScIn3. One of the materials studied in this thesis, MnSi, is
considered to be well described by the SCR theory. It indeed describes several of
its properties like the negative magnetoresistance and the temperature behaviour
of the DC resistivity, ρDC , below TC (see Fig. 1.3 for the predictions of the SCR
theory regarding ρDC). However, as it will be seen in Chapter 3, the descrip-
tion is not complete. Moreover, other silicides showing itinerant ferromagnetism
(Chapter 4) do not follow completely its predictions, namely they show a positive
magnetoresistance [7].

More recently, another mechanism for magnetism in itinerant systems has
been proposed [5]. This process is sketched in Fig. 1.1. It has been found that
magnetism can arise without exchange splitting but with a change in the width of
the bands upon spin polarization (although both effects can be combined). The
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Figure 1.4: Reflectivity of EuB6 at several temperatures. The inset shows the temper-
ature dependence of the plasma frequency and width of the Drude peak (from Ref. [11]).

difference is that ferromagnetism from exchange splitting arises from a gain in
potential energy, while in this new model it arises from gain in kinetic energy [5].
This implies that this effect can be seen in optics (see § 1.3). The reduction in
kinetic energy produces a transfer of the spectral weight contained in the optical
conductivity from high to low frequencies as the system enters to the magnetic
state (and vice versa above TC). Hirsch has argued that this effect could be the
driving mechanism in all the different manifestations of metallic ferromagnetism
[9]. In fact, optical experiments in manganites (see Chapter 6), manganese doped
GaAs [10], and rare earth hexaborides [11] seem to corroborate this point of view.
As an example, the optical properties of EuB6 [11] are shown in Fig. 1.4 where
the increase of the spectral weight at low frequencies is manifested by the increase
of the plasma frequency of the Drude peak. In contraposition to this trend, it will
be seen in Chapters 3 and 4 that the spectral weight at low frequencies decreases
when entering the magnetic ordered state in various transition metal silicides.

1.2.2 Heavy Fermion Systems

There are systems where we can find both kind of electrons. On one side, there are
electrons which are localized and are responsible for the magnetic properties. On
the other side, electrons which are delocalized and are responsible for the transport
properties. If they interact it gives rise to a multitude of interesting phenomena.
One of such systems are the so-called heavy fermion systems. Heavy fermion
systems are compounds which usually have an atom (e.g. Ce or U) containing
well localized 4f or 5f electrons.† Below a characteristic temperature T ∗ heavy

†Recently some compounds have appeared which only contain d electrons (e.g. LiV2O4 [12])
that have similar properties as the heavy fermion compounds. Whether they are also governed
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Figure 1.5: (a) Specific heat, (b) resistivity, and magnetic susceptibility in the first
heavy fermion metal discovered, CeAl3 [15].

fermion systems show a Fermi-liquid behaviour with large effective masses, m∗,
of the quasiparticles. In fact, the physical quantities describing the system have
the same temperature dependencies as the normal metals but with much larger
proportional constants and at lower temperatures. [13, 14]

Three conditions are usually taken as defining a heavy fermion system at low
temperatures‡:

a. The specific heat is linear with temperature, C = γT ;

b. The magnetic susceptibility, χ, is constant (Pauli like);

c. The Wilson’s ratio, RW = π2k2
Bχ

3µ2
eff

γ
, is of order unity (µeff is the effective

moment of the quasiparticles).

Since γ and χ are proportional to N(0) which, in turn, is proportional to the ef-
fective mass of the fermionic excitations, m∗, their large values can be interpreted

by the same physical process is an ongoing debate.
‡Remember that for a Fermi gas the specific heat and the susceptibility at low temperatures

are given, respectively, by [16]: C = 1
3
π2N(0)k2

BT , and χ = N(0)µ2, where N(0) is the density
of states at the Fermi level and µ is the magnetic moment of the electron
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Figure 1.6: Simplest example of a strongly correlated system (after Ref. [13]). The
system contains two orbitals denoted L and F with energies εL and εF , respectively.
Between them, there is an hybridization V . Putting two electrons in the orbital F costs
an energy U . Electron interactions in the orbital L and between the two orbitals are
neglected.

as an enhancement of the mass of the quasiparticles. If conditions a.-c. are met,
it is possible to say that there is a one-to-one correspondence between the quasi-
particle excitations in this system and those in a Fermi gas. Other quantities
behave also as in normal metals, e.g. the DC resistivity which is proportional to
T 2. As an example consider Fig. 1.5 where C, χ and ρDC of CeAl3 are plotted
[15]. If R 6= 1 the interaction between quasiparticles is also important. When
T > T ∗, the excitations lose their heavy fermion character: the specific heat lev-
els off and the susceptibility changes from Pauli- to Curie-like. In the remainder
of this subsection, the mechanism originating this behaviour is sketched.

A Strongly Correlated Molecule

Following Fulde [13], let us first consider the system depicted in Fig. 1.6 which
contains the main ingredients necessary to understand the heavy fermion systems.
The Hamiltonian describing it is:

H = εl

∑
σ

l†σlσ + εf

∑
σ

f†σfσ + V
∑
σ

(
l†σfσ + f†σlσ

)
+ Unf

↑n
f
↓ (1.3)

each term describes, respectively, kinetic energy in orbital L, kinetic energy in
orbital F , hybridization between the two orbitals, and electron interaction in
orbital F . For V = 0 and V 6= 0 the accessible states and their are sketched in
Fig. 1.7. In the former case, the ground state is 4-fold degenerate (one electron in
L and the other in F , therefore forming a singlet and a triplet states) and there
is one excited level§ (two electrons in L). If the hybridization is turned on, the
degeneracy of the ground state is partially lifted since now the singlet and the
excited states are coupled. The singlet lowers its energy by 2V 2/∆ε while the
excited state increases its energy by the same amount. The occupancy of F , in
this case, is nf = 1− 2(V 2/∆ε)2 < 1.

§There is another excited state (2 electrons in F ) not considered due to the large value of U
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Figure 1.7: Accessible states and energies in the system considered in Fig. 1.6 for (a)
V = 0 and (b) V 6= 0.

The system, thus, has a characteristic temperature T ∗ ≡ 2V 2/∆ε. At T � T ∗

we can distinguish two different kind of excitations:

a. low-lying spin excitations (between the singlet and triplet states), with an
energy kBT ;

b. excitations involving charge degrees of freedom (promotion of an f electron
into the ligand orbital), with an excitation energy ∆ε.

The basic ingredients of this system are the following. At T = 0, the ground
state is a singlet and the moment of the partially filled F state is zero. When
the temperature increases, with T � T ∗, the triplet state starts to be populated.
Since the triplet has a moment, the magnetic moment of the f electron starts
to appear. For T � T ∗, the magnetic moment is fully present and the singlet
character of the ground state is not noticeable.

Kondo Problem: A Single Magnetic Impurity

Now, let us consider the case of a magnetic impurity, e.g. Ce, embedded in a
metal. This impurity has a total moment j whose z component is described by
the quantum number m. Then the Hamiltonian describing the system is:

H =
∑
kσ

ε(k)c†kσckσ + εf

∑
m

f†mfm

+
∑

kmσ

[
V ∗

mσ(k)c†kσfm + Vmσ(k)f†mckσ

]
+ U

2

∑
m6=m′

nf
mnf

m′
(1.4)
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åF

åf

Figure 1.8: Single magnetic impurity embedded in a metal. After one of the conduction
electrons is moved to the Fermi level, the resulting system is similar to the one depicted
in Fig. 1.6. The f impurity can form a singlet with the conduction electron which lost
its companying electron.

where, similarly as before, the terms represent the kinetic energy of the conduction
electrons (which now form a band), the kinetic energy of the f -electrons (now the f
orbital is νf -fold degenerate), the hybridization between conduction electrons and
the f -electrons, and the electron repulsion between f -electrons, respectively. The
situation for νf = 2 is represented in Fig. 1.8. If one of the conduction electrons
is promoted to the Fermi level, the situation is similar to the one described above
for the L−F system. The remaining conduction electron can form a singlet with
the f -electron. The difference with the L−F system is that the singlet formation
can occur with different conduction-electron states. Those which are closer to
εF are more important since for them it is easier to promote an electron to the
Fermi level. It results that, in the U → ∞ limit and in the presence of weak
hybridization, the energy of the singlet state is always lower that the energy of
the multiplets, just as in the case presented above. The lowering of the energy
due to hybridization is (for details of the calculation see [13]):

ε = −D e−|εf |/(νf N(0)V 2)

where a constant density of states is assumed with height N(0) and a lower cutoff
D. To this energy it is customary to associate a characteristic temperature TK

(Kondo temperature), kBTK = −ε. At T � TK we find again the two kind of
excitations characteristic of strongly correlated systems.

The Kondo Lattice

Finally, let us consider an array of magnetic atoms (which is the case of heavy
fermion systems). The respective Hamiltonian can be obtained by generalizing
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Eq. 1.4:

H =
∑
knσ

εn(k)a†knσaknσ +
∑
mi

εfmf†m(i)fm(i)

+ 1√
No

∑
imknσ

Vmσ(k, n)
[
a†knσfm(i)e−ik·Ri + f†m(i)aknσeik·Ri

]
+U

2

∑
i,m 6=m′

nf
m(i)nf

m′(i)

(1.5)

where i labels the No f -sites at positions Ri, and n is a band index. In the limit
U →∞, the previous Hamiltonian can be solved using a mean field approximation
[13, 17] where it is assumed that the strong repulsion between the f electrons can
be taken into account by a renormalization of the hybridization matrix element
Vmσ(k, n) → rVmσ(k, n) = Ṽmσ(k, n). With this method, we can map the many-
body problem (Eq. 1.5) into a one-particle problem:

HMF =
∑
klτ

El(k)c†lτ (k)clτ (k) + ΛNo(r2 − 1)

where c†lτ (k) denotes the creation operators of quasiparticles in branch l with pseu-
dospin τ , and Λ is a Lagrange parameter. For the case of one conduction electron
band and an f orbital degeneracy νf = 2 (so the index m is not necessary), at
T = 0, two quasiparticle bands are found:

El(k) =
1
2
{[ε(k) + ε̃f ]∓W (ε(k))} (1.6)

where W (ε(k)) =
√

[ε(k) + ε̃f ]2 + 4Ṽ 2, and ε̃f = µ + Ṽ 2

ε(kF )−µ if the condition
El(kF ) = µ is applied (µ is the chemical potential). This situation is depicted in
Fig. 1.9.

The unknowns r and Λ can be expressed in terms of the system parameters. In
particular, it is found that Λ = νfN(0)V 2 ln

(
[ε(kF )−µ]µ

Ṽ 2

)
which permits defining

a characteristic temperature:

kBT ∗ ≡ µ e
− Λ

νf N(0)V 2 (1.7)

With this definition, we obtain ε̃f = µ + kBT ∗. The characteristic temperature
T ∗ is related to the energy gain of the system due to hybridization. In fact it can
be shown that the difference between the hybridized system, E, and the energy
without hybridization, E(0), is

E − E(0) = −kBT ∗

The temperature T ∗ plays the role of a Kondo temperature for the lattice (they
are not the same and usually T ∗ < TK). Calculations at finite temperatures show
that there exists a critical temperature of the order of T ∗ below which there exist
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Figure 1.9: Schematic representation of the hybridization gap (adapted from References
[13] and [17]) (a) At high temperatures (T � T ∗), in the Kondo lattice, the conduction
electrons and the magnetic moments are independent. (b) At low temperatures (T �
T ∗), both set of electrons hybridize, and the system can be represented as renormalized
quasiparticles which occupy two bands. If the Fermi energy lies within the lower band,
the system is a heavy fermion metal.

solutions to the problem with r 6= 0. Above this critical temperature, it is found
that r = 0 and the conduction electrons are completely decoupled from the f
electrons.

As we have seen, the origin of the heavy fermion behaviour in a Kondo lattice is
the weak hybridization between the f electrons with the electrons of neighboring
atoms. As in the case of the single impurity problem, there are two different kind
of excitations:

a. Low-energy singlet-triplet excitations associated with each f site. A direct
evidence of this is the large quasiparticle density of states inferred from the
large specific heat (i.e. the f electrons are seemingly located right at the
Fermi energy).

b. High-energy excitations involving charge degrees of freedom. This is evinced
in photoemission experiments where it takes 2 eV to promote an f electron
into an unoccupied conduction electron state above the Fermi energy, in
apparent contradiction to the f electrons seemingly located right at εF .

As we will see in Chapter 5, with optical spectroscopy it is possible to see both
kind of excitations. In particular, the low-energy optical response is a direct
consequence of the band structure renormalization depicted in Fig. 1.9.

Because the f sites form a lattice, the excitations are coupled to each other.
Below certain temperature Tcoh (such that Tcoh < T ∗), they form coherent quasi-
particle states with large effective masses (which are seen in the specific heat, for
example). Tcoh can be approximately determined by measuring the temperature
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Tcoh

T*

Figure 1.10: DC resistivity of the heavy fermion compounds studied in Chapter 5 (from
[18]). The arrows indicate Tcoh and T ∗, respectively. In these compounds, however, below
Tcoh the resistivity is linear with temperature indicating a non-conventional formation
of the coherent state. Moreover, CeRhIn5 does not show the typical behavior of a heavy
fermion system. One reason of the reasons is that this compound orders antiferromag-
netically below 4 K. The figure also shows the resistivity of two of the relative compounds
not containing f electrons.

dependence of the DC resistivity (see Fig. 1.10). Starting from high temperatures
(usually room temperature), ρDC decreases with decreasing temperature until it
reaches a minimum associated with T ∗, from there ρDC increases (this behavior
is similar to the one found in the single impurity system). However, in contrast to
the the single impurity problem, ρDC in the lattice reaches a maximum (labeled
as Tcoh). Below Tcoh, the resistivity decreases due to the formation of coher-
ent Bloch-like states, and ρDC = AT 2 is observed, typical of electron-electron
correlations.

For T > Tcoh, the mean-free path of the excitations of the f electron sys-
tem becomes so short that the coherence starts to be destroyed and the heavy
quasiparticles start to disappear. For Tcoh � T ∗, the specific heat contains con-
tributions of both the coherent and incoherent part of the f electron excitations.
Finally, when T � T ∗, the f electrons can be treated as localized and interacting
weakly with the conduction electrons.

1.2.3 Manganites

The phase diagram of the perovskite manganites of the general composition
Re1−xAxMnO3 (Re = rare earth, A = divalent alkali) is extremely rich. For
example, see Fig. 1.11 where the phase diagram of one of the best studied man-
ganite system compounds, La1−xCaxMnO3, is shown [19]. The origin of this



1.2. MAGNETISM AND STRONG CORRELATIONS 13

0.00 0.25 0.50 0.75 1.00
0

100

200

300

C
A

F

A
F

C
O

F
M

C
O

F
I

C
A

F

La
1-x

Ca
x
MnO

3

 

 

T
 [K

]

x

Figure 1.11: Phase diagram of La1−xCaxMnO3 (from Ref. [19]). The richness of
this phase diagram is evident, it comprise the following states: canted antiferromagnet
(CAF), charge order (CO), ferromagnetic insulator (FI), ferromagnet(FM), and anti-
ferromagnet (AF). The arrow indicates the parent compound of the manganites studied
in Chapter 6.

behaviour is also the interrelation between localized and itinerant electrons as we
will see below. The difference is that in this case, both electrons pertain to the
same class of atoms.

The basic crystal structure of the manganites is shown in Fig. 1.12. The main
point here is that the Mn ion is surrounded by O atoms forming an octahedron.
In a perfect octahedron, the crystal field leaves partially the degeneracy of the d
levels forming a triple degenerate, t2g, and a double degenerate, eg, states. The
distortions usually present in the octahedron alters this splitting depending on
whether the eg level is occupied or not (see Fig. 1.12). When it is occupied, the eg

level is further split (Jahn-Teller splitting), otherwise this level decreases its energy
if it is occupied in a short time scale (like in optical transitions) compared to the
response of the lattice. Let us consider the two extremes of the phase diagram
of Fig. 1.11. CaMnO3 has the ionic composition Ca+2Mn+4O−2

2 [20]. Therefore,
the manganese atom has three electrons occupying the t2g level that, due to the
strong Hund’s coupling, JH , form a large (classical) spin, S. These classical spins
tend to align antiferromagnetically between them. On the other hand, in LaMnO3

manganese is present as Mn+3 and, therefore, has an itinerant electron occupying
the eg level that tends to align with the spin of the t2g core due to JH . Between
these two extremes, both Mn ions are present in the ratio Mn+3/Mn+4 = x. The
situation described is known as the double exchange mechanism and was already
proposed by Zener [20] in the fifties just after the discovery of the interesting
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Figure 1.12: (a) Basic crystal structure of the manganites. One of the main important
points to notice is the octahedral surrounding of the Mn atoms. (b) In a perfect environ-
ment, its degenerate d levels are split in the triple degenerate t2g and double degenerate
eg. A distortion of the octahedron, like the one indicated by arrows, alters this situation
depending on whether the eg level is occupied or not. If eg is occupied, it is further split.
If not, the eg level can lower its energy if it is occupied in a short time scale [19].

properties of the manganites [21]. The double exchange (DE) Hamiltonian is:

H = −t
∑
〈ij〉

c†iσcjσ + J
∑
〈ij〉

SiSj − JH

∑
Sic

†
iσσciσ (1.8)

There are no doubts that the DE Hamiltonian contains the most important
physics describing the manganites, especially in describing, at least qualitatively,
the ferromagnetic state. However, another mechanism and ideas have to be added
for a complete description, although to what extent is still matter of discussion
[22]. The most notorious are electron-lattice coupling [19] and phase segregation
[23]. Besides the electron-lattice coupling described above (lattice distortions
producing modifications in the electron configuration), there is another type called
tolerance factor [19]. It originates from the fact that the atoms Re and A, in
Re1−xAxMnO3, have different radiuses producing different stresses in the Mn-
O-Mn bonds. This, in turn, produces buckling of the MnO6 octahedron, which
changes the Mn-Mn electron hoping [24]. Electron-phonon coupling makes the
carriers have a tendency to self trapping: the presence of an electron in a given
Mn orbital disturbs the lattice which in turn produce a potential minimum that
tend to keep the electron in that orbital [19]. If the coupling is strong enough
a self trapped state, called polaron, can be formed. Polaron states, indeed, have
been seen in the optical spectra of manganites. Other indication given by optics
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regarding the importance of lattice distortions is the different spectra obtained in
cleaved and polished samples. These two points will be discussed in Chapter 6.
There, we will also discuss the large isotope effect in some manganites that also
point to the importance to electron-phonon coupling.

The other idea that has to be included in describing the manganites is phase
separation. The traditional treatment of Eq. 1.8 for JH � t > J concludes that
hole doping (increasing x) of the AF state produces a canting of the spins until a
certain crital concentration is reached where the material becomes FM [25]. How-
ever, from the same treatment it is found that the compressibility ∂2E/∂2x < 0,
where E is the electron energy [26]. This means that the canted phase is un-
stable and tends to phase separate. The same conclusion has been found by
numerical calculations [27, 28] and more elaborate treatments of the DE Hamil-
tonian [28, 29]. In particular, in Ref. [28] it was found a phase diagram sim-
ilar to the one found in the traditional treatment [25] with the difference that
the canted phase was replaced by a region with phase separation. The phase
separated phases, however, will not be large as Coulomb repulsion tends to ho-
mogenize the system [26, 23]. In Chapter 6 we will see that the optical data
in (La0.5Pr0.5)0.7Ca0.3MnO3 thin films can also be interpreted in terms of phase
separation.

1.3 Spectral Weight and Strong Correlations

One quantity that we will study in this thesis is the spectral weight contained
in the optical conductivity. As we will see in this section, it contains informa-
tion about strong correlations present in a a given material. Starting from the
Kubo formula, it has been demonstrated [30, 31] that the real part of the optical
conductivity complies with:∫ ∞

0

σ1(ω)dω = − 1
2h̄

πiV 〈[P,J ]〉 (1.9)

where V is the total volume and P and J are the polarization and current density
operators, respectively. The important point is that if all electrons and all bands
are included [32] the current and polarization operators are given by:

J =
e

V m

∑
i

pi δ(r − ri)

P =
e

V

∑
i

ri δ(r − ri)

With these relations, Eq. 1.9 can be written as:∫ ∞

0

σ1(ω)dω =
πne2

2m
(1.10)
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where n ≡ N/V . This expression is, evidently, temperature independent.
Now, in strongly correlated systems the electronic states of interest seem to

be located in narrow bands well separated from other bands [2]. Therefore, tight
binding models considering only few bands, such as the Hubbard and Anderson
hamiltonians, are used to describe these systems. Within these models, if only
nearest neighbor hopping is considered and the system has orthorombic symmetry,
the current and polarization operators in a given direction are (for simplicity,
summations in the spin degree of freedom are omitted)[31]:

J = i
eat

h̄V

∑
i

(
c†i+1ci − c†i ci+1

)
P =

ea

V

∑
i

ic†i ci

where a is the distance between neighboring sites in the considered direction and
t is the hopping parameter. Then, Eq. 1.9 can be written as [31]:∫ ∞

0

σ1(ω)dω = −πne2a2

2h̄2 〈K〉 (1.11)

where K = −t
∑

i(c
†
i ci+1+c†i+1ci) is the kinetic energy of the conduction electrons.

The kinetic energy depends on temperature and interaction strength. Therefore,
the integrated optical conductivity contain information about the interactions
[2]. Moreover, it will have a strong temperature dependence. Equation 1.11 also
implies that there should be a transfer of spectral weight to high frequencies, i.e.
to energies corresponding to the bands that were not included in the model [32].

In the following chapters we will see that in strongly correlated systems there
is, indeed, a large transfer of spectral weight between low to high energies. The
range were this transfer occurs depends on the bands involved. In the systems
containing d electrons (silicides and manganites), this range is much larger than
those involving f electrons (heavy fermion systems).

1.4 Scope of This Thesis

This thesis will start with a short review of the basic concepts of optical spec-
troscopy, as well as of the experimental techniques used (Chapter 2). The fol-
lowing two Chapters deal with the optical properties of several transition-metal
monosilicides. In Chapter 3 one of them, MnSi, is studied thoroughly. Although
it is considered as a typical example of a weak ferromagnet described by the SCR
theory, it will be seen that is not the case. Particular emphasis will be given to
the low frequency properties studied by means of a not so often used optical tech-
nique, grazing incidence reflectivity. Chapter 4 studies FeSi, CoSi, and some solid
solutions between them. FeSi is a system that has been studied for a relatively
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long time. It is not clear if the insulating non-magnetic ground state should be
described by an itinerant or a Kondo-like picture. By studying the transferred
spectral weight it will be argued that the latter is more appropriate. Although
CoSi, as FeSi, is not magnetic, solid solutions between them present, surprisingly,
magnetism. Their optical properties are different from other well studied mag-
netic materials. After studying these itinerant systems, a family of heavy fermion
systems (CeMIn5) will be studied in Chapter 5. In this material it is clear that
there exist itinerant and localized electrons. The interaction between them gives
rise to the heavy fermion behaviour at low temperatures. The formation of this
condensate is characterized by a hybridization gap which is pretty clear in the
optical response. As in the silicides, there is a transfer of spectral weight but
the region where it occurs is much smaller. Finally, another system containing
localized and itinerant electrons will be studied. Chapter 6 present the optical
properties of (La1−yPry)0.7Ca0.3MnO3 (y = 0.5) thin films. Phase separation
and transfer of spectral weight will be analyzed. Moreover, a comparison between
films containing different oxygen isotopes will be made.
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Chapter 2

Optical Spectroscopy:
Fundamental Relations &
Experimental Techniques

The purpose of performing optical spectroscopy in a given material is to deter-
mine its complex dielectric function (or, equivalently, the optical conductivity) in
the largest possible photon energy range. The dielectric function will, then, give
information of the electronic structure of the material, of other excitations oc-
curring in the material, and possibly the mechanism driving transitions to states
such as superconductivity or magnetism. For that purpose, we have made an ex-
tensive use of different well known optical tools. Although they are already well
described in the literature, the aim of the present chapter is to present in a con-
cise way the fundamental concepts of optical spectroscopy and the correspondent
experimental tools. For a more complete analysis of the fundamental concepts we
refer to the classic textbook of Wooten[33] or the more recent one by M. Dressel
and G. Grüner[34].

2.1 Dielectric function and optical conductivity

The interaction of light with matter is fully described by Maxwell’s equations. The
specific properties of the material can be taken into account relating the induction
with the magnetic field strength (B = µ1H), and the external electric field, i.e.
the one that polarizes the medium, with the total electric field (Eext = ε1E).
Moreover, if we separate the different contributions to the charge density and the
current density (see Table 2.1 for a summary of such decomposition) and assume
a linear response between the electric field and the motion of the conduction
electrons it produces (Jcond = σ1E), Maxwell’s equations can be rewritten as:

19
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Table 2.1: Relationships showing the decomposition of different electric quantities.

