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SAMENVATTING

In het begin van de vorige eeuw werd het fenomeen supergeleiding ontdekt.
Als bepaalde materialen worden afgekoeld tot onder een kritische temperatuur
geleiden ze stroom zonder weerstand. De elektronen bewegen zich voort zonder
energieverlies. Een fantastische eigenschap met veel interessante toepassingen,
zoals mogelijke hoogspanningsleidingen zonder energieverlies, computerschips
die geen warmte produceren en daardoor veel compacter en sneller kunnen wor-
den en sterke magneten met al hun praktische toepassingen. Het duurde een
halve eeuw voordat er een theorie kwam die het fenomeen verklaarde en het
werd helaas duidelijk dat de kritische temperatuur waarschijnlijk niet veel hoger
dan −240◦ C kon zijn.

Deze conventionele supergeleiders hebben een kritische temperatuur die een
factor 20 tot 30 lager is dan kamertemperatuur. Supergeleiding bij kamertemper-
atuur is dan waarschijnlijk fundamenteel onmogelijk voor dit type materialen.
Echter, weer bijna een halve eeuw later werden er nieuwe materialen ontdekt die
supergeleidend zijn bij een veel hogere kritische temperatuur. Voor deze ’hoge
temperatuur supergeleiders’ is de kritische temperatuur (∼ 100K =−173◦C) nog
maar een factor 2 tot 3 lager dan kamertemperatuur. De theorie voor de con-
ventionele supergeleiders bleek niet op te gaan voor deze nieuwe supergelei-
ders. Misschien kunnen we, als we de juiste theorie hebben en we begrijpen hoe
supergeleiding in deze nieuwe materialen werkt, een materiaal maken dat su-
pergeleidend is bij kamertemperatuur. In dit proefschrift proberen we een klein
stukje van de puzzel op te lossen.

Het mechanisme van hoge temperatuur supergeleiding, met name in de cu-
praten, is dus nog steeds niet gevonden. Het probleem is niet zo zeer dat er geen
theorieën zijn om het fenomeen te verklaren, maar dat er te veel theorieën zijn.
Verschillende (groepen van) mensen hebben zo hun eigen ideeën over waarom
elektronen Cooper paren vormen, een basisingrediënt van supergeleiding. Voor
supergeleiding in normale metalen (die alleen bij lage temperaturen supergelei-
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vi Samenvatting

dend zijn) is een theorie gevonden die goed werkt. Eén klasse theorieën voor
de nieuwe, hoge temperatuur, supergeleiders is een modificatie van deze stan-
daard theorie van Bardeen, Cooper en Schrieffer (BCS). In deze theorie oefenen
de elektronen, die elkaar normaliter afstoten, via het kristalrooster een effectieve
aantrekking op elkaar uit. Een tweede klasse theorieën maakt gebruik van een
mechanisme van sterke wisselwerking tussen de elektronen, die ook resulteert
in een effectieve aantrekking tussen de elektronen, maar van een geheel andere
aard. Hoofdstuk 1 geeft een korte samenvatting van de belangrijkste theorieën
van de tweede klasse.

Er is een manier om onderscheid te maken tussen de twee klassen van the-
orieën. Wanneer het systeem supergeleidend wordt moet er een verlaging van
de vrije energie van het systeem optreden, anders had de overgang niet plaats
gevonden. De mate waarin de vrije energie verlaagd wordt, wordt de conden-
satie energie genoemd. De vrije energie is de som van de kinetische energie en
de interactie energie. In de BCS theorie gaat bij de overgang de kinetische en-
ergie omhoog, maar de interactie energie gaat meer omlaag, zodat de netto vrije
energie omlaag gaat. De theorieën die uitgaan van sterke interacties tussen de
elektronen voorspellen dat de kinetische energie omlaag gaat. Een meting van
de verandering van de kinetische energie op het moment dat het systeem su-
pergeleidend wordt kan dus een hint geven over welke klasse van theorieën van
toepassing is op de cupraten.

Licht en lading zijn op een intieme manier met elkaar verbonden (door mid-
del van de Maxwell vergelijkingen) en een meting van de respons van een ma-
teriaal op invallend licht kan eigenschappen van de (geladen) elektronen aan
het licht brengen. Door middel van een reflectie meting kan de optische con-
ductiviteit bepaald worden, waarbij de optische conductiviteit de respons van
het materiaal is op een in de tijd variërend elektrisch veld (licht). Veel inter-
essante eigenschappen van het materiaal kunnen aan de hand van de optische
conductiviteit bestudeerd worden. In dit proefschrift wordt het gebruikt om de
verandering van kinetische energie in de cuprate supergeleiders te bestuderen
en om meer te weten te komen over de ’quantum kritische’ eigenschappen van
deze materialen in de normale toestand.

EEN MID INFRAROOD ELLIPSOMETER

De beste manier om de optische conductiviteit te meten is met behulp van een
techniek genaamd ellipsometrie en voor het energiegebied van 0.74 tot 4.46 eV
(wat het zichtbaar licht gedeelte van het elektromagnetische spectrum bevat)
was een ellipsometer beschikbaar. Voor het infrarode deel van het spectrum van



Samenvatting vii

1 meV tot 1 eV was een spectrometer aanwezig waarmee alleen normale reflectie
en transmissie metingen gedaan konden worden. Het voordeel van ellipsome-
trie is dat zowel het reële als het imaginaire deel van de optische conductiviteit
direct gemeten kunnen worden. Bij een standaard reflectiemeting kunnen beide
delen alleen verkregen worden na toepassing van de Kramers-Kronig relaties,
een wiskundige methode waarvoor een aantal aannames gedaan moeten wor-
den. Infrarood ellipsometers waren niet beschikbaar en daarom werd er een in
onze groep gebouwd. Hoofdstuk 2 beschrijft het ontwerp en de werking van dit
instrument.

Om een ellipsometer goed te laten werken zijn twee polarisators van hoge
kwaliteit nodig. De commercieel beschikbare polarisators waren echter niet goed
genoeg. Daarom zijn nieuwe polarisators ontworpen en gemaakt. Deze polar-
isators zijn gebaseerd op het principe dat als licht een plak silicium raakt onder
een hoek van 73.7◦, één polarisatie geheel doorgelaten wordt en de andere maar
gedeeltelijk. Vier platen silicium achter elkaar is dan voldoende om een hoge
mate van polarisatie te krijgen.

Ellipsometrie is erg gevoelig voor de hoek van inval die het licht maakt met
het materiaaloppervlak. Een kleine verandering van de hoek van inval geeft
andere resultaten. De lichtbundel die gebruikt wordt is geen nauwe, parallelle
bundel, maar een convergerende bundel met een openingshoek van 8◦. Dit re-
sulteert in een grote distributie van hoeken van inval wat de meting beı̈nvloedt.
Om te onderzoeken wat het effect van meten met een distributie van hoeken van
inval is, is een computermodel gemaakt van de gehele opstelling. Na doorreken-
ing werd duidelijk dat de distributie van hoeken van inval niet genegeerd kon
worden en een juiste callibratieprocedure gedaan moet worden, wat uitgelegd
wordt in hoofdstuk 2.

De gehele ellipsometer bevindt zich in een vacuüm kamer met een druk van
ongeveer 3 · 10−9 mbar. Het te onderzoeken materiaal is bevestigd aan een ’flow
cryostat’ om metingen bij lage temperaturen (4K-300K) te kunnen doen. Ver-
schillende onderdelen kunnen met de computer bestuurd worden en er is soft-
ware ontwikkeld om automatisch metingen te kunnen doen en de voortgang van
de metingen te kunnen volgen via internet.

KINETISCHE ENERGIE VERANDERINGEN IN DE CUPRATEN

Hoofdstuk 3 behandelt het probleem van kinetische energie veranderingen in
de cupraten wanneer deze supergeleidend worden. De materialen die zijn on-
derzocht zijn verschillende Bi2Sr2CaCu2O8+δ éénkristallen met verschillende kri-
tische temperaturen Tc - de temperatuur waarbij het materiaal supergeleidend
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wordt. Voor deze materialen is het ’nearest neighbor tight binding’ model van
toepassing. Dat betekent dat men kan aannemen dat elektronen alleen van een
atoom naar het naastgelegen atoom springen en niet over grotere afstanden in
één keer. Er is aangetoond dat in dat geval de totale bijdrage van de geleidings-
electronen aan de optische conductiviteit evenredig is met de kinetische energie
(met een minteken). Door veranderingen van de geı̈ntegreerde optische conduc-
tiviteit - het spectrale gewicht - te meten kan een schatting gemaakt worden van
de veranderingen in de kinetische energie.

In principe is het spectrale gewicht een behouden grootheid die niet veran-
derd. Wanneer het systeem supergeleidend wordt ontstaat er een ’gap’ in het
optische spectrum. In dit energiegebied kunnen de elektronen geen energie ab-
sorberen. Het verwijderde spectrale gewicht komt terug in de vorm van een
delta functie, resulterend in een oneindige geleiding en derhalve een weerstand
die nul is. Echter, er is alleen sprake van verplaatsing van spectraal gewicht en
de totale, geı̈ntegreerde optische conductiviteit blijft gelijk.

De bijdrage van de geleidingselektronen aan de optische conductiviteit is slechts
een deel van het totale spectrale gewicht. Een verandering van de kinetische
energie van deze elektronen resulteert in een verandering van dit deel van de
optische conductiviteit. Deze extra verandering is klein en gebeurt naast de ve-
randering van spectraal gewicht tengevolge van de opening van de ’gap’. Ook
temperatuur heeft een effect en de interessante kleine veranderingen in spectraal
gewicht tengevolge van kinetische energie veranderingen moeten waargenomen
worden naast grote variaties tengevolge van de temperatuur.

Het effect van de veranderingen van kinetische energie is dus klein en subtiel,
en zeer precieze metingen zijn nodig om het te kunnen waarnemen. Wij hebben
reflectie en ellipsometrie metingen gedaan in het energiegebied van 6 meV tot
4.46 eV met een hoge temperatuur resolutie. Door de temperatuur verandering
in de normale toestand (boven Tc) te extrapoleren konden we de veranderingen
in de optische conductiviteit meten wanneer Tc gepasseerd werd. Het gewicht
van de delta piek (die het aantal supergeleidende elektronen weergeeft) kon niet
gemeten worden en die is verkregen door het gehele spectrum te modelleren met
een Drude-Lorentz model. Op deze manier hebben we voor iedere temperatuur
het spectrale gewicht van de geleidingselectronen bepaald. We hebben gecon-
troleerd dat het resultaat onafhankelijk was van de details van het model. Ook
hebben gecontroleerd dat andere effecten, zoals veranderingen in het rooster, de
waarnemingen niet konden verklaren.

Wanneer supergeleiding optreedt hebben we waargenomen dat een kleine
verandering van spectraal gewicht optreedt, overeenkomend met een kleine ve-
randering van kinetische energie van de orde van grootte van 1 meV per koper
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atoom. Dit is meer dan de condensatie energie en een theorie voor supergeleid-
ing in de cupraten moet derhalve een verlaging van kinetische energie als cen-
traal mechanisme hebben. Een verlaging van kinetische energie is tegengesteld
aan wat voorspeld wordt door de BCS theorie. Dit betekent dat deze theorie
of een aanpassing daarvan niet de juiste manier is om supergeleiding in de cu-
praten te beschrijven. Een verlaging van kinetische energie betekent dat sterke
interacties tussen de elektronen van groot belang zijn.

SPECTRAAL GEWICHT VERANDERINGEN IN BCS SUPERGELEIDERS

Het is nu interessant om te weten wat de resultaten zouden zijn voor een nor-
male BCS supergeleider. Hoofdstuk 4 beschrijft de metingen die gedaan zijn aan
Nb, V3Si en MgB2, waarvoor de BCS theorie een goede verklaring geeft voor su-
pergeleiding in deze materialen. We verwachten daarom een afname van spec-
traal gewicht omdat de kinetische energie toeneemt. Er zijn echter twee prob-
lemen. Ten eerste worden deze systemen niet goed beschreven door het ’tight
binding’ model en daarom is de relatie tussen spectraal gewicht en kinetische
energie niet zo vanzelfsprekend. Ten tweede zijn de te verwachten veranderin-
gen veel kleiner omdat de kritische temperatuur veel lager ligt. Een berekening
leert dat de te verwachten veranderingen in spectraal gewicht kleiner zijn dan
wat we met onze instrumenten kunnen meten.

De metingen die we gedaan hebben laten inderdaad geen veranderingen zien
bij Tc die duidelijk genoeg waren om conclusies te kunnen trekken. Nauwkeuri-
gere metingen zijn derhalve in voorbereiding.

QUANTUM KRITIKALITEIT

In hoofdstuk 5 is het de normale toestand van de Bi2Sr2CaCu2O8+δ cupraten die
bestudeerd wordt via de optische conductiviteit van het materiaal. In dit geval
kijken we naar de infrarode frequentieafhankelijkheid, die tekenen vertoont van
quantum kritisch gedrag.

Een systeem vertoont kritisch gedrag wanneer het dicht bij een fase overgang
is. Een bekend voorbeeld van een fase overgang is het smelten van ijs, waarbij
het systeem overgaat van een vast fase naar een vloeibare fase. Dit is een fase
overgang bij eindige temperatuur, maar fase overgangen bij een temperatuur
van nul Kelvin zijn ook mogelijk en die worden quantum fase overgangen ge-
noemd. De fase overgang is er een tussen een geordende en een ongeordende
toestand van het systeem, als een functie van druk, magnetisch veld of een an-
dere parameter. Bij eindige temperatuur spelen thermische fluctuaties een belan-
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grijke rol bij de fase overgang. Bij nul Kelvin zijn er geen thermische fluctuaties;
in dit geval spelen de quantum fluctuaties een cruciale rol.

In het geval van de cuprate supergeleiders zijn er verschillende theorieën
gebaseerd op quantum kritikaliteit die een quantum kritisch punt in het fase
diagram voorspellen. Hoewel de quantum fase overgang bij nul Kelvin plaats-
vindt, heeft het zeer specifieke gevolgen voor de eigenschappen van het systeem
bij eindige temperatuur. In hoofdstuk 5 gaan we in op twee van die eigenschap-
pen. Dicht bij het kritische punt wordt het systeem schaal invariant: het ziet
er hetzelfde uit onafhankelijk van de lengte- of tijdschaal waarop het bekeken
wordt. De responsfunctie van het systeem, zoals de optische conductiviteit,
moeten dan beschreven worden door ’powerlaws’, omdat deze functies precies
de juiste schaalinvariante eigenschap bezitten. Een gevolg van de schaalinvari-
antie van het systeem is dat er geen specifieke energieschaal is waarmee we de
energie van processen kunnen vergelijken. De enige energieschaal die aanwezig
is, is de temperatuur zelf en dit resulteert in de tweede eigenschap, namelijk
temperatuur-energie schaling: De responsfunctie moet voor alle temperaturen
hetzelfde zijn wanneer ze geschreven wordt als een functie van energie gedeeld
door temperatuur (h̄ω/kBT).

Hoofdstuk 5 begint met een uitgebreidere inleiding in quantum kritikaliteit.
Vervolgens presenteren we metingen van de optische conductiviteit van ver-
schillende Bi2Sr2CaCu2O8+δ monsters. Beide genoemde eigenschappen blijken
aanwezig te zijn in deze materialen, wat een sterke aanwijzing is dat quantum
kritisch gedrag de eigenschappen van deze systemen bepalen. De functie voor
de temperatuur-energie schaling is echter niet dezelfde over het hele energiege-
bied. Om dat te begrijpen zijn concepten nodig die verder gaan dan de standaard
theorie van quantum kritikaliteit.



SUMMARY

The mechanism of high temperature superconductivity, especially in the cuprates,
is still an open issue. The problem is not that there aren’t any theories to explain
the phenomena, but actually that there are too many. Several (groups of) peo-
ple have their own ideas about the origin of the pairing of electrons into Cooper
pairs, a basic ingredient of superconductivity. One class of theories is a modi-
fication to the standard theory by Bardeen, Cooper and Schrieffer (BCS), which
describes superconductivity in normal metals. In this theory the electrons (which
normally repel each other) exhibit an effective attraction via the lattice. A second
class uses some mechanism of strong interactions between the electrons which
also results in an effective attraction between the electrons, but of a completely
different nature. Chapter 1 gives a very short summary of the main theories of
the second class.

There is a way to distinguish between the two classes of theories. As the
system becomes superconducting, the internal energy of the system becomes
lower, otherwise the transition would not take place. The amount by which the
internal energy lowers is called the condensation energy. The internal energy is
the sum of the kinetic energy and the interaction energy of the electrons. In the
BCS theory the kinetic energy is increased, but the interaction is decreased by
a larger amount, resulting in the net lowering of internal energy. On the other
hand, the theories that use strong interactions between the electrons predict a
decrease of kinetic energy. Therefore, measuring the change in kinetic energy
as the system becomes superconducting can give a hint about which class of
theories is applicable for the cuprates.

Light and charge are intimately connected (by the Maxwell equations) and
measuring the response of a material to incident light can reveal properties of the
(charged) electrons. A reflection measurement results in the determination of the
optical conductivity of a material, which is the linear response of the material to
a time varying electric field (light). Many interesting properties of the material

xi



xii Summary

can be learned from studying the optical conductivity. In this thesis it is used
to study the changes in kinetic energy of cuprate superconductors and to learn
about the ’quantum critical’ properties of the normal state of these materials.

A MID INFRARED ELLIPSOMETER

The best way to measure the optical conductivity is a technique called ellipso-
metry. For the energy region of 0.74 eV to 4.46 eV (covering the visible part of
the spectrum) an ellipsometer was available. For the infrared region of the spec-
trum of 1meV to 1 eV a spectrometer used for normal incidence reflection and
transmission was available. The advantage of ellipsometry is that it gives both
the real and imaginary part of the optical conductivity directly. From reflection
measurements one can get both parts only after applying the Kramers-Kronig re-
lations, a mathematical method for which certain assumptions have to be made.
Infrared ellipsometers were not commercially available and therefore one was
build in this group. Chapter 2 describes the design and the operation of this
instrument.

For proper operation of the ellipsometer two high quality polarizers are needed.
The commercially available polarizers were not satisfactory. Therefore new po-
larizers were designed and constructed. The operation of these polarizers is
based on the fact that if light hits a pure silicon wafer at an angle of incidence of
73.7◦, then one polarization is transmitted fully, while the other is only transmit-
ted partially. A stack of four silicon plates is then enough to obtain a very high
degree of polarization.

Ellipsometry is very sensitive to the angle of incidence of the infrared light
beam on the sample. A slightly different angle of incidence gives different re-
sults. Unfortunately, the beam that is used is not a narrow, parallel beam, but a
convergent beam with an opening angle of 8◦. This results in a large distribution
of angles of incidence which affects the result. To investigate the effect of mea-
suring with a distribution of angles of incidence a model was developed that
simulated the entire setup, including a full distribution of angles of incidence.
It became clear that the distribution of angles of incidence can not be neglected.
Another type of calibration needs to be done, which are explained in chapter 2.

The entire ellipsometry system is inside a vacuum chamber with a pressure
of around 3 · 10−9 mbar. The sample is mounted on a flow cryostat to be able
to work at low temperatures (4K-350K). Several components can be controlled
by computer and software was developed to have the system perform measure-
ments at several temperatures and monitor the progress of the measurement via
internet.
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KINETIC ENERGY CHANGES IN THE CUPRATES

Chapter 3 addresses the issue of kinetic energy changes in the cuprates as they
become superconducting. The materials under investigation were several single
crystals of Bi2Sr2CaCu2O8+δ with different critical temperatures Tc - the temper-
ature at which the material becomes superconducting. For these materials the
nearest neighbor tight-binding model is applicable, that is, to a good approxi-
mation the electrons only move from one atom to the next and do not hop over
larger distances at once. It can than be shown that the total contribution of con-
duction the electrons to the optical conductivity is proportional to the kinetic
energy (with a minus sign). By measuring changes in the integrated optical con-
ductivity - the spectral weight - we can therefore estimate the changes in the
kinetic energy.

In principle the integrated spectral weight is a conserved quantity and does
not change. When the system becomes superconducting a gap appears in the
optical spectrum. In this energy range the electrons can not absorb energy. The
removed optical conductivity reappears at zero energy in the form of a delta
peak, giving infinite conductivity (and zero resistance). Still, the value of the
total, integrated optical conductivity remains the same.

However, the contribution of the conduction electrons to the optical conduc-
tivity is only part of the total optical conductivity. A change in kinetic energy of
these electrons results in a change in this part of the optical conductivity. This
extra change is small and appears on top of the redistribution of spectral weight
due to the opening of the gap. Also temperature has its effect and the interesting
spectral weight changes must be observed on top of large changes due to the
temperature variation.

