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Chapter 1

Introduction

1.1 General Introduction

Transition metal oxides are compounds formed from oxygen and transition metals
elements existing in the middle of the periodic table (Cu, V, Cr, etc.). Some of them
have been used since ancient times as pigments, because they may present strong optical
absorptions, which lead to color. Besides this, they exhibit a large variety of physical
properties. They can be metals (CrO2), semiconductors (Cu2O) or large gap insulators
(V2O5). Magnetically, they can behave as ferromagnets (CrO2), ferrimagnets (γ−Fe2O3),
or antifferomagnets (α−Fe2O3). They could attain even superconductivity at relatively
high temperatures (YBa2Cu3O7−δ ).

A common characteristic of the most transition metal oxides is the small radial extent
of the valence 3d orbitals, which is comparable with the interatomic distance, and thus
the valence electrons may form narrow bands, or they could experience strong Coulomb
interactions, leading to correlated motion. It is important to remember here that, in
principal, Coulomb repulsion forces exist in any crystal, but do not lead immediately to
a correlated electron motion. For example, the usual metals may be seen as a collection
of non-interacting renormalized electrons. The reason is that the kinetic energy of the
electrons, in a high density electron gas, is much larger than the interaction one.

In the transition metal oxides, the small radial extent of the valence 3d orbitals leads
mainly to a strong on-site Coulomb repulsion. Here, the motion of electrons on some
sites is strongly influenced by the partial presence of other electrons on those sites, and
thus the motion may be correlated. This type of correlation is best exemplified by the
antiferromagnetic materials, where the spin of two neighboring electrons orient in opposite
direction, not because of the direct magnetic field produced by the spins, but because in
this situation they can virtually hop between the two sites. We call a system strongly
correlated, if taking into account this Coulomb interaction is essential in understanding
the main physical properties.

Because the electrons in the transition metal oxides are highly correlated, a compli-
cated relationship between the electronic, spin and lattice degrees of freedom may set in.
Thus, the atomic character may be in competition with the itinerant character. In some
cases, this may lead to exotic magnetic properties, since the localized character favor the
local magnetic moment according to the Hund’s rule, and the band character favors the
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4 CHAPTER 1. INTRODUCTION

Pauli paramagnetism. Under specific conditions, the interplay of these degrees of freedom
results in an equilibrium, where we can find regular patterns across the transition metal
sites in the sample. Charge or spin ordering of the ground state may be easily found
in many compounds. In addition, an ordering of the orbitals on which valence electrons
reside may appear. This is proposed for example as the possible mechanism responsible
for the temperature-induced magnetization reversal in YVO3 [1].

If both localized and itinerant carriers exist in the material, coupling between them
may arise. For example, strong coupling between correlated itinerant electrons and lo-
calized spins, both of 3d character, arises in R1−xXxMnO3 (where R = La,Pr,Nd; X =
Sr,Ca,Ba,Pb) compounds. This leads to giant magnetoresistance effects (a huge change of
the resistance when the magnetic field is applied, such as four orders of magnitude change
in thin films of Nd0.7Sr0.3MnO3 [2]).

Many properties of the transition metal oxides can be fine-tuned with chemical sub-
stitution. The best examples of how sensitive the properties may be to chemical com-
position are the high temperature superconductors [3]. Here, a change of stoichiometry
in YBa2Cu3O7−δ from δ = 0 to δ = 0.16 turns an antiferromagnetic insulator into a
superconductor.

Another property of many transition metal oxides is low dimensionality. Even though
the interactions are clearly three-dimensional (the atoms stick together to form a three-
dimensional crystal), the main physical properties may be considered as coming from
electrons interacting only inside some planes (two dimension 2D) or lines (one dimension
1D). Examples of 2D materials are the high temperature superconductors [3], ladder
compounds such as the α phase of the pentoxides [4], or triangular Kagomé lattices
where geometric magnetic frustrations may occur [5]. As 1D system we may cite here the
inorganic spin-Peierls material CuGeO3 [6].

Low dimensionality creates also sensitivity when different parameters are changed. For
example, in low-dimensional spin systems, quantum fluctuations could result in qualita-
tively different low-energy behavior. Haldane conjectured [7] that antiferromagnetic spin
chains with integer spin would have a gap in the energy spectrum, whereas the spectrum
of chains with half integer spins is gapless.