Electric field E =

 Eext = ε1E
+

Eind = −4πP

Current density J =



Jpol = ∂P
∂t

+
Jmag = c∇×M

+
Jcond = σ1E

+
Jext

 J ind

Charge density ρ =

 ρpol

+
ρext

∇ ·Eext = 4πρext

∇×E = −1
c

∂B

∂t
∇ ·B = 0

∇×B =
µ1ε1

c

∂E

∂t
+

4πσ1µ1

c
E +

4πµ1

c
Jext

Now, let us assume that the electric fields can be decomposed into a complete
set of plane waves [E(r, t) =

∫ ∫
dq dωE(q, ω) exp(iq · r − iωt)]. If we make a

Fourier analysis of the previous equations and decompose the fields in longitudinal
(parallel to q) and transverse (perpendicular to q), it can be shown that for
isotropic materials:

JL,T
ind (q, ω) =

iω

4π

[
1− εL,T (q, ω)

]
EL,T (q, ω) (2.1)

where the transverse and longitudinal dielectric functions are defined as

εL ≡ ε1 + i
4πσ1

ω
ω2

c2

(
εT − εL

)
≡ q2

(
1− 1

µ1

)
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As we can see, in the long-wavelength limit (q → 0), the transverse and longi-
tudinal dielectric function are equal (i.e. the medium cannot distinguish between
fields parallel or perpendicular to q). In principle, a longitudinal (transverse) field
can produce transverse (longitudinal) currents. In fact, it is possible to obtain
the following relation

J ind(q, ω) =
iω

4π
[1− ε(q, ω)]E(q, ω) (2.2)

where ε is the dielectric function tensor and from which Equations 2.1 can be
obtained. Eq. 2.2 also defines the optical conductivity tensor:

σ(q, ω) =
iω

4π
[1− ε(q, ω)] (2.3)

In a crystal with a symmetry at least as high as orthorhombic, both tensors
can be diagonalized by choosing the appropriate axes which coincide with the
crystallografic axes. Since those elements can be studied independently, in the
rest of this book we will omit the tensorial character of the dielectric function.
Furthermore, for optical radiation we will only consider the long-wavelength limit.

2.2 Properties of the Optical Conductivity

Here we want to summarize the properties of the optical conductivity. The first
properties we want to discuss are consequence of recognizing the optical conduc-
tivity as a response function. To see that, let us consider any local (independent
of r) response function, G(t, t′), that describes the response of a system, X(t), at
a particular time t to a given stimuli, f(t′), acting at all times t′:

X(t) =
∫ ∞

−∞
G(t, t′)f(t) dt′

The response function should be function of the time interval t−t′ since this is the
time during which the stimuli acts. Furthermore, we consider causality that is the
response function is larger than zero only for time intervals larger than zero. With
these considerations the previous equation can be written as X(ω) = G(ω)f(ω)
after it is Fourier transformed. In this form we can recognize that the optical
conductivity is a response function describing the induced density current as a
result of an applied electric field (see Equations 2.2 and 2.3). In particular, the
Fourier transform of the response funtion is given by

G(ω) =
∫

G(t− t′)eiω(t−t′)dt

from which, the first property is evident:

1. σ(−ω) = σ?(ω) (2.4)
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Let us consider imaginary frequencies in the expressions for the response func-
tions. The causality principle restricts the response function to the upper plane of
the complex plane, i.e. G(ω) has no poles in this plane. Then, applying Cauchy’s
theorem, relations between the real and imaginary part of the response function
can be obtained. These relations, after further simplification using Eq. 2.4, can
be written as:

2. σ1(ω) =
2
π
P

∫ ∞

0

ω′σ2(ω′)
ω′2 − ω2

dω′ (2.5)

σ2(ω) = −2ω

π
P

∫ ∞

0

σ1(ω′)
ω′2 − ω2

dω′ (2.6)

They are the well known Kramers-Kronig (KK) relations. These relations can,
evidently, be applied also to the dielectric function. It is just necessary to recognize
that the appropriate response function in that case is ε(ω)− 1.

The combination of the KK relations with physical arguments about the be-
havior of the response function conducts to useful expressions known as sum-rules.
Although the sum-rules expressions are general, to demonstrate them it is easy to
consider a particular model, e.g. the Drude model (§2.4). The most widely used
sum-rule is that one involving the real part of the optical conductivity:

3.
∫ ∞

0

σ1(ω) dω =
πNe2

2m
≡

ω2
p

8
(2.7)

where N is the total number of electrons per unit volume, e and m are the electron
charge and mass, respectively, and ωp is known as plasma frequency. This integral
gives a quantity independent of temperature and hence the name of sum-rule. A
point of interest in this book will be the actual frequency range where the sum-
rule applies. Equation 2.7 suggest the following definition for the study of the
spectral weight in the optical conductivity:

Neff (ω) =
2mV

πe2

∫ ω

0

σ(ω′)dω′ (2.8)

where V is the volume of one unit. Evidently, when ω →∞ this quantity is equal
to the total number of electrons contained in the considered unit.

Finally we have two properties that can be identified from the definition of
the real part of the optical conductivity (Jcond = σ1E):

4. σ1(ω) > 0 (2.9)

5. lim
ω→0

σ1(ω) = σDC (2.10)
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2.3 Fresnel Equations for Reflection and Trans-
mission at a Single Interface

Let us consider an electromagnetic wave interacting with a medium as depicted
in Fig. 2.1. By applying the appropriate boundary conditions (continuity of the
tangential components of both the electric and magnetic vectors) to the solutions
to the Maxwell equations, it is possible to relate the incident electromagnetic wave
with the reflected and transmitted waves. In the case of non magnetic materials
(or magnetic materials at optical frequencies) the relations, known as Fresnel
equations, are:

rs(ω) =
Ers

Eis

=
n(0) cos θ(0) − n(1) cos θ(1)

n(0) cos θ(0) + n(1) cos θ(1)
(2.11)

ts(ω) =
Ers

Ets

=
2n(0) cos θ(0)

n(0) cos θ(0) + n(1) cos θ(1)
(2.12)

rp(ω) =
Eps

Eip

=
n(0) cos θ(1) − n(1) cos θ(0)

n(0) cos θ(1) + n(1) cos θ(0)
(2.13)

tp(ω) =
Erp

Etp

=
2n(0) cos θ(0)

n(0) cos θ(1) + n(1) cos θ(0)
(2.14)

where n(i) ≡
√

ε(i). The transmission angle can be eliminated from the previous
equations using Snell’s law:

sin θ(0)

sin θ(1)
=

n(1)

n(0)
(2.15)

2.3.1 Reflection at low frequencies in bulk materials

Experimentally, for bulk materials, rs and rp can be obtained directly via ellip-
sometry (§2.5) or using the KK relations via reflectivity (§2.6). In a reflectivity
experiment the quantities that can be measured are the reflectivities Rs and Rp.
They correspond to the square of the absolute values of the reflection coefficients
rs and rp, respectively. At low enough frequencies of the incident light, useful
relations can be obtained if we start from the Fresnel equations. For simplicity
let us take ε(0) = 1, ε(1) = ε(ω), and θ(0) = θ. If ε2(ω) � 1,∗ which is usually

∗Be aware of the notation we are using. For a given complex quantity X, X1 and X2

represent its real and imaginary part, respectively. When this numbers are between parenthesis,
they represent the optical properties of different layers. This will be important in §2.7
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Figure 2.1: Reflection and transmission in a single interface.

the case for metals at low frequencies, from Eq. 2.13 it is possible to obtain the
following expression for the reflectivity in the p-polarization:

Rp(ω) = 1− 2ω1/2

cos θ
Re

[
1√

iπσ(ω)

]
(2.16)

If σ1(ω) � σ2(ω) and σ1(ω) ≈ σDC , the previous equation can be further simpli-
fied to:

Rp(ω) = 1− 2ω1/2

cos θ
√

2πσDC
(2.17)

This means that, under the previous assumptions, the p-polarized reflectivity is
solely proportional to ω1/2. This behavior is known as the Hagen-Rubens limit
which is a characteristic of most metals.

2.4 Modeling the optical conductivity

In order to study the experimental results, we will rely on known models to
distinguish the different contributions to the optical conductivity. Those models
have to comply with the relations presented in the previous section. However,
some of the generally used models do not satisfy with all the properties of a
physical optical conductivity but can still be applicable in a limited frequency
range.



2.4. MODELING THE OPTICAL CONDUCTIVITY 25

2.4.1 The Drude-Lorentz model

The simplest microscopical model to describe the response of the medium to an
electromagnetic field (E) is the Lorentz model. In that model we consider an
electron (of mass m and charge e) bound to the nucleus in a similar way a small
mass can be bounded to a large one:

mr̈ + mΓṙ + mωor = −eE

where we have also considered viscous damping. From here it is easy to show that
in such a case the dielectric function is given by:

ε(ω) = 1 +
ω2

p

(ω2
o − ω2)− iΓω

(2.18)

where ω2
p is defined as in §2.2. Using Eq. 2.3 the optical conductivity in this model

is found to be:

σ(ω) =
ω2

p

4π

ω

i(ω2
o − ω2) + Γω

Free electrons are not bound and the correspondent optical conductivity is ob-
tained by setting ωo = 0 but keeping the damping term (free electrons cannot
absorb photons at a finite frequency). This gives rise to the well known Drude
model often used to describe the low frequency response of metals.

To analyze experimental data, one usually takes a model dielectric function
which is the combination of one Drude peak and various Lorentz oscillators:

ε(ω) = ε∞ −
ω2

p

ω(ω + iΓ)
+

∑
j

ω2
p,j

(ω2
o,j − ω2)− iωΓj

(2.19)

where we have introduced the additional parameter ε∞ which is the value of the
dielectric function when ω →∞. It is easy to see that in Eq. 2.18, ε∞ = 1. One
has to be careful when calculating the optical conductivity if ε∞ 6= 1. This is
specially true when one wants to extract the response of the free carriers from the
far infrared conductivity. In this region, the effect of the high frequency bound
oscillators is subsumed in an ε∞ > 1.

To illustrate the different contributions to the optical properties in the Drude-
Lorentz model, let us consider Eq. 2.19 with the parameters given in Table 2.2.
The corresponding σ1(ω), ε1(ω), and normal incidence reflectivity (θ = 0) are
plotted in Fig. 2.2. In the real part of the optical conductivity, Fig. 2.2(a), we can
easily recognize at low frequencies the Drude contribution and at high frequencies
the Lorentz oscillator whose maximum coincides with its position as indicated by
the arrow. The inset of Fig. 2.2(a) shows the phase of the optical conductivity
(plus a constant). Its meaning will be clear in the following subsection.
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Figure 2.2: Real parts of the optical conductivity and the dielectric function, and normal
incidence reflectivity of a model containing one Drude and one Lorentz oscillator. The
parameters are given in Table 2.2. The insets show expanded views in selected frequency
ranges.
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Table 2.2: Parameters, in cm−1, corresponding to the Drude, NFL and Lorentz oscil-
lators used to plot Figures 2.2 and 2.3. For both plots, the parameter ε∞ has taken to be
equal to 1.

Oscillator ωo ωp Γ γ η

Drude 0 50000 500 − −
NFL 0 50000 500 1 0.25

Lorentz 35000 70000 30000 − −

The real part of the dielectric function is shown in Fig. 2.2(b). For comparison
purposes in both the Drude and Lorentz contributions we have added ε∞. As
indicated in the inset of Fig. 2.2(b), the zero crossing of the Drude oscillator and
the second crossing of the Lorentz are close to their respective plasma frequencies.
As a result of combining both contributions, the total ε1(ω) shows a maximum
that, depending on the relative strengths of the contributions, can produce two
extra zero crossings.

Finally, in Fig. 2.2(c) we have plotted the resulting normal incidence reflec-
tivity, R(ω). As in the previous case, for comparison, we have added ε∞ to both
contributions to calculate their corresponding reflectivities. The reflectivity asso-
ciated to the Drude peak shows a sharp decrease that corresponds to its plasma
frequency. At low frequencies [inset of Fig. 2.2(c)], we recognize two different
frequency ranges corresponding to:

I: ω � Γ. From Eq. 2.18 and its corresponding optical conductivity it is easy to
show that for the Drude contribution in this energy range:

σ1(ω) ≈ σDC =
ω2

p

4πΓ
ε1(ω) → −∞

These are the necessary conditions for entering to the Hagen-Rubens limit,
Eq. 2.17, which in this case reduces to:

R(ω) ≈ 1− 23/2Γ1/2

ωp cos θ
ω1/2

This limit is shown in the dashed line of the inset of Fig. 2.2(c)

II: Γ � ω � ωp. In this region, the Drude optical conductivity can be approxi-

mated to σ(ω) ≈ ω2
pi

4πω

(
1− iΓ

ω

)
. Therefore:

σ1(ω) ≈
ω2

pΓ
4πω2

ε1(ω) ≈ −
ω2

p

ω2
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In this case we are not any more in the Hagen-Rubens limit. However,
Eq. 2.16 is still valid, and the normal incidence reflectivity can be written
as

R(ω) ≈ 1− 2Γ
ωp cos θ

In this range the reflectivity is frequency independent.

This limiting behaviours are often used to recognize deviations from the Drude
model in metals. This deviation has indeed seen in various compounds. The most
well known case is in the optical response of the high-TC superconductors where
other frequency dependencies are seen [35].

2.4.2 Beyond the Drude model

Various metallic compounds have shown deviations from the Drude formulation.
Recently, a simple analytical extension to this formulation has been proposed [36]:

σ(ω) =
ω2

p

4π

i

(ω + iγ)1−2η(ω + iΓ)2η
(2.20)

This expression reduces to the the Drude formulation for η = 0 and 0.5, and
γ = Γ. Moreover, it complies with all the properties discussed in §2.2.

In the spirit of the previous subsection, we plot σ1(ω), ε1(ω), and R(ω) in
Fig. 2.3 for a model containing one oscillator given by Eq. 2.20 (in the following
we will refer to this expression as a NFL oscillator) and one Lorentz oscillator.
The respective parameters are given in Table 2.2. Notice that we have chosen
γ � Γ with the latter parameter equal to the scattering rate of the Drude model
to facilitate a comparison. The behaviour at high frequencies is similar to the
previous case. At low frequencies, however, the situation is different. We identify
various frequency ranges:

I: ω � γ. In this case we arrive to the Hagen-Rubens limit:

R(ω) ≈ 1− 23/2γ1/2−ηΓη

ωp cos θ
ω1/2
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Figure 2.3: Real parts of the optical conductivity and the dielectric function, and normal
incidence reflectivity of a model containing one NFL and one Lorentz oscillator. The
parameters are given in Table 2.2. The insets show expanded views in selected frequency
ranges.
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II: γ � ω � Γ. For this region Eq. 2.20 reduces to†:

σ(ω) ≈
ω2

p

4πωΓ2η
(−iω)2η−1 (2.21)

We have an optical conductivity which follows a power law. In this par-
ticular case it coincides with the expression suggested by P. W. Anderson
to describe the optical conductivity of the cuprate high Tc superconductors
[35]. Moreover, it has been shown that close to a quantum critical point
(QCP), scale invariance forces optical conductivity to follow a power law
dependence [37]. From Eq. 2.21 we can see that in this case the phase of
the optical conductivity is constant and it is easily shown that

η ≈ 1/2− arg[σ(ω)]/π (2.22)

We have plotted this quantity in the insets of Figures 2.2(a) and 2.3(a). As
expected 1/2−arg[σ(ω)]/π gives 0.5 and 0.25 for the Drude and NFL cases,
respectively. The effect of having the exponent η 6= 0.5 can also be seen in
the reflectivity. Indeed, using Eq. 2.16, it can be shown that it also has a
power law dependence:

Rp(ω) = 1− 4Γη sin(ηπ/2)
ωp cos θ

ω1−η (2.23)

which reduces to the Hagen-Rubens limit for η = 0.5. The dashed line of
the inset of Fig. 2.3(c) shows this dependency.

III: Γ � ω � ωp. In this region, the optical conductivity reduces to:

σ(ω) ≈ ω2i

4πω

[
1− (1− 2η)

iγ

ω

] [
1− 2η

iΓ
ω

]
from where we obtain again a constant reflectivity:

Rp(ω) = 1− 4
ωp cos θ

[(1/2− η)γ + ηΓ]

†The first correction to the power law, obviously, contains terms of order γ/ω:

σ(ω) ≈
ω2

p

4πωΓ2η

i1−2η

ω1−2η

[
1− (1− 2η)

iγ

ω

]
Rp(ω) ≈ 1−

4Γηω1−η

cos θωp

[
sin

(
ηπ

2

)
+

(
1

2
− η

)
γ

ω
cos

(
ηπ

2

)]



2.4. MODELING THE OPTICAL CONDUCTIVITY 31

2.4.3 The One component approach: Extended Drude For-
mulation

The Drude formula can be obtained from the Boltzman’s transport equation with
the assumption that the function that describes the departure from the equilib-
rium has, at zero field, an exponential decay characterized by a scattering rate
Γ = 1/τ . This is the case of metals at low temperatures and frequencies (compared
to EF ) where elastic scattering from impurities and weak quasielastic scattering
from phonons dominate[38]. If the non-equilibrium term in Boltzman equation
is supposed to have a more general form [39], an optical conductivity character-
ized by a complex and frequency dependent damping term, M(ω), is obtained.
Rewriting the Drude optical conductivity with 1/τ → M(ω) = 1/τ(ω)− iλ(ω) we
obtain:

σ(ω) =
ω2

p

4π

1
1/τ(ω)− i ω m?(ω)/m

(2.24)

where we have defined m?(ω)/m ≡ 1 + λ(ω). Although we have referred to the
Boltzman equation to obtain the previous result, it is, in fact, more general.
Indeed, the same result has been obtained for the infrared conductivity in metals
with strong electron-phonon coupling[40, 38]. In this context, we can identify
1/τ(ω) and m?(ω)/m as the frequency dependent scattering rate and the mass
enhancement of electronic excitations due to many-body interactions. It is also
generally believed that the resulting theory is valid in the case of the coupling of
a Fermi liquid to any bosonic energy spectrum [41].

When analyzing experimental data in the extended Drude formulation, one
has to be careful that the optical conductivity arises from a single component.
That is, if there are two or more charge-carrier systems contributing to σ1(ω),
the interpretation of 1/τ(ω) and m?(ω)/m as the frequency dependent scattering
rate and the mass enhancement of electronic excitations loses its meaning. Since
this formulation corresponds to a single component, the plasma frequency, ωp,
appearing in Eq. 2.24 can be calculated from the optical conductivity using the
sum rule (Eq. 2.7).

To illustrate the analysis using the extended Drude formulation, we have ap-
plied Eq. 2.24 to the optical conductivities corresponding to the models discussed
in the previous subsections and given in Table 2.2. Additionally we have schemat-
ically modeled the optical response found in heavy fermion (HF) systems using
Eq. 2.19 with the parameters given in Table 2.3. Notice that for comparison
we have taken the spectral weight contained by the first two oscillators equal to
the zero-mode of the other examples. In Fig. 2.4 we plot 1/τ(ω) and m?(ω)/m
corresponding to these three cases. As expected, for the Drude formula, these
quantities are frequency independent. The other two models produce mass en-
hancement at low frequencies and a frequency dependent scattering rate.
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Figure 2.4: 1/τ(ω) and m?(ω)/m obtained applying Eq. 2.24 to the optical conduc-
tivities corresponding to the models given in Tables 2.2 and 2.3. Upper inset: Optical
conductivity for the three models.
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Table 2.3: Parameters, in cm−1, used to model the optical response of HF systems.
Notice that ω2

p,Drude +ω2
p,MIR = ω2

p, where ωp is the plasma frequency for the zero-mode
used in Table 2.2.

Oscillator ωo ωp Γ
Drude 0 14000 5

MIR lorentzian 400 48000 1000
UV lorentzian 35000 70000 30000

E i

E r
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Rotating 
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Figure 2.5: Schematic representation of the method used for the ellipsometric measure-
ments.

2.5 Measuring Directly the Dielectric Function:
Ellipsometry in Bulk Samples

Ellipsometry allows us to determine the ratio between the p- an s-polarized reflec-
tion coefficients, ρ ≡ rp

rs
≡ tan(Ψ)ei∆. This ratio can then be related directly with

the dielectric function at least in the case of isotropic samples. From Equations
2.11 and 2.13 it can be shown that:

ε = sin2 θ

[
1 + tan2 θ

(
1− ρ

1 + ρ

)]
where θ is the angle of incidence. In the case of anisotropic samples, this quantity
is known as the pseudo-dielectric function. The determination of the dielectric
function of anisotropic materials requires extra measurements, usually ellipsome-
try in different crystallographic planes or at different angles of incidence.

There are various ellipsometric configurations. The one we have chosen is
depicted in Fig. 2.5. The principal components are a fixed polarizer displaced an
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angle P relative to the incidence plane and a second polarizer (called analyzer)
that rotates at a frequency w. A beam of intensity Io is directed through the
polarizer. This beam is usually chopped at a frequency much less than w to
facilitate its detection. After reflection, the polarization of the light changes,
in general being elliptical. The rotating analyzer modulates the intensity of the
beam, I = Io +a cos(2wt)+b sin(2wt), which can be easily measured using lock-in
techniques. The ratios α = a/Io and β = b/Io are then easily measured. It can
be shown that they obey the following relations [42]:

α =
tan2 Ψ− tan2 P

tan2 Ψ + tan2 P

β =
2 tanΨ cos ∆ tan P

tan2 Ψ + tan2 P

Their inversion allows to determine the angles Ψ and ∆ that define ρ.
In the work presented in this thesis, the ellipsometry technique was performed

in the interval [6000-36000] cm−1. The temperature dependences were determined
using a home-made ultra-high-vacuum cryostat. Therefore, we have to take into
account the change of polarization caused by the windows in the cryostat. This
correction is temperature independent and can be easily determined at room tem-
perature by performing an ellipsometric measurement with and without windows
at the same angle of incidence [43]. In fact, it can be easily shown that in the
presence of windows:

ρsample+wind = ρwind × ρsample

At room temperature, ρwind is determined and, then, this value can be used at
all temperatures to determine ρsample.

2.6 Reflectivity in Bulk Samples

In principle, measuring reflectivity is rather straightforward (Fig. 2.6). With a
polarizer s or p polarizations are selected and, then, reflectivity corresponds to the
ratio between the intensity of the reflected beam and the intensity of the incident
beam. In practice, these intensities are difficult to measure and, as a common
practice, a reference measurement is used. Selecting an appropriate reference is
also non-trivial as small changes in replacing the sample by the reference can lead
to big errors in the measured reflectivity. For the present work we have selected
the following approach:

a. The intensity reflected by the sample is measured at all temperatures.

b. Gold is evaporated in-situ on the sample, at room-temperature, without
translating or rotating the sample-holder.
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Figure 2.6: Schematic diagram of the experimental set-up used to measure reflectivity.

c. The intensity reflected by the gold film is measured again at all tempera-
tures.

The sample is mounted in a home-built cryostat, the special construction of
which guarantees the stable and temperature independent optical alignment of the
sample. This cryostat allows to measure reflectivity in two configurations: near
normal (θ = 11◦) and grazing incidence (θ = 80◦) reflectivity. Grazing incidence
has been used to resolve the high reflectivity of metallic samples [44, 45, 46] since
then it is lowered by cos θ respect to normal incidence reflectivity (see Eq. 2.16).

2.6.1 From Reflectivity to Optical Conductivity

Let us assume for a moment that we have measured Rp = |rp|2 in the whole
frequency range. To invert Eq. 2.13 and determine the dielectric function, we
still need to determine the phase of the reflection coefficient, φrp. This could
be achieved using KK relations for the logarithm of the reflection coefficient,
ln rp = ln |rp| + iφrp. As pointed out in §2.2, this is possible only if ln rp has
no poles in the upper half of the complex plane. The logarithm of rp has poles
for rp = 0 which, from Eq. 2.13, only occurs when ε(ω) = tan θ [47]. Using the
Drude model for the dielectric function we can find that the poles are limited to
the lower complex plane if

tan2 θ < ε∞ (2.25)

This restricts the application of KK relations to a limited set of angles of incidence.
Because ε∞ = 1, KK relations for reflectivity exist only for angles of incidence
lower than θmax = 45◦.
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Near normal incidence

The reflection experiments that will be discussed in the following chapters have
been performed in the frequency range of [20-6000] cm−1. Given the restrictions
in our experimental setup, for the near normal incidence configuration we have
selected θ = 11◦. In this case, Eq. 2.25 warrants that KK relations exist for ln rp.
The problem now is to extend our measured reflectivity to a larger frequency
range to be able to use KK relations and then obtain the phase of the reflection
coefficient. The usual method is to obtain reasonable extrapolations outside the
measured frequency range. We have used the following procedure that combines
reflectivity and ellipsometry (§2.5) measurements in the same studied material
[48]:

a. We fit at the same time:

i DC conductivity (when available),

ii reflectivity (via the Fresnel equations), and

iii the dielectric function obtained by ellipsometry

using a model dielectric function which is the combination of one Drude and
various Lorentz oscillators (Eq. 2.19). The Drude oscillator can be replaced
with Eq. 2.20.

b. From the fit, we obtain extrapolations below and above the measured range
(i.e. for ω/2πc < 20 cm−1and ω/2πc > 36000 cm−1).

c. This allows to perform a Kramers-Kronig transformation using the measured
reflectivity, the reflectivity obtained from ellipsometry and the extrapola-
tions.

This procedure has the advantage that the resulting dielectric function is locked
to the measured one.

Grazing incidence

In near normal incidence it is difficult to resolve the high reflectivity of metallic
samples. One possible solution is to perform a reflection experiment at a larger
angle which will reduce the reflectivity by cos θ. For example, we have chosen an
angle of incidence of 80◦. After obtaining extrapolations as described above, the
problem we face is that there are no KK relations for grazing incidence reflectivity.
An equivalent approach is to use a large number of oscillators that will fit every
detail of the measured reflectivity and will still reproduce the measured dielectric
function [45, 47, 50]. This is the method we have used.
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Figure 2.7: Schematic diagram of a system composed of m different layers.