The effect of a change of kinetic energy is subtle and small, and accurate mea-
surements are needed. We performed reflection and ellipsometry measurements
in the energy range from 6 meV to 4.46 eV with a high temperature resolution. By
extrapolating the normal state (above Tc) temperature dependence we could es-
timate the changes in the optical conductivity when Tc was crossed. The weight
of the delta peak at zero energy (reflecting the density of superconducting elec-
trons) can not be measured and must be obtained by modeling the entire spec-
trum with a standard Drude-Lorentz model. This way we extracted for every
temperature the spectral weight of the conducting electrons. We checked that
the result was independent on the details of the model and that other effects,
like changes in the lattice, could not explain the observed changes.

At the onset of superconductivity a small increase in spectral weight was ob-
served, corresponding to a small decrease of kinetic energy of the order of 1 meV
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per copper atom. This is larger than the condensation energy and a mechanism
for superconductivity in the cuprates must have a lowering of kinetic energy as
a central feature. A decrease in kinetic energy is opposite to what is predicted by
the BCS theory, indicating that this is not the correct way to describe supercon-
ductivity in the cuprates and that strong correlations between the electrons are
important.

SPECTRAL WEIGHT CHANGES IN BCS SUPERCONDUCTORS

It is now interesting to know what the results would be for a conventional BCS
superconductor. Chapter 4 describes measurements done on Nb, V3Si and MgB2,
for which the BCS theory provides a good explanation of superconductivity in
these materials. We expect therefore to see a decrease of spectral weight, because
the kinetic energy increases. There are two problems though. First of all, these
system are not well described by the tight-binding model and therefore the rela-
tion between spectral weight and kinetic energy is not straight forward. Second,
because the critical temperature is much lower, the changes in spectral weight
are expected to be smaller than can be observed with our instruments.

Indeed, the measurements did not show any changes at Tc that were clear
enough to draw conclusions. More accurate measurements are in preparation.

QUANTUM CRITICALITY

In chapter 5 the normal state of the Bi2Sr2CaCu2O8+δ superconductors is studied
via the optical conductivity of the material. In this case we have a close look
at the infrared frequency dependence, which shows signs of quantum critical
behavior.

A system shows critical behavior when it is close to a phase transition. A
well known example of a phase transition is the melting of ice, where the system
changes from a solid phase to a liquid phase. This is a phase transition at finite
temperature, but phase transitions at zero temperature are also possible and they
are called quantum phase transitions. The transition is one between an ordered
and a disordered state of the system, as a function of pressure, magnetic field or
an other parameter. At finite temperature thermal fluctuations play an impor-
tant role in the phase transition, but at zero temperature there are no thermal
fluctuations; in this case the quantum fluctuations are of crucial importance.

In the case of cuprate superconductors several theories of quantum criticality
exist that predict a critical point in the phase diagram of the system. Although
the quantum phase transition occurs at zero temperature, it results in specific
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properties of the material at finite temperature. We focus in chapter 5 on two of
them. Close to the critical point the system becomes scale invariant: it looks the
same regardless on what scale it is observed. Response functions of the system,
like the optical conductivity, must then be powerlaws, because powerlaws have
precisely this scale invariant property. A consequence of the scale invariance
of the system is that there is no specific energy scale to which we can compare
the energy of processes. The only energy scale that is available is temperature
itself and this results in the second property, namely energy-temperature scaling:
The response function must be the same for all temperatures if it is written as a
function of energy dived by temperature (h̄ω/kBT).

Chapter 5 starts with a more detailed introduction of quantum criticality.
Then we present measurements of the optical conductivity of several samples
of Bi2Sr2CaCu2O8+δ . Both properties mentioned above are found in these mate-
rials, which is a strong indication that quantum critical behavior is determining
the properties of the system. The energy-temperature scaling function though
is not the same over the entire energy range and its understanding may require
concepts that go beyond the standard model of quantum criticality. The mea-
surements are compared to theories of superconductivity that use quantum crit-
icality as a driving mechanism.
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CHAPTER 1

INTRODUCTION

1.1 SOME THEORIES OF SUPERCONDUCTIVITY IN THE CUPRATES

There are many theories of superconductivity in the cuprates. One class of theo-
ries tries to modify the theory of Bardeen, Cooper and Schrieffer (BCS) for super-
conductivity in normal metals and apply it to the cuprates. The basic interaction
that pairs the electrons into Cooper pairs is still the electron-phonon interaction.
Another class uses the typical two dimensional structure of the cuprates which
allows them to be described by spin 1/2 electrons on Cu-O plaquettes. Strong
interactions between the electrons play a crucial role and the pairing interaction
is based on an electron-electron mechanism. Here we give a short overview of
the main theories (apart from BCS) that are relevant for the work in this thesis
[1, 2, 3].

1.1.1 RVB

One of the first theories of superconductivity in the cuprates after its discovery
came from Anderson [4, 5]. He proposed that pairs of spins on the copper atoms
would form singlet pairs in a dynamic way [6], that is, by continuously changing
partner, where double occupancy of the sites are not allowed. This results in a
so called “resonating valence bond” state. The corresponding wave function is
very similar to a BCS wave function and this forms Anderson’s Ansatz for the
wave function in the cuprates [7]. The Hamiltonian that works on this wave
function is the t − J Hamiltonian. The excitations of the RVB state are peculiar
[8, 9]. When a singlet pair with total spin zero is broken (which costs an energy
J) the system is left in an exited spin state. With respect to the ground state there

1
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Figure 1.1: Phase diagrams for the cuprates as obtained from the RVB picture (left) of from a
quantum critcal picture (right).

is no change in charge, but there is a change in the spin, giving one object with
spin up and one with spin down. Another excitation can be made by taking out
an electron which changes the total charge of the system and leaves one single
spin from a broken pair. The quasiparticles are therefore objects with spin but
no charge (spinons) and objects with charge but no spin (holons). For zero dop-
ing the mean field temperature TMF at which the singlets form is highest, but
the pairs are not mobile and superconductivity is suppressed. As the doping is
increased TMF lowers, but the phase coherence temperature of the doped holes
increases because it is proportional to doping. This results in the phase diagram
shown in figure 1.1. In the right quadrant the system is a normal metal. In the
lower quadrant the system is a superconductor, where Tc is limited on the left
side of optimal doping by the hole concentration and on the right side by TMF.
In the left quadrant the system has a spin gap caused by the antiferromagnetic
superexchange. The extra kinetic energy required to open the spin gap is re-
leased at the superconducting temperature Tc by making the charge fluctuations
coherent [10]. In the upper quadrant the system is a ’strange metal’.

For zero doping the groundstate of the t − J Hamiltonian turns out to be not
the RVB state, but the antiferromagnetic state, due to 3 dimensional antiferro-
magnetic coupling. At finite doping and finite (low) temperature it is possible
[7] that the RVB state is indeed the ground state of the Hamiltonian, which re-
sults in superconductivity.
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Figure 1.2: Kinetic energy per bond, < kx >, as a function of temperature for the noninteracting
tight-binding electrons (TB), the BCS solution (BCS), and the phase-fluctuation (PP) model. The
large vertical arrows indicate the increase in kinetic energy upon pairing, relative to the free tight-
binding model, and the small arrows indicate the additional increase due to phase fluctuations.
This additional phase-fluctuation energy rapidly vanishes near Tc. Figure from [11].

1.1.2 PHASE FLUCTUATION SCENARIO

Cuprates should be thought of as doped Mott insulators, which means that, for
low doping, the number of carriers is small. As the superconducting phase is
conjugate to the number operator, this implies that phase fluctuations can play
an important role on the underdoped side of the phase diagram, destroying su-
perconductivity if they are too strong. The key idea of the phase fluctuation
scenario in the high-Tc superconductors is the notion that the pseudogap arises
from phase fluctuations of the superconducting order parameter [11]. In this
scenario, below the mean-field temperature scale TMF, a dx2−y2-wave gap ampli-
tude is assumed to develop. However, the superconducting transition is sup-
pressed to a considerably lower transition temperature by phase fluctuations. In
the intermediate temperature regime phase fluctuations of the superconducting
order parameter give rise to the pseudogap phenomena. In order to have con-
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densation into the superconducting state one needs, in addition to the binding of
charge carriers into Cooper pairs, long-range phase coherence among the pairs.
When coherence is lost due to thermal fluctuations of the phase at and above the
transition temperature Tc, pairing remains, together with short-range phase cor-
relations. Phase fluctuations contribute to a significant reduction of the in-plane
kinetic energy upon entering the superconducting phase below Tc. The physi-
cal reason for this kinetic energy lowering is that due to phase fluctuations and
the associated incoherent motion of the Cooper pairs, the pseudogap region has
an higher kinetic energy (figure 1.2). When long range phase coherence finally
develops at Tc, the Cooper-pair motion becomes phase coherent and the kinetic
energy decreases. This effect is independent of the particular mechanism leading
to pair formation [12].

1.1.3 HOLE SUPERCONDUCTIVITY

Also quite early after the discovery of superconductivity in the cuprates Hirsch
proposed the theory of hole superconductivity [13, 14, 15, 16]. An important
aspect of the model is a fundamental asymmetry between electrons and holes
[17]. Hirsch proposes that holes are the key component of superconductivity, and
in particular that in high-Tc oxides superconductivity originates from conduction
of holes through O2− anions. A hole causes a large disruption of its background,
the filled shell anion. This deformation, which leads to considerable modification
in outer-shell electron wave functions, facilitates hopping of a hole of spin σ to
a neighboring site which has already been occupied by a hole of spin −σ [18].
This results in a term in the Hamiltonian describing an enhanced hopping rate
for a hole if other holes are in the vicinity. This term explicitly breaks electron-
hole symmetry and, together with an attractive interaction between holes, causes
considerable effective-mass enhancement for nearly filled electron bands.

The kinetic energy part of the Hamiltonian is given by:

T = − ∑
<i j>σ

ti jσ

(

c†iσc jσ + h.c.
)

(1.1)

with

ti jσ = t + ∆t
(

ni,−σ + n j,−σ
)

where i, j are nearest neighbor sites on a two dimensional square lattice and c†i
creates a hole on site i. It describes the hopping of holes from an O2− to the next
O2− anion in a CuO2 plane. The hopping term for hopping from site i to j is
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larger by ∆t if a hole with opposite spin is already present on the oxygen atoms
[19].

At low carrier density, carriers are heavily dressed in the normal state, due
to coupling to a bosonic degree of freedom. When carriers pair and the system
becomes superconducting, carriers partially undress. Similarly, when the system
is doped in the normal state, carriers increasingly undress [20]. This will occur if
the coupling to the boson degree of freedom is a function of the local carrier con-
centration, and becomes weaker as the local carrier concentration increases. This
feature is what makes the material a high-temperature superconductor: carriers
will pair in order to undress, i.e., in order to reduce the coupling to this bosonic
degree of freedom. At high concentrations, carriers are already undressed in
the normal state, and hence superconductivity does not occur. The undressing
will result in a lowering of the system’s free energy, and hence to the conden-
sation energy of the superconductor. Because it is an undressing transition, the
kinetic energy is lowered as the system becomes superconducting; as the carriers
undress, their effective mass decreases, and this higher mobility in the supercon-
ducting state is what provides the “glue” for the collective order.

1.1.4 INTERLAYER TUNNELING THEORY

In the interlayer tunneling theory by Anderson [21, 22, 23] the interlayer pair-
ing energy is the mechanism for superconductivity in the cuprates. The two-
dimensional state of the electrons in the copper oxide planes has separation of
charge and spin into excitations which are meaningful only within their two-
dimensional substrate; to hop coherently as an electron to another plane is not
possible, since the electron is a composite object, not an elementary excitation
[24]. Absence of coherent c-axis electron motion in the cuprate layer compounds
implies excess of kinetic energy in this direction. Josephson-type, two-electron
transport is not blocked because the spinon fluid is a pair condensate, so that
singlet pairs tunnel freely. This makes the superconducting transition a 2 to 3
dimensional crossover. The actual nature of the pairing wave function is deter-
mined not by the basic interlayer mechanism which raises Tc but by the “residual
interactions”, be they caused by phonons, spin-fluctuations or another source.

The pairing mechanism is thus amplified within a given layer by allowing
the Cooper pairs to tunnel to an adjacent layer by the Josephson mechanism. The
electrons are paired at a higher temperature because the interlayer mechanism
allows them to lower their c-axis kinetic energy. The ILT model predicts that
the superconducting condensation energy is approximately equal to the gain in
kinetic energy of the electron pairs due to tunneling. Both these quantities can
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be determined independently. In a series of papers by a team in Princeton and
Groningen [25, 26, 27, 28, 29] it was shown that for Tl2Ba2CuO6 the prediction
based on the ILT model was two orders of magnitude different from the mea-
sured value. This ruled out ILT as a mechanism for superconductivity in the
cuprates.

1.1.5 SO(5)

In the SO(5) theory of superconductivity the antiferromagnetic phase and the su-
perconducting phase are two projections of one and the same 5-dimensional ’su-
perspin’ order parameter [30]. Three components of this order parameter are the
three degrees of freedom of the Néel order and two components are the real and
imaginary part of the superconducting order parameter. The superspin order
parameter can, for example, point entirely in the ’antiferromagnetic’ direction,
giving antiferromagnetism, and then be rotated to the ’superconducting’ direc-
tion. Such a rotation corresponds to applying a new operator, resulting from the
SO(5) theory, to the state of the system. The order parameter of the antiferro-
magnetic state is the sublattice magnetization, a real 3D vector; if this vector is
different from zero, there is antiferromagnetic order. Consider two fixed neigh-
boring sites in the 2D antiferromagnet, for example in the (↑↓) configuration.
This fixed spin configuration may be viewed as a superposition of the singlet
(↑↓ − ↓↑) and the (Sz = 0) triplet (↑↓ + ↓↑). To create the macroscopic 2D an-
tiferromagnet in the CuO2 plane, therefore, we have to mix triplet excitations
already at high temperatures into the possible singlet configurations of the spin
liquid [31]. The antiferromagnetic state then results as a kind of ’condensation’
of the triplet excitations into the lowest possible energy state. The density of the
’condensed triplets’ corresponds to the magnitude of the sublattice magnetiza-
tion. If, in the antiferromagnetic state the triplet excitation operator is replaced
by a hole pair creation operator, we obtain a state which creates a macroscopic
number of Cooper pairs, i.e., a superconducting state. The antiferromagnetic to
superconductor ’rotation’, therefore, is described by an operator, the π-operator,
which replaces triplets by hole pairs.

1.1.6 QUANTUM CRITICALITY

In three dimensions fluctuations are usually weak and in one dimension they
are too strong for long range order. However, In two dimensions there is a del-
icate balance between order and fluctuations with many interesting properties.
The phase diagram of the cuprates as a function of doping and temperature is
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rich with all kinds of (competing) orders and transitions between these orders,
even at zero temperature. Because the dominating physics of the cuprates is be-
lieved to be 2-dimensional, the theory of quantum criticality might give some
insight in the phase diagram [32] (A somewhat longer introduction into quan-
tum criticality is given in chapter 5). One phase diagram for the cuprates with
a quantum critical point is shown in figure 1.1. The proposed theory is that on
the right hand of the critical point there is normal superconductivity, while on
the left hand side there is a coexistence of charge ordering and superconductiv-
ity [33, 34, 35, 36]. Above the critical temperature the charge ordering leads to
the pseudogap phase. In another theory of quantum criticality in the cuprates
the ordered phase consists of stripe ordering [37]. In fact, there are more criti-
cal points in the phase diagram: one where the Néel order vanishes, one where
superconductivity emerges, and one where superconductivity vanishes, but the
main focus is on the evasive and enigmatic critical point close to optimal doping.

1.1.7 MARGINAL FERMI LIQUID

The temperature dependence of the in-plane normal state resistivity of the cuprates
is surprisingly linear, unlike the T2 temperature dependence expected for a Fermi-
liquid. Varma and co-workers proposed a theory to explain this property [38, 39].
The momentum distribution function no longer has a jump at kF, but the deriva-
tive does diverge at his point, like in a usual Fermi-liquid distribution function.
Hence the name marginal Fermi-liquid.

Translated into a frequency dependent scattering rate this results in

1/τ (ω) ∼ max (ω,T) (1.2)

In the marginal Fermi-liquid theory there is no energy scale other than tem-
perature and therefore shows quantum critical scaling.

1.2 OUTLINE

A general property many of the theories that use strong electron-electron inter-
action to form Cooper pairs is the lowering of kinetic energy when the system
goes superconducting. In such theories, above Tc, the interaction keeps the elec-
trons confined and in a higher kinetic energy state with less possibilities to move
around. When the electrons are paired and condensed, this energy is released
and the kinetic energy of the system is lowered. This is the main source for
the internal energy to be lowered, which results in the transition to the super-
conducting state. This is to be contrasted with the usual BCS theory where the
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kinetic energy is increased when the system becomes superconducting and the
main internal energy lowering comes from the lowering of potential energy.

This is a clear difference between the two classes of theories about supercon-
ductivity in the cuprates and a measurement of the kinetic energy is needed.
This turns out to be possible when the optical conductivity of the material is
measured, since this is related to the kinetic energy in certain cases. Careful
measurements of the temperature dependence of the optical conductivity can
give insight into the changes in kinetic energy that occur as Tc is crossed.

Also the quantum critical scenario has clear consequences for the optical con-
ductivity of the system, this time in the frequency dependence for the infrared
region.

In chapter 2 we describe the characterization of a new infrared ellipsome-
ter build in our group. In chapter 3 measurements of spectral weight changes
in several cuprate superconductors are presented and carefully analyzed. In
chapter 4 ellipsometry measurements of conventional superconductors are pre-
sented. In chapter 5 the phase of the optical conductivity in the normal state of
Bi2Sr2Ca0.92Y0.08Cu2O8+δ is shown to be consistent with a quantum critical sce-
nario for the cuprates around optimal doping.



CHAPTER 2

ELLIPSOMETRY

2.1 A MID INFRARED ELLIPSOMETER

There are several ways to obtain the optical properties of a sample. One is using
reflection measurements over an energy range as broad as possible and obtain-
ing the dielectric function by performing a Kramers-Kronig transformation. The
advantage is that the technique is quite simple and the signal to noise ratio of the
intensities can be relatively good. The disadvantage is that one needs a reference
measurement, usually done by evaporating gold on the sample and repeating
the measurement under the same conditions. An additional calibration must be
made to take into account the non-ideal reflection of gold. Another disadvan-
tage is that for doing the Kramers-Kronig transformation one needs the reflec-
tion spectrum over the entire frequency range, from zero to infinity. For the low
frequency part this is done by extrapolating the low frequency part numerically
to zero. For the high frequency part one tries to find data in the literature, or one
models the known spectrum with Lorentz oscillators. For the highest frequen-
cies it is then assumed that the reflectivity decays as 1/ω4 . This extrapolation to
infinity can be done analytically. The final result can depend quite strongly on
the models used for the data outside the measured frequency range.

Ellipsometry is an alternative technique [40, 41]. With this technique one can
measure the real and imaginary part of the dielectric function directly, without
the use of a reference or extrapolations. For the region from 0.75 eV to around
5 eV good commercial ellipsometers are available and one is used in our group.
For the far-infrared region (0.01 eV to 0.1 eV) there are ellipsometers which use
the radiation coming from a synchrotron, but for the mid infrared region (0.1 eV

9
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to 0.75 eV) few ellipsometers are available, especially if one also wants to work
at liquid helium temperatures in high vacuum. Since there was a need for such
an instrument it was built in our group.

This mid infrared ellipsometer (MIR ellipsometer) is a combination of a home
build parts and a Bruker Interferometer. The interferometer is a commercial sys-
tem that is used for reflection and transmission measurements. Used as part of
the ellipsometer it serves as a spectrometer of the frequency dependences. A
Globar infrared source inside the ellipsometer chamber gives a spectrum with
reasonable intensity from 25 meV up to around 0.8 eV. An aperture acts as the
effective source of light. After that comes the first polarizer (called ’polarizer’),
the sample holder with the sample and a second polarizer (called ’analyzer’). At
the point where the light enters the interferometer there is a window, separat-
ing the two systems because they work in different pressure environments (the
ellipsometer being an ultra high vacuum (UHV) system). The light then passes
through the interferometer, which is used in bare transmission mode, and de-
tected by a DTGS detector working at room temperature or a liquid nitrogen
cooled MCT detector. The spectrum is stored by the computer which is con-
nected to the system and controls the entire instrument.

The part inside the ellipsometer chamber from the Globar up to the rotating
polarizer is situated on a rotating plate making it possible to have an angle of
incidence on the sample from 45◦ to 90◦. The sampleholder can make a compen-
sating rotation to have the outgoing light always in the same direction.