2.7 Layered Systems

Let us considered a stack of m layers thin enough to be transparent (Fig. 2.7).
Each layer is characterized by its thickness, d(k), and complex dielectric function,
ε(k) = n(k)

2. In this case, to determine the the reflectivity and transmission of
the system (i.e. the ratios of the incident beam to the reflected and transmitted
beams), we have to take into account the different contributions coming from
multiple reflections (and their transmissions) in the different interfaces.

The easiest way to mathematically describe the reflection and transmission of
such a system [49] is to define the following matrix:

M(k) =
(

e−iδ(k−1) r(k)e−iδ(k−1)

r(k)eiδ(k−1) eiδ(k−1)

)
(2.26)

where r(k) represents the complex reflection coefficient between the (k−1)-th and
k-th layers, and δ(k) ≡ 2πνn(k)d(k) cos θ(k) is the phase change of the beam when
traveling through the k-th layer. The coefficients r(k) are given by the Fresnel
relations (Equations 2.11 or 2.13). We have omitted the index s and p in Eq. 2.26
because these results are valid for both polarizations. Further, we define the
matrix M as the multiplication of all matrices M(k), i.e. M =

∏m+1
k=1 M(k). With
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these definitions, the total reflection and transmission coefficients in a layered
system are given by:

r =
M21

M11
(2.27)

t =
∏m+1

k=1 t(k)

M11
(2.28)

with t(k) the transmission coefficient between the (k − 1)-th and k-th layers, and
Mpq the matrix element situated at row p and column q.

2.7.1 Reflection and Transmission

The absolute values of reflectivity and transmission for a multilayer system were
determined at (near) normal incidence in the range [1000-6000] cm−1. The fol-
lowing procedure was used at room temperature:

a. The sample is placed behind a mask (see Fig. 2.7). This limits the reflected
and transmitted light that reaches the detector to only the one that comes
from the sample.

b. The sample is replaced by the reference. In the case of reflection it is a
golden mirror while in transmission it is the bare mask.

c. The corresponding ratios give R = rr? and T = tt?.

We measured only the temperature dependence of the intensity reflected and
transmitted by the sample.

One-layer system: substrate

For a one-layer system, it is enough to know its reflectivity and transmission to
determine its optical properties by inverting the square of the absolute values of
Equations 2.27 and 2.28. The inversion can be done numerically. An equivalent
approach is similar to the one we used to determine the dielectric function from
grazing incidence reflectivity (§2.6.1). First, we fit the experimental data using a
limited number of Drude-Lorentz oscillators. After a reasonable fit, on the top of
it, a large number of oscillators is added in such a way that it reproduces all the
details of the measured spectra.

As an example of the described procedure, we show the results for a SrTiO3

substrate (d(1) = 525µm) in Fig. 2.8. The data does not show interference as a
result of the substrate being slightly wedged after the polishing of the back side.
The wedging of the substrate has also been modeled assuming a disperssion in the
thickness of the sample [50]. In the same Figure, we also present the reflectivity
obtained before polishing of the back side and the reflectivity obtained from the
dielectric function assuming a bulk sample.
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Figure 2.8: Results for a SrTiO3 substrate. Upper panel: Dielectric function obtained
from inverting Equations 2.27 and 2.28 using reflectivity and transmission. Lower panel:
Reflectivity and transmission data (circles), R(ω) and T (ω) obtained from the calculated
dielectric function (lines). We also show the measured and calculated reflectivity of the
same substrate before the back side was polished [Rbulk(ω)].
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Two layers system: film+substrate

Determining the optical properties of a film deposited in a substrate requires the
knowledge of the properties of the substrate. With that information, if reflectivity
and transmission of the system is measured, we can invert the corresponding
Equations 2.27 and 2.28. If only one of the two is known, an analysis à la Kramers-
Kronig can be made if the dielectric function in another frequency range has been
previously determined. This information can be obtained by ellipsometry.

2.7.2 Ellipsometry

To determine the dielectric function from ellipsometric measurements we can fol-
low a similar approach as described in the previous subsection. We only have
to remember that from ellipsometry we can obtain the complex ratio between
the reflection coefficients, rs

rp
. Then, for a one-layer system, a single ellipsomet-

ric measurement will be necessary to invert the ratio of the reflection coefficients
(Equations 2.27). The same is valid for a two-layer system if the optical properties
of the substrate are known.



Chapter 3

Silicides I: Non-Drude
Optical Conductivity in
MnSi

The optical properties of the weakly helimagnetic metal MnSi have been deter-
mined in the photon energy range from 2 meV to 4.5 eV using the combination of
grazing incidence reflectance at 80◦ (2 meV to 0.8 eV ) and ellipsometry (0.8 to
4.5 eV). As the sample is cooled below 100 K the effective mass develops a strong
frequency dependence at low frequencies, while the scattering rate develops a sub
linear frequency dependence. The complex optical conductivity can be described
by the phenomenological relation σ(ω, T ) ∝ (γ(T ) + iω)−0.5.

3.1 Introduction

The weakly helimagnetic metal MnSi (TC = 29.5 K) has been the subject of
intensive studies during the last 40 years. In the helimagnetic phase the resistivity
has a T 2 dependence, which has been explained as resulting from a coupling
of the charge carriers to spin fluctuations[4]. Recently, interest has shifted to
the quantum phase transition [51] at a critical pressure of 14.6 kbar where the
Curie temperature becomes zero. The temperature dependence of the resistivity
outside the magnetically ordered region, at high pressures, has been found to be
proportional to T 3/2 in temperature range far larger than that predicted by the so-
called nearly ferromagnetic Fermi-liquid theory, an extension of the Fermi-liquid
picture[51] (see Fig. 3.1). This fact has suggested the non-Fermi liquid nature of
MnSi in the normal state [51]. Despite these efforts in understanding the physics
behind MnSi, few attempts have been made to determine and understand its
optical properties. Measurements below TC of the far infrared normal incidence

41
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(a) (b)

Mn

Si

Figure 3.1: (a)Schematic phase diagram of MnSi under pressure, magnetic field and
temperature (from Ref. [53]). (b) Crystal structure.

reflectivity indicated a remarkable departure from the Hagen-Rubens law, usually
observed in metals[52]. However, the high value of the reflection coefficient (close
to the 100 % line) prevented a detailed analysis of the frequency dependent optical
conductivity in this range. In this work we overcome this hurdle by using p-
polarized light at a grazing angle of incidence of 80◦, for which the reflection
coefficient drops well below the 100 % line. We show that the frequency dependent
scattering rate and the effective mass deviate from the the behavior expected for
Fermi liquids which can be understood from the fact that the optical conductivity
is best described with an expression that departs from the usual Drude model.

3.2 DC Resistivity

Single crystals of MnSi were grown using the traveling floating zone technique[52,
54]. The temperature dependence of the resistivity of one of the crystals is shown
in Fig. 3.2. Fitting the resistivity to

ρ(T ) = ρ(0) + ATµ

in the temperature interval 4K to 23K, we obtain ρ(0) = 1.85 µΩ cm, A =
0.021 µΩ cm K−2, and µ = 2.1 (upper inset of Fig. 3.2). The resistivity increases
more rapidly in the region between 23 K and the phase transition. For T > 30K
the resistivity fits to

1
ρp(T )

=
1

ρ∞
+

1
ρ′T
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Figure 3.2: DC resistivity as a function of temperature (solid curve). The open circles
represent ρp(T ) = (1/ρ∞+1/(AT ))−1 with ρ∞ = 286 µΩ cm and A = 1.62 µΩ cm K−1.
Top left inset: DC resistivity (solid curve) below 30 K and fit to ρF (T ) = ρ(0) + AT µ

(open diamonds). Lower right inset: Temperature dependence, µ(T ), of the exponent in
ρ(T ) = ρ(0) + AT µ (solid curve). The open squares represent d ln ρp/d ln T .

with ρ∞ = 286 µΩ cm and ρ′ = 1.62 µΩ cm K−1. The remarkable accuracy of
this parallel resistor formula [55] is further confirmed by the logarithmic derivative
shown in the inset of Fig. 3.2. The tendency of the resistivity toward saturation
at a value ρ∞ for T → ∞ is in agreement with Calandra and Gunnarsson’s
result[56] that the resistivity saturates when the mean free path l = 0.5n1/3d
(roughly the Ioffe-Regel limit), where n is the density of the electrons and d is
lattice parameter. Also this indicates that, if the temperature saturation would
be absent, the resistivity would be proportional to T with a very high accuracy.
These observations stand in stark contrast to the T 5/3 temperature dependence
predicted from the model of spin-fluctuations in itinerant electron magnetism[4].

3.3 Optical Spectroscopy

3.3.1 Experiment and Results

Grazing incidence reflectivity was measured in the range 20 to 6000 cm−1 using
a Bruker 113v FT-IR spectrometer (Fig. 3.3a and 3.3b). The temperature de-
pendence was measured using a home-built cryostat, the special construction of
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Figure 3.3: a) Grazing reflectivity at 10 and 300 K. b) Expanded view of the reflectivity
below 300 cm−1. c) Real and imaginary part of the dielectric function in the visible part
of the spectrum measured with spectroscopic ellipsometry.
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Figure 3.4: a) Optical conductivity at four different temperatures. b) Measured DC
resistivity, and DC resistivity obtained by extrapolating the experimental σ(ω) using a
Drude-Lorentz fit (stars) and using Eq. 2.20 (open circles). Inset: Phase of the complex
optical conductivity.

which guarantees the stable and temperature independent optical alignment of
the sample. The intensities were calibrated against a gold reference film evapo-
rated in situ without repositioning or rotating the sample-holder. In the range 20
to 100 cm−1 we measured the temperature dependence of the grazing reflectivity
with 0.5 K intervals below 50 K and 2 K intervals above 50 K. The complex dielec-
tric function in the range 6000 to 36000 cm−1 was measured with a commercial
(Woollam VASE32) ellipsometric spectrometer for the same set of temperatures
as the grazing reflectivities using an ultra high vacuum cryostat (Fig. 3.3c). The
complex dielectric function ε(ω) = ε′(ω) + i(4π/ω)σ1(ω) was calculated from the
complete data set (grazing infrared reflectance and visible ellipsometry) using the
à la Kramers-Kronig procedure described in §2.6. Below 20 cm−1 the reflectiv-
ity data were extrapolated to fit the experimentally measured DC conductivities.
The optical conductivity is shown for some temperatures in Fig. 3.4.

3.3.2 Extended Drude Analysis

The first remarkable feature in the spectra is the similarity of the optical con-
ductivity to the response of heavy fermion systems[57]. In those materials, σ1(ω)
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has almost no temperature dependence down to a frequency of ∼10 cm−1 and,
below this frequency, a narrow mode centered at zero frequency is formed [57].
Similar behavior has also been noticed for α-cerium[45] in the mid-infrared fre-
quency range. Following a common procedure in the study of the electrodynamic
response of heavy fermion systems, we have calculated 1/τ(ω) and m?(ω)/m from
the optical conductivity using the extended Drude-model [39] (Eq. 2.24) adopting
the value 18700 cm−1 for the plasma frequency, motivated by the least square
fits which we will discuss below. Fig. 3.5a indicates a significant mass renor-
malization at low frequencies which, at the lowest measured temperatures, shows
no indication of reaching a frequency independent value. Previous de Haas-van
Alphen experiments (at T = 0.35 K) [58] provided an average enhancement of 4.5
times the cyclotron mass, although values as high as 14 were observed for some of
the orbits. This average value was found to be compatible with the enhancement
of the linear coefficient of the heat capacity, γ/γo =5.2, calculated from specific
heat data of Ref. [59]. In comparison, our data show at 10 K and at the lowest
measured frequency an enhancement of 4, and an enhancement of 17 when we
extrapolate the data to ω = 0.

The second remarkable feature is the behavior of 1/τ(ω) (Fig. 3.5b). At
high temperatures this quantity becomes frequency independent, as expected for
a Drude peak. Already at 100 K, 1/τ(ω) is no longer a constant. Approaching
the phase transition 1/τ(ω) becomes strongly frequency dependent between 30
and 300 cm−1 and it follows approximately a linear frequency dependence in this
frequency range. In contrast, other correlated systems, such as heavy fermions
[57, 45] and perovskite titanates [60], show a frequency-dependent scattering rate
with an ω2 dependence at low frequencies. Indeed the theory of Fermi liquids [61]
predicts

1/τ(ω, T ) = 1/τo + a(h̄ω)2 + b(kBT )2 (3.1)

with b/a = π2. The same expression was obtained by Millis and Lee considering
the Anderson lattice model [17], and qualitatively similar behavior has been cal-
culated by Riseborough in the context of spin-fluctuations (with b/a = 4π2)[62].
The frequency dependences of 1/τ(ω) corresponding to these theories are plotted
in the inset of the lower panel of Fig. 3.5 for 10 K. There is a mismatch with the
experimental 1/τ(ω), both in absolute value and the observed trend, which is out-
side the experimental error bars. However it can not be excluded, that at an even
lower frequency the experimental 1/τ(ω) would cross over to a ω2-dependence.

3.3.3 Deviation from the Drude formulation

Above, we have pointed out various striking results in the optical response of
MnSi. In order to understand their nature, let us take a closer look at the low
frequency data. From 300 to 75 K, 1 − Rp(ω) follows a ω1/2 behavior (see Fig.
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Figure 3.5: a) Effective mass and (b) frequency-dependent-scattering rate in MnSi as
obtained from σ1(ω) at different temperatures. Insets: Same quantities below 200 cm−1.
Symbols represent the experimental data and thick lines the calculation from the non-
Drude fit described in the text. The solid points at the left show ρDCω2

p/(4π). The inset
of the lower panel shows also the expected frequency dependence for the Fermi liquid
theory (dashed line) and spin fluctuations (dotted line) calculated from Eq. 3.1.
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3.6a). As discussed in §2.4, this can be easily understood from Eq. 2.16 and which
is reproduced here:

Rp = 1− 2ω1/2

cos θ
Re

[
1√

iπσ(ω)

]
In the case that σ1 is constant and σ2 goes to zero, this expression reduces to
the well known Hagen-Rubens law. In the Drude picture this corresponds to the
frequency range where the scattering rate is larger than ω. In contrast, below 75
K our measured Rp does not follow a ω1/2 behavior. Combining the Drude model
with the Fresnel equations for reflectivity, a plateau in the reflectivity is expected
for intermediate frequencies (frequencies larger than the scattering rate but much
lower than the plasma frequency). To check this more closely we measured Rp(ω)
below 100 cm−1 in a finer temperature mesh. Our results show no sign of a
plateau, instead 1 − Rp(ω) evolves gradually to a linear frequency dependence
when T is lowered. We can also see this in Fig. 3.6 where we present the result
of fitting the grazing reflectivity to a general expression of the form:

Rp = 1− C

cos θ
ω1−β (3.2)

At high temperatures we obtain β ≈ 0.5 which corresponds to the HR limit. As
the temperature is lowered, after a small increase, this exponent decreases and
reaches the value of β ≈ 0.28 at the lowest temperature. This effect is not an
artifact of the grazing incidence technique since a fitting to reflectivity at near
normal incidence give the same results. Although it is tempting to attribute the
sudden drop of C and β for T < 40 K to the magnetic phase transition, we will
see below that this is not the case. This drop is only an artifact due to fitting the
reflectivity to a power law formula in a region which is not adequate.

Given the behaviour just described, we can then conclude that either the peak
centered at zero frequency departs from the Drude picture or other modes appear
at low temperatures and at low frequencies. To distinguish between these alter-
natives we have fitted, simultaneously, the measured reflectivity, ellipsometry and
resistivity with two models. First we modelled the data with a Drude peak and a
set of oscillators. In this case, the fit fails to reproduce the measured DC resistiv-
ities at low temperatures (stars in Fig. 3.4b). On the other hand, if we give more
fitting weight to ρDC , the result is a poor fit of Rp at low frequencies∗. Indeed,
the infrared properties together with the DC resistivity can be summarized in an
economical way (i.e. requiring a minimal set of adjustable parameters) when we
replace the Drude formula with Eq. 2.20 [36]:

σ(ω) =
ω2

p

4π

i

(ω + iγ)1−2η(ω + iΓ)2η

∗It is evident that in this case, the fit can be improved if more low frequency oscillators are
added, but using Eq. 2.20 requires less number of parameters
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Figure 3.6: a) Low frequency grazing incidence reflectivity (symbols) and fit to Eq. 3.2
(lines). b) and c) Temperature dependence of the fitting parameters obtained from grazing
incidence and near normal incidence experiments. The depicted error bars were obtained
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As discussed in §2.4, this formulation, for γ � ω � Γ, corresponds to the ex-
pression derived by P. W. Anderson in the context of the optical conductivity of
the cuprate high Tc superconductors, σ(ω) ∝ (iω)2η−1 [36, 35]. Moreover, this
formula, in the case Γ � ω, has been shown to describe the optical conductivity of
SrRuO3, below 40 K, in the range [6-2400] cm−1 with η = 0.3 [63].† For SrRuO3

this behavior has been justified as arising from the coupling of electrons to orbital
degrees of freedom[64], and in the context of the discrete filamentary model of
charge transport[65].

Our new fit, non-Drude plus Lorentz oscillators (whose individual components
at 300 K are displayed in Fig. 3.4a), gives the same overall result at high temper-
atures (T >75 K) as the Drude fit. However, at low temperatures, the non-Drude
equation gives a better fit at low frequencies and, what is more important, re-
produces ρDC at all temperatures (open symbols in Fig. 3.4b). Therefore, we
conclude that the low frequency optical response of MnSi is best described by
Eq. 2.20. From the fit we can extrapolate the optical properties to lower fre-
quencies (insets of Fig. 3.5). The extrapolation shows that at 10 K, for ω → 0,

†The exponent η in this thesis is related to the exponent α of Dodge et al. by α = 1− 2η.
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Figure 3.7: Temperature dependence of the parameters obtained from the fit of Eq. 2.20
to the experimental data.

m?(ω)/m = 17, with a gradual decay as a function of increasing frequency. Simi-
larly, 1/τ(ω) is approximately proportional to ω in the frequency range below 300
cm−1. Above TC , it has a weak ω2 frequency dependence.

Now let us analyze the parameters of the fit to Eq. 2.20 which are summa-
rized in Fig. 3.7 (the error bars represent the interval of confidence calculated
for a variation of 1% of χ2). Within the error bars, the parameters ωp, Γ and
η are temperature independent, which contrasts with the strong decrease of γ
with decreasing temperature. This temperature dependence allows us to make
two independent checks of the validity of using Eq. 2.20 to describe the optical
properties of MnSi. According to this fit, at high temperatures, the parame-
ters γ and Γ are of the same order. Therefore, at low frequencies the condition
ω � γ < Γ holds, which corresponds to the region I described in §2.4.2 and where
the Hagens-Rubens limit is reached. Accordingly, at high temperatures the fit of
the low frequency reflectivity, Fig. 3.6, gives the expected square root dependence.
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On the contrary, in the low temperature limit at low frequencies, the following
inequality holds γ � ω � Γ. This range correspond to region II in §2.4.2. In
this region, Rp(ω) also follows a power law behaviour given by Eq. 2.23. This
allows us to perform the first check. Namely, in this limit, the parameters β and
C of Eq. 3.2 should correspond to η ≈ 0.23 and 4Γη sin(ηπ/2)/ωp ≈ 4.5 × 103,
respectively. From Fig. 3.6 we see that the agreement is excellent. At interme-
diate temperatures, Rp(ω) does not follow a power law and the sudden drops of
parameters C and β (Fig. 3.6) correspond to a change from one to the other limits
just described, thus not corresponding to the entrance to the magnetic state. The
second independent check, also at low temperatures and frequencies, is to verify
if Eq. 2.22 holds and a plateau in the phase of the optical conductivity is seen
(see §2.4.2). We have plotted the quantity 1/2 − arg[σ(ω)]/π in the lower inset
of Fig. 3.4 from where we see the appearance of a low frequency plateau with the
value 0.22. The agreement with the value of η obtained from the fit to Eq. 2.20
is outstanding.

From Eq. 2.20 we can easily see that ρDC = 4πω−2
p Γ2ηγ1−2η, but since ωp, Γ

and η are temperature independent, ρDC(T ) ∝ γ(T )1−2η. For our sample, using
the values of Fig. 3.4, we obtain ρDC = 6.02 γ0.54 [µΩ cm]. Recently, Dodge et
al.[63] have emphasized a similar non-linear relationship between the DC resistiv-
ity and the parameter γ in the case of the weak itinerant ferromagnet SrRuO3.
The conclusions for SrRuO3 have been questioned recently by Capogna et al.[66],
who argued that the true temperature dependence of the optical properties may
have been masked by the large residual resistivity of the sample used in Ref. [63].
In the present work this problem is absent due to the low residual resistivity of
single crystalline MnSi. In fact, we can confirm this non-linear relation indepen-
dently by fitting the low frequency Rp(ω) (at all the measured temperatures) to
Eq. 2.20 using the known values of ωp, Γ and η. The values obtained for γ are
displayed in Fig. 3.8. The inset shows γ0.54 and ρDC/6.02. We can see that
the model represented by Eq. 2.20 describes the measured data (reflectivity and
resistivity) down to approximately 20 K.

At low frequencies, deviations from the Drude formula of the optical conduc-
tivity have been seen accompanied by deviations from T 2 in ρDC (for example
YBCO [67] and CaRuO3 [68]). Therefore, a departure from Drude behavior has
been usually considered as evidence against Fermi-liquid behavior. Here, for MnSi,
we are confronted with an atypical case. The resistivity has a quadratic temper-
ature dependence, but the optical conductivity is better described by Eq. 2.20
with η ≈ 0.23, a clear departure from the Drude formulation. Moreover, instead
of an ω2-type frequency dependent scattering rate, which is usually observed in
strongly interacting Fermi-liquids [57, 45], here 1/τ(ω) has a sublinear frequency
dependence. Although Eq. 2.20 summarizes in a compact way the low frequency
optical response, differing in a fundamental way from conventional Drude behav-
ior, its microscopic origin is as yet not fully understood.
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3.4 Conclusions

For frequencies below 300 cm−1 and for T < 100 K the situation can be summa-
rized as follows: (i) m∗/m decreases from 17 to 1 as temperature and frequency
are increased. (ii) Phenomenologically the DC conductivity and the optical con-
ductivity follow σ ∝ (γ(T ) + iω)−0.5. In this formulation γ(T ) ∝ T 4 below TC ,
whereas above Tc the temperature temperature dependence is approximately lin-
ear. (iii) For T > TC the scattering rate 1/τ(ω, T ) is proportional to T and
ω2 in contradiction with the theory of weak itinerant ferromagnetism.(iv) For
T < TC the scattering rate is proportional to T 2 and ω. Given the frequency
range for this type of measurements, we can not exclude the possibility, that for
frequencies below 30cm−1 the scattering rate crosses over to the Fermi-liquid re-
sult 1/τ ∝ π2T 2 + ω2. However, it should be noted that if it can be confirmed
that Eq. 2.20 describes the optical conductivity down to frequencies ω → 0, this
crossover will not occur.



Chapter 4

Silicides II: Transfer of
Spectral Weight

The optical properties of Fe1−xCoxSi (x=0, 0.1, 0.2, 0.3) have been determined in
the photon energy range from 2 meV to 4.5 eV using the combination of normal
incidence reflectance (2 meV to 0.8 eV ) and ellipsometry (0.8 to 4.5 eV). The
experimental results permit us to settle a long standing controversy regarding the
recovery of spectral weight. It is shown that the spectral weight is not recovered in
the entire measured range, thus favoring models that include strong correlations.

4.1 Introduction

Among the transition metal silicides, three of them have particularly attracted
the attention of the scientific community for more than five decades. These are
MnSi, FeSi and CoSi. All of them crystallize in the same cubic structure, B20,
whose main property is the lack of strict space-inversion symmetry. In MnSi, this
leads to the helical ordering in its magnetic phase. The Curie temperature of this
material is 30 K at ambient pressure but it can be decreased by the application of
hydrostatic pressure and eventually becomes zero at pc = 14.6 kbar [53, 51, 69].
MnSi is one of the so-called weak itinerant electron ferromagnets since its satura-
tion magnetic moment (µs ≈ 0.4 µB/F.U.)[59] is smaller than the one obtained in
the paramagnetic phase just above TC (µC ≈ 2.5 µB/F.U.)[70] where its magnetic
susceptibility follows a Curie-Weiss law (for a review on weak ferromagnetism see
Ref. [71]). On the other hand, FeSi is paramagnetic down to at least 0.04 K [72]
and CoSi is diamagnetic with a temperature independent susceptibility [73]. The
solid solutions between them, Fe1−xCoxSi, also crystallize in the B20 structure
with the metal sites being occupied randomly by Fe and Co atoms. However, in
contrast to their parent compounds, they show helimagmetism[74] with low Curie
temperatures in the concentration range 0.05 ≤ x ≤ 0.8 (Fig. 4.1). The compo-

53
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Figure 4.1: Phase diagram of Fe1−yMnySi and Fe1−xCoxSi (adapted from Ref. [7]).

sitions exhibiting magnetism follow also a Curie-Weiss law[75] in different ranges
above Tc. Moreover, in these materials µC/µs > 3, which also indicates weak
ferromagnetism [75]. At variance with MnSi and magnetic Fe1−xCoxSi, weak fer-
romagnetism appears usually in compounds whose individual components do not
show magnetism in its elemental form, e.g. Sc3In and ZrZn2. These kind of com-
pounds are also expected to show superconductivity, effect that has been indeed
seen in ZrZn2 [76] but not found in MnSi perhaps due to the lack of inversion
symmetry center of its crystal structure [51]. Recently, in MnSi, a novel state
of matter has been found for pressures larger pc where a short range chiral mag-
netism co-exists with a conducting fluid that shows a non-Fermi liquid resistivity
which is proportional to T 3/2. [53, 51, 69]

Since in weak ferromagnet compounds µC > µs, it is argued that local mo-
ments cannot explain the magnetism in these materials and an itinerant picture
should be adopted. The Stoner model (i.e. the application of the Hartree-Fock
method to the Hubbard model) is not enough to explain the thermodynamical
properties of itinerant ferromagnets and various authors stressed the importance
of including spin fluctuations (SF) for a correct description. Both, thermal[4] and
zero point (quantum)[77] fluctuations have been included. This theory has been
relatively successful in describing various aspects of weak magnetism. It explains,
for example, the magnetization curves and the T 2-dependence of the DC resis-
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tivity, ρ, below TC [4]. However, various authors have expressed their concerns
with respect to this theory [78, 79]. Hirsch[78] has pointed out that the average
square local moment (i.e. the amplitude of the thermal spin fluctuations) has
not a strong temperature dependence as predicted in the spin fluctuation theory.
Furthermore, Ohkawa [79] has shown that the chemical potential located at a
sharp peak of the density of states, although favoring magnetism, is detrimental
for the Curie-Weiss law in the SF theory. A peak in the density of states indeed
occurs in Sc3In [80], ZrZn2 [81] and MnSi [82], for example. Experimentally, de-
viations from the predictions of the SF theory have been found in materials that
are traditionally considered as described by this theory. In the case of MnSi at
ambient pressure, its DC resistivity below TC follows a T 2-law [46, 53, 51, 69]
but above TC does not follow the T 5/3-dependence [46] expected in the SF theory
and seen in other weak ferromagnets[4]. We can also mention the case of mag-
netic Fe1−xCoxSi which shows positive magnetoresistance [7] when the SF theory
predicts a negative one.

The SF theory has also been applied to describe the properties of FeSi [4, 84,
83]. One of the main results is that this theory has reproduced qualitatively the
magnetic susceptibility of FeSi at high temperatures. However, optical measure-
ments have shown that FeSi develops a gap of approximately 700 cm−1 (87 meV)
below 200 K, which cannot be explained by band theory solely. In this respect,
it has been also suggested that the temperature dependence of the gap can be
explained if thermal disorder is taken into account [85]. The thermal disorder is
introduced via random displacements of the atoms in the unit cell which are then
related to temperature. To reproduce the experimental results, an average square
displacement of 8 × 10−3 Å2 (at 300 K) is introduced, which is more than twice
the thermal displacement factors found experimentally. At that temperature the
maximum mean square displacement is ∼ 3.5 × 10−3 Å2 for Si perpendicular to
the [111] direction and the minimum is ∼ 2× 10−3 Å2 also for Si parallel to the
[111] direction. [86]

In contrast to the itinerant theories, Aeppli and Fisk [87] have pointed out
the similarity between the properties of this material and the Ce-based Kondo
insulators, stressing the importance of strong correlations to describe FeSi. This
point of view has been corroborated with the observation that the spectral weight
of the optical conductivity, σ1(ω), lost below the gap is not recovered in a region
just above the gap as it occurs in conventional semiconductors [88]. Accordingly,
various calculations in the large U limit have tried to explain this observation [32,
89]. However, the above mentioned experimental result is matter of controversy
that has not yet been settled [90]. The main argument is that an error of 1% in the
measured reflectivity is enough to explain the apparent lack of recovery of spectral
weight [91]. Therefore, the objective of this chapter is to settle this controversy
that has lasted already for ten years. For that purpose we have complemented
reflectivity experiments in the far infrared with ellipsometry in the visible range
and used these data to perform a Kramers-Kronig analysis. The advantage is
that this procedure anchors the phase in the entire frequency range [45]. It will
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be shown that uncertainties as large as 1% in the measured reflectivity are not
enough to explain the lack of recovery of spectral weight. Moreover, we will show
that the spectral weight does not recover below 4.5 eV. We complement this study
presenting the optical properties of MnSi [46], Fe1−xCoxSi (x = 0.1, 0.2, 0.3), and
CoSi.

4.2 Experiment and Band Structure Calculations

4.2.1 Sample Preparation

High-quality single crystals of TSi (T = Mn, Fe, Co) were grown from the stoi-
chiometric melt either by the floating zone method using a light image furnace in a
purified argon atmosphere, or by a modified tri-arc Czochralski method.[92] In this
way, large crystals were obtained. The cubic symmetry of them was confirmed by
x-ray diffraction analysis. Electron-probe microanalysis showed a stoichiometric
and homogeneous single phase.

On the other hand, the single crystals of cobalt-doped FeSi were grown by the
chemical vapor transport method. Stoichiometric amounts of the constituent ele-
ments were placed in an evacuated quartz tube with elemental iodine, which served
as the transport agent. The iodine concentration was typically 2-5 gm/cm−3. The
mass of the iodine plus the starting charge totalled approximately 1 gram. The
crystals were grown using two different diameter quartz tubes: 16 mm and 22
mm. The larger quartz tubes generally produced larger crystals. The tubes were
place in a horizontal tube furnace and heated at 850 ◦C for a period of ten days.
A temperature gradient of approximately 100 degrees was maintained across the
tube during the heating process. The larger of the resulting crystals were ∼ 2
mm3 polyhedrons.

For the optical experiments (next Section), the crystals were polished shortly
before the measurements. The resulting dimensions were of ∼ 3 × 3 × 1 mm3

for the pure silicides and no larger than ∼ 1.5 × 1 × 1 mm3 for the Fe1−xCoxSi
crystals.

4.2.2 Optical experiments

The optical responses of the different crystals were determined at different tem-
peratures by combining reflectivity and ellipsometry in different energy ranges. In
the range 6 meV to 0.74 eV (50-6000 cm−1), reflectivity was measured using the
Fourier transform technique with the sample inserted in a home-made cryostat.
This experiment consisted of two steps. First, the signal reflected from the sample
is measured at different temperatures. Then, at 300 K, gold is evaporated in-situ
and the reference intensity is measured at the same set of temperatures. For the
Fe1−xCoxSi crystals, a near normal incidence configuration was used while a graz-
ing incidence configuration at 80◦ was used for MnSi[46]. The latter was chosen
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to resolve the high reflectivity of MnSi at low temperatures. In addition, the tem-
perature dependence of the normal-incidence reflectivity of FeSi was measured in
the range 0.6 to 3.7 meV (5-30 cm−1) using the submillimeter wave technique
[94].

The ellipsometry technique was performed in the range 0.74 to 4.46 eV (6000
- 36000 cm−1). We used a commercial ellipsometer equipped with a home-made
cryostat which allows to determine the temperature dependence. The advantage
of this method is that it permits to determine the complex dielectric function
ε(ω) = ε1 + iε2 directly, except for a temperature-independent correction to take
into account the change of polarization caused by the windows in the cryostat.
This correction can be easily determined at room temperature by performing
an ellipsometric measurement with and without windows at the same angle of
incidence (see §2.5). This experiment was also performed for a FeSi single crystal
whose reflectivity was measured previously [93]. For the Fe0.7Co0.3Si and CoSi
crystals we only performed room-temperature ellipsometry since the reflectivity
of these crystals changes less than 1% in the measured temperature range and,
therefore, the expected changes in the visible range are even smaller. Finally,
the temperature dependence of the dielectric function of the MnSi crystal was
determined with a step of 1 K between 30 and 300 K, and 0.5K below 30 K.

4.2.3 Band Structure Calculations

The first principles band structure calculations of the compounds of the inter-
est were performed within the framework of local density approximation (LDA)
[95] with the Gunnarsson-Lundqvist exchange correlation potential [96]. The self
consistent electronic structure calculations of TSi (T = Mn,Fe,Co) as well as
Fe0.8Co0.2Si were carried out by using the full potential linear muffin-tin orbital
method (FP-LMTO) [97]. In order to calculate the band structure of Fe0.8Co0.2Si
a non-integer charge to iron in FeSi was assigned. The room temperature experi-
mental lattice constants and atomic parameters [100, 86, 98] were used. On top
of the electronic structure calculation the optical conductivity [99] was evaluated
with the k-space integration over 216 points in the irreducible part of the Brillouin
zone.

4.3 Results

4.3.1 Reflectivity and Dielectric Function

The experimental results are summarized in Figures 4.2 and 4.4. In the first
place, the measured reflectivities of the different crystals are shown in Fig. 4.2.
The same figure also shows the calculated reflectivity from the ellipsometry data
via the Fresnel equations. Notice the good agreement between the two sets of
data. For FeSi, the results of the reflectivity measured in the microwave region
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Figure 4.2: Measured (30-6000 cm−1) and calculated reflectivity from ellipsometry
(6000-36000 cm−1) at several temperatures. The agreement between the two techniques is
better than 1% in the adjacent regions. For comparison, the normal incidence reflectivity
of MnSi calculated from the dielectric function[46] is also reproduced here.
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Figure 4.3: Reflectivity of FeSi in the infrared and the submillimiter region, and fit
(open circles), using Eq. 2.19, to the whole set of available data.

are also shown. Additionally, for comparison purposes, we have also included the
normal incidence reflectivity of CoSi [93] and that of MnSi as calculated from the
dielectric function which in turn was calculated from grazing incidence reflectivity
and ellipsometry[46].

Starting from 300 K, as the temperature is decreased, the reflectivity of FeSi
decreases at low frequencies. The same trend can be seen in the x = 0.1 and
0.2 samples, though the effect is not as dramatic as in pure FeSi. The opposite
tendency is seen in all the other samples. Another important point to notice is
the reflectivity of FeSi in the microwave region (see Fig. 4.3). In this region, the
reflectivity at 10 K goes smoothly to 100% as expected for a narrow Drude peak
of weak strength. Moreover, there is no sign of a broad feature at ∼ 10 cm−1

assumed to explain the data of Ref. [91].
The second set of experimental data is presented in Fig. 4.4. In that figure

we show the real and imaginary part of the dielectric function as obtained from
ellipsometry and corrected for the presence of windows in the cryostat. In this
region, both ε1 and ε2 are qualitatively similar for all the studied compounds
although in CoSi an extra peak can be seen at around 10000 cm−1. Where
measured, the temperature dependence is weak but still noticeable. In general,
the real part of the dielectric function increases with decreasing temperature,
except for MnSi where this happens just above ∼10000 cm−1. On the other
hand, in all the samples ε2 increases when going from low to high temperatures.
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function of MnSi at two selected fequencies.

At the end of this subsection, we want to show Figure 4.5 as an example of the
high-resolution (in temperature) measurements of the dielectric function of MnSi.
There we plot the temperature dependence of the the real and imaginary parts of
the dielectric function at two selected frequencies. Notice the kinks below TC . It
will be clear in §4.4, when studying the plasma frequency, that this changes are
indeed related to entering the magnetic phase.

4.3.2 Optical Conductivity

The next step in our study is to obtain the optical conductivity in the entire mea-
sured range from the two sets of data. For that purpose, we have followed the pro-
cedure described in §2.6.1, which we briefly describe here again. For every crystal
we have fitted at the same time the DC conductivity (when available), reflectivity
(via the Fresnel equations), and the dielectric function using a model dielectric
function which is the combination of one Drude and various Lorentz oscillators
(Eq. 2.19). For MnSi we used Eq. 2.20 for the zero mode (see Chap. 3). From
the fit, we have obtained extrapolations below and above the measured range.
This allows to perform a Kramers-Kronig transformation using the measured re-
flectivity, the reflectivity obtained from ellipsometry and the extrapolations. This
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procedure has the advantage that the resulting dielectric function is locked to the
measured one.

The optical conductivities obtained in this way are presented in Fig. 4.6.
At room temperature, the conductivity of the Fe1−xCoxSi samples with a low
concentration of Co is slightly dependent on the concentration of cobalt and is
qualitatively similar to that in MnSi. Chernikov et al. [101] have found a similar
behaviour in the case of even lower doping (x ≤ 0.03), that is, in the non-magnetic
region. In FeSi, the temperature dependence of the optical conductivity is similar
to previous studies [88, 93, 102]: the optical gap, ∆c ∼ 1000 K, starts to open at a
temperature T ∗ ∼ 200 K, with ∆c smaller than the gap seen in scanning tunneling
microscopy [103]. In the Kondo insulator picture (which has been proposed for
FeSi in Ref. [87]), T ∗ corresponds to the coherence temperature below which the
quasiparticles are formed. This is the reason for which the gap develops below T ∗.
T ∗ is an intermediate energy scale smaller than the gap itself. This interpretation
is also suggested by scanning tunneling microscopy experiments.[103]

When FeSi is doped with cobalt, a progressive closing of the gap is found
[101] and from our experiment we can see that it is already completely closed for
x = 0.1 although there is still a decrease of the spectral weight in the region where
the gap was present in FeSi. This can be easily understood if we considered that
close to the gap the bands are mainly of Fe nature (the bands coming from Si
lie well below EF ) [102, 104, 105] and, therefore, doping with an 3d element will
readily affect the states near the gap [106].

4.3.3 Estimation of the Experimental Uncertainty in σ1(ω)

In this section we want, first, to compare the method just described with the
standard one in which solely reflectivity is measured and, second, make an es-
timation of the experimental uncertainty of both procedures. The experimental
uncertainty in obtaining the optical conductivity originate mainly from uncer-
tainties in determining the absolute value of reflectivity. This error depends on
the size of the sample and on the way the reference was measured but is usually
around 1% and we have assumed this value for the following analysis. It should
be noted, however, that the relative error (i.e. when comparing the temperature
dependence) can be smaller.

First, to make the comparison, we have fitted only the reflectivity (measured
and obtained from ellipsometry) with the model given by Eq. 2.19 and used it as
extrapolations for a Kramers-Kronig analysis. The result of this procedure (for
FeSi at 300 K) is shown in Fig. 4.7 together with the optical conductivity obtained
as described in §4.3.2. The discrepancy between these two methods is evident
and emphasizes the advantage of using reflectivity jointly with ellipsometry. A
better agreement will be obtained, evidently, if reflectivity is measured in a larger
range. Second, the error is estimated by displacing the reflectivity by ±1% in
the entire range and repeating the fit and the Kramers-Kronig analysis. The
estimation of the error for the method described in §4.3.2 is similar. We have
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Figure 4.6: Real part of the optical conductivity for the Fe1−xCoxSi and MnSi crystals.
The dotted vertical lines show the position of the oscillators needed to fit the reflectivity
and ellipsometry data at 10 K.
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repeated the fit and the Kramers-Kronig analysis with the measured reflectivity
displaced by ±1% and the reflectivity calculated from ellipsometry without such
displacement. This last step is justified since an error of, for example, 1% (which
is larger than the error estimated for our experimental setup) in the real and
imaginary part of the dielectric function introduces an error of less than 0.2% in
the calculated reflectivity through the Fresnel equations. Our method results in
smaller experimental uncertainty in the entire range.

4.3.4 Band Structure

The calculated band structures of TSi (T=Mn, Fe, Co) and Fe0.8Co0.2Si along
the symmetry lines in the cubic Brillouin zone are shown in Fig. 4.8. Our results
are in good agreement with previous calculations of electronic structure for MnSi
[107] and Fe0.8Co0.2Si [108] and with the electronic structure and optics for FeSi
[105, 104, 102]. The band structure of all compounds is very similar to each
other in the sense that it could be obtained by the rigid shift of one or both spin
channels. This can be seen more easily in Fig. 4.9 where the densities of states are
plotted. The theoretically predicted ground state of FeSi is non magnetic with a
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small indirect semiconducting gap of the value ∼ 0.1 eV. The ground state of CoSi
is also non magnetic but metallic which is in consequence of adding four extra
electrons in the unit cell. For the other two compounds, MnSi and Fe0.8Co0.2Si the
calculations show a half-metallic ground state, i.e. one spin direction is metallic
while the other is semiconducting. The obtained values of magnetic moment
are 1 and 0.2 µB per formula unit for MnSi and Fe0.8Co0.2Si respectively. For
Fe0.8Co0.2Si, these results, half-metallicity and magnetic moment, agree well with
Hall effect and magnetization measurements [7] but, surprisingly, this is not the
case for MnSi.

In Fig. 4.10 we have plotted the real part of conductivity calculated from
the band structure together with the experimental curves obtained at the lowest
temperatures. For a comparison with the experimental data we have introduced
a relaxation rate for the Drude term which equals to the one obtained via the
oscillator fit described in the previous section (see also Table 4.1). As it was
reported previously for FeSi [102, 104], the agreement is good at high frequencies
but worsens at low frequencies. We will discuss more about this point in the
following section.

4.4 Discussion

4.4.1 Drude-Lorentz model

The results of the Drude-Lorentz fitting described in §4.3.2 are summarized in
Tables 4.1 through 4.3. The position of such oscillators are also indicated by the
vertical dotted lines in Fig. 4.6. In the first place, the Drude contribution is
given in Table 4.1. When going from FeSi to CoSi we see an initial increase of
the plasma frequency of this contribution indicating the closing of the gap and
the addition of electrons. In CoSi, however, the contribution is smaller than in
Fe0.7Co0.3Si. We will return to this point latter. The oscillators given in Table 4.2
have been identified as phonons in FeSi[93]. It is clear that they are also present
in the Co-doped samples, CoSi, and MnSi. This is not a surprise since all of them
crystallize in the same structure. Moreover, for the series Fe1−xCoxSi (x = 0, 0.1,
0.2, 0.3), their strengths (Sj ≡ ω2

p,j/ω2
o,j) are approximately independent of the

concentration.

FeSi

At the other end of the measured frequency range, in FeSi, we can distinguish two
oscillators (see Table 4.3) that can be easily identified with the predictions of the
optical conductivity obtained from band structure calculations. Such calculations
predict peaks at 2 and 6 eV (C and D in Fig. 4.10). Of the two peaks, the former
originates from transitions between different 3d levels [104]. The second peak
is the result of hybridized d to p transitions between the iron and silicon sites
with contributions from 4f states [102]. Our DL fit produces oscillators that are
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Table 4.1: Parameters, in cm−1, corresponding to the Drude oscillator used to describe
the zero-frequency mode of the different samples at 10 K. Note that for MnSi, instead of
the Drude formulation, we used Eq. 2.20.

Sample ωp Γ γ η

CoSi 6852 166 - -
Fe0.7Co0.3Si 10674 434 - -
Fe0.8Co0.2Si 7548 243 - -
Fe0.9Co0.1Si 5448 115 - -

FeSi 1447 452 - -
MnSi 18748 2249 0.73 0.23

centered at around 16000 and 42000 cm−1 (2 and 5.2 eV respectively), although
we can only see the tail of the latter and therefore its precise position is difficult
to be determined from the present experiment. The fit also identifies oscillators in
the mid-infrared (MIR) region that, however, are not in good agreement with the
band structure calculations. In that region, the calculations predict peaks at 0.2
and 1 eV (A and B in Fig. 4.10) also originating from transitions between different
3d bands. Our experimental results for FeSi, in contrast, show three oscillators
(see Table 4.3), the first one being situated at 4765 cm−1(0.59 eV). The other two
oscillators are situated at 936 and 1376 cm−1 (0.12 and 0.17 eV), respectively, and
are necessary to model the broad peak appearing just above the gap and probably
represent only one set of transitions. Although these differences could be within
the uncertainties of the calculations, the fact that the predicted peaks are at
larger energies than those obtained in experiment can also be an indication of the
renormalization due to the importance of electron-electron correlations in this
material.[104, 89] Other indication of the importance of significant correlations
is the fact that the value of the gap is overestimated in the calculations (middle
panel of Fig. 4.10). Given the large experimental and calculated value of the real
part of the dielectric function at low frequencies, the expected uncertainties in the
determination of the gap are small.[104] In fact, as it will be discussed below, the
introduction of correlation effects improves the agreement between theory and
experiment [89, 109]. When the temperature is increased, it is not possible to
resolve the MIR transitions and only one broad oscillator is sufficient to describe
the optical properties of FeSi at room temperature in this region. Furthermore,
the gap is closed at temperatures much smaller than the size of the gap, indicating
also a non-conventional origin of the gap.

CoSi

Now, let us take a look at the results in CoSi. From the band calculations we see
that the band structure is not drastically changed but the Fermi energy moves
upwards (∼0.6 eV) and is situated above the gap as result of the addition of
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the extra electron. Therefore, in the optical conductivity we expect a Drude
contribution well separated from interband transitions. Those transitions should
be similar to those found in FeSi but shifted ∼0.6 eV. This is indeed what the
calculated σ1(ω) shows. Besides a narrow Drude peak we see interband transitions
labeled as A’-D’ in the upper panel of Fig. 4.10, although C’ is somewhat blurred.
Then, we can compare these results with the DL fit. Peak A’ can be identified
with the two broad contributions at 2133 and 4311 cm−1. Peak B’ corresponds to
the oscillators placed at 10598 and 14467 cm−1. Finally, the oscillator at 37410
cm−1 corresponds to peak C’ and probably also the tail of D’.

Fe1−xCoxSi

The doping of FeSi with cobalt can be viewed as a mere shift upwards of the
Fermi energy. [106] Accordingly, the situation is expected to be similar to what
has been already discussed for CoSi with a smaller shift. However, experimentally
this is difficult to see, mainly due to the large width of all the oscillators. In this
picture, we would also expect an increase of the spectral weight of the Drude peak
which is indeed the case here as can be seen in Table 4.1. When reaching CoSi,
ωp has decreased again since the the Fermi energy is placed in such a way that
some conduction bands are already filled.

MnSi

For MnSi a magnetic ground state is predicted. Both, the spin up and down bands
are similar (and similar to FeSi) but shifted approximately 0.9 eV. The expected
σ1(ω) should, therefore, be similar to that in FeSi adding the contribution from
the spin up bands. The spin up bands contribute with a large Drude contribution
and weaker interband transitions. The calculated optical conductivity show these
features. Experimentally, the situation is similar to FeSi: a good agreement
at high frequencies but somewhat poorer at low frequencies. Particularly, the
predicted peak A” transitions is not enough to explain the large spectral weight
at low frequencies reflecting in part the non-Drude nature of the zero-frequency
mode as described in Chapter 3.

4.4.2 Spectral Weight

The spectral weight contained in the optical conductivity up to a frequency ω was
defined in Eq. 2.8 and which we reproduce here:

Neff (ω) =
2mV

πe2

∫ ω

0

σ(ω′)dω′ (4.1)

From general principles it can be shown [33, 34] that when ω →∞ this quantity
is constant at all temperatures and equal to the total number of electrons in one
formula unit. Therefore, the infinite frequency limit of Neff (ω) corresponds to
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Figure 4.11: Effective number of electrons per TMSi unit, as calculated with Eq. 4.1,
for all the samples at 10 K.

39 and 40 + x for MnSi and Fe1−xCoxSi, respectively. In Fig. 4.11 we show
the spectral weight of the different samples at 10 K. It is interesting to note the
small number of electrons that participate in the optical properties at such high
frequencies: in all the cases less than 1.5 electrons up to 35000 cm−1. To calculate
Neff (ω) we have used the room temperature lattice parameters from References
[100] and [86]. The decrease of the unit cell with decreasing temperature has not
been taken into account. However, in FeSi this effect would decrease the value of
Neff at 10 K by 0.7% [86] and therefore does not affect the conclusions presented
below.

Temperature Dependence of the Spectral Weight

The temperature variation of the spectral weight is small and can be seen in a
better way by defining the quantity

∆T Neff (ω) ≡ Neff (ω)|T −Neff (ω)|10K (4.2)

In this manner, a recovery of the spectral weight would make ∆T Neff tend to zero.
We show this quantity for the different studied samples in Fig. 4.12. In FeSi we see
that at 300 K the spectral weight increases up to frequency of ∼ 5000 cm−1(0.62
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eV), then there is a small recovery up to ∼ 20000 cm−1 (2.48 eV) indicated by the
plateau and, finally, the spectral weight increases again. Therefore, there is no
recovery of the spectral weight at frequencies as high as 4.5 eV. The experimental
uncertainty associated with uncertainties in determining the value of reflectivity
(see Sec. 4.3.3) are depicted for the room temperature curves. It is evident that
the lack of recovery of the spectral weight cannot be explained solely on the basis of
experimental uncertainties. As a consequence, this result settles the long standing
controversy about the distribution of spectral weight in FeSi. Furthermore, we
show that the spectral weight redistributes in an energy range much larger than
previously thought.