A set of different apertures is placed on a motorized rotating wheel, making
it possible to choose from different sizes and shapes. One position blocks the
light completely, resulting in a closed aperture.

Between the polarizer and the analyzer is only the sample with no interven-
ing windows. As a result the real properties of the sample are measured and
no correction for windows is needed. Everything before the polarizer and after
the analyzer only reduces the overall intensity of the signal and therefore has no
influence on the determination of the optical properties.

The sampleholder is connected to the cold finger of a flow cryostat. Cooling
with liquid helium enables us to reach a temperature of around 4K. Since there
is quite a distance from the sample to the point where the copper cold finger is in
contact with the liquid helium, the whole cold finger can shrink 1 to 2 mm when
cooling down from 300K to 4K which changes the position of the sample. To
prevent this, the sampleholder is mounted from the bottom on three steel balls,
keeping the sampleholder fixed in position while minimizing heat leakage. Just
above the sample the cold finger is made from a flexible copper braid. This way
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Figure 2.1: Top: The setup with the source, aperture, polarizers and sample. Bottom: Closer view
of the polarizers. The left polarizer is the rotating one.
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the cryostat can shrink when the entire cryostat is cooled while the movement
of the sample is minimal. Two temperature sensors have been mounted on the
cold finger, one close to the point where the cold finger gets into contact with the
liquid helium and one close to the sampleholder.

The window separating the ellipsometer chamber from the interferometer is
made of several plates of silicon glued together, which makes one thick plate. It is
mounted such that the light passing this window hits the silicon at the Brewster
angle, giving 100% transmission for p-polarized light. Normally the analyzer
is not rotated but kept at a fixed position parallel to the window, giving full
transmission for the light passing the analyzer.

The sample can be cooled to 4K and to prevent gasses from freezing on its
surface, the chamber has to be in high vacuum. To achieve this a turbo pump, an
ion pump and a cryo pump are connected to the chamber, resulting in a pressure
of 7 · 10−10 mbar. A system was designed to change samples without breaking
the vacuum. The sample is first inserted into a load-lock which is then pumped
to 1 · 10−7 mbar before being further transported into the main chamber and
mounted.

Many components of the instrument can be controlled by computer and even
the cryo pump can be turned on and off to reduce the vibrations during actual
data acquisition. Software was developed to control the polarizers, heaters, cryo
pump and other components as well as to allow the user to monitor the system
via internet.

2.2 SILICON POLARIZERS

For a proper working of the instrument it is crucial to have good polarizers.
For the visible region it is easy to obtain efficient polarizers with a high degree
of polarization, but for the infrared it is more difficult. Commercially available
KRS5 polarizers are, especially above 0.5 eV, not satisfactory (figure 2.3). There-
fore new silicon plate polarizers were designed. Pure, undoped silicon wafers
were cut and mounted in a holder such that the incident angle of the light cor-
responds to the Brewster angle of silicon (73.7◦). The light with p-polarization
with respect to the plates is 100% transmitted, while s-polarized light is only 40%
transmitted. A sequence of 4 silicon plates gives a good degree of polarization
(around 1% leakage). The design of such a polarizer is given in figure 2.2. Figure
2.3 shows the degree of polarization for a KRS5 polarizer and a silicon Brew-
ster angle polarizer. It is clear that these new polarizers have a higher degree of
polarization which is almost frequency independent. The disadvantage is their
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Figure 2.2: The design of the silicon polarizers. The angle of incidence of the light on the silicon
plates is the Brewster angle of silicon, 73.7◦. The design has four silicon plates in a crosswise
manner to compensate for a deflected beam when the light passes through the silicon plates.
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Figure 2.3: The average polarizer leakage (percentage of unwanted polarization) of a commercial
KRS5 grid polarizer and the silicon Brewster angle polarizer. Especially in the near infrared the
leakage of the silicon polarizers is much less.

large size.
The same principle has later been adopted by the group of Kroesen [42]. The

design is slightly different as the light passes six plates of silicon, resulting in an
even higher degree of polarization.

2.3 MATRICES OF OPTICAL COMPONENTS

Several books are available on polarized light, ellipsometry and instrumental
implementation [40, 41]. Two closely related matrix formalisms can be used in
ellipsometry to describe polarized light. The Jones matrix formalism is intu-
itively the easiest. However here the Müller matrix formalism is used, because
it allows for partially polarized light and the first component of the state vector
(the Stokes vector) gives directly the intensity of the light after passing all the
optical components.

A source that gives a combination of polarized and unpolarized light can be
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represented by the following Stokes vector:

I0(s0) =









S0

S1

S2

S3









(2.1)

where S0 represents the total intensity of the light. S1 is the difference between
horizontal and vertical polarized light, S2 is the difference between +45◦ and
−45◦ polarization and S3 is the difference between right and left polarized light.
The intensity of the polarized part of the light is given by S2

1 + S2
2 + S2

3. For
completely unpolarized light these components are zero.

A source that gives partially linearly polarized light can be represented by:

I1(s0, s1, αs) =









s0

s0s1 cos 2αs

s0s1 sin 2αs

0









(2.2)

where s1 is the intensity of the polarized part of the light (relative to s0) and αs is
the angle of polarization. The unpolarized part is given by s0(1− s1).

Equation 2.3 shows the Müller matrices representing a polarizer, a reflecting
surface and rotation over an angle α:

P(θ) =









1 cos 2θ 0 0
cos 2θ 1 0 0

0 0 sin 2θ 0
0 0 0 sin 2θ









(2.3)

S(ψ,∆) =









1 − cos 2ψ 0 0
− cos 2ψ 1 0 0

0 0 cos ∆ sin 2ψ − sin ∆ sin 2ψ
0 0 sin ∆ sin 2ψ cos ∆ sin 2ψ









(2.4)

R(α) =









1 0 0 0
0 cos 2α − sin 2α 0
0 sin 2α cos 2α 0
0 0 0 1









(2.5)

A polarizer rotated over an angle α is represented by P(θ, α) = R(α)P(θ)R(−α).
In these equations cos 2θ =

1−τ 2

1+τ 2 where τ is the (amplitude) transmission of the
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unwanted polarization relative to the correct polarization. Therefore the inten-
sity Tl = τ 2 of the unwanted polarization with respect to the wanted polarization
is given by

Tl =
1− cos 2θ
1 + cos 2θ

(2.6)

In the representation of the matrices P and S we ignored prefactors which
depend on the sample and polarizer properties. These prefactors only reduce
the overall intensity and do not affect the ratio of the minimum and maximum
intensity, nor do they introduce a change in the relative phase shift of the light.
Therefore these prefactors are absorbed in the source intensity s0. This does mean
that every new setup has a different s0 and the value of s0 obtained from one
setup can not be used for another setup.

In the ideal case, with perfect polarizers and no other instrumental imperfec-
tions the intensity measured by the detector is given by the first component of
P(0, π/4)S(ψ,∆)P(0, α)I0. This evaluates to

I(α) = s0(1− cos 2ψ cos 2α+ sin 2ψ cos ∆ sin 2α) (2.7)

Using the ellipsometric parameters ψ and ∆ one can calculate the dielectric
function:

ρ = tanψ ei∆ (2.8)

ε = tan2 φ

(

1 + ρ2
+ 2ρ cos2φ

(1 + ρ)2

)

(2.9)

where φ is the angle of incidence of the light on the sample.

2.4 DATA

Figure 2.4 shows a typical measured spectrum with the polarizer rotated to the
angle of maximum intensity and one with the polarizer rotated to the angle of
minimum intensity. With the aperture closed, the background signal is black
body radiation (modified by the beamsplitter and the detector response) coming
from the ellipsometer chamber. Black body radiation after the interferometer in
the Bruker IFS 113 is also added to the signal. However, this is a constant in-
tensity as a function of the path difference of the interferometer, which therefore
does not contribute to the spectrum at finite wavelength. The sample is situated
before the interferometer. As a thermal black body radiation, emitted by the sam-
ple surface, is added to signal. This is also modulated by the interferometer and
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Figure 2.4: Spectra with and without background contribution

thus observed in the final spectrum. The spectra therefore have a background
which has to be subtracted (figure 2.4). The background is measured by closing
the aperture and taking a spectrum. Afterwards it is subtracted from the spec-
trum with open aperture to obtain the spectrum of light reflected by the sample.

These spectra are taken for a number of polarizer angles α and figure 2.5
shows the intensity as a function of polarizer angle for a typical measurement
at 0.25 eV. One expects the background to be independent of the rotation angle
of the polarizer, but there turns out to be a slight sine dependence on the signal,
which runs 180◦ out of phase with the actual measurement. We speculate two
possible explanations, which might both be at work.

When the polarizer is rotated to an angle that gives minimum intensity, the
light (with open aperture) is absorbed by the two polarizers which are warmed
up. When the aperture is closed to measure the background, the detector sees
a slightly warmer environment with a slightly higher response. When the po-
larizer is rotated to an angle that gives maximum intensity, the polarizers cool
down again and the radiation with closed aperture is lower.

Alternatively it may be related to the warming of the detector due to the
change in intensity during rotation of the polarizer. When the polarizer is rotated
to an angle that gives minimum signal, the heat load (of infrared radiation) on
the detector is also minimal and the detector (which is a liquid nitrogen cooled
MCT detector) has optimal response. When the aperture is closed it measures
a certain value for the background intensity. When the polarizer is rotated to
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Figure 2.5: Polarizer angle dependence of spectrum and background measured with the MCT
detector. The right vertical axis is an expanded scale to show the dependence of the background
signal on the polarizer angle α.
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an angle for which the signal is maximal (with open aperture), the heat load on
the detector is also maximal. The detector warms up slightly and has a lower
response. Therefore, the measurement of the background (closed aperture) is
lower.

The signal (after subtraction of the background) can be described by a sine
function and in the ideal case we expect a perfect sine with an intensity as a
function of polarizer angle α of I(α) = s0(1 + p2 sin(2α+ 2φ2)), where p2 and φ2

are determined by the sample properties. However, experimental imperfections
can change the coefficients and introduce other Fourier components. In general
we can write the intensity as:

I(α) = s0

(

1 + ∑
n=1

pn sin n(α+ φn)

)

(2.10)

Figure 2.6 shows the pn components of a measurement up to n = 4 as a function
of frequency. The p2 component has a clear frequency dependence because it is
mainly determined by the dielectric function ε(ω) which has a frequency depen-
dence. The other components are much smaller.

Ideally we expect the system to be 180◦ symmetric, because rotating the po-
larizer 180◦ results in the same polarization. Therefore we expect all odd terms
(p1 and p3) to be zero. However, a slight asymmetry in the polarizer rotation
can introduce odd terms. The beam might be deflected and the spot can wander
around slightly over the detector element, giving an intensity variation that is
only 360◦ symmetric. However, for the analysis this is not important: The inten-
sity can now be described by I(α) = s0(1 + p1 sin(α+ φ1))(1 + p2 sin(2α+ 2φ2)).
This leaves the 2α coefficient unaffected, and since the Fourier components are
orthogonal to each other the 2α component alone can be used to determine the
sample properties.

2.5 DISTRIBUTION OF ANGLES OF INCIDENCE

Close to grazing angle of incidence the ellipsometric parameters ψ and ∆ depend
strongly on the angle of incidence. The beam is a convergent beam and has a
spread of angles of 8◦ around the central ray. Every ray in the cone of rays that
converges to the focal point on the sample has therefore a different local angle of
incidence. Moreover, each ray has it’s own local s and p direction on the sample.
Figure 2.7a shows the local angle of incidence φ and local s and p direction for
a particular ray. The silicon plates in the polarizers have an angle of incidence
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Figure 2.7: Figure showing the parameters involved in the calculation of the distribution of angles
of incidence. a) The beam as it hits the sample. The x, y and z axes define the frame of reference.
The sample is mounted in the x, y-plane with it’s normal n coinciding with the z axis. The central
ray (gray) has an angle of incidence φ0 with the sample normal n. A particular ray has an angle
β which runs from 0 to the maximal spread in angles (in the simulation 8◦) and γ runs from 0
to 2π. At this point the s and p polarization directions are as indicated. The ray and the sample
normal n define a plane of incidence and the angle between them is the angle of incidence φ. The
local p′ direction lies in the plane of incidence and the local s′ direction is perpendicular to it. b)
The beam as it hits the silicon plates in the polarizer. The plate is rotated over an angle α and the
plate normal n is rotated away from the z-axis.

of 73.7◦ with the central ray. Because the plates are rotated over an angle α, the
local angle of incidence φ and local s and p directions also change (figure 2.7b).

We modeled a system with a fully unpolarized source, a rotating polarizer
with 4 silicon plates, mounted crosswise (figure 2.2), a sample with known di-
electric function and a second, non rotating polarizer. With a distribution of
angles of incidence of 8◦ around the central ray we calculated for each ray the
intensity at the detector. The beam is divided into small segments and for each
segment the angle of incidence is calculated (figure 2.8). The path trough polariz-
ers and sample is calculated and in the end all intensities are added. Interference
between the rays and multiple reflections inside the silicon plates was ignored.
Figure 2.8 shows the result of a typical calculation. The central ray has a pure
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Figure 2.8: Intensity as a function of polarizer angle α from the simulation of the distribution of
angles of incidence. ’central’ is the intensity from the central ray. ’outside’ is the intensity from
a ray with β = 8◦ and γ = 90◦. ’full’ is the (normalized) intensity from all rays. Note that the
’outside’ ray has a kink at α= 90◦ and α= 270◦ as explained in the text. These kinks are averaged
out in the full beam.

sine dependence, as expected, with no other Fourier components. The ’outside’
ray has β = 8◦ and γ = 90◦ (figure 2.7). Note the kink at polarizer angle α = 90◦

and α = 270◦. These are the angles for which the first silicon plate that this par-
ticular ray meets switches to the opposite one in the polarizer holder (figure 2.2).
This results in a sudden change in the local angle of incidence when the ray is
not the central one. Each ray has a different angle α for which it switches the
first silicon plate and as a result in the intensity from the full beam the kinks are
averaged. It results in a curve with higher Fourier components. From the sim-
ulation we found that the 4α component is 0.1% of the 2α component, a factor
10 smaller than observed in the real measurement (figure 2.6). Therefore other
effects must be the main cause of the higher Fourier components.

Figure 2.9 shows cos 2ψ and cos ∆ of a model dielectric function. cos 2ψ was
chosen to be 0.5, an average value of a typical sample. It turns out that the effect
of the distribution of angles of incidence on ψ is minimal. The effect is larger
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on ∆ and therefore we varied cos ∆ from −1 to 0, covering the range of values
that occurs with the samples that we will measure in the infrared. From these
values of ψ and ∆ the dielectric constant is calculated using equation 2.8. This
value of ε is then used in the distribution of angles of incidence algorithm to
calculate an intensity as a function of polarizer angle as described above. From
this sine function the parameters< cos 2ψ > and< cos ∆>were calculated using
equation 2.7, where the <> indicates an average over a distribution of angles
of incidence. The original and average ellipsometric parameters are shown in
figure 2.9. As already noted, the distribution of angles of incidence has negligible
effect on ψ, but the effect on ∆ can not be ignored. ψ is mainly determined by
the angle α for which the measured intensity is at a minimum and this is clearly
not affected by the distribution of angles of incidence (figure 2.8, compare ’full’
and ’central’ curve). ∆ on the other hand is mainly determined by the ratio of
the minimum intensity over the maximum intensity and this is affected by the
distribution of angles of incidence, as can be seen by comparing the ’full’ curve
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with the ’central’ curve in figure 2.8.
The calculation using the distribution of angles of incidence is very time con-

suming. It’s inversion (obtaining the dielectric constant that corresponds to a cer-
tain measured intensity as a function of polarizer angle α) takes even longer. A
direct analytical inversion is of course not possible and the correct dielectric con-
stant has to be found by a non linear fitting procedure, which involves perform-
ing the calculation procedure many times, including a calculation for derivatives.
Moreover, the final result is not very stable and the obtained value of ε can be far
off from the correct one.

Therefore we used an approximation, where only β (figure 2.7) is varied and
γ is kept at zero. This captures the largest variation in angles of incidence while
keeping the number of calculations limited. With an angle of incidence of the
central ray of 60◦, varying β from −8◦ to +8◦ while γ = 0 gives an angle of
incidence variation from 52◦ to 68◦. Varying β in the same way while γ = 90◦

gives an angle of incidence variation from 60◦ to 60.3◦, clearly a smaller range.
Every value of β results in a angle of incidence φ and a ψ(φ) and ∆(φ). Using

equation 2.7 this gives an intensity variation I(α, φ) on the detector. The total
intensity is the sum of all these intensities and the coefficients in front of the
cos 2α and sin 2α just add up:

I(α) = 1−
(

1
N

N

∑
i

cos 2ψi

)

cos 2α+

(

1
N

N

∑
i

sin 2ψi cos ∆i

)

sin 2α (2.11)

where ψi = ψ(φi) and ∆i = ∆(φi).
This I(α) can again be used to obtain a average < ψ > and < ∆ >, using

equation 2.7, and it is also shown in figure 2.9. It is clear that this approximated
distribution of angles of incidence has some effect, but it is smaller than the full
calculation. An analysis of the data based on the full distribution of angles of
incidence would therefore be useful, but in this thesis we limit ourselves to the
approximated method.

An experimental method to circumvent the problems related to a distribution
of angles of incidence is to collimate the beam, that is, to limit the beam to a
narrow region around the central ray. To reduce the effect of the distribution of
angles of incidence to a level that one can safely ignore it, the spread in angles
must not be larger than 2◦. This can be achieved by putting apertures in the beam
path that cut the outer rays. The needed cut of the beam though leads to a large
reduction in intensity, which itself leads to a signal to noise increase that is larger
than the systematic error introduced by using the full beam.
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2.6 CALIBRATION

An ellipsometric measurement is performed by choosing an angle of incidence,
setting the polarizer and analyzer at a certain angle and measuring the spectrum.
The polarizer is than rotated to another angle (the analyzer is kept fixed) and a
new spectrum is taken. This is repeated until the polarizer has been rotated over
360◦. For each frequency of the spectra that were taken, the intensity as a function
of the angle α of the polarizer can be fitted with a sine function.

The basic equation that describes the measured intensity as a function of po-
larizer angle α is given by equation 2.7 and assumes an ideal setup. Of course
in reality the optical components are not perfect: The polarizers can have a leak-
age and the source can in principle be polarized. Moreover, the polarizers are
mounted in motor blocks which have their own definition (by use of opto cou-
plers) of zero rotation. This zero does not coincide with horizontal polarization
and a polarizer offset angle α0 has to be determined. The same holds for the ana-
lyzer: It is mounted such that the polarization of the analyzer polarization angle
α2 is close to 45◦, but an accurate value has to be determined.

With these extra parameters the Stokes vector describing the system is given
by

I = P(θ2, α2) S(ψ,∆) P(θ1, α+ α0) I1(s0, s1, αs) (2.12)

and the first component gives the intensity as a function of polarizer angle α.
The main Fourier components in this expression are the cos 2α and sin 2α terms,
but the polarized source leads to small 4α terms. To be able to determine the cal-
ibration parameters independently a measurement with a sample with known
optical properties and a measurement with the polarizers parallel with no sam-
ple need to be combined. The sample in this case is a thick piece of silicon which
was measured with another ellipsometer (see section 2.7) in the 0.75 eV to 4.5 eV
energy range. The obtained dielectric function was fitted with a Drude-Lorentz
model which was then used to extrapolate the data to the needed infrared energy
range.

This way there is for every frequency a dataset of intensities versus polarizer
angle α like figure 2.5. A set of parameters needs to be found that gives the best
fit for all datasets, which is done by performing a non linear fit of equation 2.12
to all the datasets simultaneously. The polarizer offset α0 and analyzer angle α2

were determined frequency independently, while the polarizer leakage parame-
ter cos 2θ1, analyzer leakage parameter cos 2θ2 and source polarization parame-
ters s1 and αs were determined with a frequency dependence. Figure 2.10 shows
the obtained calibration parameters. The polarizer and analyzer leakage is 1 to
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Figure 2.10: The calibration parameters: polarizer and analyzer leakage and source polarization.
The polarizer offset angle α0 is 94.9◦ and the analyzer angle is 45.4◦.
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2 percent, with the polarizer being the better one. The source polarization is sig-
nificant and needs to be included to have a good fit of the measured intensity as
a function of polarizer angle α. With this set of parameters determined a new
measurement of a sample with unknown properties can be done. The intensity
versus polarizer angle can be fitted with the same technique, but now with ψ

and ∆ as the unknown parameters.