In a conventional semiconductor the spectral weight lost below the gap is re-
covered with increasing temperature in an energy range of several times the gap.
Therefore, the observation of the lack of recovery of spectral weight in FeSi [88]
is seen as an effect of strong correlations confirming the ideas of Aeppli and Fisk
[87]. In a system where strong correlations are significant, just few bands are im-
portant and models like the Anderson lattice or the one and two band Hubbard
models are appropriate. In that case the spectral weight contained in the σ1(ω) is
proportional to minus the expectation value of the kinetic energy of the conduc-
tion electrons, 〈K〉, and thus can have a strong temperature dependance. In the
case of Kondo insulators the periodic Anderson model is considered to be appro-
priate [87, 111] since they contain a flat band of localized f-electrons hybridizing
with a broad band of conduction electrons. It has also been suggested that this
model applies to FeSi [87] despite the fact that it does not contain f-electrons.
Within this context, FeSi can be regarded as a low U Kondo insulator [87]. In
fact, the Anderson lattice model applied to Kondo insulators seems to explain
naturally the observed lack of recovery of spectral weight [111], that is, one has
to integrate σ1(ω) in Eq. 4.1 to frequencies of the order of the bandwidth to re-
cover the spectral weight. Calculations of σ1(ω) and 〈K〉 in the Anderson model
using the iterated perturbation theory within the local impurity self-consistent
approximation [32] have indeed proven the strong temperature dependence of the
spectral weight. However, the predictions from such calculations do not com-
pletely reproduce the experimental results. First, in this approach it is necessary
to include effects of disorder to obtain a reasonable agreement with the shape of
the optical conductivity obtained by experiment [32]. Second, from calculations
of 〈K〉 it can be seen that the spectral weight increases with temperature (in-
set of Fig. 4.13). This indeed is the behavior obtained in experiment as can be
seen from the main panel of Fig. 4.13 where we have plotted the temperature
dependence of Neff at 30000 cm−1. However, as the temperature is increased,
−〈K〉 reaches a maximum and when T > T ∗ (∼ 200 K in FeSi), it decreases again
as result of thermal excitations of the electrons inside the conduction band [32].
This last effect is not seen in our experiment (Fig. 4.13) and, on the contrary, we
observe a monotonous increase of the spectral weight. A comparison at a lower
frequency (e.g. Fig. 4.14) reveals that the spectral weight tends to saturate at
high temperatures but not completely.
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Figure 4.12: The quantity ∆T Neff (ω) as given by Eq. 4.2 allows to follow the variation
of the spectral weight with frequency at different temperatures. Here we show this quantity
at 300, 150, and 100 K to demonstrate the lack of recovery of spectral weight.



4.4. DISCUSSION 75

Although the various properties of FeSi are similar to the Kondo insulators
[87] and our results confirm the importance of strong correlations, the presence
of sharp and localized orbitals in this material is a matter of controversy. As
a result, the two band Hubbard model has been also proposed to explain the
properties of FeSi [89]. In contrast with the Anderson model, the two band
Hubbard model takes into account two symmetric bands hybridizing with each
other. The original work of Fu et al. [89] found a good agreement between the
calculated and measured magnetic susceptibility in FeSi. However, the calculated
optical conductivity showed a fast recovery of the spectral weight. Subsequent
work by Urasaki and Saso [112] found some errors in the calculations of Ref. [89]
and when they used an extended two-band Hubbard model[109] (which includes
both Coulomb and exchange interactions) with the DOS obtained from band
calculations, an excellent agreement with the measured σ1(ω) was obtained (see
Fig. 1 of Ref. [109]). Although the authors have not discussed directly the problem
of the spectral weight if it is calculated from their results, it also shows a good
agreement with the behavior reported here (Fig. 4.14). This shows that the most
suitable model for FeSi is that of the two-band Hubbard model.

The lack of recovery of spectral weight, although in less amount, is present
also in the 10 and 20% Co-doped samples (Fig. 4.12). For the Fe0.8Co0.2Si
sample, we also show the temperature dependence of Neff (30000 cm−1) in Fig.
4.13 to clearly demonstrate the lack of recovery of spectral weight. It is also
important to notice that even at this high frequencies it is still possible to see the
effects of entering the magnetic state. Below 50 K the spectral weight increases
slightly and at TC it starts to decrease again (note that DC resistivity also starts
to show changes above TC and also around 50 K [7]). To determine the origin
of this contribution, in Fig. 4.15 we present the results of separating the total
spectral weight in contributions below and above 4000 cm−1 which is the frequency
where σ1(ω) shows a minimum. This minimum is usually an indication of a
separation between intra and interband transitions but in the case presented here
the oscillator situated at 1100 cm−1 makes this distinction difficult. From Fig.
4.15 we see that the high frequency region mainly contributes with the small
raise and posterior decrease of spectral weight associated with the transition to
magnetism. Magnetism in this compound seems, therefore, to affect also localized
electrons. A further separation of the contributions coming from the Drude peak
and from the 1100 cm−1-oscillator is difficult although the DL fit∗ discussed above
can give us an idea of the temperature dependence of the Drude contribution. The
spectral weight of this contribution has been plotted in the inset of Fig. 4.15 where
we can also see a decrease with decreasing temperature. Hall effect measurements
[7] show that there is just a small change of the carrier density when temperature
is decreased and that no change at all occurs at TC . Therefore, the effective mass
of the carriers increases down to the lowest temperature without too much change

∗Following a similar approach as in Ref. [10] (i.e. choosing the width of the Drude curve as
large or small as possible that still fit the data) gives the same result.
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Ga1−xMnxAs. For example, see Fig. 11 of Ref. [113]. The arrow shows TC of
Fe0.8Co0.2Si as determined in Ref. [74]. Inset: Behavior of -〈K〉 (which is proportional
to the spectral weight) as obtained in Ref. [32] for the Anderson lattice model.

at the transition to magnetism.
In contrast with the low-Co-doped samples, Fe0.7Co0.3Si seems to gain spectral

weight when the temperature is decreased. However, the DL fit reveals that there
is indeed a lowering of the plasma frequency of the Drude contribution. The
apparent increase of spectral weight is due to the accompanying large decrease of
the scattering rate. A similar situation occurs in CoSi and MnSi. In the latter,
this is particularly dramatic since the scattering rate is strongly temperature
dependent giving rise to a narrow peak centered at zero frequency.

A further evidence of the direction of the transfer of spectral weight comes
from studying the temperature dependence of the zero crossing of the real part
of the dielectric function [115]. In a system where interband transitions are well
separated from the intraband ones, the zero crossing of ε1(ω) (which we will denote
$p) give directly the plasma frequency of the zero mode (and therefore its spectral
weight). In our case, the presence of a strong mid-infrared oscillator makes the
situation more complicated. However, $p will give us information of the spectral
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Figure 4.14: Comparison between Neff (3000) cm−1 in FeSi and the spectral weight
calculated from Ref. [109]. Notice that both scales expand the same percentage.

weight of the low laying oscillators. We show the temperature dependence of the
zero crossing of ε1(ω) for MnSi in Fig. 4.16. In this Figure we can see how, starting
from room temperature, $ increases when temperature decreases. However, after
crossing the Curie temperature, it decreases signaling the decrease of the spectral
weight at low frequencies when MnSi enters the magnetic state. The inset of the
same Figure shows the derivative of $ which confirms a maximum at TC .

The behaviour just described is in clear contrast with what occurs in other
magnetic materials like the manganites [113], Mn-doped GaAs [10] or EuB6[11].
In the first two systems the spectral weight above the Curie temperature is ap-
proximately constant, then as the temperature is lowered below TC there is an
increase of the spectral weight at low energies which recovers at some high energy
depending on the specific material. In the manganites [113] this occurs at around
2-3 eV while, on the other hand, in the Ga1−xMnxAs system [10], it occurs at ∼1
eV. In the case of EuB6, a DL analysis found a strong increment of the plasma
frequency (and, therefore, of the spectral weight) of the Drude peak below TC

[11]. The increase of spectral weight below TC has been interpreted as a de-
crease of the effective mass of the carriers [9] which is the result of bond-charge
Coulomb repulsion. This phenomenon is suggested to be the driving force of fer-
romagnetism in all cases [9]. Our experimental results show that this seems not



78 CHAPTER 4. SILICIDES II: TRANSFER OF SPECTRAL WEIGHT

1.010

1.015

1.020

1.025

1.030

0 50 100 150 200 250 300

0.110

0.115

0.120

0.125

100 200 300

6

7

8
N

ef
f (

40
00

 -
 3

00
00

 c
m

-1
)

 N
ef

f(4
00

0 
cm

-1
)

T [K]

 ω
p2  [1

07  c
m

-2
]

Figure 4.15: Contributions to the the total spectral weight above and below 4000 cm−1

(circles and triangles, respectively) in Fe0.8Co0.2Si. Notice that both scales span 0.02.
Inset: Temperature dependence of the spectral weight of the Drude peak obtained in the
DL fit. In the main panel and the inset, the vertical dotted lines indicate TC .

to be the case. Although the actual mechanism is not clear, a clue can be unveiled
from the model proposed for transport in this system by Manyala et al. [7]. They
proposed that the main ingredients for magnetism in the Co-doped FeSi is strong
correlations enhanced by disorder [7]. Regarding the strong correlations, our op-
tical measurements confirm their presence in these materials as is manifested by
the lack of recovery of spectral weight.

Concentration Dependence of the Spectral Weight

Figure 4.17 shows how the effective number of carriers depends on concentration.
This figure depicts the difference

∆xNeff (ω) ≡ Neff (ω)|doped −Neff (ω)|FeSi (4.3)

at 10 K. It has to be remembered that when ω → ∞, this quantity has to equal
-1 for MnSi and x for Fe1−xCoxSi. At the highest measured frequency, the values
of ∆xNeff (ω) are still much lower than those limiting values. This reflects the
large spectral weight that transitions at higher energies should have.
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At the lowest temperature, all the silicides studied here, except FeSi, are metal-
lic. This is reflected in ∆xNeff (ω) which is larger than zero at low frequencies
in all the cases. In MnSi the steep initial increase reflects the long mean free
path of the free carriers[46]. Regarding the cobalt doping of FeSi, the addition of
electrons is reflected in the progressive increase of Neff in the compounds with a
doping of 0.1 and 0.2. However this addition is not restricted to the free carriers
since ∆xNeff (ω) saturates at values below x.

The bottom panel of Figure 4.18 depicts the effective number of carriers at
1000 cm−1 as function of doping (respect to FeSi). This panel shows that the
effective number of carriers start to increase with the addition of electrons but it
is not linear with doping. The presence of a broad MIR oscillator contributing
to the σ1(ω) of the Co-doped samples does not allow to determine whether this
is a characteristic of the free added carriers or not. For that reason we present
the doping dependence of the plasma frequency of the Drude peak (top panel of
Fig. 4.18). When FeSi is doped with cobalt, ω2

p starts to increase linearly with
doping in the same fashion as magnetization does [7]. This can also be seen in the
inset. However, when reaching Fe0.7Co0.3Si, the spectral weight of the Drude peak
increases larger than linearly, suggesting that not all the conduction electrons
are fully polarized as in the case of lower concentration. If from the squared
plasma frequency of Fe0.7Co0.3Si subtract ω2

p of CoSi (which is non-magnetic),
the difference is proportional to magnetization (gray dots). This relation should
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Figure 4.17: Concentration dependence of Neff (ω) as given by ∆xNeff (ω) (Eq. 4.3).

be checked experimentally for other concentrations.

4.5 Conclusions

In this chapter, we have presented the optical properties of various cobalt-doped
iron silicides Fe1−xCoxSi (x = 0, 0.1, 0.2, 0.3, 1), and MnSi. These properties
were obtained by combination of reflectivity and ellipsometry measurements. The
advantage of including ellipsometry is to reduce the uncertainties introduced when
σ1(ω) is obtained via the Kramers-Kronig relations. Then we have shown that,
although the band structure calculations explain partially the optical properties of
FeSi, it is necessary to introduce electron correlations for a complete description.
Strong correlations explain in a better way the lack of recovery of spectral weight
in a wide energy range. In this respect, calculations based on the Anderson
lattice model account for this effect although not in detail [32]. A model with two
symmetric bands seems to be more appropriate [89, 112, 109].

The origin of the Kondo picture for FeSi can be seen intuitively if an atomistic
picture is considered.[114] In the B20 structure (Fig. 3.1), the Fe atom has seven
Si atom neighbors as shown in Fig. 4.19a. Assuming that a ligand field description
can represent the influence of the Si-matrix, the electronic diagram presented in
Fig. 4.19b has been obtained, where the d-states of the Fe atom hybridize with
p-states of the Si atom.[114] Around the Fermi energy there are two types of
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bands, one antibonding band containing three states and one non-bonding band
with two states. If the width of the later is sufficientely small, it has quasiatomic
character and fills following Hund’s rule while the antibonding band has an itin-
erant character (see Fig. 4.19c). Therefore, we have all the ingredients for the
Kondo picture. At high temperatures the localized moments and the itinerant
electrons are independent and the total moment is S = 1. At low temperatures,
the itinerant electrons quench the moment completely as there are also 2 electrons
in the itinerant band.

Finally, regarding the magnetic samples (Fe1−xCoxSi and MnSi), we have
shown that the temperature dependence of the spectral weight is remarkably
different from other magnetic compounds (manganites and Mn-doped GaAs),
i.e. decreases below TC at low frequencies. This behaviour suggest that the
mechanism of magnetism is different in Fe1−xCoxSi. Its principal ingredient is
the presence of strong correlations which have been identified from the lack of
recovery of spectral weight also present in these compounds.



Chapter 5

Optical Spectroscopy of
Heavy Fermion Systems

The optical properties of the heavy fermion family CeMIn5 (M = Co, Rh, Ir)
have been determined in the photon energy range from 2 meV to 4.5 eV using the
combination of near normal incidence reflectivity (2 meV - 0.8 eV) and ellipsom-
etry (0.8 - 4.5 eV). In all compounds, signatures of the formation of a coherent
state are found. However, as a result of the competition with antiferromagnetism,
the energy region where the coherent state occurs is much lower in the compound
that orders magnetically. Furthermore, the optical properties of the non-magnetic
counterpart of one of the members have also been determined.

5.1 Introduction

Cerium based compounds are well known to exhibit strongly correlated electronic
phenomena. Among them, the materials of the CeMIn5 (M = Co, Rh, Ir) group
have recently attracted considerable attention. The reason is their unusual prop-
erties, especially their unconventional superconductivity similar to the high Tc su-
perconductors [116, 120] and, presumably, proximity to a quantum critical point
(with pressure [120, 121] and magnetic field [119] as tuning parameters). The
analogy with the high Tc superconductors even starts with their crystal structure
which can be seen as layers of CeIn3 separated by MIn2 layers (see Fig. 5.1).
This has also have raised the question of the effect of low dimensionality in heavy
fermion systems. These heavy fermion compounds exhibit an ample gamut of
properties that reveal the subtle interplay between magnetism and superconduc-
tivity [122] as it can be seen in their phase diagram which is shown in Fig. 5.2.
CeCoIn5 is the heavy fermion compound with the highest superconducting tran-
sition temperature, Tc, at ambient pressure (2.3 K) [117, 122]. CeRhIn5 does not
superconduct at ambient pressure but is an antiferromagnet below TN =3.8 K

83
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Figure 5.1: Crystal structure of CeMIn5 (adapted from Ref. [18]).

[118]. Finally, CeIrIn5 superconducts at a relatively low temperature (0.4 K) and
does not order magnetically [116].

The physics of a single magnetic impurity in a non-magnetic metallic matrix
is characterized by a single temperature TK (Kondo temperature). Below TK , the
local moment of the impurity is screened by the conduction electrons and the sys-
tem can be described as a Fermi liquid. Moreover, all thermodynamic quantities
scale with the reduced temperature T/TK . An important question in the Kondo
lattice (a lattice of magnetic centers) is whether the temperature below which the
moments are locally screened (TK) coincides with the temperature below which
the Fermi liquid is formed (T ∗) and how these are related to the Kondo temper-
ature of the single impurity[123]. Experimentally, T ∗ is usually associated with
Tcoh which is the temperature where the resistivity shows a maximum. If intersite
interactions are not taken into account, calculations in the dynamical mean-field
theory [123, 124] indicate that there are two completely different energy scales.
The first one, TK , coincides with that of the single impurity case while the second
one depends only on the ratio between the conduction and f-electron densities,
(nc/nf ). It turns out that when nc/nf ∼ 1, T ∗ is slightly enhanced over TK

but rapidly decreases as the exhaustion regime is reached (nc � nf ). If, on the
other hand, intersite interactions are considered [126], the single impurity and the
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Figure 5.2: Phase diagram of CeMIn5 (adapted from Ref. [122]).

lattice are caracterized by two different Kondo temperatures.

In contrast with this point of view, from the study of the effect of substitution
of the Ce atom by La in CeMIn5 (M = Co, Rh, Ir), Nakatsuji et al [127, 128]
have proposed that the single impurity energy scale ”survives” when going to
the lattice with T ∗ being the result of intersite correlations. At high tempera-
tures, the Kondo lattice behaves as a set of non-interacting magnetic impurities
(Kondo gas) which condense below T ∗ (Kondo liquid). However, they suggest,
the condensation is not complete when the material is close to a quantum critical
point, and at low temperatures the material can be described as a two component
system. Since there is no evidence for a spatial phase separation, what occurs
below T ∗ is a transfer of spectral weight from the high frequency part of the spec-
trum (corresponding to the localized Kondo moments) to the low frequency part
(corresponding to the coherent state). In the present work we present optical mea-
surements in the CeMIn5 family. We experimentally see how antiferromagnetism
(AF) competes with the formation of the coherent state. This competition mani-
fests itself in lower values for the characteristic energies of CeRhIn5 in comparison
to the compounds that do not order magnetically. We will see that the loss of
spectral weight associated with the formation of the coherent state occurs in the
same energy range for all three members of the CeMIn5 family. Furthermore, the
energy where this recovery occurs is much larger than the region where the mass
enhancement occurs which seems to be a common feature in Kondo systems.
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5.2 Optical Properties of CeMIn5 (M = Co, Rh,
Ir)

5.2.1 Experiment and Results

High quality single crystals of CeMIn5 (M = Co, Rh, Ir) were obtained from an
In-rich flux [116, 117, 118]. After polishing, the optical properties of the ab-plane
were determined at different temperatures by combining reflectivity at near nor-
mal incidence (11◦) and ellipsometry. The reflectivity (Fig. 5.3) was determined
from 30 to 6000 cm−1 using a Fourier transform spectrometer. The temperature
dependence was measured using a home-built cryostat with the intensities cali-
brated against a gold reference film evaporated in situ on the sample. In the Co
and Ir compounds, the overall behaviour of the reflectivity is similar to a pre-
vious study of CeCoIn5 [129]: a metallic behavior at high temperatures and a
strong temperature dependence especially below 2000 cm−1 and 50 K which sig-
nals the development of the coherent state. In the Rh compound the temperature
dependence is weaker.

Ellipsometry of the ab-plane, on the other hand, was performed from 6000 to
36000 cm−1 with an ellipsometric spectrometer at an angle of incidence of 80◦.
At the same set of temperatures as the reflectivity experiment, spectra were taken
using a home-made ultra high vacuum cryostat. These spectra give the pseuso-
dielectric function which have to be corrected for the c-axis response. For this
purpose we also measured, at room temperature, the near normal reflectivity of
the ab-plane∗. As an example, we show the results for CeCoIn5 in the gray circles
of Fig. 5.3(a). The correction was of less than 1% and, therefore, we have taken
the ellipsometric spectra as the dielectric function.

5.2.2 Optical Conductivity and Hybridization Gap

From the complete data set, the complex dielectric function, ε(ω) = ε1(ω) +
i(4π/ω)σ1(ω), was calculated in the infrared (30-6000 cm−1) using Kramers-
Kronig relations (KK), following the procedure described in Chapter 2. In Fig.
5.4 we show σ1(ω) in the entire frequency range. The temperature dependence of
the optical conductivity of the Co and Ir compounds at low frequencies follows
closely what has been previously seen in other heavy fermion systems. Above Tcoh

the optical conductivity can be described by a single Drude peak while below it,
a minimum appears signaling the appearance of a more narrow Drude peak. The
origin of this behavior is the development of the so-called hybridization gap, ∆, as

∗For this measurement, we started with the sample with gold evaporated in its surface.
The dielectric function of this film was determined first via ellipsometry. Later, in near normal
incidence configuration, the intensity of the gold was measured. Then the gold film was removed
and the intensity of the sample was also measured. The ratio of this two quantities, corrected
by the gold reflectivity (obtained from the ellipsometric measurement), gives the high frequency
reflectivity.



5.2. OPTICAL PROPERTIES OF CEMIN5 (M = CO, RH, IR) 87

0 10000 20000 30000

0.6

0.8

1.0
0.4

0.6

0.8

1.0

0.6

0.8

1.00.00 1.24 2.48 3.72

500 1000

0.96

0.98

1.00

500 1000
0.97

0.98

0.99

1.00

500 1000

0.96

0.98

1.00

(a) CeCoIn
5

 

 

ω/2πc [cm-1]

(b)

 8 K
 30 K
 100 K
 300 K

 R
ef

le
ct

iv
ity

CeRhIn
5

 

 (c) CeIrIn
5

 

 E [eV]

 

 

 

 

 

 

Figure 5.3: Reflectivity of the different samples at several temperatures. Below 6000
cm−1: measured. Above 6000 cm−1: calculated from the dielectric function. The gray
dots show the measured reflectivity of the ab-plane of CeCoIn5. Insets: Reflectivity below
2000 cm−1.
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a result of the hybridization between the conduction electrons and the localized
f-moments [17] (for a schematic representation of this situation see Fig. 1.9). The
intraband transitions in the lower band produce the narrow Drude mode while
the interband transitions between the two resulting bands produce the bump seen
at higher frequencies [17, 131, 132, 136] (see Fig. 5.5). In the Rh compound these
characteristics are less strong but still a decrease in the optical conductivity can
be seen at low frequencies. Since this compound eventually becomes AF at 3.8
K, this seems to be the result of the competition between the magnetic ordering
and the coherent state. We will discuss more about this point below.

When comparing our results for CeCoIn5 with those of a previous report [129],
we notice that both show the minimum in σ1(ω) at the same position and a
shoulder at 250 cm−1. The later feature was interpreted as a Holstein band
(an absorption corresponding to the bosons that couple the electrons in the SC
state) inside of the gap which could be attributable to AF critical fluctuations
[129, 127]. The argument for such assignment is that, in contrast with what has
been seen in other heavy fermion systems [130], there is not a sudden decrease of
the optical conductivity just below the peak originated by the transitions across
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Table 5.1: Characteristics parameters of CeMIn5. T ∗ is taken from Refs. [127, 128].
Tcoh was calculated from the DC resistivities of Refs. [116, 117, 118] while γ was taken
from the same References. m?/m has been calculated from spectral weight considerations.

Sample ω∗ ω1 T ∗ Tcoh

cm−1 cm−1 cm−1(K) cm−1(K)
CeCoIn5 140 200 31 (45) 31 (45)
CeRhIn5 <100 <100 10 (15) 28 (41)
CeIrIn5 120 220 14 (20) 36 (52)

Sample Neff m?/m γ
(at 2000 cm−1) – mJ mol−1 K−2

CeCoIn5 1.5 15 300
CeRhIn5 1.8 13 400
CeIrIn5 2.0 16 750

the hybridization gap. The interband transitions were related to a strong peak
seen at 600 cm−1 which has less spectral weight in our experiments. Besides the
understandable differences between different experimental sets, the origin of such
large spectral weight could be due to an overestimation of the reflectivity in the
visible range (where we used ellipsometry). To check this supposition, we have
performed KK using our own reflectivity data and the reflectivity from Ref. [129]
above 6000 cm−1. The result is presented as the gray dotted line in Fig. 5.4(a).
Such procedure gives more spectral weight at around 600 cm−1. Therefore, the
shoulder at 250 cm−1 most probably corresponds to transitions across ∆. This
assignment is further supported below when we discuss the properties of ε1(ω).