2.7 WOOLLAM ELLIPSOMETER

An ellipsometer produced by J.A. Woollam Co. was used to determine the di-
electric function from 0.74 eV to 4.46 eV. The optical components for ellipsometry
in this energy range are much better than those for the infrared range. Therefore
the accuracy of this instrument is much better than that of the infrared ellipsome-
ter. In contrast to the infrared ellipsometer, which measures a entire frequency
range in one scan, this instrument uses a monochromator and does ellipsometric
measurements for each frequency separately. This allows for a measuring mode
where one fixes the frequency and measures the ellipsometric parameters as a
function of time.

The beam of this ellipsometer is a parallel beam of only 2 mm diameter and
problems with a divergent beam are negligible. Given the better accuracy of
this instrument it is considered to give more reliable results then the infrared
ellipsometer in the region of overlap (0.74 eV to 1 eV).

2.8 OTHER CORRECTIONS

To do low temperature measurements on the Woollam ellipsometer a cryostat is
situated between the two polarizers. This cryostat has windows and the mea-
sured ellipsometric parameters are the combination of the transmission through
the windows and reflection on the sample. In Jones matrices the part between
the polarizers can be modeled as:

(

wp 0
0 ws

)(

rp 0
0 rs

)(

wp 0
0 ws

)

(2.13)

The relevant value to determine is the (complex) ratio rp
rs

in the case without

windows, or w2
prp

w2
s rs

in the case with windows. Measuring once with windows and

once without windows one can calculate w2
p

w2
s
, which can be used at all tempera-

ture for a window correction.
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Ideally the window is isotropic and the light hits the windows normal to the
surface of the window, which would mean that wp = ws and a window correction
is not necessary. In practice a slight deviation from normal angle of incidence and
stress inside the window makes a correction important.

The measurements were usually done at large angle of incidence (60◦ − 80◦)
and the measured ellipsometric response is a combination of all three axes of the
crystal:

ρps
=

√
εxεz cos θ+

√

εz − sin2 θ
√
εxεz cos θ−

√

εz − sin2 θ
·

cos θ−
√

εy − sin2 θ

cos θ+

√

εy − sin2 θ
(2.14)

where ρps is the pseudo ellipsometric response and εx,y,z are the dielectric func-
tions in the x, y and z directions (figure 2.7). When it is assumed that εx = εy and
εz is known, equation 2.14 can be solved for εx and gives four solutions. Two of
them are clearly unphysical, but the other two could both be right. One of the
possible good solutions can be excluded because it is not Kramers-Kronig con-
sistent: The Kramers-Kronig transform of the imaginary part does not give the
real part. Actual measurements provide the dielectric function only on a limited
frequency range and therefore this check can not be done. However, simulations
show that if the imaginary part of the c-axis response is almost zero and the real
part is small (as is the case for cuprate superconductors), the correct solution is
the one closest to the pseudo dielectric function.

2.9 RESULTS AND CONCLUSIONS

Figure 2.11 shows the obtained ellipsometric parameters of Bi2Sr2Ca0.92Y0.08Cu2O8+δ ,
Si and FeSi using the infrared ellipsometer, where in the analysis the distribution
of angles of incidence was taken into account using the approximate method.
Also shown are the ellipsometric parameter obtained with the Woollam ellip-
someter. The match between the two instruments is acceptable.

The instrument can be improved on several points. An main improvement
would be the avoidence of the convergent beam and reducing the spread of an-
gles of incidence to a maximum of 2◦. To an acceptable error the beam can then
be assumed to have no distribution at all, which simplifies the analysis and in-
creases the reliability of the measurements. However, with the present Globar
source such a narrowing of the beam leads to 50 times lower signal and a con-
siderable reduction of the signal-to-noise ratio.
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Another improvement would be the use of a detector working at room tem-
perature. Such a detector would not detect the background radiation, because it
operates at the same temperature. When the polarizer is rotated to an angle that
gives maximum intensity, the background signal around 0.1 eV is almost 50% of
the main signal from the reflection of the sample. When the polarizer is rotated
to an angle that gives minimum intensity, the background signal around 0.1 eV
is 10 to 100 times larger than the main signal from the reflection of the sample.
Without the need to measure and subtract a background signal the measurement
would improve considerably in the region upto 0.3 eV. However, the reason the
use a cooled detector is the much improved signal-to-noise ratio of the detector
respons and this advantage would be lost.

A known disadvantage of the MCT detector that was used is the non linear
response of this detector. The use of a more linear detector could be an improve-
ment. Also the use of a beamsplitter that gives higher throughput around 0.8 eV
would allow a better comparison with the (Woollam) visible light ellipsometer
discussed in section 2.7.

For an accurate determination of ψ and ∆ measurements at many polarizer
angles α have to be taken. A typical measurement last around 15 minutes. This
is not much slower than an measurement of an entire spectrum on the visible
light ellipsometer. However, the latter instrument has the advantage that it uses
a monochromator and the measurement of one single frequency is much faster.
The MIR ellipsometer always measures an entire spectrum and the minimal op-
eration time is 15 minutes. Therefore accurate temperature dependent measure-
ments, as are conducted in chapter 3, can not be done, because a single run from
4K to 300K would take too long. There would be too many instabilities in the
system which makes the temperature scan unreliable.



CHAPTER 3

SPECTRAL WEIGHT TRANSFER IN

CUPRATE SUPERCONDUCTORS

We present optical data1 of several cuprates measured with a temperature resolu-
tion of 1K in order to be able to detect small changes in the optical conductivity
at the critical temperature. We fitted the spectra for every temperature with a
Drude-Lorentz model and extracted the intraband spectral weight as a function
of temperature. The bismuth based samples show an increase of the intraband
spectral weight when the system crosses the superconducting transition temper-
ature, equivalent to a lowering of kinetic energy of the order of 1 meV per copper
atom.

3.1 INTRODUCTION

When the temperature drops below the critical temperature some materials can
lower their free energy by entering the superconducting state. The energy differ-
ence between the normal state and the superconducting state is called the con-
densation energy. For a BCS superconductor the kinetic energy increases while
the interaction energy decreases slightly more, resulting in the needed net low-
ering of free energy [43].

The cuprate superconductors have a number of important differences with
respect to BCS superconductors. The most apparent one is the height of the crit-
ical temperature, which is of the order of 100K. Within the standard BCS model

1This work was done in close collaboration with Cristian Presura, who helped with measuring
the Bi2Sr2CaCu2O8+δ and YBa2Cu3O7−δ samples.
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this can only be explained by an unrealistically large electron-phonon interac-
tion. Another important difference is the symmetry of the gap, which is in the
case of conventional BCS superconductors fully symmetric, or s-wave, and has
the same value for all directions in k-space. In the case of cuprate superconduc-
tors the gap is believed to have a d-wave symmetry, which means that the gap
is zero in certain directions in k-space [1]. Also the normal state turns out to be
unconventional, with for example a linear temperature dependence of the resis-
tance and the appearance of a pseudogap in the underdoped side of the phase
diagram. These and other differences can not easily be explained within the stan-
dard BCS model. Therefore other models have been proposed with a different
mechanism to pair the electrons in the superconducting state.

Several of these models use a mechanism that results in a lowering of kinetic
energy when the system becomes superconducting. In the model by Hirsh [13,
15, 20] two holes can move more easily when they hop together. Various other
models predict that in the cuprates, the normal state is not a Fermi liquid and
that superconductivity is driven by recovering frustrated kinetic energy of single
charge carriers when pairs are formed [44, 10, 11], by lowering the ab-plane zero-
point kinetic energy [45], or by Bose-Einstein condensing Cooper pairs that are
already present in the normal state [46].

To capture the essential physics that describes superconductivty one uses an
effective low energy Hamiltionian, since the full Hamiltonian is to complicated
to solve. When the full Hamiltonian is considered, the transition to the supercon-
ducting state must be driven by a lowering of the potential energy, as is shown
by Chester using the virial theorem [47]. However, for an effective low energy
model the kinetic energy terms can incorporate effects of the potential energy
terms of the full Hamiltonian. There is no virial theorem restriction on the ex-
pectation values of the kinetic and potential energy terms of the effective Hamil-
tonian. Therefor, the effective low energy Hamiltonian can have a superconduct-
ing transition driven by a lowering of the (effective) kinetic energy [48].

The kinetic energy Ekin of the effective low energy Hamiltonian is given by

Ekin =
2
N ∑

k
εknk (3.1)

where εk is the dispersion of the band, nk the momentum distribution function
and N the number of k vectors. Apparently there are two ways to change the
kinetic energy: changing the band dispersion or changing the distribution func-
tion. The model by Hirsch changes the dispersion because the hopping term
changes when two holes pair, which affects the band they are moving in. In
general, though, we expect εk to be invariant and therefore the change should
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Figure 3.1: The momentum distribution functions for the Fermi liquid (FL), the superconductor
(SC) and a non-Fermi liquid (NFL).

come from nk [1, 49]. Figure 3.1 shows the momentum distribution for a Fermi
liquid, the superconducting state and hypothetical non Fermi liquid. For a BCS
superconductor the normal state is a Fermi liquid and the distribution function
broadens when the system enters the superconducting state: electrons are moved
to higher kinetic energy and the kinetic energy increases. If, though, the normal
state is not a Fermi liquid, with a distribution function even broader than that
of the superconducting state, then the kinetic energy lowers when the system
becomes superconducting.

From the Kubo formula [50] we can derive a relation between the optical
conductivity of a band and its dispersion [49]:

Z ∞

0
σLB

1,δ(ω) dω =
πe2a2

δ

2h̄2V
EK (3.2)

where σLB
1,δ(ω) is the real part of the optical conductivity of the single band in the

lattice direction δ, aδ is the lattice constant in direction δ, V is the volume of the
unit cell and

EK =
2

a2
δN ∑

k

∂2εk

∂k2 nk (3.3)

When the effective low energy Hamiltonian is given by the Hubbard model,
then the optical conductivity splits into intraband transitions in the lower Hub-
bard band and interband transitions in the upper Hubbard band [51]. Of largest
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Figure 3.2: Calculation of the intraband spectral weight ALB for a BCS superconductor with a
d-wave gap. The critical temperature is 80K and the hole doping is 0.15. The dispersion is given
by εk = t(cos kx + cos ky) + 2t′ cos kx cos ky with t = −297.6 meV and t′ = 81.8 meV.

interest is the optical response of lower Hubbard band around the Fermi en-
ergy, for which, due to the nearest neighbor tight-binding character of the band,
EK = − 2

N ∑k εknk = −Ekin. Therefore the spectral weight of the low energy band
is related to the kinetic energy [52, 19, 1]:

ALB =

Z ∞

0
σLB

1,δ(ω) dω = −πe2a2
δ

2h̄2V
Ekin (3.4)

where ALB is the spectral weight of the low energy band, including a delta peak
in the superconducting state.

This relation between the intraband spectral weight and the kinetic energy of
the charge carriers is valid for a system described by the nearest neighbor tight
binding model, with only a hopping parameter t. For the cuprates also a next
nearest neighbor hopping term t′ is needed for a good description of the system.
The simple relation between the intraband spectral weight ALB and the kinetic
energy is in this case not evident. Figure 3.2 shows a calculation of the intraband
spectral weight as a function of temperature for Bi2212 assuming a dispersion εk
based on the tight binding model with a nearest neighbor (t) and a next nearest
neighbor (t′) hopping term [54, 55], a Fermi liquid for the normal state and a BCS
superconductor for the superconducting state. Also shown is the kinetic energy
as a function of temperature, using the same parameters for the dispersion. The
kinetic energy is still proportional to the intraband spectral weight, although
not exactly. A measurement of the spectral weight can therefore be used as an
estimate of the kinetic energy changes, even when a correct description of the
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Figure 3.3: Kinetic (top) and potential (bottom) energies of the repulsive Hubbard model in the
normal (NS) and superconducting (SC) states as a function of temperature for low doping (δ =

0.05, left) and high doping (δ = 0.20, right). The vertical dotted lines represent the value of Tc.
Pairing is mediated by a reduction of the kinetic energy. Figure from [53].

system needs higher order terms in the tight binding expansion.
The calculated increase of kinetic energy is a result of the use of the BCS

theory for describing the superconducting state of Bi2212. Another approach
is to calculate the kinetic energy for the two-dimensional Hubbard model [53],
using a dynamic cluster calculation. The results are shown in figure 3.3 and
indicate a lowering of kinetic energy as the system becomes superconducting.

The approach to measure the optical conductivity has been used by several
groups to estimate the changes in kinetic energy along the c-axis [56] as well as
along the copper-oxide planes [57, 58, 59]. Spectral weight changes have been
measured for the ab-plane optical conductivity of Bi2Sr2CaCu2O8+δ and other
high-Tc cuprates [60, 61], with an experimental accuracy of ∼ 0.04 eV2. Opti-
cal thin film absorption [62, 63], thermal difference reflectance [64], femtosecond
spectroscopy [65, 66] and ellipsometry [67] have indicated that, for light polar-
ized along the ab plane, an influence exists at energies exceeding 1 eV.

The expected changes in the spectral weight are small. Especially for the
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in-plane measurements the changes are also small relative to the total spectral
weight, which demands very careful measurements. Moreover, there is a rel-
atively large overall temperature dependence of the spectral weight on top of
which the changes at the critical temperature have to be observed. A measure-
ment of the spectral weight at a temperature just above the critical temperature
and one well below would result in a too large change, or even a change of the
wrong sign. Also when the temperature resolution is too poor one would not be
able to observe the changes.

Here we present a detailed and extended analysis of measurements that were
published before [57], together with the same analysis of measurements on new
materials. The samples and measuring methods are described in section 3.2.
The measured spectra and analyzing methods are described in section 3.3. The
results of the analysis of spectral weight changes are described in section 3.4 and
are discussed in section 3.5. In section 3.6 we draw some conclusions.

3.2 SAMPLES AND EXPERIMENTS

Different groups provided us with high quality single crystals. The details of
growth and characterizations are described in various papers. The Bi2Sr2CaCu2O8+δ

single crystals [68] consisted of pieces of 1mm by 3mm with a thickness of 0.1
mm, which were mounted together in a mosaic. We measured two different dop-
ings of Bi2Sr2CaCu2O8+δ: underdoped (Tc=66K) and optimally doped (Tc=88K).
The optical response in the visible region changed slightly after cleaving, but
there was no effect on the temperature dependence. Also a rotation of the crys-
tal by 90◦ had an effect on the frequency dependence of the optical response,
since Bi2Sr2CaCu2O8+δ has a slight anisotropy, but again the temperature depen-
dence was the same. The Bi2Sr2Ca0.92Y0.08Cu2O8+δ single crystal was an opti-
mally doped sample of 1mm by 3mm and had an critical temperature of 95.11K
[69]. The YBa2Cu3O7−δ sample was a twinned film of 10mm by 10mm with a
critical temperature of 91K [70].

The samples were measured optically using normal incidence reflection in
the energy range from 6.2 meV to 0.68 eV, called here the infrared (IR) range.
They were also measured using ellipsometry in the range from 0.74 eV to 4.46
eV, called the ’visible’ range (VIS). Ellipsometry directly provides the dielectric
function ε(ω) = ε1(ω) + iε2(ω), where ω is the angular frequency of the light. For
large angles of incidence there is a slight admixture of c-axis response to the mea-
sured dielectric function for which we corrected using c-axis dielectric data from
literature [71]. The dielectric function in the infrared range was obtained using
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the Kramers-Kronig transformation, where the knowledge of the full dielectric
function in the visible range was used to obtain a very accurate result, with little
dependence on the extrapolations to zero and infinite frequency.

In the infrared region a Fourier transform spectrometer was used with a flow
cryostat for the low temperature measurements. The pressure inside the cryostat
was typically 1 · 10−7 mbar. The measurements were done in the following way:
First the sample was measured at several temperatures, stabilizing the temper-
ature before each measurement. Then measurements were taken continuously,
while the temperature was lowered and raised very slowly, going from 300K to
4K in 3.5 hours and back in another 3.5 hours, repeating this 2 or 3 times. Then
gold was evaporated on the sample (in situ) and all the measurements were re-
peated to obtain the reference measurement. In this way measurements of the
reflectivity (R(ω)) at discrete temperatures were obtained and continuous runs
with a temperature resolution of typically 1K. In the case of YBCO no infrared
reflection measurements were done, because it would not have been possible to
remove the evaporated gold, needed for the reference, from the film.

In the visible region an ellipsometer with a monochromator was used, again
with a flow cryostat for the measurements at low temperatures. The pressure
in this cryostat was typically 3 · 10−9 mbar. First, measurements at discrete tem-
peratures were done, measuring the full spectrum from 0.74 eV to 4.46 eV. Then
measurements at single frequencies were done, going up in temperature from
4K to 300K in 3 hours, one frequency at a time, or continuously cycling a few fre-
quencies in a short period, going up in temperature in 3 hours. In this way mea-
surements were obtained with a temperature resolution of 0.5K and a frequency
resolution of 25 meV to 60 meV in the range from 0.74 eV to 2.5 eV (sometimes
up to 3.7 eV).

3.3 MEASUREMENTS AND ANALYZING METHODS

The results are spectra of the dielectric function over a large temperature inter-
val as well as spectra with a temperature interval of 1K. Figure 3.15-figure 3.18
show for each sample the measured reflection, the dielectric function and opti-
cal conductivity as a function of frequency for selected temperatures and as a
function of temperature for selected frequencies. For those samples where we
have infrared data one can see the reduction of the optical conductivity in the
far-infrared region as a result of the opening of the superconducting gap, also
observable as the upward turn of the reflection for low frequencies (∼ 60 meV).
Around 120 meV the reflection has the opposite trend and bends down at Tc, also
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as a result of the opening of the gap. What is unexpected is that for even higher
energies (well above the gap) the reflection again shows an upward turn, ob-
servable for energies as high as 0.5 eV before the noise is to large for the infrared
spectrometer. And even for very high energies, around the plasma frequency of
around 1 eV and up to 2.5 eV, the dielectric function shows a kink at the critical
temperature.

Also note that there is, relative to the change at Tc, a large overall temperature
dependence in the curves. To obtain the extra changes due to the onset of super-
conductivity it would not be correct to take the difference between a spectrum
just above Tc and one at low temperatures (4K). It would estimate a too large
change or even a wrong sign for the change at Tc. Also note that the changes at
the critical temperature are subtle and that with a too coarse temperature resolu-
tion one would not be able to resolve these changes.

3.3.1 ANALYZING METHODS

From these measurements we want to obtain the changes in the optical conduc-
tivity when superconductivity sets in. We analyzed the spectra in two different
ways, both of which enable us to determine the spectral weight changes related
to superconductivity.

A real optical experiment measures not only the optical conductivity of the
low energy band (intraband transitions) but also the optical transitions to all
other bands (interband transitions). The most prominent interband transitions
are observed around 1.5 eV and higher and are well separated from the intraband
transitions. Therefore we make the distinction between the two by attributing all
transitions below a certain cutoff frequency ωc to the intraband transitions and
all others to the interband transitions. We take ωc to be 1 eV, which is close
to the plasma frequency of the samples. Furthermore, in the superconducting
state, spectral weight is transferred to the delta peak at zero frequency, which
can not be measured directly. Therefore it has to be obtained from fitting the
measured data at low frequencies with a response determined by a delta function
at zero frequency with spectral weight D. One can fit the real part of the dielectric
function in the far infrared with ε1(ω) = −D/ω2 or extract it from fitting the
reflection data. Well below Tc this can be done in quite a reliable way.

The optical conductivity contains an additional residual Drude term, which
corresponds to the optical response of the thermally excited quasiparticles. This
is a narrow Drude-like peak, which weakens and becomes extremely narrow
when the temperature approaches zero. The corresponding optical response is
almost purely dispersive for frequency well above the linewidth of this peal. As a
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Figure 3.4: Decomposition of a typical optical spectrum into different Lorentz oscillators. The
thick black line is the total optical conductivity. Dotted lines are the individual interband oscil-
lators and solid lines are the individual intraband transitions, which have center frequency ω0

smaller than ωc. The gray area is the total spectral weight ALB of the intraband transitions.

result the contributions to σ(ω) of the residual Drude term and of the condensate
delta-function become inseperable in the limit ω→∞, which in practice already
happens for Bi2212 when ω > 15 meV. A fit to the experimental data then returns
the sum of the spectral weight of the delta-function and the residual Drude peak.
Because this sum is the quantity of interest for the analysis of the kinetic energy,
this approach has been used in the following sections of this thesis.

In the analysis we define the following spectral weights:

Al+D =
R ωc

0 σ1(ω) dω
Ah =

R ∞
ωc
σ1(ω) dω

ALB =
1
8 ∑i ω

2
p,i , ω0,i < ωc

(3.5)

where σ1(ω) is the real part of the measured optical conductivity. Al+D can be
obtained by directly integrating the measured data and adding D and is an es-
timate for the spectral weight of the intraband transitions. But these transitions
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Figure 3.5: The real part of the dielectric function of optimally doped Bi2Sr2CaCu2O8+δ at 1.24
eV. The dotted lines are polynomial fits to the data below Tc and above Tc. The extrapolated value
of the fit to the data above Tc is called the ’extrapolated normal state’.

might be broad and extend to above the cutoff frequency ωc. Significant changes
in the optical spectrum above ωc might be a result of changes in the intraband
transitions which are not taken into account in Al+D. These changes are taken
into account in ALB, which is the sum of the spectral weights (ω2

p,i) of all oscil-
lators with a center frequency ω0 below the cut-off frequency ωc. ALB can only
be obtained by fitting the entire spectrum with a suitable oscillator model (figure
3.4).

3.3.2 TEMPERATURE DEPENDENT DATA

To obtain the changes due to superconductivity we need to compare the mea-
sured data in the superconducting state with the values as they would be if su-
perconductivity were absent. We therefore extrapolated the temperature depen-
dence of the normal state of the data to below Tc (figure 3.5). We did this for every
frequency separately and obtained an ’extrapolated normal state’ spectrum, de-
noted by the subscript ñ. In this way we obtained an extrapolated normal state
reflection spectrum (Rñ(ω)) in the infrared region and an extrapolated normal
state dielectric function (εñ(ω)) in the visible region. To focus on the changes due
to superconductivity we calculated the difference of the superconducting state
spectra with the extrapolated normal state spectra to obtain a difference spec-
trum: ∆R(ω) = Rs(ω)− Rñ(ω) and ∆ε(ω) = εs(ω)− εñ(ω). Figure 3.15-figure 3.18
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show these difference spectra.
A second method to characterize the changes that occur at the critical tem-

perature is to look at the derivative of the temperature dependent data. In the
normal state the data roughly has a T2 temperature dependence. Calculating
f ′(T) =− 1

T
∂ f (T)
∂T (where f = R, ε1, ε2) results in a constant value if the temperature

dependence is indeed T2. We calculated for each frequency the average value of
f ′ in the normal state and subtracted this from f ′. This results in a derivative
curve that is zero if a normal state T2 behavior is followed. A positive value
means an upward deviation from the T2 behavior, when f is followed from high
temperature to low temperature. A negative value means a downward devia-
tion. Take for example the R′ curve of Bi2Sr2CaCu2O8+δ , Tc=88K (figure 3.16g).
The reflection at 60 meV (figure 3.16d) has an upward turn at Tc, resulting in an
bump in the derivative curve. The reflection at 120 meV though has a downward
kink and the corresponding derivative curve is negative. In the color plot of fig-
ure 3.15-figure 3.18 these derivative curves are all plotted together. A black color
corresponds to f ′ being zero, a blue color corresponds to positive values and a
red color to negative values.

We can compare the two methods of estimating the changes at the critical
temperature. An upward (downward) kink in R results in ∆R being positive
(negative): the reflectivity is higher (lower) in the superconducting state. The
derivative (in the previous definition) will then, at Tc, show a bump (dip) and the
color in the color plot will be blue (red). When the two (independent) methods
are compared in figure 3.15-figure 3.18 we see a good correspondence, which
make us feel comfortable about estimating the observed changes at the critical
temperature.

3.3.3 FREQUENCY DEPENDENT DATA

The frequency dependent data was modeled using a Drude-Lorentz model, with
the dielectric function ε(ω) given by:

ε(ω) = ε∞ + ∑
k

ω2
p,k

ω2
0,k − ω2 − iγkω

(3.6)

where ωp,k is the plasma frequency of each oscillator, ω0,k its center frequency, γk
its width and ε∞ represents the contribution of the interband transistions above
5 eV to the dielectric function.

In the infrared region the reflection R(ω) =

∣

∣

∣

√
ε(ω)−1√
ε(ω)+1

∣

∣

∣

2
was fitted with this

model and in the visible region the dielectric function itself was fitted. The vis-
ible part of the spectrum needs three oscillators to fit the observed interband
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transitions. In the infrared we used different combinations of Drude and mid
infrared oscillators to fit the spectrum (figure 3.4).

This same model is used to fit the superconducting state spectrum and the
extrapolated normal state spectrum. It turns out that the reflection data around
120 meV has a temperature dependence in the superconducting state that is hard
to fit with a normal Drude-Lorentz model. Also the difference spectrum fails to
fit in an satisfactory way in this region. This is due to the fact that a gap opens
in the optical conductivity which can not be simulated with a few oscillators.
Especially to obtain a nice difference spectrum one needs to add more oscillators
around 120 meV, a few of them having negative weight to simulate the reduction
of optical conductivity.

We therefore added a gap function to the model to solve this problem. The
opening of the gap is modeled by multiplying the imaginary part of the Drude
oscillator (proportional to the optical conductivity) by a broadened step function.
The real part of the dielectric function is obtained by a Kramers-Kronig transform
of this gapped imaginary part. To be able to find an analytical form of the gapped
dielectric function we used the following form for the gap function: For ω ≤
ωg(1− δg) it has a constant value 0 ≤ yg ≤ 1. For ω ≥ ωg it has a constant value of
1. In between it is a third order polynomial with zero derivative at ω = ωg(1− δg)
and ω = ωg. This results in the following form:

θ(ω) =











yg , ω ≤ ωg − ωgδg

yg + (1− yg) ((2+δg)ωg−2ω)((δg−1)ωg+ω)2

(δgωg)3 , ωg − ωgδg < ω < ωg

1 , ω ≥ ωg

(3.7)

Using the imaginary part of the Drude oscillator ε2(ω) =
γω2

p
ω(ω2+γ2) we get the

real part of the gapped dielectric function by:

ε1(ω) =
2
π

Z ∞

0

θ(x) x ε2(x)
x2 − ω2 dx (3.8)

which can be done analytically. The spectral weight that is removed from the
gapped region is recovered in the δ-function at zero frequency and its contribu-
tion to the real part of the dielectric function is:

ε1(ω) = − 2
πω2

Z ωg

0
(1− θ(x)) x ε2(x) dx (3.9)

In this way an analytical expression can be found for a gapped Drude oscilla-
tor and no numerical integration is needed. The procedure can be extended for
a general Lorentz oscillator with center frequency ω0, but that is not used in this
analysis. Also the step function θ(x) can be a polynomial of arbitrary order.
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Figure 3.6: a) The gap function θ(ω) for a broad gap, intermediate gap and a narrow gap. b) The
ungapped optical conductivity σ1(ω) and the optical conductivity multiplied with the gap function.
c) The correspronding dielectric function ε1(ω) obtained from a Kramers-Kronig transform of the
optical conductivity. d) The corresponding reflectivity.

3.4 SPECTRAL WEIGHT CHANGES

To find the spectral weight of the intraband transitions we need to fit the spectra
and extract ALB from the model parameters. We tried different models, always
combined with the same set of oscillators to fit the interband transitions. For
each model we fitted the 20K data (superconducting state) with all parameters
free to adjust, obtaining a good fit for this temperature. We then fixed most of
the parameters and allowed only a few to change for the fits at all other temper-
atures, as well as the extrapolated normal state spectrum. For each temperature
we obtained a fitted spectrum and plotted for certain frequencies the fitted re-
flection or dielectric function as a function of temperature and compared this
with the measured temperature dependence at the selected frequency. ALB can
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now easily be calculated by summing the spectral weight of all oscillators that
have a center frequency below ωc. As a second method we calculated from both
the fitted spectra in the superconducting state and the extrapolated normal state
a difference spectrum ∆R(ω) and ∆ε(ω) which we compared with that obtained
from the measured data.

Allowing too many parameters to vary results in an over determination of
the temperature dependence and noise becomes randomly distributed among
different parameters. Allowing too few parameters to vary gives a bad fit of the
temperature dependence. Therefore we tried different combinations of parame-
ters that are free to vary as a function of temperature to find out which ones are
relevant for the measured changes in temperature.

From both methods we can obtain the change in ALB as superconductivity
sets in. The first method gives ALB for each temperature. We can extrapolate
the normal state of ALB(T) to below Tc and calculate the difference of ALB from
the superconducting state. We will call this ∆A(1)

LB. From the difference spectra
the change in ALB can be calculated by taking the difference between ALB,s and
ALB,ñ. We will call this ∆A(2)

LB.
The first model we tried has one narrow Drude oscillator and two mid in-

frared oscillators, together with three to five interband oscillators, depending
on the sample (and within this model we allow different sets of parameters to
change as a function of temperature). The second model is the same as the first,
except that the Drude oscillator is gapped using the method described before.

We will now discuss the fits for all samples. The case of optimally doped
Bi2Sr2CaCu2O8+δ is done in somewhat more detail. We start with a few param-
eters free and allow more parameters to change in order to obtain an acceptable
result. For the other samples we do not discuss the results of all the different
fitting models as for the optimally doped Bi2Sr2CaCu2O8+δ . Instead we present
only the results of the model which provided the best fit in each case.

3.4.1 OPTIMALLY DOPED BI2SR2CACU2 O8+δ , Tc=88K

The first model has three interband oscillators, 2 mid infrared oscillators and 1
Drude oscillator (figure 3.4). Figure 3.19 and figure 3.20 show the case where the
width of the Drude peak and the first mid infrared oscillator were allowed to
change. The width γ of the Drude peak sharpens considerably below Tc, even-
tually going to zero which means that the Drude peak has become a delta peak.
As a result the reflectivity shows an increase at Tc, but this model clearly is not
able to fit the reflectivity at around 0.1 eV. Also the temperature dependence of
ε(T) is wrong. The wiggle in ∆R(ω) around 0.1 eV (a result of the opening of the



Spectral weight changes 45

gap) is not reproduced and at high energies (around 1 eV and above) ∆R(ω) and
∆ε1(ω) are too small. Of course ∆ALB is zero.

In figure 3.21 and figure 3.22 we show the same model but with the Drude
oscillator gapped. We allowed only the with of the Drude and the first mid
infrared oscillator to change, as well as the gap. The reflectivity at 0.1 eV is now
fitted very well, but for ε1(T) the change at Tc is not well reproduced. When the
temperature gets well above Tc the gap parameters lose their meaning and can
show irregular behavior.

We tried many combinations of parameters that were allowed to change, ex-
cept for the spectral weight of the individual oscillators. These fits always give
similar results: The temperature dependence (especially at Tc) of the real part
of the dielectric function at high energies (around 1 eV) is not well reproduced.
Also ∆R(ω) and ∆ε1(ω) are often too small around 1 eV.

In figure 3.23 and figure 3.24 the strength of the Drude and MIR oscillator
are allowed to change also, as well as one interband oscillator. The fit for ε1(T)
improves and since we allow the spectral weight to change, ALB will now also
change as a function of temperature. From the figure we see that it shows an
increase as the critical temperature is crossed and we estimate the extra increase
to give ∆A(1)

LB ≈ 0.02 eV2. The change in A(2)
LB from comparing the extrapolated

normal state with the superconducting state is ∆A(2)
LB ≈ 0.016 eV2, which is of the

same sign and order of magnitude.

In figure 3.25 and figure 3.26 we show a model where the infrared data is
described by only one broad Drude oscillator. We then fitted only the ellipso-
metry data, above 0.75 eV. Of course the infrared fit is not good in this case, but
allowing the strength of the Drude oscillator to change gives again an increase of
ALB, indicating that we obtain already a good impression of the changes in the
spectral weight of the intraband transition by fitting the high energy data alone.

3.4.2 UNDERDOPED BI2SR2CACU2 O8+δ , Tc=66K

The results for the underdoped Bi2Sr2CaCu2O8+δ sample are similar to the opti-
mally doped case. Good results are only obtained if the spectral weight of some
oscillators are allowed to change, which results in an increase of spectral weight
(figure 3.27 and figure 3.28). The estimate for the change from A(1)

LB is 0.02 eV2

while from A(2)
LB it is 0.012 eV2. Again there is an increase and both methods give

similar results.



46 Discussion

3.4.3 OPTIMALLY DOPED BI2SR2CA0.92Y0.08CU2O8+δ , Tc=95K

Also for this sample we get bad fitting results if we allow only the width of the
Drude and mid infrared oscillator to change and the fits improve if we allow for
intraband spectral weight to change (figure 3.29, figure 3.30), which results in
ALB showing an increase as the system becomes superconducting.

3.4.4 OPTIMALLY DOPED YBA2CU3O7−δ , Tc=91K

In this case we do not have infrared reflectivity data and our spectral weight
analysis will be based on the visible light ellipsometry data alone. We needed a
few more oscillators to fit the interband transitions, which is already clear from
the optical conductivity data (figure 3.18). The infrared data was modeled with
a broad Drude and a delta function. Already the plots of ∆ε1(ω) and ∆ε2(ω)
show a different behavior when compared to the bismuth based samples: For
YBa2Cu3O7−δ the sign of ∆ε1 and ∆ε2 is opposite for energies around 1 eV. The
spectral weight analysis (figure 3.31 and figure 3.32) also shows different results,
with A(1)

LB having no change at all at Tc, or perhaps a small decrease.

3.5 DISCUSSION

3.5.1 OBSERVATIONS & INTERPRETATION

We fitted the spectrum of each sample with different models and with differ-
ent sets of free parameters. In the infrared region the best fit is obtained when
we make use of the gap function. Furthermore, the fits improve considerably
when we allow the spectral weight of intraband oscillators to change. When
it is allowed to change, it results in an increase of intraband spectral weight
at the superconducting transition for the bismuth based samples (figure 3.8)
(YBa2Cu3O7−δ is discussed later). This increase of ALB(T) turns out to be quite
robust against details of the model. Even when the choice of the other free pa-
rameters is such that we do not have a good fit of the details of the spectrum as a
function of temperature, ALB(T) always shows the same behavior. Figure 3.7 [57]
shows the temperature dependence of the low frequency spectral weight Al+D
(equation 3.5) obtained with a model that did not fit the details of the infrared
spectrum as well as the model used for figure 3.8, but the changes in spectral
weight are the same. Because the details of the infrared spectrum are reproduced
much better in figure 3.8, also the noise is reproduced in more detail.
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Figure 3.7: Temperature dependence of the low frequency spectral weight Al+D and high frequency
spectral weight Ah (equation 3.5) as published in [57].

The two different methods of estimating changes in ALB (fitting the difference
spectrum or fitting the temperature dependent spectra) are consistent with each
other. For each model and set of free parameters the two methods give the same
sign and order of magnitude for ∆ALB.

When the changes in intraband spectral weight are interpreted as kinetic en-
ergy changes per copper atom, we come to the numbers shown in table 3.9. Since
the estimation of the kinetic energy lowering involves an extrapolation of the
normal state, we would adapt a conservative error bar of 25%. But we feel con-
fident about the sign of the changes, at least for the bismuth based samples. A
value of around -0.7 meV is certainly large enough to account for the conden-
sation energy: Estimates of the condensation energy of Bi2Sr2CaCu2O8+δ vary
from 0.06 to 0.25 meV/Cu, depending on the doping [72, 73].

Recently other measurements have been done on Bi2Sr2CaCu2O8+δ with sim-
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sample doping Tc ∆EK [meV/Cu]
Bi2Sr2CaCu2O8+δ UD 66K -0.6
Bi2Sr2CaCu2O8+δ OPD 88K -0.7

Bi2Sr2Ca0.92Y0.08Cu2O8+δ OPD 95K -0.6
YBa2Cu3O7−δ OPD 91K no change

Figure 3.9: The changes in kinetic energy per copper atom for each sample. UD = underdoped,
OPD = optimally doped.

ilar results. Reflection measurements on Bi2Sr2CaCu2O8+δ thin films [58] indi-
cate spectral weight changes with a lowering of kinetic energy of the same or-
der. Short-pulse interlayer tunneling spectroscopy measurements [74] also give
results that may be interpreted with a kinetic energy lowering in the supercon-
ducting state. Measurements on YBa2Cu3O7−δ [59] indicate no spectral weight
changes for optimally doped samples, similar to our findings.

Several theoretical models use the concept of kinetic energy lowering as a
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driving mechanism for superconductivity in the cuprates. The model of hole su-
perconductivity [16], where pairs of holes move more easily than single holes,
predicted a lowering of kinetic energy of the same order as observed in these
measurements. Also a model based on phase fluctuations [11] of the supercon-
ducting order parameter, where a transition takes place from phase-incoherent
Cooper-pair motion in the pseudogap regime above Tc to a phase-coherent mo-
tion at Tc, predicts a lowering of kinetic energy. A more phenomenological cal-
culation of the spectral weight using a model for the scattering rate based on
ARPES data [49] also predicts a lowering of kinetic energy for the optimally and
underdoped samples, which is a result of the different momentum distribution
functions of the non-Fermi-liquid normal state and the superconducting Fermi-
liquid state. Dynamical cluster calculations for the two-dimensional Hubbard
model [53] indicate that superconductivity is driven by a lowering of kinetic en-
ergy (figure 3.3).

The connection between spectral weight changes and kinetic energy relies
on the applicability of the nearest neighbor tight-binding model, which in turn
depends on the assumption that only a nearest neighbor hopping term t is rel-
evant. It is possible that also a next nearest neighbor term t′ or other terms are
relevant. We have verified [55] that the next nearest neighbor hopping term of
Bi2Sr2CaCu2O8+δ does not change the direction of the spectral weight change
predicted by the nearest neighbor tight binding model (see figure 3.2 where
higher order hopping terms were included in the calculation).

3.5.2 COMPARISON WITH THERMAL-DIFFERENCE MEASUREMENTS

Thermal-difference measurements [75] already showed that at high energy changes
occur in the optical response when superconductivity sets in. In figure 3.11
we show for the high energy range the ratio of the reflectivity in the supercon-
ducting state (Rs) over the extrapolated normal state reflectivity (Rñ): Rs/Rñ =

1 + 1/Rn · ∆R, with ∆R = Rs − Rñ. The general trend is the same, with a struc-
ture below 2 eV which is a result of changes in the plasma frequency. With
only reflection at high energy it becomes difficult to point out what causes this
change in plasma frequency. Since we have access to both the real and imaginary
part of the dielectric function in this region, we can calculate the contribution of
ε1 and ε2 to Rs/Rñ separately using ∆R = ∂R/∂ε1 · ∆ε1 + ∂R/∂ε2 · ∆ε2, where
∆ε1,2 = εs

1,2 − εñ
1,2. This is also show in figure 3.11 and it is clear that below 2 eV

mainly the changes in the real part of the dielectric function are responsible for
the changes in the reflectivity.
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Figure 3.10: Thermal difference measurements as measured by Holcomb et al. Figure from [75].

3.5.3 SCATTERING RATE

At high energies the dielectric function in the normal state follows a T2 tem-
perature dependence (figure 3.15 - figure 3.18) while at low energies, in the far
infrared around 60 meV, the temperature dependence is linear, as also seen in the
temperature dependence of the resistivity in these materials. In figure 3.12 we
plotted for the optimally and underdoped Bi2Sr2CaCu2O8+δ crystal the tempera-
ture dependence of the frequency dependent scattering rate 1/τ . Shown is 1/τ at
low and high energies. Indeed the scattering rate has, in the normal state, a linear
temperature dependence for low energies while the temperature dependence is
quadratic for high energies. This indicates that the temperature dependence of
the optical response at high energies is not dominated by the temperature depen-
dence of the scattering rate at low energies. This is also supported by the results
from our fits, which indicate that allowing only the scattering rate to change is
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Figure 3.11: The data presented as the ratio between the reflectivity in the superconducting state
over the extrapolated normal state Rs/Rñ. Also shown are the partial derivatives to ε1 and ε2,
showing that below 2 eV mainly ∆ε1 is responsible for the changes.

not enough and an increase of spectral weight is needed. This is in contrast with
recent ideas [76] where it is claimed that the changes at high energies are a result
of the changes in the scattering rate at low energies alone.