5.2.3 Dielectric Function and Plasma Oscillation of the Con-
densate

The development of the hybridization gap can also be seen in the real part of the
dielectric function at low frequencies (Fig. 5.6). As the temperature is lowered,
ε1(ω) changes from purely metallic (monotonically decreasing) to a region with
a maximum. At the lowest measured temperature, in the Co and Ir compounds,
it even has two extra zeros whose values are given in Table 5.1. This behaviour
shows the definitive establishment of the coherent state, a well known effect [17]
that has been experimentally seen only recently [130]. The lowest zero, ω∗, may
be thought of as the heavy fermion plasma mode [131] while the second one, ω1,
comes from the contribution of the interband transitions to ε1(ω). Since these
transitions have a threshold energy ∆, ω1 gives an estimate of the value of the
hybridization gap. The shoulders seen at ∼250 cm−1 in the Co and Ir compounds
are above the gap and therefore most likely correspond to transitions across the
gap. The dielectric function of CeRhIn5, though it shows a maximum at 8 K,
has not zero crossings indicating that, in contrast to the other compounds, the
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coherent state is not completely formed. We interpret this phenomenon as the well
known competition between magnetic ordering and the formation of the correlated
state. Those systems that form a magnetically ordered state, usually present a
smaller heavy fermion character[125]. To get more insight about this point, we
analyze our results with the generalized Drude formulation (Eq. 2.24):

σ(ω) =
ω2

p

4π

1
1/τ(ω)− i ω m?(ω)/m

where we used ωp corresponding to the effective number of electrons, Neff , at 2000
cm−1 and given in Table 5.1. The obtained frequency dependent mass, m?(ω)/m,
is plotted in the insets of Fig. 5.4. The increase of the effective mass is evident at
low frequencies as soon as the temperature is lowered below Tcoh. At the lowest
measured frequency, the mass enhancement depends on the sample. However,
from a fit to reflectivity, ellipsometry and DC conductivity, we estimate similar
mass enhancements at ω → 0. Analogous results are obtained if the effective mass
is calculated using spectral weight arguments (see Table 5.1) †. The difference
between them is the energy range where the mass enhancement occurs, being
much smaller for CeRhIn5. In contrast, specific heat measurements [116, 117, 118]
indicate (in the normal state) γ = 300, 400, and 750 mJ/(mol K2) for Co, Rh,
and Ir, respectively. At least for CeRhIn5, as indicated by measurements of the
de Haas-van Alphen experiment [139] and of the specific heat in magnetic field
[134], this value of γ seems to be overestimated as the specific heat contains large
contributions from magnetic interactions and not only from strong interactions.
Another way to see the smaller heavy fermion character of CeRhIn5 is by studying
a simple relation obtained from the calculation of the dielectric function for the
Anderson lattice [131]:

ω∗2 = 6(1 + nf/nc)T ∗2 (5.1)

where nc and nf are the density of conduction and f-electrons. Since it is expected
that these two quantities do not change in the CeMIn5 (M = Co, Rh, Ir) group‡

and given the values found for ω?, the characteristic temperature T ∗ should be
approximately the same for CeCoIn5 and CeRhIn5 but markedly decreased for
CeRhIn5. If we identify Tcoh with T ∗, this is indeed the case (CeRhIn5 does not
show a maximum in its resistivity but we have taken Tcoh as the inflection point;
see Fig. 1.10). From the study of the specific heat and the magnetic susceptibility
[127, 128], different values of T ∗ were obtained (Table 5.1) contradicting our

†The mass enhancement is the ratio between the integrated spectral weights of the broad
Drude peak at room temperature and the narrow peak at low temperatures. The limit of the
integration was 2000 cm−1 for the room temperature peak. For the narrow peak the limits were
55, 35, and 60 cm−1 for the Co, Rh, and Ir compounds, respectively.

‡From a naive point of view this is expected since Co, Rh and Ir are isoelectronic and therefore
no change in nc is expected. As an experimental confirmation we remit to Table 5.1 where Neff

at 2000 cm−1 is shown.



5.3. OPTICAL PROPERTIES OF LARHIN5 93

observation of a completely settled coherent state in CeIrIn5 at 8 K. It seems
that more sophisticated calculations are needed to understand the various energy
scales involved and how they impact the spectral weight transfer. Moreover, this
effect in CeIrIn5 also argues against some results that suggest that the f-electrons
in this compound are more localized than those in CeCoIn5. This latter point has
been rather controversial [135].

5.2.4 Spectral Weight

The last point we want to discuss is the spectral weight contained by σ1(ω) which
was defined in Eq. 2.8 and we reproduce here:

Neff (ω) =
mV

πe2

∫ ω

0

σ1(ω′)dω′

The volume V was calculated from the lattice parameters given in References
[116], [117], and [118]. Neff is depicted in Fig. 5.7 and the temperature depen-
dences at 400 and 2000 cm−1 are shown in its insets. For comparison purposes,
the DC resistivities [116, 117, 118] are also shown in the insets. When the hy-
bridization gap develops, spectral weight is removed from the low frequency part
as evinced, for example, by the behavior of Neff at 400 cm−1. The spectral
weight does not start recovering immediately above the gap but eventually does
at an energy range much larger than the gap itself, ∼2000 cm−1 (0.25 eV). Other
Kondo systems show similar behavior. In particular, an interesting case is FeSi,
where the spectral weight lost during the formation of the Kondo insulator state
is transferred to an energy range on the order of several eV (see Chapter 4). The
difference between the energies where the recovery of spectral weight takes place
seems to be related with the nature of the local moments, d versus f -electrons.
While the f -electrons form extremely narrow bands, the d-electrons form rather
broad bands.

5.3 Optical Properties of LaRhIn5

A common practice in the study of Kondo lattices is to replace the magnetic
centers by a non-magnetic element. In the case of cerium-based compounds this
is achieved by substituting it with lanthanum. In the CeMIn5 (M = Co, Rh, Ir)
system this procedure has proven to be very useful as the continuous substitution
of Ce by La does not change important characteristics as the crystalline electric
field or the Kondo coupling [127]. In this work we have measured the reflectivity
(at different temperatures) and ellipsometry (at room temperature) of a single
crystal of LaRhIn5. The experimental results are summarized in Fig. 5.8.

Figure 5.8a and its inset show the reflectivity of this compound. In contrast
with the magnetic lattices studied in the previous section, the reflectivity increases
when lowering the temperature. This effect is common in metals due to the
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Figure 5.9: Parameters used to fit the low frequency part of the optical properties. The
parameter Γ was kept constant during the fit at different temperatures.

reduction of the scattering rate. Both the real parts of the optical conductivity
(Fig. 5.8b) and of the dielectric function (Fig. 5.8c) show that indeed the scattering
rate is reduced. This can be seen from the fact that, at low frequencies, both
decrease with decreasing temperature. In particular, ε1(ω) remains metallic down
to the lowest measured temperature without the appearance of the maximum seen
in the magnetic counterpart. Finally, the inset of Fig. 5.8b shows the quantity
1
2 −

arg[σ(ω)]
π which above above ∼ 250 cm−1 reaches a plateau at around 0.1.

According to the discussion in §2.4.2, this signals a departure from the Drude
model. In the context of Eq. 2.20 this would mean that η = 0.1.

We have indeed fit reflectivity and ellipsometry data with the above mentioned
equation. The results are depicted in Fig. 5.9. It is important to mention that,
since the fit at different temperatures gives a large value for Γ, this parameter
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was kept constant at all temperatures. The results indicate that both, the plasma
frequency, ωp, and the exponent η do not show a strong temperature dependence.
Moreover, the value of the later is ∼0.1 as expected from the phase of the optical
conductivity. In contrast, parameter γ has a strong temperature dependence. The
situation is similar to what was found in MnSi.

For LaRhIn5 we have also calculated the spectral weight and performed the
extended Drude analysis. The former is shown in Fig. 5.10a where we have used
the lattice parameters reported in Ref. [138]. As it happens in CeMIn5, after a
sharp raise, Neff exhibits a plateau and reaches ∼1.2 at 2000 cm−1. At the same
frequency, Neff is ∼1.8 in CeRhIn5 (see Table 5.1), which is consistent with the
fact that cerium has one more electron than lanthanum.

The results of the extended Drude analysis are given in Figures 5.10b-c. The
fact that both, the mass enhancement and the scattering rate are not constant,
indicate a strong deviation from the Drude response as it was concluded in the
previous analysis of the phase of the optical conductivity. The extrapolation
(dotted lines in 5.10b) gives an mass enhancement of 3. This is ∼5 times smaller
than the mass enhancement found in CeRhIn5. Similar ratios have been found
when comparing results of de Hass-van Alphen and heat capacity experiments
[18]. The former gives a ratio of 7-9 for the cyclotron masses in the main bands.
Heat capacity results, instead, give a ratio of ∼9 between the γ-coefficients. The
frequency dependent scattering rate depicted in Fig. 5.10c is quasi-linear at low
frequencies. In comparison, the DC resistivity is linear from 300 down to ∼ 20 K
where it saturates[137]. This indicates a strong electron-phonon coupling which
naturally leads to deviations from the Drude formulation[39].

5.4 Conclusions

In conclusion, we have presented optical measurements on one of the recently most
studied families of heavy fermion systems, CeMIn5 (M = Co, Rh, Ir). We have
shown that in all the compounds presented here, the spectral weight is recovered in
the same frequency range of about 0.2 eV which is larger than the hybridization
gap. Moreover, we can directly see how the coherent state is quenched by a
competing phenomenon: antiferromagnetism.

Finally, we have also performed optical experiments in one of the non-magnetic
counterparts of this family, LaRhIn5. None of the characteristic features of the
heavy fermion systems has been found in this material. However, we were able
to distinguish a strong deviation from the Drude formulation. Since the DC
resistivity is linear, this can be an effect of a strong phonon-electron coupling.



Chapter 6

Phase Separation and
Isotope Effect in
(La0.5Pr0.5)0.7Ca0.3MnO3
Thin Films

The optical conductivities of films of (La0.5Pr0.5)0.7Ca0.3MnO3 with different oxy-
gen isotopes (16O and 18O) have been determined in the spectral range from 0.3 to
4.3 eV using a combination of transmission in the mid-infrared and ellipsometry
from the near-infrared to UV regions. We have found that the isotope exchange
strongly affects the optical response in ferromagnetic phase in a broad frequency
range, in contrast to the almost isotope-independent optical conductivity above
TC . The optical response is similar to the one extracted from measurements in
polished samples and other thin films, which signals to the importance of internal
strains. A qualitative explanation can be given in terms of the phase separation
present in these materials.

6.1 Introduction

Few compounds manifest a so ample variety of states as the manganite perovskites
when conditions such as magnetic field, temperature, or hole doping are changed.
La1−xCaxMnO3, a particular well studied family of manganites, is an example of
this. Its phase diagram (at ambient pressure and no magnetic field) is given in
Fig. 1.11. As it becomes evident from the phase diagram, at low temperatures,
the particular state of the manganites depends on the ratio of Mn+3 to Mn+4

(which is given by the hole doping x). Moreover, a given state also depends on
specific particular lattice characteristics: Mn-O and cation-O bond lengths, and

99
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Figure 6.1: Phase diagram of (La1−yPry)0.7Ca0.3MnO3 (from Ref. [141] for 16O and
as suggested in Ref. [142] for 18O).

the cation-O-cation bond angles. These bond characteristics in turn depend on
the average cation radius, 〈rA〉.[24] At a given hole doping, the direct influence of
〈rA〉 can be studied by replacing the rare earth with another. However, this re-
placement can also induce disorder if 〈rA〉 exceeds a particular critical value.[140]
(La1−yPry)0.7Ca0.3MnO3 is particularly suitable to study the effect of the average
cation radius as it always remains below the critical value inducing disorder.[141]
Neutron diffraction experiments in this system[141] have permitted to construct
the phase diagram shown in Fig. 6.1 (solid lines). At low temperatures, as the
Pr concentration increases, the system goes from a homogeneous ferromagnetic
metal to a homogeneous canted antiferromagnetic insulator. Between these two
extremes, the neutron diffraction data[141] suggest the presence in the system
of two different phases, one is antiferromagnetic while the other is canted fer-
romagnetic. Phase separation indeed seems to be a common feature of strongly
correlated systems (see Ref. [26] and references therein). For example, the double-
exchange model (which is recognized as describing the main properties of the
manganites) has a natural tendency to phase separation at low doping.[26, 23, 29]
The regions formed in this way are one of an undoped antiferromagnet and one of
higher electron (or hole) concentration which is ferromagnetic (or strongly canted)
and metallic.[26] However, long-range Coulomb forces compete against phase sep-
aration and the regions are broken in small pieces.[26, 23] It is also important to
mention that there can be also phase separation between electron rich regions and
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charge ordered regions. [26] Several experimental techniques seem to confirm the
existence of phase separation in the manganites (see references cited in Refs. [26]
and [23]).

Recently, the effect of oxygen isotope substitution (16O → 18O) has been
studied in various members of the (La1−yPry)0.7Ca0.3MnO3 family. [142, 143] At
high temperatures there are no appreciable differences between the two samples,
their lattice parameters, [144] and DC conductivities [142, 143] are the same. At
low temperatures, the situation is different. In particular it was found that for
y = 0.75 the isotope substitution induces a metal-insulator transition.[143] This
phenomenon could be naturally explained in the phase separation scenario.[26]
As seen in Fig. 6.1, (La0.25Pr0.75)0.7Ca0.3MnO3 (with 16O) seems to be in a
region of phase separation. Then, the small changes produced by the isotope
substitution would favor one phase over the other producing the metal insula-
tor transition seen in Fig. 6.1. The isotope effect has also been studied in thin
films of (La0.5Pr0.5)0.7Ca0.3MnO3 grown in either LaAlO3 (LAO) and SrTiO3

(STO). [146, 145] For the films grown in LAO, the isotope substitution pro-
duces a metal-insulator transition similar to the one seen in ceramic samples
of (La0.25Pr0.75)0.7Ca0.3MnO3. [145, 146] For those grown in STO, the behaviour
is qualitatively the same in samples with both isotopes. However, films with 18O
exhibit a much lower TC and the value of the DC conductivity (σDC) at low
temperatures is one order of magnitude lower than those containing 16O. These
differences arise from the different strains they support due to mismatches between
the lattice parameters of the film and the substrate. [145] When grown in LAO,
the films are contracted in-plane but stretched perpendicularly. The opposite is
true for films grown in STO. These deformations are reflected in the magnitude
of the Mn-O-Mn bond angles. Compared to the ceramic samples, this angle is
increased for films in STO and decreased for LAO. This structural difference put
the films grown in LAO at an angle closer to the critical value corresponding to
localization of carriers (remember that the conduction bandwidth depends on the
cosine of the Mn-O-Mn angle). [145]

Optical spectroscopy has played an important role in studying the physics
driving the behavior of manganites. [2] It has also offered some indications of
phase separation occurring at some specific concentrations. [23] For example, let
us consider the optical spectra of La7/8Sr1/8MnO3 [147] which remains insulat-
ing even below TC and does not show any Drude contribution. It was found
that below TC a mid-infrared (MIR) peak appeared at around 0.4 eV without
changing its position. [147] This peak was assigned to a small polaron absorp-
tion (small polarons are strongly confined and, therefore, are expected to produce
only a small coherent contribution [148]). Moreover, it was noticed that the
temperature dependence of its spectral weight resembles a percolation-type tran-
sition. [147] Regarding this point, Moskvin et al. [149] have been able to describe
the temperature dependence of the optical conductivity in this compound by us-
ing an effective medium approximation in which the manganite is considered to
have metallic regions (assumed spherical for simplicity) in an insulating matrix
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(LaMnO3). In this approximation the MIR peak is a geometric resonance whose
position is mainly determined by the shape of the metallic regions. [149] This
would explain the seemingly fixed position of this peak. Such MIR peak has
also been seen in the FM metallic part of the phase diagram. [150, 151, 152]
It is already visible at high temperatures but below TC its intensity increases
being also accompanied by a narrow Drude peak. This behaviour suggested the
change from a small to a large polaron. [150] However, more recently, optical
experiments performed also in reflectivity configuration but on cleaved samples
in the metallic state [153], have questioned the presence of the narrow and the
MIR peaks (the other optical experiments were obtained in either polycrystalline
or single crystal samples whose surface was polished prior to the experiments).
The experiments on cleaved samples show, in contrast, the development of only
a broad zero-centered peak (the specific characteristics of this mode do not cor-
respond to a simple Drude formulation). The difference in the results emphasize
the sensitivity of the manganites to static imperfections and/or structural strain.
[153]

Optical experiments in thin films have also shown the presence of a narrow
Drude-like mode and a MIR peak in FM-metallic samples (see, for example, Refs.
[154] and [155]). These MIR peaks have also been assigned to polaronic absorp-
tions. Particularly, it was possible to distinguish between small and large po-
larons in La2/3Ca1/3MnO3 and La2/3Sr1/3MnO3, respectively. [155] In contrast
to the work of Kim et al.[150] (discussed above), Hartinger and collaborators
made the assignment by fitting the optical conductivity to the corresponding the-
oretical expressions. [155] Evidence of phase segregation has also been inferred
from measurements of the absorption coefficient in manganite thin films (see Refs.
[156, 157, 158] and references therein). One of the main points in such studies is
the appearance, at high carrier concentrations, of low energy absorptions (below
3 eV) ascribed to localized states. Such states have been interpreted in a cluster
model [156] assuming the presence of electron and hole rich clusters. Transitions
in this clusters produce these MIR absorptions (at energies ∆e,h) which in turn
produce a common band at ∆M = ch∆h +ce∆e (ce,h are the concentrations of the
electron and hole clusters). [156] These bands have not been seen in reflectivity
experiments since, it is argued, [158] they have low intensity and would be seen
only in transmission experiments.

In this chapter we will elaborate on the points discussed above based on optical
experiments performed on films of (La1−yPry)0.7Ca0.3MnO3 (y = 0.5) containing
two different oxygen isotopes. We will see how the isotope substitution produces
changes in the optical conductivity at energies much larger than the phonon re-
gion. Both samples show a strong MIR infrared peak whose intensity decreases
when temperature is increased. The spectral weight lost by this peak is mainly
transferred to a peak lying at around 1.5 eV. By a detailed study of their tem-
perature dependence we will argue that this behavior is consistent with a phase
separation.
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6.2 Experiment

6.2.1 Sample Preparation

Thin films of (La0.5Pr0.5)0.7Ca0.3MnO3 were grown on SrTiO3 using the aerosol
MOCVD technique (for details in the preparation and characterization see Ref.
[145]). The films obtained had a nominal thickness of 60 nm. For the isotope
exchange two strips of 1 × 8 mm2 were annealed simultaneously in different
atmospheres. One was heated in a 16O2 atmosphere, while the other was heated
in an oxygen atmosphere containing 85% of 18O2. Hereafter, these samples will
be referred as S16 and S18, respectively. As mentioned in the introduction, the
XRD analysis shows that the films are highly strained. [145] Since the STO
lattice constants are larger than the film, it produces an in-plane expansion of the
perovskite cube. In contrast, perpendicularly to the plane, the film is contracted.
In this conditions, a buckling of the MnO6 octahedrons is expected. [145]

6.2.2 Optical Experiments

Transmission

In the frequency region [1000 - 5500] cm−1 the transmission of the samples was
measured using a Bruker 113v FT-IR spectrometer. Below this frequency the STO
substrate is not transparent. At room temperature the absolute transmission was
measured while only the transmitted intensity was measured at different tem-
peratures. For the temperature dependence a home-built cryostat was used, the
special construction of which guarantees a stable and temperature independent
optical alignment of the sample. The measured intensities where then normalized
to the room-temperature transmission. The results of these measurements are
summarized in Fig. 6.2.

Substrate

The optical properties of the STO substrate, at room temperature, were deter-
mined below 6000 cm−1 using the combination of reflectivity and transmission.
The complex dielectric function was then determined by numerically inverting
the corresponding Fresnel equations. [49] The results are shown in the inset of
Fig. 6.3. Moreover, the temperature dependencies of transmission and reflectivity
were measured. However, the dependence is much smaller than the changes in
the films. As an example, the transmission of STO at 2000 cm−1 (displaced down
by 30%) is shown in the inset of Fig. 6.2. Therefore, in the calculations described
below, only the room temperature dielectric function of the substrate was used.
Above 6000 cm−1, we have used the data of Ref. [159] which is also plotted in
the inset of Fig. 6.3.



104 CHAPTER 6. PHASE SEPARATION AND ISOTOPE EFFECT...

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.15 0.30 0.45 0.60

0 100 200

0.2

0.4

0.6

0 100 200

0.2

0.4

0.6

10-4

10-3

10-2

10-1

100

0 100 200 10-4

10-3

10-2

10-1

100

 10 K
 100 K
 190 K
 296 K

S16

 

 

T
ra

ns
m

is
si

on

ω/2πc [cm-1]

 10 K
 100 K
 140 K
 296 K

 b

a

S18

 

 E [eV]

T
ra

ns
m

is
si

on

 T
(2

00
0 

cm
-1
)

T [K]

  T
(2

00
0 

cm
-1
)

T [K]

 σ
D

C
 [1

03  Ω
-1
 c

m
-1
]

 σ
D

C
 [1

03  Ω
-1
 c

m
-1
]

Figure 6.2: Measured transmission between 10 and 296 K every 10 K in films of
(La0.5Pr0.5)0.7Ca0.3MnO3 containing 16O and 18O (labeled hereafter S16 and S18, re-
spectively). The highlighted transmissions correspond to the highest and lowest measured
temperatures and to the minimum seen in σDCInsets: Temperature dependence of the
transmission at 2000 cm−1 and of the DC conductivity, both measured during heating
with no magnetic field. The vertical dotted line signals the minimum in σDC and which
is associated with the entrance to the ferromagnetic state (we will refer to it as TC).
The inset of the upper panel also shows the temperature dependence of the transmission
(shifted down by 30%) of an STO substrate. It is clear that the temperature effects are
related solely with changes in the films.
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Figure 6.3: Parameters Ψ and ∆ for S16 as obtained directly from ellipsometry between
10 and 296 K every 10 K. Inset: Complex dielectric function of STO, measured (below
6000 cm−1) and from Ref. [159] (above 6000 cm−1).
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Ellipsometry

Ellipsometry of the samples was performed with a commercial (Woollam VASE32)
ellipsometric spectrometer in the range 6000 to 36000 cm−1, using an ultra high
vacuum cryostat. The ellipsometry experiment was carried out in a grazing re-
flectivity configuration at an angle of incidence of 80◦. This experiment gives
the ellipsometric parameters Ψ and ∆ that define the ratio between the Fres-
nel reflection coefficients for the s- and p-polarized light, ρ ≡ rp

rs
≡ tan(Ψ)ei∆.

As an example of the results obtained in this experiment we show in Fig. 6.3
the corresponding ellipsometric parameters for S16. The ratio ρ, obviously, de-
pends on the dielectric functions of both, substrate and film. Since we know the
optical properties of the substrate, the complex dielectric function of the film,
ε(ω) = ε1(ω) + i(4π/ω)σ1(ω), was obtained by inverting numerically the ana-
lytical expression corresponding to ρ for a two layer system. [49] At different
temperatures we used only the room temperature data for the substrate and also
assumed a semi-infinite substrate. The real part of the optical conductivity, σ1(ω),
obtained from this inversion is shown in Fig. 6.4.

Optical Conductivity in the MIR Range

Below 6000 cm−1, the complex dielectric function of the film was obtained using a
similar approach to the one used in our previous experiments (see Chapter 2). As a
first step we performed a simultaneous fit to the DC conductivity, transmission of
the film+substrate system (via the Fresnel equations), and the dielectric function
of the film at higher frequencies. The fit used a model dielectric function which
is the combination of one Drude and a limited number of Lorentz oscillators
(Eq. 2.19). This Drude-Lorentz (DL) fit sets extrapolations below and above the
measured range. Finally, a procedure à la Kramers-Kronig (KK) is used where
every detail of the the measured data is reproduced by introducing an arbitrary
number of oscillators on top of the previous fit. [50] The real part of the optical
conductivities obtained in this way are also plotted in Fig. 6.4. As in the usual KK
transformation, the obtained optical conductivity depends on the extrapolations.
Since we have used the dielectric function obtained from ellipsometry at a rather
broad energy range, the most influential are the low frequency extrapolations. To
estimate the uncertainties coming from this factor, we have repeated the procedure
just described using different extrapolations (all of them congruent with the DC
conductivity). The associated error bars are small for σ1(ω) though rather large
for ε1(ω). This is not a surprise since the transmission is mostly determined by the
absorptive part of the optical conductivity, σ1(ω). Moreover, we have repeated the
same calculations assuming an error as large as 5% in the measured transmission.
The total uncertainty related with both sources of errors is indicated by the error
bars of Fig. 6.4.
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Table 6.1: Parameters, in cm−1 (eV), corresponding to the oscillators used to describe
the optical conductivity of the two films at 10 K.

Sample ωp,1 Γ1 ωo,2 ωp,2 Γ2 ωo,3 ωp,3 Γ3

S16 8320 632 2853(0.35) 21154 7725 13155(1.63) 12872 9300
S18 2449 632 3054(0.38) 15999 6132 13559(1.68) 18091 9426

Sample ωo,4 ωp,4 Γ4 ωo,5 ωp,5 Γ5

S16 32236(3.99) 29631 16843 43600(5.41) 55234 47633
S18 30930(3.84) 31347 18300 43600(5.41) 53329 24540

6.3 Results and Discussion

6.3.1 Transmission

The measured σDC in both films shows hysteresis, being rather large in the S18
sample. [145] This gives an indication of phase separation. The DC conductivities
plotted in the insets of Fig. 6.2 correspond to heating cycles. This is the mode in
which the transmissions of both films were measured. From the main panels of
Fig. 6.2 we can see that, starting from the lowest temperature, the transmission of
both samples increases. Then, it reaches a maximum at around the same point as
σDC and the decreases again. To exemplify in a better way the temperature de-
pendence, we plot the transmission at 2000 cm−1 in the insets. This temperature
behavior correlates with the changes in σDC . However, a closer look at the figures
indicate that the maxima of transmission occur at a slightly higher temperature
than those in the DC conductivity. Although the reason is not clear, it could be
related with the fact that a CO phase appears at higher temperatures than TC

[141] (see also Fig. 6.1 keeping in mind that it was established for bulk samples).

6.3.2 Optical Conductivity and Drude-Lorentz Fit

The obtained optical conductivities are shown in Fig. 6.4. At room temperature,
both samples have an almost identical σ1(ω), which contrasts with the differences
appearing at low temperatures (see also Fig. 6.5). As an example of the changes
with temperature see the insets of Fig. 6.4 where we plotted σ1(ω) at two different
frequencies. Notice that at 3000 cm−1 the optical conductivity increase below TC

is larger in the more metallic S18 sample. On the other hand, the temperature
dependence at 12000 cm−1 is opposite to that at 3000 cm−1 which indicates that
there is a transfer of spectral weight between these two regions. Other point to
notice is that the frequency dependence of the optical conductivity, at different
temperatures, is similar to that one obtained from reflectivity measurements in
polished samples. [147, 150, 151, 152, 165] In particular, both samples exhibit an
MIR peak which seems to be accompanied by a narrow zero-frequency mode in
the S16 sample.
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Figure 6.5: Results of the Drude-Lorentz fit. Optical conductivity (gray circles), fit
(solid line) and individual oscillators (dashed lines) at (a) 10 K and (b) room tempera-
ture.