3.5.4 THERMAL EXPANSION

Thermal expansion measurements [77] have shown that at the critical tempera-
ture the expansion of the lattice shows a small anomaly. The screened plasma
frequency of the electrons in the tight-binding band involves the density of elec-
trons and the hopping amplitude, which both depend on the lattice parameter.
This plasma frequency appears around 1 eV as the zero crossing of ε1(ω) and a
change of the lattice parameter might result in a change in ε1. To investigate how
large the contribution of the lattice expansion to the temperature dependence
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of the plasma frequency is, we note that the hopping parameter has a power
dependence on the lattice parameter [78], typically t ∼ a−7/2. The plasma fre-
quency is proportional to the electron density and the hopping parameter and
is therefore proportional to the lattice expansion: ωp ∼ aν . When we compare
1
ωp

∂ωp
∂T =

1
ωp

∂ωp
∂a

∂a
∂T = ν 1

a
∂a
∂T (figure 3.14) with measurements of the thermal expan-

sivity (figure 3.13 [77]), we see that we need a value for |ν| of about 10-20, where
one typically expects a value of order unity [78]. Moreover, the anomaly in the
thermal expansivity measurements at Tc is much smaller than in 1

ωp

∂ωp
∂T , indicat-

ing that the change at Tc in ωp(T) and ε1(T) around 1 eV can not be the result
of lattice changes. Already a direct comparison of ε1(T) around the plasma fre-
quency (around 1 eV) with the thermal expansion shows a clear difference, since
a change in Tc is hardly observable in the thermal expansion, while it is clearly
present in ε1(T).
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3.5.5 YBA2 CU3O7−δ

Our measurements on the YBa2Cu3O7−δ film show surprisingly different results
with respect to the bismuth based samples. The optical conductivity itself shows
more structure between 1 and 2 eV and also the difference spectrum ∆ε(ω) (figure
3.18) shows more structure. More striking is the positive sign of ∆ε1(ω) around
1 eV. The change in intraband spectral weight ALB shows at Tc no change or
perhaps even a decrease, in contrast with the bismuth based samples. In the
case of YBa2Cu3O7−δ it is known that the a and b directions of the crystal have
different plasma frequencies, and since we did measurements on a twinned film,
there is a mixing of these. Furthermore, around 1.5 eV there seems to be an
interband transition with a large temperature dependence. This might blur the
changes due to spectral weight transfer and since we have no infrared data it is
difficult to make decisive conclusions. It has also been proposed [79] that at the
superconducting transition charge is transferred between the Cu-O planes and
chains. This results in spectral weight changes for a particular crystal direction
and might obscure changes due to kinetic energy lowering.

3.6 SUMMARY AND CONCLUSIONS

We presented optical data of several cuprates measured with a temperature res-
olution of 1K in order to be able to detect small changes in the optical conductiv-
ity at the critical temperature. Normal incidence reflectivity in the region from
6.2 meV to 0.68 eV and ellipsometry in the region 0.74 eV to 4.46 eV was used.
We estimated the changes at Tc by calculating a difference spectrum ∆R(ω) in
the infrared region and a difference spectrum ∆ε(ω) for the visible region. As a
second method to estimate superconductivity related changes we calculated the
derivative of the temperature dependent curves, which agrees qualitatively very
well with the difference spectra. To observe changes in the intraband spectral
weight ALB we fitted the spectra for every temperature with a Drude-Lorentz
model and extracted ALB as a function of temperature. In the far infrared a good
fit was only achieved by using a gap function applied to the Drude oscillator.
The best results were obtained when we allowed the intraband spectral weight
to vary as a function of temperature. The YBa2Cu3O7−δ sample showed no ob-
servable superconductivity induced changes of the spectral weight ALB(T) at the
critical temperature, although in the visible region there are clearly changes at Tc.
The bismuth based samples showed an increase of the intraband spectral weight
when the system crosses the superconducting transition temperature. Within the
nearest neighbor tight-binding model this spectral weight is related to the kinetic
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energy and these changes indicate a lowering of kinetic energy of the order of 1
meV per copper atom for the bismuth based samples.
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APPENDIX: GAP FUNCTION

In this appendix we will give the analytical form of the real part of the gapped
Drude function:

ε1(ω) =
2
π

Z ∞

0

(

θ(x) γω2
p

(x2 + γ2)(x2 − ω2)
−

(1− θ(x)) γω2
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dx
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πω2 . The gap function is a third order polynomial θ(x) = c0 + c1x +

c2x2
+ c3x3. The integral is splitted in three parts. Part 1 is from 0 to a0 where

the gap function has a constant value with c0 = yg and c1 = c2 = c3 = 0. a0 is
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Bi2Sr2CaCu2O8+δ, Tc=66K
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Figure 3.15: Spectra of Bi2Sr2CaCu2O8+δ , Tc=66K. a/b/c) Frequency dependence of R/ε1/ε2. d/e/f)
Temperature dependence R/ε1/ε2. g/h/i) Derivative of temperature dependence R/ε1/ε2. j/k/l) Dif-
ference between R/ε1/ε2 in the superconducting state and in the extrapolated normal state. m/n/o)
Derivative of temperature dependence versus frequency and temperature. Blue (red) color indicates
and increase (decrease) of the superconducting state with respect to the normal state.
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Bi2Sr2CaCu2O8+δ, Tc=88K

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

R
ef

le
ct

iv
ity

Energy [eV]

a
294 K
150 K
100 K
20 K

-2

 0

 2

 4

 0  1  2  3  4

ε 1

Energy [eV]

b

294 K
150 K
100 K
20 K

 0

 500

 1000

 1500

 2000

 0  1  2  3  4

σ 1
 [(

Ω
cm

)-1
]

Energy [eV]

c
294 K
150 K
100 K

20 K

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0  100  200  300

R
ef

le
ct

iv
ity

 (
ar

bi
tr

ar
y 

of
fs

et
)

Temperature [K]

d

0.06 eV
0.12 eV
0.19 eV
0.25 eV
0.37 eV

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300

ε 1
 (

ar
bi

tr
ar

y 
sc

al
e)

Temperature [K]

e

0.99 eV
1.24 eV
1.49 eV
1.86 eV

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300

ε 2
 (

ar
bi

tr
ar

y 
sc

al
e)

Temperature [K]

f

0.99 eV
1.24 eV
1.49 eV
1.86 eV

-14
-12
-10

-8
-6
-4
-2
 0
 2
 4
 6
 8

 0  100  200  300

-1
/T

 d
R

/d
T

 (
ar

bi
tr

ar
y 

of
fs

et
)

Temperature [K]

g

×10-6 0.06 eV
0.12 eV
0.19 eV
0.25 eV
0.37 eV

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0  100  200  300

-1
/T

 d
ε 1

/d
T

 (
ar

bi
tr

ar
y 

of
fs

et
)

Temperature [K]

h

×10-6 0.99 eV
1.24 eV
1.49 eV
1.86 eV

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  100  200  300

-1
/T

 d
ε 2

/d
T

 (
ar

bi
tr

ar
y 

of
fs

et
)

Temperature [K]

i

×10-6 0.99 eV
1.24 eV
1.49 eV
1.86 eV

 0

 0.01

 0.02

 0  0.1  0.2  0.3  0.4

∆R

energy [eV]

j

-0.03

-0.02

-0.01

 0

 0.01

 1  1.5  2  2.5  3

∆ε
1

energy [eV]

k

-4

-2

 0

 2

 4

 1  1.5  2  2.5  3

∆σ
1

energy [eV]

l

energy [eV]

T
em

pe
ra

tu
re

 [K
] m-1/T dR/dT

 50

 100

 150

 200

energy [eV]

T
em

pe
ra

tu
re

 [K
] n-1/T dε1/dT

 50

 100

 150

 200

energy [eV]

T
em

pe
ra

tu
re

 [K
] o-1/T dσ1/dT

 50

 100

 150

 200

Figure 3.16: Spectra of Bi2Sr2CaCu2O8+δ , Tc=88K. a/b/c) Frequency dependence of R/ε1/ε2. d/e/f)
Temperature dependence R/ε1/ε2. g/h/i) Derivative of temperature dependence R/ε1/ε2. j/k/l) Dif-
ference between R/ε1/ε2 in the superconducting state and in the extrapolated normal state. m/n/o)
Derivative of temperature dependence versus frequency and temperature. Blue (red) color indicates
and increase (decrease) of the superconducting state with respect to the normal state.
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Bi2Sr2Ca0.92Y0.08Cu2O8+δ, Tc=95K
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Figure 3.17: Spectra of Bi2Sr2Ca0.92Y0.08Cu2O8+δ , Tc=95K. a/b/c) Frequency dependence of
R/ε1/ε2. d/e/f) Temperature dependence R/ε1/ε2. g/h/i) Derivative of temperature dependence
R/ε1/ε2. j/k/l) Difference between R/ε1/ε2 in the superconducting state and in the extrapolated
normal state. m/n/o) Derivative of temperature dependence versus frequency and temperature.
Blue (red) color indicates and increase (decrease) of the superconducting state with respect to the
normal state.
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YBa2Cu3O7−δ
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Figure 3.18: Spectra of YBa2Cu3O7−δ . a/b/c) Frequency dependence of R/ε1/ε2. d/e/f) Temperature
dependence R/ε1/ε2. g/h/i) Derivative of temperature dependence R/ε1/ε2. j/k/l) Difference between
R/ε1/ε2 in the superconducting state and in the extrapolated normal state. m/n/o) Derivative of
temperature dependence versus frequency and temperature. Blue (red) color indicates and increase
(decrease) of the superconducting state with respect to the normal state.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators, 2 MIR oscillators and 1 Drude oscillator. Parameters allowed to

change: γ of the first MIR osc and γ of the Drude osc.
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Figure 3.19: The measured temperature dependent data together with the fits.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators, 2 MIR oscillators and 1 Drude oscillator. Parameters allowed to

change: γ of the first MIR osc and γ of the Drude osc.

model parameters:

eps.inf. : ε∞=2.77242

third interband osc : ω0=4.945, ωp=5.311, γ=2.361

second interband osc : ω0=3.828, ωp=1.211, γ=0.542

first interband osc : ω0=2.406, ωp=1.741, γ=1.832

second MIR osc : ω0=0.507, ωp=1.419, γ=0.817

first MIR osc : ω0=0.127, ωp=1.213, γ=0.210

Drude osc : ωp=1.262, γ=0.001
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Figure 3.20: The temperature dependence of the parameters that are allowed to change.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: γ of the first MIR osc, ωg, δg and yg of the gap and γ of the gapped

Drude osc.
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Figure 3.21: The measured temperature dependent data together with the fits.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: γ of the first MIR osc, ωg, δg and yg of the gap and γ of the gapped

Drude osc.

model parameters:

eps.inf. : ε∞=2.66795

third interband osc : ω0=4.955, ωp=5.448, γ=2.374

second interband osc : ω0=3.829, ωp=1.211, γ=0.541

first interband osc : ω0=2.441, ωp=1.829, γ=2.028

second MIR osc : ω0=0.688, ωp=0.610, γ=0.496

first MIR osc : ω0=0.206, ωp=1.552, γ=0.650

gap : ωg=0.158, δg=0.676146, yg=0.0853285

gapped Drude osc : ωp=1.464, γ=0.042
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Figure 3.22: The temperature dependence of the parameters that are allowed to change.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: ε∞, ωp and γ of the first interband osc, ωp and γ of the first MIR osc,

ωg, δg and yg of the gap and ωp and γ of the gapped Drude osc.
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Figure 3.23: The measured temperature dependent data together with the fits.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: ε∞, ωp and γ of the first interband osc, ωp and γ of the first MIR osc,

ωg, δg and yg of the gap and ωp and γ of the gapped Drude osc.

model parameters:

eps.inf. : ε∞=2.66795

third interband osc : ω0=4.955, ωp=5.448, γ=2.374

second interband osc : ω0=3.829, ωp=1.211, γ=0.541

first interband osc : ω0=2.441, ωp=1.829, γ=2.028

second MIR osc : ω0=0.688, ωp=0.610, γ=0.496

first MIR osc : ω0=0.206, ωp=1.552, γ=0.650

gap : ωg=0.158, δg=0.776146, yg=0.0853285

gapped Drude osc : ωp=1.464, γ=0.042
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Figure 3.24: The temperature dependence of the parameters that are allowed to change.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators and 1 Drude oscillator. Parameters allowed to change: ε∞, ωp

and γ of the first interband osc and ωp and γ of the Drude osc.

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0  100  200

 

T

 R @ 0.06 eV

data
fit

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0  100  200T

 R @ 0.12 eV

data
fit

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0  100  200

 

T

 R @ 0.25 eV

data
fit

-0.76
-0.74
-0.72
-0.7

-0.68
-0.66
-0.64
-0.62
-0.6

-0.58
-0.56

 0  100  200

 

T

ε1 @ 0.87 eV

data
fit

 1.72

 1.74

 1.76

 1.78

 1.8

 1.82

 1.84

 0  100  200T

ε1 @ 1.24 eV

data
fit

 2.81
 2.815

 2.82
 2.825

 2.83
 2.835

 2.84
 2.845

 2.85
 2.855

 2.86

 0  100  200

 

T

ε1 @ 1.61 eV

data
fit

 2.68

 2.7

 2.72

 2.74

 2.76

 2.78

 2.8

 0  100  200

 

T

ε2 @ 0.87 eV

data
fit

 1.3
 1.32
 1.34
 1.36
 1.38

 1.4
 1.42
 1.44
 1.46

 0  100  200T

ε2 @ 1.24 eV

data
fit

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 0  100  200

 

T

ε2 @ 1.61 eV

data
fit

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  0.5  1  1.5

 

ω

∆R

-0.04

-0.02

 0

 0.02

 0.04

 1  2  3ω

∆ε1

8∆ALB
(2) = 0.005 eV2 -4

-2

 0

 2

 4

 1  2  3

 

ω

∆σ1

-400
-350
-300
-250
-200
-150
-100

-50
 0

 50
 100

 0  0.5  1  1.5

 

ω

∆τ

Figure 3.25: The measured temperature dependent data together with the fits.
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Bi2Sr2CaCu2O8+δ, Tc=88K
Model with 3 interband oscillators and 1 Drude oscillator. Parameters allowed to change: ε∞, ωp

and γ of the first interband osc and ωp and γ of the Drude osc.

model parameters:

eps.inf. : ε∞=2.39024

third interband osc : ω0=4.981, ωp=6.031, γ=2.348

second interband osc : ω0=3.833, ωp=1.251, γ=0.558

first interband osc : ω0=2.348, ωp=1.581, γ=1.738

Drude osc : ωp=2.185, γ=0.400

 4.735
 4.74

 4.745
 4.75

 4.755
 4.76

 4.765
 4.77

 4.775

 0  100  200T

 8ALB
(1)   [eV2]

 3.925
 3.93

 3.935
 3.94

 3.945
 3.95

 3.955
 3.96

 3.965

 0  100  200

 

T

 8Al+D      [eV2]

 2.365

 2.37

 2.375

 2.38

 2.385

 2.39

 2.395

 0  100  200

 

T

eps.inf. : ε∞

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 0  100  200T

first interband osc : ωp
2   [eV2]

 1.7

 1.75

 1.8

 1.85

 1.9

 1.95

 0  100  200

 

T

first interband osc : γ   [eV]

 4.735
 4.74

 4.745
 4.75

 4.755
 4.76

 4.765
 4.77

 4.775

 0  100  200

 

T

Drude osc : ωp
2   [eV2]

 0.398

 0.4

 0.402

 0.404

 0.406

 0.408

 0.41

 0.412

 0  100  200T

Drude osc : γ   [eV]

Figure 3.26: The temperature dependence of the parameters that are allowed to change.
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Bi2Sr2CaCu2O8+δ, Tc=66K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: ε∞, ωp and γ of the first interband osc, ωp and γ of the first MIR osc,

ωg, δg and yg of the gap and ωp and γ of the gapped Drude osc.
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Figure 3.27: The measured temperature dependent data together with the fits.
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Bi2Sr2CaCu2O8+δ, Tc=66K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: ε∞, ωp and γ of the first interband osc, ωp and γ of the first MIR osc,

ωg, δg and yg of the gap and ωp and γ of the gapped Drude osc.

model parameters:

eps.inf. : ε∞=2.93584

third interband osc : ω0=4.843, ωp=4.662, γ=2.386

second interband osc : ω0=3.821, ωp=1.099, γ=0.497

first interband osc : ω0=2.528, ωp=1.790, γ=1.889

second MIR osc : ω0=0.824, ωp=0.339, γ=0.477

first MIR osc : ω0=0.264, ωp=1.733, γ=0.742

gap : ωg=0.192, δg=0.88404, yg=0.131585

gapped Drude osc : ωp=1.263, γ=0.047
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Figure 3.28: The temperature dependence of the parameters that are allowed to change.
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Bi2Sr2Ca0.92Y0.08Cu2O8+δ, Tc=95K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: ε∞, ωp and γ of the first interband osc, ωp and γ of the first MIR osc,

ωg, δg and yg of the gap and ωp and γ of the gapped Drude osc.
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Figure 3.29: The measured temperature dependent data together with the fits.
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Bi2Sr2Ca0.92Y0.08Cu2O8+δ, Tc=95K
Model with 3 interband oscillators, 2 MIR oscillators, 1 gap function and 1 gapped Drude oscillator.

Parameters allowed to change: ε∞, ωp and γ of the first interband osc, ωp and γ of the first MIR osc,

ωg, δg and yg of the gap and ωp and γ of the gapped Drude osc.

model parameters:

eps.inf. : ε∞=2.36736

third interband osc : ω0=5.128, ωp=5.837, γ=2.343

second interband osc : ω0=3.848, ωp=1.399, γ=0.583

first interband osc : ω0=2.373, ωp=1.686, γ=1.850

second MIR osc : ω0=0.734, ωp=0.436, γ=0.412

first MIR osc : ω0=0.136, ωp=1.657, γ=0.642

gap : ωg=0.129, δg=0.490827, yg=0

gapped Drude osc : ωp=1.410, γ=0.027
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Figure 3.30: The temperature dependence of the parameters that are allowed to change.
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YBa2Cu3O7−δ, Tc=91K
Model with 4 interband oscillators and 2 Drude oscillators. Parameters allowed to change: ε∞, ωp

and γ of the second interband osc, ω0, ωp and γ of the first interband osc, ωp and γ of the second

Drude osc and ωp of the first Drude osc.
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Figure 3.31: The measured temperature dependent data together with the fits.
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YBa2Cu3O7−δ, Tc=91K
Model with 4 interband oscillators and 2 Drude oscillators. Parameters allowed to change: ε∞, ωp

and γ of the second interband osc, ω0, ωp and γ of the first interband osc, ωp and γ of the second

Drude osc and ωp of the first Drude osc.

model parameters:

eps.inf. : ε∞=2.32949

fourth interband osc : ω0=4.535, ωp=1.686, γ=0.494

third interband osc : ω0=4.157, ωp=2.886, γ=1.551

second interband osc : ω0=2.739, ωp=1.835, γ=1.401

first interband osc : ω0=1.399, ωp=1.357, γ=0.940

second Drude osc : ωp=2.496, γ=0.708

first Drude osc : ωp=1.620, γ=0.000
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Figure 3.32: The temperature dependence of the parameters that are allowed to change.



CHAPTER 4

TEMPERATURE DEPENDENCE OF

OPTICAL CONSTANTS IN BCS
SUPERCONDUCTORS

4.1 INTRODUCTION

The1 BCS theory for superconductivity in normal metals predicts that, while
crossing Tc, the interaction energy is lowered [43]. The kinetic energy on the
other hand is increased, but by a smaller amount and the total free energy is
lowered, favoring the superconducting state. A gap ∆ opens up in the excitation
spectrum which is observable in the optical conductivity. For photon energies
smaller than two times the gap energy the pairs of electrons can not be broken
and therefore there is no absorption: the conductivity is zero (in the clean limit)
or at least reduced [80, 81].

The integrated optical conductivity represents the number of electrons in the
solid, which is of course unchanged. Therefore the reduction of optical conduc-
tivity for energies below 2∆ must be recovered elsewhere [82], and is indeed
recovered in the superconducting delta peak at zero energy, representing the
zero DC resistivity of the superconductor. Even above 2∆ there is a reduction
of conductivity [80, 83] and for BCS superconductors one needs to evaluate the
integrated optical conductivity up to an energy of approximately 8∆ to obtain a

1The measurements presented in this chapter were done in close collaboration with Fabrizio Car-
bone.
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temperature independent value. For a superconductor with a critical tempera-
ture of 15K this is about 20 meV. Therefore one does not expect to see any signs
of superconductivity in the optical spectrum above these energies and certainly
not around 1 eV, as has been observed for the cuprates [57].

In the cuprates, the observed change in the dielectric function around 1 eV
(≈ 100∆) indicated a change in low frequency spectral weight. Besides the BCS
like redistribution of spectral weight due to the opening of the gap, there is an
extra overall increase of the spectral weight at low energies. Within the nearest
neighbor tight-binding model this can be interpreted as a lowering of kinetic
energy.

Suppose a similar effect would take place for a BCS superconductor. We as-
sume that the nearest neighbor tight-binding model is applicable and the kinetic
energy change (increase) is of the order of the condensation energy. From BCS
theory [43] the condensation energy is given by Ec =

1
2 D(EF)∆2, where D(EF) is

the density of states at the Fermi energy and 2∆ = 3.53kBTc. Assuming that the
conduction electrons can be described by a Fermi gas [84], we can use the fol-
lowing well known results. kF is the Fermi wave vector and can be expressed
in the dimensionless ratio rs/a0: kF =

(9π/4)1/3

rs
=

3.63
rs/a0

in Å−1, where a0 is the Bohr
radius and rs is the radius in atomic units of the sphere which encloses one unit
of electron charge. The electron density is n =

k3
F

3π2 and the density of states at
the Fermi energy is DEF =

mkF
h̄2π2 , where m is the mass of the electrons. The plasma

frequency is ω2
p =

4πne2

m , where e is the charge of the electrons.
The relation between the kinetic energy K and the integrated spectral weight

is [49]:

ω2
p

8
=

Z Ωc

0
σ1(ω) dω = −4πe2a2

h̄2 K (4.1)

where a is the lattice parameter and Ωc is a cut-off frequency to indicate that we
want to integrate only over the low energy region of the optical conductivity
σ1(ω). A change in the kinetic energy would result in a change of the plasma
frequency. Suppose that the change in kinetic energy is of the same order as the
condensation energy: ∆K = Ks − Kn = Ec. The change of the plasma frequency,
ωp,s − ωp,n, would be

δωp = − e2a2mkF

πωph̄4 (1.76kBTc)2 (4.2)

where ωp,n = ωp and ωp,s = ωp + δωp, keeping only terms linear in δωp.
Fitting the spectrum of niobium with a Drude-Lorentz model and extracting

the plasma frequency of the Drude peak gives: ωp = 7.7 eV. Using rs/a0 = 3.07
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and a = 3.30 Å [84] we get a theoretical value for ωp of 8.7 eV, which is quite
close to the measured value. Now we can calculate the expected shift in the
plasma frequency if the onset of superconductivity would result in a increase
of the kinetic energy of the order of the condensation energy. Given Tc=9K we
get δωp ≈ 2 · 10−6 eV. This corresponds to an upward shift of the real part of the
dielectric function at 1 eV of about 2.8 · 10−5. Considering the resolution of our
spectrometer, we will not be able to observe this. We try nevertheless to observe
an effect, because, after all, the theoretical considerations pointed out above have
not been tested experimentally in this way in the past.

4.2 SAMPLES AND EXPERIMENTS

We measured three samples that are considered to be BCS superconductors. That
is, the BCS theory should apply to these samples to describe the superconduct-
ing properties. The first sample is a crystal of V3Si with a shiny metallic surface
of roughly 3mm by 3mm and a critical temperature of 15K. The second sample
was a Nb polycrystalline disk of 4mm diameter with a shiny metallic surface and
a critical temperature of 9K. The third sample was a pellet of pressed polycrys-
talline MgB2.

The measurements were done using ellipsometry in the energy range from
0.75 eV to 4.5 eV. The samples were mounted in a UHV He flow cryostat with
a pressure of typically 3 · 10−9 mbar. First measurements of the entire spectrum
were taken at selected fixed temperatures. Then measurements were done for
fixed frequencies while slowly increasing the temperature to well above Tc, re-
sulting in a temperature resolution of 0.1 to 0.5 K.

Figure 4.1 shows the measured real part of the dielectric function ε1(ω) as a
function of photon energy, together with the real part of the optical conductiv-
ity σ1(ω). Figures 4.2 to 4.4 show the measured dielectric function for a selec-
tion of representative frequencies. The MgB2 shows a weak overall temperature
dependence, but no extra change at Tc (39K). Also the Nb shows little tempera-
ture dependence and within our experimental resolution there is no observable
change at the critical temperature (9K). For this sample we also measured the
entire spectrum in the energy range from 0.75 eV to 2.5 eV for temperatures from
5K to 20K with 0.5K intervals. For each temperature we fitted the spectrum with
a Drude-Lorentz model, simulating one Drude peak and four interband transi-
tions (table 4.5). We extracted the model parameters as a function of temperature
and calculated the low frequency spectral weight, which is shown in figure 4.6.
Here as well we do not observe a significant change at the critical temperature.
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Figure 4.1: Frequency dependence of optical conductivity σ1 and dielectric function ε1 of V3Si,
Nb and MgB2.
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Figure 4.5: Lorentz fit parameters for Nb. ω0 is the center frequency in eV, ωp is the strength in
eV and γ is the width in eV.
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Figure 4.6: Low frequency spectral weight of Nb as a function of temperature.

The V3Si sample shows a spectacular temperature dependence. There are
several temperatures where the slope of the temperature dependence changes,
the most prominent one being around 22K. This is close to the cubic-to-tetragonal
phase transition temperature in V3Si. Indeed, thermal expansion measurements
show a large change of the lattice parameter at this temperature [85, 86]. Re-
peating the arguments from the previous chapter we expect the plasma fre-
quency to be proportional to the lattice parameter and the dielectric function in
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turn is proportional to the plasma frequency, giving ε ∼ aν . When we compare
1
ε
∂ε
∂T =

1
ε
∂ε
∂a

∂a
∂T = ν 1

a
∂a
∂T with measurements of the thermal expansivity [85, 86] we

see that we need a value of |ν| of the order 1, which is what we expect. Also
the jump at the phase transition is of the same order in 1

ε
∂ε
∂T as in the thermal

expansivity data (opposed to the case for Bi2Sr2CaCu2O8+δ, where the jump in
our data was much larger than the jump in the thermal expansivity data). This
indicates that the lattice expansion can be responsible for the observed changes
in the optical response.

At the critical temperature of 17K a very small change is visible in some tem-
perature dependent measurements. This could again be related to small changes
in the thermal expansivity, as observed in [86], but could also be related to spec-
tral weight transfer. The noise however is too large to make definite conclusions
(especially in ε1(T)) and more accurate measurements are needed.

4.3 CONCLUSION

We measured the dielectric function and optical conductivity of the BCS super-
conductors Nb, V3Si and MgB2 with a high temperature resolution around their
critical value, in the energy range from 0.75 eV to 4.5 eV. From theoretical consid-
erations we do not expect to see any changes related to the onset of superconduc-
tivity. Indeed, the Nb and MgB2 showed no anomalies at the superconducting
phase transition. The V3Si sample showed changes in the dielectric function a
few degrees above Tc which could be related to the the cubic-to-tetragonal phase
transition. At Tc something interesting might be happening. Still, the results are
preliminary and more accurate measurements are in progress.
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CHAPTER 5

QUANTUM CRITICALITY IN CUPRATE

SUPERCONDUCTORS

Quantum criticality is associated with a system composed of a nearly infinite
number of interacting quantum degrees of freedom at zero temperature, and it
implies that the system looks on average the same regardless of the time- and
length scale on which it is observed. Electrons on the atomic scale do not ex-
hibit such symmetry, which can only be generated as a collective phenomenon
through the interactions between a large number of electrons. In materials with
strong electron correlations a quantum phase transition at zero temperature can
occur, and a quantum critical state has been predicted [39, 32] which manifests
itself through universal power-law behaviors of the response functions. Can-
didates have been found both in heavy-fermion systems [87] and in the high-
transition temperature (high-Tc) copper oxide superconductors [88], but the re-
ality and the physical nature of such a phase transition are still debated [2, 89, 90].

5.1 PHASE TRANSITIONS

In general a second order phase transition1 is a continuous phase transition be-
tween an ordered and an disordered state of the system, characterized by an
order parameter r, which is zero in the disordered state and finite in the ordered
state. While the thermodynamic average of the order parameter is zero in the dis-
ordered phase, its fluctuations are non-zero. If the critical point is approached,

1This introduction is largely inspired by the work by Sachdev and Vojta [32, 91].
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the spatial correlations of the order parameter fluctuations become long-ranged.
Close to the critical point their typical length scale, the correlation length ξ, di-
verges as

ξ ∼ |t|−ν (5.1)

where t is a dimensionless measure of the distance from the critical point, for
example t =

|T−Tc|
Tc

if there is a phase transition at temperature Tc. The corre-
lation length critical exponent ν is a number which depends on various non-
miscroscopic details of the system. In addition to the long-range correlations in
space there are analogous long-range correlations of the order parameter fluctu-
ations in time. The typical timescale for a decay of the fluctuations is the correla-
tion (or equilibrium) time τc. As the critical point is approached the correlation
time diverges as

τc ∼ ξz ∼ |t|−νz (5.2)

where z is the dynamical critical exponent. Close to the critical point there is
no characteristic length scale other then ξ and no characteristic time scale other
then τc. At the phase transition point the correlation length and time are infinite,
fluctuations occur on all length scales and timescales and the system is said to be
scale invariant. As a consequence, all observables depend via power laws on the
external parameters. If we observe the system at a scale x or λx, scale invariance
states that the correlation functions are described by the same function F, apart
from an overall constant, indicating that F(λx) = c F(x). Functions with this
property are power laws, F(x) = axη.

For a crystal the Hamiltonian has operators that are defined on a lattice. Since
close to the transition only large scale properties are relevant, we can go over
from a description with operators on a discrete lattice to a description with op-
erators that are defined for all points in space. We then use field operators and
the resulting model will be a field theory. For a phase transition at finite temper-
ature this results in a d-dimensional field theory, where d is the number of space
dimensions. This approach is well studied for classical transitions.

As the transition point is approached the time scale τc diverges and conse-
quently the corresponding frequency scale ωc goes to zero. At finite temperature
this has to be compared with the energy scale of the thermal fluctuations, kBT.
For a quantum mechanical system the character of the order parameter fluctu-
ations crosses over from quantum to classical when h̄ωc becomes smaller then
kBT, indicating that classical thermal fluctuations are dominant. Therefor, close
enough to the critical point any quantum mechanical system at finite tempera-
ture can be described with a classical (field) theory. Consequently, if we probe
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the system on a timescale larger than 1/T (or with a frequency h̄ω < kBT) we are
in the classical regime.

At the critical point all scales diverge and there is no relevant internal energy
scale anymore. If we probe the system with a certain energy, then the only energy
scale to which we can compare this energy is temperature itself. This leads to
response functions being a function of frequency and temperature alone, known
as ω/T scaling.

5.1.1 QUANTUM PHASE TRANSITIONS

In some systems the phase transition is not at a finite critical temperature, but
at zero temperature and at a critical value of some other parameter, for example
pressure, magnetic field or doping. The phase transition then takes place in the
absence of thermal fluctuations. Quantum mechanical fluctuations will domi-
nate and the previous mentioned cross over from a quantum theory to a classical
theory can not be applied.

The Hamiltonian of such a system is typically of the form

H = H1 + gH2 (5.3)

where g is related to the order parameter. At zero temperature the ground state is
an eigenfunction of either H1 or H2, depending on the value of g. As g is changed
we get a phase transition from the ordered (say) ground state of H1 if g < gc to
the disordered ground state of H2 if g > gc. If there is an ordered state at finite
temperature this system has a rich phase diagram (figure 5.1).

Although the quantum critical point is not experimentally accessible, a good
description is still relevant, because the finite temperature properties are excita-
tions of the zero temperature ground state of the system. At finite temperature
and g < gc the excitations of the system are the quasiparticles of H1 and the
influence of H2 makes them dynamic. At some finite temperature thermal fluc-
tuations become strong and there can be a finite temperature phase transition to
a thermally disordered state (if a finite temperature ordered state exists). The
critical point at g = gc is then the endpoint of a line of finite temperature tran-
sitions and close to this line the system can be described by a classical theory.
When g > gc, in the quantum disordered state, the quasiparticles are given by
H2 which can be of completely different character.

Around g = gc and at finite temperature the system state can no longer be dis-
tinguished as an eigenstate of H1 or H2, due to thermal fluctuations. The system
then enter the quantum critical regime of the phase diagram. The quasiparticles
are no longer those of either H1 or H2 but are of a more complex nature. At finite
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Figure 5.1: The typical phase diagram of a system with a quantum critical point and order at finite
temperatures. For zero temperature and g < gc the system is in an ordered state, while for g > gc

the system is in and disordered state. If g < gc and the temperature is increased then one first
finds the system in a still ordered state (light gray region), which is at some temperature destroyed
by thermal fluctuations (black line). Around this critical line these thermal fluctuations dominate
quantum processes and the phase transition is of a classical character. For temperatures higher
then this phase transition the system is thermally disordered. If g > gc and one starts to raise the
temperature from zero one finds the system disordered. At some temperature the system crosses
over to a regime of the phase diagram where no well defined quasiparticles are present. It is then
in the quantum critical regime. Because of thermal fluctuations both parts of the Hamiltonian (H1

and H2) contribute equally to the character of the excitations. The same thing happens for g < gc

and the cross over temperature is lower when g is closer to gc.

temperature the system ’looks critical’ with respect to the parameter g, but it is
driven away from criticality by thermal fluctuations. The T > 0 region in the
vicinity of a quantum critical point therefor offers a fascinating interplay of ef-
fects driven by quantum and thermal fluctuations. Sometimes, as in the shaded
region of figure 5.1, we can find some dominant fluctuations which are purely
classical and thermal, and then the classical theory will apply. However, outside
this region a new description is needed.

Thermodynamical properties of the system can be calculated from the parti-
tion function Z , given by Z = Tr e−H/kBT. If we identify 1/kBT with iτ/h̄, then this
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looks like a time evolution operator in imaginary time, e−iHτ /h̄. This brings the
d-dimensional quantum system from a state at time zero to a state at imaginary
time τ . It turns out that this is equivalent to another, classical system evalu-
ated in D = d + z dimensions, where z is the dynamical critical exponent (the
dimensionality of the imaginary time axis). To understand this, imagine a single
site quantum system (d = 0). Applying the imaginary time evolution operator
brings the system from an initial state to a new state, during which (for g < gc)
the influence of H2 is to mix the eigenstates of H1 into (quantum mechanically)
entangled states, making the system ’disordered’ to a certain degree, with re-
spect to the eigenstates of H1. The time Lτ =

h̄
kBT is a measure of how long it

takes the system to become maximally disordered, given a certain value of T.
This now is equivalent to a 1-dimensional classical system with each site in an
eigenstate of H1 (and no entanglement), but with interaction between the sites of
the 1-dimensional system. Each site is an eigenstate of H1 and therefor ’ordered’.
The role of H2 is similar to the hopping term in a 1-dimensional chain of atoms.
Maximal order corresponds to all sites being in the same eigenstate, but this does
not necessarily have to be the case. Neighboring sites can be in different eigen-
states due to the interactions given by H2. Interaction between the sites (due
to H2) can result in the entire 1-dimensional system being less then maximally
ordered. Evaluating the single site quantum system from time zero to Lτ corre-
sponds to evaluating the classical system with all the inter site interactions over a
length Lτ . The extent to which the single site quantum system is ordered or disor-
dered (entangled) corresponds to the extent to which the 1-dimensional classical
chain is ordered. Therefor the d-dimensional quantum system corresponds to a
D = d + z dimensional classical system where the extra dimension is an imagi-
nary time dimension with length Lτ . Again, if the correlation length ξ is large
and only large scale properties are important, we can go over from a discrete
model to a continuous model. The resulting model is a classical field theory in
D-dimensional space-time with imaginary time (that is, Euclidean space-time),
where the imaginary time direction is periodic with length Lτ . Note that this is
a quantum to classical mapping of a system in the vicinity of a critical point at
zero temperature. It is therefor different from the previous quantum to classical
mapping at finite temperature.

Using this formalism we can calculate correlators of some observable, which
will be in imaginary time. To find the correlators in real time an analytical con-
tinuation needs to be done. For an exact solution of the Hamiltonian this is not a
problem, but any approximation will give an unreliable result for the analytical
continuation to real time. At the critical point thought, due to the scale invari-
ance of the system, the exact form of the correlators is known to be a power law
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and the analytical continuation to real time is unproblematic.
Close to the critical point the microscopic details of the system are no longer

important. The only parameters needed to describe the system are the correla-
tion length (correlation time) and its critical exponent and external parameters,
like temperature, pressure or magnetic field. Very different systems can then be
described by the same class of models, and correlators of the system are given
by universal scaling functions with have dependence on the microscopic details
of the system (like the lattice constant).

5.2 QUANTUM CRITICAL BEHAVIOR IN BI2SR2CACU2O8+δ

In the quantum theory of collective fields one anticipates order at small coupling
constant, and for increasing coupling one expects at some point a phase transi-
tion to a quantum-disordered regime. Quantum criticality in the copper oxides,
if it exists, occurs as a function of charge carrier doping x, at a particular doping
level xc close to where the superconducting phase transition temperature reaches
its maximum value. When this phase transition is continuous, a critical state is
realized right at the transition, which is characterized by scale invariance re-
sulting in the above-mentioned power-law response up to some (non-universal)
high-energy cutoff Ω. Here we report a universal behavior that is characteristic
of the quantum critical region. We demonstrate that the experimentally mea-
sured phase angle agrees precisely with the exponent of the optical conductivity.
This points towards a quantum phase transition of an unconventional kind in
the high-Tc superconductors.

5.3 METHODS

5.3.1 EXPERIMENTAL DETERMINATION OF THE OPTICAL CONDUCTIVITY

As detailed in earlier chapters, the most direct experimental technique, that pro-
vides the optical conductivity σ1(ω) and its phase is spectroscopic ellipsometry.
Another popular approach is the measurement of the reflectivity amplitude over
a wide frequency region. Kramers-Kronig relations then provide the phase of
the reflectivity at each frequency, from which (with the help of Fresnel equa-
tions) the real and imaginary part of the dielectric function, ε(ω), is calculated.
We used reflectivity for 6.2 meV < ω < 0.74 eV, and ellipsometry for 0.18 eV
< ω < 4.46 eV. This combination allows a very accurate determination of ε(ω) in
the entire frequency range of the reflectivity and ellipsometry spectra. Owing to
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the off-normal angle of incidence used with ellipsometry, the ab-plane pseudo-
dielectric function had to be corrected for the c-axis admixture. We used previ-
ously published [71] c-axis optical constants of the same compound. The data
files were generously supplied to us by S. Tajima. The effect of this correction on
the pseudo dielectric function turns out to be almost negligible, in accordance
with Aspnes [92].

The optical conductivity, σ(ω), and its phase, arctan(σ2/σ1), are obtained us-
ing the relation ε(ω) = ε∞ + 4πiσ(ω)/ω, where ε∞ represents the screening by
interband transitions. In the copper oxide materials ε∞ = 4.5± 0.5. For ω = 0.5
eV an uncertainty of 0.5 of ε∞ propagates to an error of 2◦ of the phase of σ(ω).
This accuracy improves for lower frequencies.

5.3.2 FREQUENCY DEPENDENT SCATTERING RATE

For an isotropic Fermi liquid, the energy dependent scattering rate of the quasi-
particles can be readily obtained from the optical data, using the relation 1/τ (ω) =

Re
[

ω2
p/4πσ(ω)

]

. In spite of the fact that the notion of a quasi-particle in the
spirit of Landau’s Fermi liquid is far from being established for the copper ox-
ides, during the past 15 years it has become a rather common practice to rep-
resent infrared data of these materials as 1/τ (ω). The dynamical mass is de-
fined as m∗(ω)/m = Im

[

ω2
p/4πσ(ω)

]

. To obtain absolute numbers for 1/τ (ω)
and m∗(ω)/m from the experimental optical conductivity, a value of the plasma
frequency, ωp, must be adopted. With our value of ωp the dynamical mass con-
verges to 1 for ω →∞ (figure 5.2).

Sometimes the renormalized scattering rate, 1/τ ∗(ω) = 1/τ (ω) · m/m∗(ω) =

ωσ1(ω)/σ2(ω), is reported instead of τ (ω). If the frequency dependence of the
conductivity is a power law, σ(ω) = (−iω)γ−2, then 1/τ ∗(ω) = −ω cotan(πγ/2),
which is a linear function of frequency [93]. The value of the slope reveals the
exponent, and corresponds to the phase of the conductivity displayed in figure
5.5 and figure 5.6.

5.4 MEASUREMENTS

In figure 5.3 we present the experimental optical conductivity function σ1(ω) of
an optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+δ single crystal (Tc = 96K [69]). In or-
der to facilitate comparison with earlier publications [60, 94, 95] we also present
1/τ (ω) for a number of temperatures, adopting ωp = 2.4 eV for the plasma fre-
quency. The scattering rate 1/τ (ω) increases approximately linearly as a func-
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tion of frequency, and when the temperature T is increased, the 1/τ (ω) curves
are shifted vertically proportional to T. The notion that 1/τ (ω,T)∼ ω+ T in the
copper oxides forms one of the center pieces of the marginal Fermi liquid model
[39, 38, 96], and it has been shown to be approximately correct in a large number
of experimental papers [60, 94, 95]. This phenomenology stresses the importance
of temperature as the only relevant energy scale near optimal doping, which has
motivated the idea that optimally doped copper oxides are close to a quantum
critical point [39]. As can be seen in figure 5.3, 1/τ (ω) has a negative curvature in
the entire infrared region for all temperatures, and it saturates at around 0.5 eV.
Although this departure from linearity may seem to be a minor detail, we will
see that it is a direct consequence of the quantum critical scaling of the optical
conductivity.