The multiple oscillator fit described in Section 6.2.2 permitted us to recognize
the different contributions to the optical conductivity and their temperature de-
pendencies. At all temperatures and in both samples, we used the same number
of oscillators. For example, at 10 and 296 K, the oscillators used in the fit can be
seen in Fig. 6.5. Furthermore, the fit parameters at 10 K are given in Table 6.1.
We have to mention that during the fitting routine we have kept the width of the
Drude peak constant at 632 cm−1 since we cannot access its exact shape at low
frequencies. This is an ad hoc assignment but it is in agreement with observations
in polished samples [150] and thin films [155]. Nevertheless, the precise width
does not affect the main conclusions presented below. The same applies for the
last peak which falls outside our spectroscopic window but it is necessary for an
acceptable fit. For this oscillator we fixed its position.

At first sight, the scenario that arises from the DL fit is similar to the one
described by Noh et al. [160] However, notice that some of these features, par-
ticularly the narrow Drude peak, has not been seen in experiments performed in
cleaved single crystals. [153, 161, 162]. These differences in the optical response
have been ascribed to static imperfections and/or structural strain. The latter
seems to be the most probable cause since the films studied here are under large
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Figure 6.6: Energy diagram of the manganites (adapted from Refs. [19] and [154]).
(a) The Mn-d levels, due to crystal field, are split in the so-called t2g and eg levels.
If the eg level is occupied, this state is further split by EJT , due to distortions of the
surrounding O atoms. If the eg level is empty, its original energy can be shifted by
EB due to a ”breathing” distortion (i.e. a distortion that couples to changes in the
occupation density of eg in a short time scale). Furthermore, the eg level can correspond
to spin states either parallel or antiparallel to t2g. In the latter case, the energy of eg is
higher by an energy given by the Hund’s coupling, JH . We have plotted this situation for
the case of an occupied eg level. (b) Possible transitions occurring in the manganites.
The different levels shown here correspond to different Mn atoms. The initial states are
depicted in the center of the figure (an occupied eg level and a filled O-2p band). To
determine the final energies, one has to take into account the different situations noted
before, the origin of the excited electron (either coming from an eg or an O-2p state),
and the fact that putting an extra electron in an already occupied eg level costs an energy
U . When excited electron comes from an O-site, an energy ∆ has to be added. ∆ is the
charge transfer energy.
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strains (see Section 6.2.1). In the following, given the extraordinary similarity
between the results of the present work and those performed in polished samples
and thin films, we will discuss the optical properties in the light shed by those
experiments. Moreover, to make the discussion easier to follow, in Fig. 6.6a we
reproduce the well known energy diagram proposed for the manganites (see the
figure caption for details). [19, 154] The possible transitions between those states
are depicted in Fig. 6.6b. Referring to this figure, the transitions are:

− I: A transition between different eg levels at the same atomic site. This tran-
sition is not dipole allowed and, therefore, is expected to be weak. [154, 163]
However, it has been argued [160, 164] that due to the strong hybridization
between the eg and O-2p bands, and the strong local distortion of the Mn-O
octahedra, these transitions can be allowed.

− II, III: Interatomic eg → eg transitions, i.e. from a Mn+3 ion to either
another Mn+3 ion or to a Mn+4 ion.

− IV, V: Charge transfer transitions, O-2p → eg.

Now we address the possible assignments to the peaks recognized by the DL-fit.
Let us start from the high frequency features. The strong absorption starting at
2.5 eV is represented by peaks number 4 and 5 in Fig. 6.5 which, taken together,
they have a small temperature dependence. There is a general consensus that this
feature stems out the charge-transfer transitions from the O-2p band to bands of
Mn-d character, namely the unoccupied eg levels. [154, 160, 165] Notice that
experiments in cleaved samples suggest that this band is split and that the O-2p
electrons can also reach t2g levels. [161]

Before discussing the possible provenance of peaks 2 and 3, let us notice sev-
eral points regarding these peaks. First, in most of the experiments, these two
features are not so well defined as in the present case. In fact, the sharpness of
these features allowed us to extract their temperature dependencies rather unam-
biguously, especially below TC . Second, these two peaks are closely related as it
is shown by their temperature dependence in Fig. 6.7. At high temperatures, in
both samples, only peak 3 is clearly visible and does not significantly change down
to TC . From this point its intensity decreases in favor of peak 2. This transfer
of spectral weight between these two peaks is accompanied by a displacement,
to low frequencies in the case of peak 2 and to high frequencies in peak 3. This
process stops at around 100 K in S16 and 75 K in S18. Third, the less metallic
sample, S18, shows a lower decrease (increase) in the intensity of peak 3 (2) at low
temperatures. This points to the fact that peak 3 (2) is favored in the insulating
(metallic) state.

The assignment of peaks number 2 and 3 (Fig. 6.5) is an ongoing debate.
[154, 153, 168, 164] In part, this is due to the fact that in some experiments
there is no clear difference between them. In the insulating phase all manganites
undoubtedly present a large peak at around 1.5 eV. When decreasing temperature,
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Figure 6.7: Temperature dependence of the (a) plasma frequency, ω2
p, and (b) position,

ωo, of the oscillators number 2 and 3 (see Fig. 6.5). Notice also that in sample S18
above 110 K, peak 2 almost merges with peak 3. Therefore, above this temperature, we
have kept ωp,2 constant.

in manganites presenting a metallic phase, the intensity of this peak decreases.
In some cases it looks like the whole feature shifts to lower frequency increasing
its intensity and eventually converting in a Drude peak. [154, 153] In other cases,
it seems that it splits in two peaks, one behaving as described before, the other
shifting to higher frequencies and loosing its intensity. [150, 165, 151] In the first
case, from measurements in thin films, the entire feature was assigned to intersite
transitions (II and III in Fig. 6.6b) where the spin of the final state is parallel
to the t2g core. This explains the increasing intensity in the FM state. In the
second case, a similar assignment is given to peak 2, namely it is a transition
of type II in the parallel configuration. [152] When clearly separated from peak
2, oscillator 3 has been given two interpretations. One candidate is a transition
type I [152, 164] which, though not allowed, can be enhanced by local distortions
and strong hybridization. It is argued that depending so strongly on the lattice
distortions, its decrease in temperature is related to the fact that lattice distortions
also become weaker. [160] The other candidate is an interatomic transition of the
type III where the final state is antiparallel to the t2g core. [165] This kind
of transitions is strongly linked to transitions where the final state is parallel.
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Starting at T = 0, where the material is FM, only transitions to a parallel final
state are possible. Then, as T increases, the t2g spins are not perfectly aligned
anymore and the intensity of parallel transitions decrease in favor of antiparallel
transitions. [154] Quijada et al. assigned this kind of transitions to a region at
around 3 eV that also decreases as T is lowered from room temperature. [154]

It is rather difficult to solve this controversy with optical measurements alone.
However, with the detailed temperature dependence obtained in our experiments
we can give some hints to what could be a good assignment. Let us start with
peak number 2. According to the previous discussion, there are few doubts that
this peak correspond to parallel transitions of either type II or type III. The fact
that this peak is favored in the FM state confirms it. If we take into account that
the energy U is estimated to be at least larger than 3 eV, [167, 166] a transition of
the type III has to be located are rather large frequencies. Therefore, as concluded
by Jung et al., [152] this peak most probably correspond to parallel transitions
of the type II. Moreover, it is well established that it has a polaronic origin,
probably enhanced in films and polished samples due to strains. There has also
been some discussion about whether it corresponds to a change from small to large
polaron [150, 154, 163] or remains small [155] in the whole temperature range.
A careful fit to the corresponding analytical expressions allowed to recognize, at
least in La2/3Ca1/3MnO3 thin films, as always being an small polaron. [155] The
temperature dependence of its position was found to be much larger than in the
case of La2/3Sr1/3MnO3 where the polaron seems to be large. The temperature
dependence of the position of peak 2, in both S16 and S18, is more similar to the
one found for the small polaron case.

Regarding peak 3, it is evident from our experiments (see Fig. 6.7) that its
temperature dependence closely follows that of peak 2. Its strength, moreover, is
rather large for a dipole prohibited transition. Therefore, it is more likely that
it corresponds to an antiparallel transition II (as discussed above, the large value
of U makes it less likely to be a type III transition). It has to be mentioned
that if the transition is indeed antiparallel, it should disappear completely in the
FM state. This is not the case as demonstrated in Fig. 6.7, however, we will
argue below that this is a manifestation of phase separation. The other candidate
for this kind of transitions is the feature at 3 eV. Following the same procedure
that Quijada et al [154] used to recognize the temperature dependence at 3 eV,
in Fig. 6.8 we plot the difference between σ1(ω) at any given temperature and
σ1(ω) at 10 K. As in Ref. [154] we can also see that at around 2.8 eV there is
a region where the conductivity is suppressed below TC . Although this region
can also correspond to antiparallel transitions, it is less likely as the temperature
dependence seems to be less linked to TC as expected for this kind of transitions
(see insets in Fig. 6.8).
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6.3.3 Phase Separation

A scenario that can possibly explain the optical results, at least qualitatively, is
phase separation. In the first place it is clear that, whatever the interpretation,
peak 2 is favored in the metallic FM phase, while peak 3 is favored in the in-
sulating phase (even in the AF phase as can be seen in Pr0.69Ca0.31MnO3)[169].
In the phase separation scenario proposed to explain the isotope effect, [26] at
high temperatures the insulating phase is dominating. When the temperature is
lowered, there is first tendency to charge ordering (TCO > TC) in the insulating
phase. Below TC , FM metallic droplets start to form until the relative volume be-
tween them stabilizes. The temperature variation of the spectral weights of both
peaks 2 and 3 are consistent with this interpretation. Moreover, their tempera-
ture dependence is similar to the one seen in the MIR peak of La7/8Sr1/8MnO3

where it was also suggested to be caused by phase separation. [147] The large
isotope effect seen in this compounds results from the fact that the small change
induced by the isotope substitution shifts the relative stability of one phase over
the other, especially close to the phase boundary. [170] In the present case, the
18O substitution favors the insulating phase. This is also in agreement with the
behavior of peaks 2 and 3 when comparing their strengths between S16 and S18 at
the lowest temperature. In S18 (the less metallic of the two), the former oscillator
is weaker while the latter is stronger. As discussed in Ref. [170], the isotope sub-
stitution changes the effective hopping integral, teff , which actually determines
the relative stability of the different phases. The change produced by the isotope
substitution is small but can be enhanced if the charge carriers have polaronic
nature. This, as we have seen in the previous section, is the case in the samples
studied here, and may help to explain the large isotope effect.

6.3.4 Spectral Weight

Finally, we want to comment about the spectral weight contained in σ1(ω) and
which was defined in Eq. 2.8. Applying this formula to the optical conductivity,
we obtain the results presented in Fig. 6.9. The most conspicuous feature in
the figure is the difference in spectral weight at low temperatures in the different
samples, being lower in the sample with lower TC . Since they have approximately
the same spectral weight at high temperatures, this reduces the range where it is
recovered. This is at variance with other experiments, where the recovery happens
in roughly the same range, although the amount of spectral weight is different for
different samples. [154, 151] In particular, for (La1−yPry)0.7Ca0.3MnO3 samples
with different Pr concentrations, a scaling between Neff at 0.5 eV and TC was
found. In our case no scaling has been found.

It is also interesting to compare different compounds where the distribution
of spectral weight has also been studied. In the manganites studied here, the
increase of spectral weight at low frequencies due to the formation of the metallic
state is recovered in an energy region of approximately 4 eV. This is an indication
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of the width of the d bands involved in the physical process. In heavy fermion
systems, the spectral weight is recovered in an energy range of 0.2 eV which
indicates the narrowness of the f-bands participating in the process of forming
the heavy fermion coherent state. [57] On the other hand, in FeSi the spectral
weight lost in the formation of the Kondo insulating phase is not recovered below
4 eV. This is also an indication of the width of the d-bands describing its behavior.
[88]

6.4 Conclusions

The optical properties of two (La0.5Pr0.5)0.7Ca0.3MnO3 films containing different
oxygen isotopes were presented here. These films were grown on SrTiO3 sub-
strates. The mismatch between the film and substrate lattice constants makes the
films to be under high strains. In turn the strains change the properties of the films
and make them more susceptible to phase separate at low temperatures. Evidence
of this behaviour was found in the observed optical response at low frequencies. In
the paramagnetic insulating phase the optical conductivity of both films is similar
and is dominated by a large peak identified as e1

g(Mn+3) → eg(Mn+4) where the
moved electron ends up being antiparallel to the t2g core. At temperatures below
TC it looses intensity until it saturates at around 100 K. In the less metallic sam-
ple (that containing 18O), the intensity of this peak at low temperatures is larger
than the more metallic one. On the other hand, the decrease of this transition is
accompanied by the increase of another peak located at lower frequencies. This
one has been identified as the same kind of transition but with the important
difference that the moved electron ends up being parallel to the spin of the t2g

electrons. The intensity of this peak is larger in the more metallic sample. These
observations taken together suggest that below TC the samples separate in two
phases, one ferromagnetic metallic and one paramagnetic insulating. The relative
volume of these phases is different in every sample, the metallic one being larger
in the sample containing 16O. Moreover, we have seen that the peak located at
lower temperatures has polaronic character and that in the more metallic sample
goes in hand with a narrow Drude peak containing only a small fraction of the
total spectral weight.
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Samenvatting

Dit proefschrift behandelt optische spectroscopie als hulpmiddel om inzicht te
krijgen in de fysische eigenschappen van een aantal sterk gecorreleerde systemen.
In het algemeen is optische spectroscopie een uitstekend hulpmiddel voor de studie
van de elektronische structuur van een gegeven materiaal omdat de zo bepaalde
complexe optische conductiviteit informatie geeft over hoe de elektronen zich door
het materiaal bewegen in respons op een extern veld. Een van de processen die
beschreven wordt door de optische conductiviteit is de beweging van de elektronen
van een roosterpunt naar een ander roosterpunt. De invloed van dit proces wordt
bepaald door de competitie tussen elektron-elektron correlaties (die de elektronen
localiseren) en golffunctie hybridisatie (wat de elektronen delocaliseerd). Het is
precies deze competitie die de essentie vormt van de fysica van sterke correlaties.

Itinerant magnetisme: Siliciden

Het eerste systeem dat in dit proefschrift beschreven wordt is opgebouwd uit
een overgangs metaal en Silicium, de zogenaamde silliciden. Met name de silli-
ciden die Mangaan, IJzer en Cobalt bevatten zijn bestudeerd. Alhoewel in deze
overgangs metalen magnetisme zich in zijn meest elementaire vorm manifesteert,
zijn de corresponderende silliciden verbazingwekkend genoeg niet magnetisch bij
kamertemperatuur. Sterker nog, alleen MnSi (TC = 30 K) vertoont magnetisme.
Boven TC volgt MnSi de Curie-Weiss wet met een magnetisatie die veel groter is
dan de saturatie magnetisatie in de magnetische fase. Dit definieert MnSi als een
zwakke ferromagneet. Zwak ferromagnetisch gedrag duikt ook op in een groot ge-
bied van verhoudingen van mengsels tussen FeSi en CoSi, ondanks het feit dat elk
op zich niet magnetisch is. Daarintegen blijkt ferromagnetisme al snel te verdwi-
jnen in MnSi als men Mn gedeeltelijk vervangt door Fe. Een aantal magnetische
oplossingen van Fe1−xCoxSi worden ook bestudeerd in dit proefschrift.

In deze silliciden zijn alle stochiometrische samenstellingen en mengels daarvan
slechte metalen bij kamertemperatuur. Echter, het gedrag van verschillende men-
gels bij verlaging van de temperatuur is zeer divers. De weerstand van MnSi neemt
sterk af en blijft metallisch tot de laagste temperaturen zonder supergeleiding te
vertonen. Substitutie van Mn door Fe verlaagt alleen de snelheid waarmee de
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weerstand afneemt als functie van temperatuur en verlaagt TC . Een verrassende
observatie is dat in een dunne strook tussen FeSi en zowel CoSi als MnSi het
systeem een insulerende grondtoestand heeft waarvan de oorsprong nog steeds
onderwerp van discussie is. Als men meer naar CoSi toegaat voorbij deze dunne
strook dan blijft het systeem metallisch met een kleine verlaging van de weerstand.
Het gedrag van de weerstand in magnetische velden is ook verschillend voor de
magnetische samenstellingen rondom MnSi en die in Fe1−xCoxSi. Rondom MnSi
laat het systeem een een negatieve magnetoweerstand zien zoals verwacht voor
metalen bij niet te lage temperaturen. In de Fe1−xCoxSi samples vindt men het
tegenovergestelde en het gedrag is zelfs analoog aan de quantum effecten zoals
geïınduceerd door wanorde bij extreem lage temperaturen.

Zwak ferromagnetisme wordt normaal gesproken verklaard vanuit een itinerant
elektron beeld, zoals kort beschreven in Hoofdstuk 1. Alhoewel het verschillende
eigenschappen van zwakke ferromagneten verklaard, faalt deze beschrijving voor
sommige andere eigenschappen. Ook verklaart dit beeld niet het verschil in eigen-
schappen van de groep zwakke ferromagneten rond MnSi en de Fe1−xCoxSi. In
dit proefschrift (Hoofdstuk 3) worden de afwijkingen van dit beeld besproken die
betrekking hebben op de transport en optische eigenschappen van MnSi. We
hebben laten zien dat de optische eigenschappen beschreven kunnen worden met
een fenomenologische vergelijking die onder specifieke voorwaarden tot de Drude
beschrijving leidt. De implicatie hiervan is dat de temperatuur en frequentie
afhankelijkheid (verkregen uit, respectievelijk, de DC weerstand en de optische
geleiding) van de botsingstijd verschillend zijn. Dit heeft grote implicaties omdat
temperatuur en frequentie slechts verschillende manifestaties van energie zijn.

In Hoofdstuk 4 van dit proefschrift worden FeSi, CoSi en een aantal vaste
oplossingen van deze twee bestudeerd. In dit hoofdstuk wordt ook beschreven dat
de formatie van de isolerende toestand in FeSi niet conventioneel is in de zin dat
deze niet volledig verklaard wordt door banden theorie. Twee observaties waren
bepalend voor deze conclusie. Ten eerste, de bandgap van de isolerende toes-
tand is gevuld bij veel lagere temperaturen dan toegestaan voor alleen thermis-
che excitaties. Ten tweede is gedemonstreerd dat het optische spectrale gewicht
bevat in de optische geleiding (i.e. de geintegreerde oppervlakte eronder) niet
teruggevonden wordt in een energie gebied veel groter dan de bandgap. Dit ge-
brek duidt op de noodzaak om sterke correlaties te incorporeren in de beschrijving
van de isolerende fase van FeSi. Een tweede voordeel is dat deze aanvulling ook
de magnetotransport eigenschappen van Fe1−xCoxSi kan verklaren. Bij relatief
hoge temperaturen is de beschrijving van deze eigenschappen dan gelijk aan de
beschrijving van sterk wanordelijke metalen bij sub-kelvin temperaturen.
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Lokale momenten en itinerante elektronen: Heavy
Fermion Systemen

Een aantal systemen laten tekenen zien van meerdere soorten elektronen. Aan
een kant zijn er itinerante elektronen, verantwoordelijk voor de transport eigen-
schappen. Aan de andere kant zijn er gelokaliseerde elektronen die bijdragen aan
de magnetische eigenschappen. Interacties tussen deze twee soorten elektronen
kan leiden tot zeer divers gedrag van dit soort systemen. Een bepaalde klasse
van dit soort systemen worden de heavy fermion systemen genoemd. Deze naam
vindt zijn oorsprong in het feit dat de eigenschappen van deze systemen gelijk zijn
aan die van normale metalen maar met veel grotere proportionaliteits constanten.
Aangezien in de standaard theorie van metalen deze constanten proportioneel zijn
met de elektron massa, kunnen de versterkte eigenschappen van heavy fermion
systemen geinterpreteerd worden als een gerenormaliseerde massa van de elektro-
nen als gevolg van sterke interacties.

In Hoofdstuk 5 van dit proefschrift wordt een bepaalde familie van heavy
fermion systemen bestudeerd: CeMIn5 (M = Co, Rh, Ir). Dit systeem heeft de
laatste tijd veel aandacht getrokken vanwege de grote variëteit aanwezig in het
fase diagram. Bij verlaging van temperatuur vindt men eerst de opkomst van
heavy fermion gedrag gevolgd door antiferromagnetisme in CeRhIn5 (TN =3.8 K)
en onconventionele supergeleiding in CeCoIn5 (Tc = 2.4 K) en CeIrIn5 (Tc = 0.8
K). Het is gesuggereerd dat de supergeleiding in deze materialen overeenkomsten
vertoont met die in de hoge Tc supergeleiders. Deze analogie begint al met de
rooster structuur die voorgesteld kan worden als lagen van CeIn3 (een bekend
heavy fermion systeem) gescheiden door lagen MIn2.

Het werk gepresenteerd in dit proefschrift heeft zich geconcentreerd op de op-
tische eigenschappen van de heavy fermion toestand. Er is aangetond dat voor
lage temperaturen de optische respons van CeCoIn5 en CeIrIn5 gekarakteriseerd
kan worden door een smalle Drude piek die de oscillaties van coherente elektronen
voorstelt. Deze piek wordt gevormd beneden een bepaalde karakteristieke energie
die bekend staat als de hybridisatie gap. Aan de andere kant bestaat er een com-
petitie tussen antiferromagnetisme en de formatie van deze coherente toestand.
Dit is gedemostreerd in CeRhIn5 waar de smalle Drude piek niet volledig opkomt.
Verder is aangetond dat uit de studie van de dielektrische functie blijkt dat de
hybridisatie gap kleiner is dan in de twee andere materialen.

Lokale Momenten and Itinerante Elektronen: Man-
ganides

Ten slotte zijn materialen uit de perovskide manganide familie bestudeerd. Deze
staan bekend om hun fase diagram met diverse fasen. Een voorbeeld hiervan is het
La1−xCaxMnO3 systeem. Bij lage temperaturen is de fase gekanteld antiferromag-
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netisch voor LaMnO3 en CaMnO3 maar daar tussen in worden verschillende fasen
gevonden: ferromagnetisch isolerend en metallisch, ladings geordend en antiferro-
magnetisch. In algemene termen is dit rijke gedrag een gevolg van de interactie
tussen lokale momenten en itinerante elektronen op de Mangaan posities. In de
ferromagnetisch metallische fase wordt dit goed beschreven door de dubbele ex-
change Hamiltoniaan. Desalniettemin zijn er andere ideeën en mechanismen nodig
voor een complete beschrijving van de Manganiden. Een voorbeeld is de elektron-
fonon interactie die zich in verschillende vormen manifesteert zoals bijvoorbeeld in
een groot isotoop effect. Een ander mechanisme dat in beschouwing moet worden
genomen is de natuurlijke tendens van de dubbele exchange Hamiltoniaan naar
de produktie van fase scheiding.

Het laatste Hoofdstuk van dit proefschrift beschrijft de optische respons van
dunne films van (La0.5Pr0.5)0.7Ca0.3MnO3 gegroeid op SrTiO3 substraten. Er
zijn samples met verschillende zuurstof isotopen (16O en 18O) bestudeerd. Bij
kamertemperatuur laten beide soorten films een identieke DC weerstand zien
met geen lange drachts magnetische orde. Wanneer de temperatuur wordt ver-
laagd neemt de weerstand toe totdat een kritieke temperatuur (TC) wordt bereikt
waaronder de weerstand weer afneemt. Bij deze kritieke temperatuur vindt ook
magnetische ordening plaats. Samples met verschillende zuurstof isotopen laten
hetzelfde, hierboven beschreven, kwalitatieve gedrag zien. Echter, de samples die
de 18O isotoop bevatten hebben een lagere TC en de weerstand ver beneden TC

is een orde van grootte groter dan zijn tegenhanger met 16O. Een ander verschil
wordt duidelijk als de temperatuur verhoogd wordt tot boven TC . Samples met
18O laten een grote hysterese zien terwijl in de 16O deze hysterese klein is. Er
wordt gezegd dat dit een teken van ladings separatie is.

Net als de DC weerstand is de optische respons van beide films identiek bij
kamertemperatuur maar zeer verschillend bij lagere temperaturen, met name voor
lage frequenties. Voor hogere frequenties (boven 2.5 eV) wordt de optische con-
ductiviteit van beide films gedomineerd door overgangen die corresponderen met
ladings overdracht excitaties die zwak temperatuur afhankelijk zijn. Voor lage
frequenties, boven de corresponderende TC ’s, wordt de optische conductiviteit
gedomineerd door een sterke mid-infrarood piek rond 1.5 eV (piek 3). Deze piek
wordt versterkt in de paramagnetische toestand omdat hij overeenkomt met de
intersite overgang e1

g(Mn+3) → eg(Mn+4) waarbij de verplaatste elektronen an-
tiparallel uitkomen ten opzichte van de gelokaliseerde elektronen in het t2g niveau.
De intensiteit van piek 3 blijft min of meer constant boven TC maar neemt daaron-
der snel af in sterkte. Toch verdwijnt hij niet volledig bij lage temperaturen, met
name voor de films met de 18O isotoop waar de piek vrij groot blijft. Een andere
piek, aangeduid met nummer 2, kan gëıdentificeerd worden voor nog lagere fre-
quenties ( 0.75 eV). Deze piek is ook als een intersite overgang gëıdentificeerd van
dezelfde soort als piek 3 met het verschil dat de elektronen nu parallel eindigen
ten opzichte van de t2g kern. Om deze reden wordt hij versterkt in de ferromag-
netische toestand. Piek 2 is nauwelijks zichtbaar bij hogere temperaturen maar
neemt toe in intensiteit onder TC en verzadigd voordat de laagste temperaturen
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zijn bereikt. Het is zelfs zo dat de temperatuur afhankelijkheid van piek 2 en 3
volledig symmetrisch is. Een ander punt dat opvalt is dat in het meer metallische
sample (16O), piek 2 samengaat met een smalle Drude piek die weinig spectraal
gewicht heeft.

In Hoofdstuk 6 is beargumenteerd dat de temperatuur afhankelijkheid zoals
hierboven beschreven, begrepen kan worden met een fase scheidings beeld. Onder
TC zijn zowel de ferromagnetische en antiferromagnetische fase aanwezig. Dit is de
reden dat piek 3 niet volledig verdwijnt in de ferromagnetische toestand. Sterker
nog, isotoop substitutie verandert het relatieve volume van de ene toestand ten
opzichte van de andere. Dit verklaart ook het feit dat in de minder metallische
toestand piek 3 intenser is bij lage temperaturen.

Spectraal Gewicht

Een centraal probleem in dit proefschrift is de bepaling van het gebied waarover
het spectraal gewicht bevat in de optische conductiviteit wordt terug gewonnen.
Het is gebleken dat het gebied waarover dit gebeurt afhangt van het karakter van
de elektronen die betrokken zijn in laag frequente processen. In de siliciden en
manganiden is dit gebied vrij groot omdat de betrokken elektronen een d karakter
hebben. In de heavy fermion systemen die bestudeerd zijn, blijkt het gevonden
gebied veel kleiner te zijn omdat de elektronen die de coherente toestand vormen
een f karakter hebben.
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Summary

In this thesis, optical spectroscopy has been used to get an insight in the physical
properties of various strongly correlated systems. In general, optical spectroscopy
is an excellent tool to study the electronic structure of a given material because its
complex optical conductivity gives information about how the electrons move in-
side the material in response to an external field. A particular process described
by the optical conductivity is the motion of the electrons from one site to the
other. This process is determined by the competition between electron-electron
correlations (which tends to localize the electrons) and wave function hybridiza-
tion (which tends to delocalize them). It is precisely this competition which is
the essence of strong correlations.

Itinerant magnetism: Silicides

The first system described in this thesis contains a transition metal and silicon.
In particular the silicides containing manganese, iron and cobalt were studied.
Although these transition metals present magnetism in its elemental form, the
corresponding silicides, surprisingly, are not magnetic at room temperature. In
fact, at low temperatures, the only one that is magnetic is MnSi (TC = 30 K).
Above TC it follows a Curie-Weiss law with a magnetization much larger than
the saturation magnetization in the magnetic phase. This define MnSi as a weak
ferromagnet. Weak ferromagnetism also appears in a large region of the solid
solutions between FeSi and CoSi despite the fact both of them are not magnetic.
In contrast, starting from MnSi, replacing Mn by Fe destroys rapidly the weak
ferromagnetism. Some of the magnetic solutions of Fe1−xCoxSi were also studied
in this thesis.

In these silicides, all the stoichiometric compounds and their solutions are
bad metals at room temperature. When the temperature is decreased, however,
the behaviour is diverse. The resistivity of MnSi decreases strongly and remains
metallic down to the lowest temperature without showing superconductivity. Re-
placing Mn by Fe, although decreases TC , only decreases the rate at which the
resistivity decreases with temperature. Surprisingly, in a thin sleeve around FeSi
(towards both MnSi and CoSi), the system shows an insulating ground state the
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origin of which is still matter of debate. Towards CoSi and beyond this insulating
sleeve, the system remains metallic with a small decrease of the resistivity. The
behaviour of the resistivity in magnetic fields is also different between the mag-
netic samples around MnSi and those in Fe1−xCoxSi. Around MnSi, the system
shows negative magnetoresistance as usually expected for a metal at not so low
temperatures. In the Fe1−xCoxSi samples the opposite has been found and the
detailed behaviour is even analogous to the quantum effects induced by disorder
at extremely low temperatures.

Weak ferromagnetism is usually explained in an itinerant picture which was
briefly described in Chapter 1. Although it explains various properties of weak
ferromagnets, it fails in others. Moreover, it does not provide an explanation of
the different behaviours presented in the weak ferromagnets around MnSi and
those in Fe1−xCoxSi. In this thesis (Chapter 3) we addressed several of these
failures regarding the transport and optical properties of MnSi. We showed that
the optical properties of MnSi at low temperatures can be described by a phe-
nomenological formula that contains the Drude description as a particular case.
The implication is that the temperature dependence of the scattering rate (ex-
tracted from the DC resistivity) and its frequency dependence (extracted from
the optical conductivity) do not follow the same dependence. This has enormous
implications since temperature and frequency are only different manifestations of
energy.

In Chapter 4 of this thesis FeSi, CoSi and various of its solid solutions were
studied. It was shown that the formation of the insulating state in FeSi is not
conventional in the sense that it is not fully explained by band theory. Two
observations were determinant for this conclusion. First, the gap of the insulating
state is filled at temperatures much lower than would be permitted by thermal
excitations only. Second, it was demonstrated that the optical spectral weight
contained in the optical conductivity (i.e. the integrated area below it) is not
recovered in an energy range much larger than the insulating gap. This lack
of recovery points to the necessity of taking into account strong correlations to
describe the insulating phase of FeSi. Moreover, strong correlations would explain
the magnetotransport properties of Fe1−xCoxSi. At relatively high temperatures,
these properties are similar to the ones shown by strongly disordered metals at
sub-kelvin temperatures.

Local Moments and Itinerant Electrons: Heavy
Fermion Systems

Several systems show clearly two kinds of electrons. On one hand there are itin-
erant electrons that are responsible for the transport properties. On the other
hand there are electrons that are localized and are responsible of the magnetic
properties. When these electrons interact it gives rise to a rich behaviour. One
of such systems is composed by the so called heavy fermion materials. This name
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originate from the fact that their properties are similar to those of the normal
metals, though with much larger proportional constants. Since in the usual the-
ory of metals these constants are proportional to the electron mass, the enhanced
properties of heavy fermion systems can be interpreted as a renormalized mass of
the electrons due to strong interactions.

Chapter 5 of this thesis studies a particular family of heavy fermion systems:
CeMIn5 (M = Co, Rh, Ir). This system has recently attracted a considerable
attention due to the variety shown in its phase diagram. As the temperature
is decreased, heavy fermion behaviour appears and precedes states like antifer-
romagnetism in CeRhIn5 (TN =3.8 K) and unconventional superconductivity in
CeCoIn5 (Tc = 2.4 K) and CeIrIn5 (Tc = 0.8 K). It has also been suggested that
the superconductivity in these materials is similar to the high Tc superconduc-
tors. The analogy even starts in the crystal structure that can be seen as layers
of CeIn3 (a well known heavy fermion system) separated by MIn2 layers.

The work presented in this thesis has concentrated on the optical properties
of the heavy fermion state. It has been shown that, at low temperatures, the
optical responses of CeCoIn5 and CeIrIn5 are characterized by a narrow Drude
peak representing the oscillations of the coherent electrons. This peak is formed
below a certain characteristic energy known as hybridization gap. On the other
hand, antiferromagnetism competes against the formation of the coherent state.
This is shown in CeRhIn5 where the narrow Drude peak does not evolve com-
pletely. Moreover, from the study of its dielectric function it was shown that the
hybridization gap is smaller than the other two compounds.

Local Moments and Itinerant Electrons: Mangan-
ites

Finally, materials corresponding to the family of perovskite manganites were stud-
ied. Perovskite manganites are well known for having a phase diagram with
multifarious phases. An example of this is the La1−xCaxMnO3 system. At low
temperatures the phase is canted antiferromagnetic in LaMnO3 and CaMnO3 but
between them various phases are found: ferromagnetic insulating and metallic,
charge ordering, and antiferromagnetism. In general terms, this rich behaviour is
the result of the interaction between localized moments and itinerant electrons in
the manganese site. At least in the ferromagnetic metallic, this is well described
by the double exchange Hamiltonian. However, other ideas and mechanisms have
to be considered for a complete description of the manganites. One of them is
strong electron-phonon interactions as is revealed in several forms, for example,
the large isotope effect. Another mechanism that has to be considered is the nat-
ural tendency of the double exchange Hamiltonian to produce phase separation.

The final Chapter of this thesis describes the optical response of thin films
of (La0.5Pr0.5)0.7Ca0.3MnO3 grown in SrTiO3 substrates. Samples containing
different oxygen isotopes, 16O and 18O, were studied. At room temperature,
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both kind of films show identical DC resistivity with no long range magnetic
order. When the temperature is lowered, the resistivity increases until a certain
temperature, TC , from which it decreases again. This critical temperature is also
accompanied by magnetic ordering. Samples with both isotopes show the same
qualitative behaviour just described. However, samples containing 18O show a
lower TC and the resistivity well below TC is one order of magnitude larger than
its counterpart. Another difference is evident when the temperature is raised
above TC . Samples with 18O show a large hysteresis while in samples with 16O,
it is small. It has been argued that this is a manifestation of phase separation.

As in the DC resistivity measurements, the optical responses of both films
are identical at room temperature but greatly differ at low temperatures and
especially at low frequencies. At high frequencies (above 2.5 eV), the optical
conductivity of both films is dominated by transitions corresponding to charge
transfer excitations that are weakly temperature dependent. At low frequencies,
above their corresponding TC ’s, the optical conductivity of both films is dom-
inated by a strong mid-infrared peak at around 1.5 eV (peak 3). This peak
is favored in the paramagnetic state as it corresponds to intersite transitions
e1
g(Mn+3) → eg(Mn+4) where the transferred electron ends up being antiparallel

to the localized electrons in the t2g level. The intensity of peak 3 remains more
or less constant above TC but decreases rapidly below it. However, it does not
disappear completely at low temperatures, particularly in the film containing 18O
where remains rather large. Another peak, labeled 2, can be identified at even
lower frequencies ( 0.75 eV). This peak was identified also as an intersite transi-
tion of the same types as peak 3 with the difference that the transferred electron
is parallel to the t2g core. In this way, it is enhanced in the ferromagnetic state.
Peak 2 is barely visible at high temperatures but increases its intensity below TC

and saturates before the lowest temperatures are reached. In fact, the tempera-
ture dependencies of peaks 2 and 3 are completely symmetric. Another point that
has been noticed is that in the more metallic sample at low temperatures (16O),
peak 2 is accompanied by a narrow Drude peak containing few spectral weight.

In Chapter 6, it was argued that the temperature dependence just described
can be encompassed in the phase-separation picture. Below TC both ferromag-
netic and antiferromagnetic phases are present. This is the reason for which peak
3 does not completely disappear in the ferromagnetic state. Moreover, isotope
substitution changes the relative volume of one phase in respect to the other.
This also explains the fact that in the less metallic sample, peak 3 is more intense
at low temperatures.

Spectral Weight

A central problem in this thesis was the determination of the region in which the
spectral weight contained in the optical conductivity was recovered. It was found
that the region where this happens depends on the character of the electrons
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involved in low frequency processes. In the silicides and manganites, this happens
in a fairly large region as the electrons involved have d character. In the heavy
fermion systems studied here, the region was found to be much smaller since the
electrons involving the formation of the coherent state are of f character.
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Resumen

Esta tesis describe la utilización de espectroscoṕıa óptica para estudiar las propie-
dades f́ısicas de varios sistemas de electrones fuertemente correlacionados. En
general, la espectroscoṕıa óptica es una herramienta excelente para estudiar la
estructura electrónica de cualquier material debido a que la conductividad óptica
da información acerca de como los electrones se mueven en el material en res-
puesta a un campo electromagnetico externo. En particular, la conductividad
óptica describe el movimiento de los electrones de un sitio atomico a otro. Este
movimiento es determinado por dos procesos que compiten entre si: correlación
entre electrones (que tienden a localizarlos) e hibridizatión de la función de onda
(que tiende a delocalizarlos). Esta competición es precisamente la escencia de las
correlaciones fuertes entre electrones.

Magnetismo Itinerante: Siĺıcidos

El primer sistema descrito en esta tesis contiene un metal de transición y silicio.
Espećıficamente se han estudiado los siĺıcidos que contienen manganeso, hierro y
cobalto. Aunqe estos metales muestran magnetismo en su forma elemental, los
correspeondientes siĺıcidos no son magnético a temperatura ambiente. De hecho,
a bajas temperaturas, el único que es magnético es MnSi (TC = 30 K). A tem-
peraturas mayores a TC , MnSi sigue la ley de Curie-Weiss con una magnetización
mucho mayor que la magnetización de saturación en la fase magnética. Esto de-
fine MnSi como un material ferromagnético débil. Ferromagnetismo débil también
aparece en una region relativamente grande de las soluciones sólidas entre FeSi
y CoSi a pesar de que ellos no son magnéticos. En contraste, empezando desde
MnSi, si se reemplaza Mn con Fe, se destruye rápidamente el ferromagnetismo
débil. Algunas de las soluciones magnéticas de la familia Fe1−xCoxSi también se
estudiaron en esta tesis.

En estos siĺıcidos, todos los compuestos estoquiométricos y sus soluciones son
malos metales a temperatura ambiente. Si la temperatura se baja, sin embargo,
sus comportamientos son diversos. La resistividad en MnSi decrece fuertemente y
permanece metálico hasta la temperatura maás baja sin mostrar superconductivi-
dad. Al reemplazar Mn con Fe, aunque el magnetismo desaparece rápidamente, el
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material continúa siendo metálico hasta muy cerca de FeSi. Sorprendentemente,
en una region muy pequeña alrededor de FeSi (en ambas direcciones, hacia MnSi
y CoSi), el sistema muestra un estado fundamental que es aislante. El origen
de este estado aislante es todav́ıa materia de debate. En la direccion de CoSi y
mas allá de la región aislante, el sistema permanece metálico con poca variación
con temperatura. El comportamiento de la resistencia en campos magneticos es
también diferente entre las muestras magneticas alrededor de MnSi y aquellas
en Fe1−xCoxSi. Alrededor de MnSi, el sistema muestra una magnetoresistencia
negativa tal como se espera para metales a temperaturas no tan bajas. En las
muestras de Fe1−xCoxSi se ha encontrado lo opuesto y el comportamiento de-
tallado (a temperaturas relativamente altas de alrededor de 100 K) es incluso
análogo a los efectos cuánticos introducidos por desorden y que se ven solamente
a temperaturas extremadamente bajas.

El ferromagnetismo débil es usualmente explicado en un modelo itinerante que
fue brevemente bosquejado en el Caṕıtulo 1. Aunque este modelo explica varias
propiedades de los materiales ferromagnéticos débiles, falla en otros. Además,
no provee una explicación de los diferentes comportamientos observados en los
materiales magneticos débiles alrededor de MnSi y aquellos en Fe1−xCoxSi. En
esta tesis, (Caṕıtulo 3) hemos estudiado varias de estas fallas con respecto a
las propiedades ópticas y de transporte. Hemos demostrado que las propiedades
ópticas de MnSi, a bajas temperaturas, pueden ser descritas por una fórmula
fenomenológica que contiene la conocida formulación de Drude como un caso
particular. La implicación es que la dependencia con temperatura de la tasa
de dispersión (extráıda de la resistividad DC) y su dependencia con frequencia
(extráıda de la conductividad óptica) no siguen la misma dependencia. Esto tiene
importantes consecuencias ya que temperatura y frequencia son solo diferentes
manifestaciones de enerǵıa.

En el Caṕıtulo 4 de esta tesis se estudiaron FeSi, CoSi, y varias soluciones
entre ellos. Se demostró que la formación del estado aislante en FeSi es no con-
vencional en el sentido de que no es completamente explicada por la teoŕıa de
bandas. Dos observaciones fueron determinantes para esta conclusión. Primero,
la gap del estado aisalnte se llena a temperaturas mucho mas bajas que las permi-
tidas por solo excitaciones termales. Segundo, se demostró que el peso espectral
contenido en la conductividad óptica (es decir el área integrada debajo de ella) se
recupera tan solo en un rango de enerǵıa mucho mayor que el la gap. Esta falta
de recuperación indica la necesidad de tomar en cuenta las correlaciones fuertes
entre electrones para describir la fase aislante de FeSi. De hecho, se ha propuesto
que el efecto Kondo es el que determina la formación del estado aislante. En este
efecto, los electrones de conducción forman una nube alrededor de los momentos
magneticos eliminando el magnetismo en este material. Ademas si la compensa-
cion entre electrones de conducción y momentos magnéticos es exacta, el material
se vuelve aislante. Otro aspecto que las correlaciones fuertes podŕıan explicar son
las propiedades de magnetotransporte vistas en Fe1−xCoxSi. A temperaturas rel-
ativamente altas, estos materiales tienen propiedades similares a las que muestran
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metales fuertemente desordenados a temperaturas de alrededor de 1 K o menores.

Momentos Magneticos Locales y Electrones Iti-
nerantes: Sistemas de Fermiones Pesados

Varios sistemas muestran claramente dos clases de electrones. Por un lado están
los electrones itinerantes que son responsables por las propiedades de transporte.
Por el otro, están los electrones localizados que son responsables de las propiedades
magnéticas. Cuando estos electrones interactúan originan un comportamiento rico
y variado. Uno de tales sistemas esta compuesto por los aśı llamados compuestos
de electrones pesados. Este nombre se origina en el hecho de que sus propiedades
son similares son similares a aquellas de los metales normales, aunque con con-
stantes de proporcionalidad mucho mayores. Ya que la usual teoŕıa de los metales
estas constantes son proporcionales a la masa del electrón, las propiedades de
los sistemas de electrones pesados pueden ser interpretadas como una masa del
electrón renormalizada originada de las interacciones fuertes.

El Caṕıtulo 5 de esta tesis describe una familia de lectrones pesados espećıfica:
CeMIn5(M = Co, Rh, Ir). Esta familia recientemente ha atráıdo mucha atención
debido a la variedad mostrada por su diagrama de fase. A medida de que la tem-
peratura se disminuye, aparecen propiedades de fermiones pesados y preceden
estados como antiferromagnetismo en CeRhIn5 (TN =3.8 K) y superconductivi-
dad no-convencional en CeCoIn5 (Tc = 2.4 K) y CeIrIn5 (Tc = 0.8 K). Además se
ha sugerido que la superconductividad en estos en estos materiales es similar a la
mostrada por los superconductores de alta temperatura cŕıtica. La analoǵıa in-
cluso empieza con la estructura cristalina que puede ser vista como capas de CeIn3

(un muy conocido sistema de electrones fuertemente correlacionados) separatedas
por capas de MIn2.

El trabajo presentado en esta tesis se ha concentrado en las propiedades ópticas
de la region que muestra propiedades de fermiones pesados. Se demostró que,
a bajas temperaturas, las respuesta óptica de CeCoIn5 and CeIrIn5 están car-
acterizadas por un pico Drude muy angosto que representa las oscilaciones de
los electrones coherentes. Este pico se forma por debajo de una cierta enerǵıa
caracteŕıstica conocida como gap de hibridización. Por otro lado, el antiferro-
magnetismo compite en contra de la formación de un estado coherente. Esto
se demostró en CeRhIn5 donde el angosto pico Drude no evoluciona completa-
mente. Además, del estudio de su función dieléctrica, se demostró que la gap de
hibridización es mas pequeña que los otros dos compuestos.
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Momentos Magneticos Locales y Electrones Iti-
nerantes: Manganitas

Finalmente se estudiaron materiales correspondientes a la familia de las man-
ganitas perovskitas. Las manganitas perovskitas son muy conocidas por presen-
tar un diagrama de fase con fases muy variadas. Un ejemplo es el el sistema
La1−xCaxMnO3. A bajas temperaturas LaMnO3 y CaMnO3 muestran antiferro-
magnetismo donde los momentos están inclinados unos respecto al otro. Entre
estos extremos se encuentran varias fases como ferromagnetismo metálico y ais-
lante, ordenación de cargas y antiferromagnetismo usual. En términos generales,
esta rica gama de propiedades es el resultado de la interacción entre los momen-
tos localizados y los electrones itinerantes ubicados en el manganeso y que se
describe por el Hamiltoniano de doble intercambio. Sin embargo, otras ideas y
mecanismos tienen que ser considerados para una completa descripción de las
manganitas. Uno de ellos es la fuerte interacción electrón-fonón como se revela
en varias formas, por ejemplo, el gran efecto isotópico. Otro mecanismo que tiene
que ser considerado es la tendencia natural del Hamiltoniano de doble intercambio
a producir separación de fases.

El Caṕıtulo final de esta tesis describe la respuesta óptica de laminas delgadas
de (La0.5Pr0.5)0.7Ca0.3MnO3 depositadas en substratos de SrTiO3. Se estudiaron
muestras que contienen diferentes isótopos de ox́ıgeno, 16O y 18O. A temperatura
ambiente ambos tipos de láminas muestran idéntica resistividad DC sin orde-
namiento magnético. Cuando la temperatura decrece la resistividad aumenta
hasta cierta temperatura, TC , a partir de la cual disminuye. Esta temperatura
cŕıtica también va acompañada de ordenamiento magnético. Las muestras con
ambos isótopos muestran cualitativamente este mismo comportamiento. Sin em-
bargo, las muestras que contienen 18O muestran una menor TC y la resistividad
muy por debajo de TC es un orden de magnitud mayor a su contraparte. Otra
diferencia es evidente si la temperatura aumenta (empezando debajo de TC).
Muestras con 18O muestras una histéresis pronunciada mientras en que aquellas
con 16O el efecto es pequeño. Se ha conjeturado que esta es una manifestación de
separación de fases.

Tal como ocurre en las mediciones de resistividad DC, la respuesta óptica de
ambas peĺıculas es idéntica a temperatura ambiente per difiere mucho a bajas
temperaturas y especialmente a bajas frequencias. A frequencias altas (sobre los
2.5 eV), la conductividad óptica esta dominada por transitiones fuertes que cor-
responden a excitaciones de transferencia de carga y que dependen débilmente de
la temperatura. A bajas frequencias, por encima de sus correspondientes TC ’s,
la conductividad óptica esta dominada por un fuerte pico a alrededor 1.5 eV
(de aqui en adelante llamado pico 3). Este pico es favorecido en el estado para-
magnético ya que corresponde a transiciones entre diferente sitios atomicos del
tipo e1

g(Mn+3) → eg(Mn+4) donde el electrón transferido termina siendo antipar-
alelo a los electrones localizados que se hallan en nivel t2g. La intensidad del



RESUMEN 145

pico 3 permanece relativamente constante sobre TC pero decrece rápidamente a
temperaturas menores. Sin embargo, no desaparece completamente a bajas tem-
peraturas, especialmente en el film que contiene 18O. Otro pico, indicado con el
número 2, puede reconocerse a frecuencias algo mas bajas ( 0.75 eV). Este pico
fue identificado igualmente como una transición entre sitios con la diferencia de
que el electrón transferido termina siendo paralelo al núcleo t2g. De esta manera,
es favorecido en el estado ferromagnético. El pico 2 es escasamente visible a al-
tas temperaturas pero su intensidad aumenta debajo de TC y se satura antes de
alcanzar las temperaturas mas bajas. De hecho, los picos 2 y 3 sus dependencias
con temperatura son completamente simétricas. Otro punto a notar es que en la
muestra mas metálica a bajas temperaturas (16O), el pico 2 esta acompañado de
un pico Drude que contiene poco peso espectral.

En el Caṕıtulo 6, se arguyó que la dependencia con temperatura que hemos
descrito puede explicarse por medio de la separación de fases. Por debajo de TC

las fases ferromagnéticas y antiferromagnéticas están presentes. Esta es la razón
por la cual el pico 3 no desaparece completamente en el estado ferromagnético.
Además la substitución isotópica cambia el volumen relativo de una fase con
respecto a la otra. Esto también explica el hecho de que en la muestra menos
metálica, el pico 3 es mas intenso a bajas temperaturas.

Peso Spectral

Un problema central discutido en esta tesis fue la determinación de la región donde
el peso espectral contenido en la conductividad óptica se recupera. Se encontró
que la región donde esto pasa depende del carácter de los electrones involucrados
en los procesos a bajas frecuencias. En los siĺıcidos y manganitas, esto ocurre en
una region relativamente amplia ya que los electrones involucrados tienen carácter
d. En los sistemas de fermiones pesados estudiados aqúı, la region es mucho menor
ya que los electrones que forman el estado coherente son de carácter f .
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durante todo este tiempo, sé que lo han hecho de otras maneras. Los quiero a
todos. Y bueno, papi y mami, este es el resultado de haberme ayudado con los
estudios y haberme incentivado a seguir siempre adelante.

The final paragraph is reserved for someone extremely especial. Someone
who has been with me these four years. Someone who also left Ecuador for the
unknown. Not knowing the Language and not having been abroad before, it was
a big step. And, then, being here, waiting at home until I finish the experiments.
Being always extremely patient. Being always with me. Gracias corazón, gracias
por estar conmigo.