If a quantum phase transition indeed occurs at optimal doping x = xc, then
three major frequency regimes of qualitatively different behavior are expected
[32]: (1) ω < T; (2) T < ω < Ω; (3) Ω < ω. We find direct indications of these
regimes in our optical conductivity data.

5.4.1 THE CLASSICAL REGIME

Region 1 (ω < T) corresponds to measurement times long compared to the com-
pactification radius of the imaginary time, Lτ =h̄/kBT. Sachdev [32] showed that
in this regime the system exhibits a classical relaxational dynamics characterized
by a relaxation time τr = ALτ (where A is a numerical prefactor of order 1), re-
flecting that temperature is the only scale in the system. For the low frequency

regime we expect a Drude form σ1(ω) =
ω2

pr
4π

τr
1+ω2τ 2

r
, where ωpr is the plasma fre-

quency. Then Tσ1(ω,T) becomes a universal function of ω/T, at least up to a
number of order one:

h̄
kBTσ1(ω,T)

=
4π

Aω2
pr

(

1 + A2
(

h̄ω
kBT

)2
)

(5.4)

In figure 5.4 we display h̄/(kBTσ1) as a function of u = h̄ω/kBT. Clearly the
data follow the expected universal behavior for u < 1.5, with A = 0.6. The exper-
imental data are in this regard astonishingly consistent with Sachdev’s predic-
tions, including A ≈ 1. From the fitted prefactor we obtain ωpr = 1.3 eV. Above
we have already determined the total spectral weight of the free carrier response,
ω2

p = 5.8 eV2. Hence the classical relaxational response contributes 30% of the
free carrier spectral weight. These numbers agree with the results and analysis
of Quijada et al. [60]. This spectral weight collapses into the condensate peak
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dashed black line is a fit to the scaling function proposed by Prelovsek [97].

at ω = 0 when the material becomes superconducting. In figure 5.4 we also dis-
play the scaling function proposed by Prelovsek [97], σ1(ω) = C

(

1− e−h̄ω/kBT) /ω.
The linear frequency dependence of this formula for h̄ω/kBT � 1 is clearly ab-
sent from the experimental data. The universal dependence of Tσ1(ω,T) on ω/T
also contradicts the ”cold spot model” [98], where Tσ1(ω,T) has a universal de-
pendence on ω/T2.

5.4.2 THE QUANTUM CRITICAL REGIME

In region 2 (T < ω < Ω) we can directly probe the scale invariance of the quan-
tum critical state. The Euclidean (that is, imaginary time) correlator has to be
known in minute detail in order to enable the analytical continuation to real (ex-
perimental) time. However, in the critical state invariance under scale transfor-
mation fixes the functional form of the correlation function completely: It has to
be an algebraic function of imaginary time. Hence, it is also an algebraic function
of Matsubara frequency ωn = 2πn/Lτ , and the analytical continuation is unprob-
lematic: (1) Scale invariance implies that σ1(ω) and σ2(ω) have to be algebraic
functions of ω, (2) causality forces the exponent to be the same for σ1(ω) and
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Figure 5.5: a) Absolute value of the optical conductivity plotted on a double log scale. The dotted
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σ2(ω), and (3) time reversal symmetry, implying σ(ω) = σ∗(ω), fixes the absolute
phase of σ(ω). Taken together

σ(ω) = C (−iω)γ−2
= Cωγ−2eiπ(1−γ/2) (5.5)

Hence the phase angle relating the reactive and absorptive parts of the con-
ductivity, arctan(σ2/σ1) = (2 − γ) · 90◦, is frequency independent and should
be set by the critical exponent γ. Power-law behavior of the optical conduc-
tivity of the copper oxides has been reported previously [99, 100, 93]. In fig-
ure 5.5 we display the frequency dependence of |σ| in a log-log plot, and the
phase in a linear plot. Although the temperature dependence ‘leaks out’ to sur-
prisingly high frequency in the latter, the data are remarkably consistent with
equation 5.5 for ω between kBT and 0.9 eV. The observed power law of the con-
ductivity, |σ| = C/ω0.65 corresponds to γ = 1.35, and the value of the phase,
arctan(σ2/σ1) = 60◦ ± 2◦, implies that γ = 1.33 ± 0.04. The good consistency
of γ obtained from two experimental quantities (that is, the exponent of a power
law and the phase) is a strong test of the validity of equation equation 5.5. Fre-
quency independence of the phase in region 2 and agreement between the two
power laws (one from σ(ω) and the other from the phase angle spectrum) are
unique properties of slightly overdoped samples, as demonstrated by figure 5.6,
where we present the phase function for optimally doped (Tc=88K), underdoped
(Tc=66K), and overdoped (Tc=77K) single crystals of Bi2.23Sr1.9Ca0.96Cu2O8+δ [68]
with different oxygen concentrations. The observed trend for different dopings
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Figure 5.6: The absolute value and the phase of the optical conductivity for three
Bi2Sr2CaCu2O8+δ samples with different dopings: one underdoped (UD) with a Tc of 66K, one
optimally doped with a Tc of 88K and one overdoped (OD) with a Tc of 77K. The solid black line in
the log-log plots corresponds to the function Cωγ−2 and the dotted black line in the corresponding
phase plot is (2 − γ) · 90◦

suggests that optimal doping, with Tc=88K, and overdoping, with Tc=77K, are in
the region of carrier concentrations where the optical conductivity obeys equa-
tion 5.5.

Because the phase is constant, the frequency dependent scattering rate 1/τ (ω) =
Re
[

ω2
p/4πσ(ω)

]

= Cω2−γ
= Cω0.65 can not be a linear function of frequency (but

note that 1/τ ∗(ω) is linear [93]). Our findings disqualify directly theories that do
not incorporate a manifest temporal scale invariance. Luttinger liquids are quan-
tum critical states of matter, and Anderson’s results [93] based on one dimen-



Measurements 97

sional physics are therefore of the correct form, equation 5.5. The exponent γ =

4/3 is within the range considered by Anderson, but differs significantly from
the prediction based on the ”cold spot” model [98], providing σ(ω) ∼ (−iω)−0.5,
which corresponds to γ = 3/2.

Let us now turn to the temperature dependence of the optical conductivity.
From figure 5.7 we see that in this region the conductivity crosses over to a dif-
ferent dependence on ω and T. In region 1, for h̄ω/kBT < 2, the data collapsed
on a curve of the form σ1(ω,T) = T−1 f ′(h̄ω/kBT) (equation 5.4), where f ′(u) is
a universal function. According to the simplest scaling hypothesis, σ1(ω,T) ∼
T−µh′(ω/T) with h′(u) → constant and h′(u) → u−µ in the limits u → 0 and u � 1,
respectively. For u > 3, h′(u) has a weak power-law dependence corresponding
to a frequency dependence σ1(ω,T) = C′ω−0.65

= C′T−0.65u−0.65, which means
µ = 0.65. Although this energy-temperature scaling is roughly satisfied in the
high frequency regime, it is strongly violated at low frequencies, because equa-
tion 5.4 in the regime forh̄ω/kBT < 1.5 (see figure 5.4) implies an exponent µ = 1
at low frequencies instead. Bernhoeft has noticed a similar problem in the con-
text of the heavy fermion critical points [101].

The crossover from one scaling function to the other for the different regimes
implies that an energy scale is present in the system, in spite of the fact that
for a quantum critical system temperature is the only relevant energy scale. In
region 1 the scaling function can be written as (ω/ω0)σ1(ω,T) = f (u). In region
2 it can be written as (ω/ω0)µσ1(ω,T) = h(u) where h(u) is a constant. At the
crossover point, around u = 2, the two functions are the same and this sets the
energy scale ω0. This energy scale was found to be ω0 = 78 ± 5 meV with a
corresponding characteristic temperature T0 = 450 ± 100K. The errorbars were
obtained by varying the crossover point from u = 1.5 to u = 3.

5.4.3 THE INTERBAND REGIME

Region 3 (ω > Ω) necessarily has a different behavior of the optical conductivity,
based on the following argument: the spectral weight of the optical conductivity
integrated over all frequencies is set by the f-sum rule. However, since γ > 1, the
integration over all frequencies of Re[σ(ω)] of the form of equation 5.5 diverges.
Hence we expect a crossover from the constant phase angle Arg[σ(ω)] = (2 −
γ) · 90◦ to the asymptotic value Arg[σ(∞)] = 90◦. The details of the frequency
dependence of σ(ω) at the crossover point Ω depend on the microscopic details of
the system. A (non-universal) example of an ultraviolet regularization with the
required properties is [102] σ(ω) = (ne2/m)(−iω)γ−2(Ω− iω)1−γ, which for ω� Ω
becomes of the form given by equation 5.5. Indeed the phase functions show a
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Figure 5.7: Temperature/frequency scaling behavior of the real part of the optical conductivity of
Bi2Sr2Ca0.92Y0.08Cu2O8+δ . a) The data plotted as (ω/ω0)σ1(ω,T), which is equivalent to figure
5.4. b) The data plotted as (ω/ω0)0.65σ1(ω,T). c) The data plotted as (ω/ω0)0.5σ1(ω,T), which
gives a slightly better collapse.
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gradual upward departure from the plateau value for frequencies exceeding 0.6
eV (figure 5.5). This indicates that the ‘ultraviolet’ cut-off is on the order of 1 eV.

5.5 CONCLUSIONS

Do our observations shed light on the origin of the quantum criticality? In fact,
they point unambiguously at three surprising features. First, the current correla-
tor behaves singularly, and this implies that the electromagnetic currents them-
selves are the order parameter fields responsible for the criticality. Second, the
criticality persists up to surprisingly high energies. Third, we have seen that the
optical conductivity curves collapse on σ1(ω,T) = Tµh(ω/T), where µ = 1 for
ω/T < 1.5, while µ ∼ 0.65 for ω/T > 3. This disqualifies many theoretical pro-
posals. Much of the intuition regarding quantum criticality is based on the rather
well understood quantum phase transitions in systems composed of bosons. A
canonical example is the insulator-superconductor transition in two spatial di-
mensions [103] where the optical conductivity is found to precisely obey the
energy-temperature scaling hypothesis [104], characterized by a single exponent
µ= 0 governing both the frequency and temperature dependences [32, 104, 105].
Bosonic theory can be therefore of relevance in electron systems, but it requires
the fermionic degrees of freedom to be bound in collective bosonic degrees of
freedom at low energy.

In the copper oxides, it appears that the quantum criticality has to do with
the restoration of the Fermi-liquid state in the overdoped regime characterized
by a large Fermi surface. This implies that fermionic fluctuations play a central
role in the quantum critical state, and their role has not yet been clarified theo-
retically. The absence of a single master curve for all values of ω/T is at variance
with notions of quantum critical behavior, and its understanding may require
concepts beyond the standard model of quantum criticality. We close with the
speculation that the presence of bosonic fluctuations and fermionic fluctuations
in the copper oxides is pivotal in understanding the quantum critical behavior
near optimal doping of the copper oxides.
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[1] M. R. Norman and C. Pépin, Rep. Prog. Phys. 66, 1547 (2003) The electronic
nature of high temperature cuprate superconductors.

[2] J. Orenstein and A. J. Millis, Science 288, 468 (2000) Advances in the Physics
of High-Temperature Superconductivity.

[3] J. R. Schrieffer and M. Tinkham, Rev. Mod. Phys. 71, 314 (1999) Supercon-
ductivity.

[4] P. W. Anderson, Science 235, 1196 (1987) The Resonating Valence Bond State
in La2CuO4 and Supersonductivity.

[5] P. W. Anderson, G. Baskaran, Z. Zou and T. Hsu, Phys. Rev. Lett. 58, 2790
(1987) Resonating-Valence-Bond Theory of Phase Transitions and Superconduc-
tivity in La2CuO4-Based Compounds.

[6] P. W. Anderson, Mat. Res. Bull. 8, 153 (1973) Resonating valence bonds: a new
kind of insulator?

[7] P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi and F. C.
Zhang, J. Phys.: Condens. Matter 16, R755 (2004) The Physics Behind High-
Temperature Superconducting Cuprates: The ”Plain Vanilla” Version of RVB.

[8] S. Kivelson, Phys. Rev. B 36, 7237 (1987) Nature of the pairing in a resonating-
valence-bond superconductor.

[9] S. A. Kivelson, D. S. Rokhsar and J. P. Sethna, Phys. Rev. B 35, 8865 (1987)
Topology of the resonating valence-bond state: Solitons and high-Tc superconduc-
tivity.

[10] P. W. Anderson, Physica C 341-348, 9 (2000) .

101



102 BIBLIOGRAPHY

[11] T. Eckl, W. Hanke and E. Arrigoni, Phys. Rev. B 68, 014505 (2003) Phase-
fluctuation-induced reduction of the kinetic energy at the superconducting tran-
sition.

[12] V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995) Importance of phase
fluctuations in superconductors with small superfluid density.

[13] J. E. Hirsch, Phys. Lett. A 134, 451 (1989) .

[14] J. E. Hirsch and S. Tang, Phys. Rev. B 40, 2179 (1989) Effective interactions in
an oxygen-hole metal.

[15] F. Marsiglio and J. E. Hirsch, Phys. Rev. B 41, 6435 (1990) Hole superconduc-
tivity and the high-Tc oxides.

[16] J. E. Hirsch and F. Marsiglio, Phys. Rev. B 62, 15131 (2000) Optical sum rule
violation, superfluid weight and condensations energy in the cuprates.

[17] J. E. Hirsch, Phys. Rev. B 65, 184502 (2002) Why holes are not like electrons: A
microscopic analysis of the differences between holes and electrons in condensed
matter.

[18] S. Das and N. C. Das, Phys. Rev. B 46, 6451 (1992) Theory of hole supercon-
ductivity.

[19] J. E. Hirsch, Physica C 199, 305 (1992) Apparent violation of the conductivity
sum rule in certain superconductors.

[20] J. E. Hirsch, Phys. Rev. B 62, 14487 (2000) Superconductivity from undressing.

[21] S. Chakravarty, A. Sudbo, P. W. Anderson and S. Strong, Science 261, 337
(1993) Interlayer Tunneling and Gap Anisotropy in High-Temperature Supercon-
ductors.

[22] P. W. Anderson, Science 268, 1154 (1995) Interlayer Tunneling Mechanism for
High-Tc Superconductivity: Comparison with c-Axis Infrared Experiments.

[23] P. W. Anderson, Science 279, 1196 (1998) c-Axis Electrodynamics as Evidence
for the Interlayer Theory of High-Temperature Superconductivity.

[24] P. W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates
(Princeton University Press, Princeton, New Jersey, 1997).

[25] J. Schuetzmann and J. H. Kim, Proc. 10th Ann. HTS Workshop on Physics
(World Sc. Publ., Houston, 1996).



BIBLIOGRAPHY 103

[26] J. Schuetzmann, H.S. Somal, A.A. Tvetkov, D. van der Marel, G. Koops,
N. Koleshnikov, Z.F. Ren, J.H. Wang, E. Brueck and A.A. Menovski, Phys.
Rev. B 55, .

[27] K.A. Moler, J.R. Kirtley, D.G. Hinks, T.W. Li and M. Xu, Science 279, 1193
(1998) .

[28] A. A. Tsvetkov, D. van der Marel, K.A. Morel, J.R. Kirtley, J.L. de Boer, A.
Meetsma, Z.F. Ren, N. Koleshnikov, D. Dulic, A. Damascelli, M. Grüninger,
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te ronden. Ik voel me altijd welkom als ik langskom en ik dank je voor de
gesprekken over mijn wetenschappelijke toekomst.

Minstens zo belangrijk was de technische hulp van Cor. Altijd bereid om je
omstandig uit te leggen dat je idee zoveel praktische haken en ogen heeft dat
het onmogelijk is om het te realiseren. Vervolgens kom je met een ontwerp dat
ontzag oproept. Je apparaten en hulpmiddelen, zowel groot als klein, hebben
de nauwkeurigheid van de metingen aanzienlijk verbeterd. Vaak zei je dingen
waarvan ik me pas later realiseerde hoe waardevol ze waren. Bedankt.

De fijne kneepjes van het experimenteren heb ik van Markus geleerd. Jij
bracht me bij om niets aan het toeval over te laten en bij een experiment iedere
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aanname te controlleren. Nog steeds durf ik de deur van een lab niet dicht te
laten vallen omdat de vibraties de meting kunnen beı̈nvloeden. Cristian, met
jou heb ik lief en leed gedeeld. Nachtelijke uren op het lab en heerlijke wan-
delingen in de Roemeense bergen. We hebben metingen geanalyseerd, theorieën
gekraakt en het leven, vrouwen en de liefde besproken. We zijn er (gelukkig?)
nog niet uit. Ik ben beniewd of je ooit nog weer in Roemenie gaat wonen, want
daar ligt je hart. Sterkte met je boek en bedankt dat je mijn paranimf wilt zijn.
Ook Julia, Mircea en Anton wens ik het allerbeste. Alexey, our symbiotic life has
finally come to an end. For years we shared the same office in Groningen, then
we shared the same office in Geneva and finally we shared the same appartment
in Geneva. You were always there to discuss every experimental or theoreti-
cal question I had. Patricio, ook met jou heb ik menig experimenteel probleem
proberen op te lossen. Desnoods in de kroeg, waar je ook altijd wel voor te por-
ren was. Katarzyna, with you I learned to dance the salsa and it was a great
period. Thank you for that and the cheerfull social input in the group. Arjan,
ook met jou kon er geluld worden, tot ver in de nachtelijke kroeguurtjes. En
Jeroen, Andrea, Johan, Anna-Maria, Diana en Artem, jullie waren fijne collega’s
en bedankt voor jullie hulp. Datzelfde geldt voor Silviu, Daniele (keep your ide-
als), Sagar, Arjan, Silvio, Mirko, Jan, Peter, Ronald, Gabi, Michele, Wilma, Sjoerd,
Karina, Jochem en al die anderen.

In Geneva is a second group of collegues with whom I had a very good time.
First of all Fabrizio, we also had overnight discussions about physics. And of
course we also discussed the girls, but in a more italian way. To express my feel-
ings in this, you learned me the most horrible words in italian. Thank you for all,
and I hope we will find the opportunity to measure together again, because we
make a great team. And too bad, but you can not mijn fiets kopen, because I still
need it in Geneva. Milena, I was always welcome and I thank you for that. De
zorg voor de MIR ellipsometer is grotendeels overgegaan naar Erik. We hebben
de ins en out tot in detail besproken en wellicht kun je er inmiddels beter me om-
gaan dan ik. Ik wens je het allerbeste toe en wees een beetje lief voor het ding.
Peter, thank you very much for the fast but carefull reading of my thesis. You
found many mistakes, both in grammar and in explanation. Riccardo, good luck
with the experiments. Also Alexander, Violeta, Mehdi and the new members of
the group I wish all the best.

Dan zijn er nog de mensen die stilletjes allerlei zaken voor je regelen die o
zo belangrijk zijn. Renate, bedankt en ik hoop dat ik je niet tot wanhoop heb
gedreven. Fabienne et Elisabeth, merci beaucoup. Ook Frans van der Horst
en Henk Bron bedankt voor het werk dat jullie verricht hebben. En natuurlijk
Linstra, voor al die keren dat je toch nog helium voor me kon regelen.
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I also would like to thank the members of the reading commitee, Mike Nor-
man, Jean-Marc Triscone and Jan Zaanen for reading my thesis and commenting
where nessecary. En Tom Palstra, Daniel Khomski, George Sawatsky, Hao Tjeng
voor hun verhelderende discussies.

Er zijn te veel familieleden en vrienden om op te noemen waar ik altijd leuke
dingen mee doe en die altijd gevraagd hebben hoe het gaat met mijn onderzoek.
Ik hoop dat ik jullie niet al te veel verveeld heb met onbegrijpelijke details. In
het bijzonder wil ik Irene bedanken voor haar opbeurende woorden. Weten we
al hoe we er voor zorgen dat de wetenschappelijke wereld zich naar ons voegt in
plaats van andersom? Volgens mij moeten we het er nog een keer over hebben.
Bedankt ook dat je paranimf wilt zijn. Heerko, dank je wel voor het maken van
de voorkant.

Pap, mam, Petra, Jerry (Merijn), Tirza en Hielke: het is eindelijk zover, dit
boekje is voor jullie. De volgende keer zal ik jullie echt beter op de hoogte
houden hoe het met me gaat.

Nicole, zonder jou was het niet gelukt. We gaan er wat van maken in Genève
en daarna komen we zo snel mogelijk terug. Desnoods wordt ik schaapsherder.