Many other examples of exotic properties of transition oxide materials may be enumer-
ated here. However, we will concentrate next on the two classes of low dimensional oxides
studied in this thesis: vanadium pentoxides doped with sodium (Chapters 3 and 4) and
high temperature superconductors (Chapter 5). Both materials were studied experimen-
tally using optical spectroscopy. An introduction to one of the spectroscopic techniques
used, namely ellipsometry, is presented in Chapter 2.

1.2 Vanadium Pentoxides

Vanadium pentoxides represent an interesting class of transition metal oxides whose
properties may be easily changed by chemical composition. This class is given by the
parent insulating compound V2O5 [4]. The structure of V2O5 consists of layers of square
pyramids of oxygen atoms surrounding a V+5 ion and thus, on pure chemical grounds,
V has no valence 3d electrons. Here, many new vanadium pentoxides can be formed by
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adding different electronic donors (A=Li, Na, Ca, Mg, etc.). The A atoms enter the space
between the layers and act as electron donors for the V2O5 layers, creating three possible
phases, α, β, γ [4].

Our results on the α phase of some vanadium pentoxides doped with sodium, namely
α′-NaV2O5, α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2) and α′-NaxV2O5 (0.85 ≤ x ≤ 1.00) are
presented in Chapter 3. Doping V2O5 with a lower concentration of Na atoms, such as
in β−Na0.33V2O5, creates the second β phase. Our results on the measurements on this
β phase are presented in Chapter 4.

The α phase form a two-dimensional ladder pattern of V atoms. Its best known
representant is α′-NaV2O5, in particular because at Tc=35K a phase transition occurs,
below which two changes take place simultaneously [6]: a doubling of the unit cell along
the ladder direction and an opening of a spin gap. At the time of its discovery it was
wrongly suspected (because of a previous wrong determination of a crystal structure [8–
10]) that the material presents a spin-Peierls transition (a transition where two by two
electron spins of neighboring V atoms pair to form a singlet). This would have made α′-
NaV2O5 the second inorganic material having a spin-Peierls transition after CuGeO3 [6].
However, later measurements regard the material rather as a charge order system [11].

The mechanism of the phase transition, the main focus of research on α′-NaV2O5,
is at this point not explained, even though several proposals exist [11, 12]. The system
is generally seen as a quarter-filled ladder compound with the spins carried by V-O-V
molecular orbitals on the rungs of a ladder [10], and strong on-site Coulomb repulsion
(thus, it is a strongly correlated electron system). The V-O-V unit behaves mainly as a
H+

2 molecule, with the ground state in a bonding state and the first excited state in an
antibonding configuration. A peak would then evolve in the optical spectra corresponding
to the bonding-antibonding transition of the on rung molecular orbitals. This peak was
detected in measurements [13]. Later, however, other explanations were also proposed for
the peak, including an on-site d-d transition between the crystal field split levels of the
V-ions[14].

To discriminate between these possibilities, we conjectured that by doping α′-NaV2O5

with extra electrons, the intensity of the peak would show different behaviors. The electron
doping is chemically realized in the single crystals samples of α′-Na1−xCaxV2O5. These
samples have been measured, and the results are presented and interpreted in the first part
of Chapter 3. In addition, other temperature and doping dependencies of the vanadium
pentoxides were measured, such as for α′-NaxV2O5. We present the results of these as
well, in the second part of Chapter 3.

In chapter 4, some measurements on the β phase of the vanadium pentoxides are pre-
sented, namely for β-Na0.33V2O5 [15, 16]. This material is one-dimensional: the resistivity
along the chain direction b is two order of magnitude smaller that the one perpendicular
to the chains.

The interest in this material arose recently, because better grown stoichiometric sam-
ples show additional phase transitions missed by the older samples [17]. Below room
temperature, the system undergoes three phase transitions: a structural phase transition
which doubles the unit cell at TNa ' 240 K, a metal-insulator transition at TMI = 136 K
(accompanied by a tripling of the unit cell along the b axis[18]) and a magnetic transition
at TCAF = 22 K [19, 20]. In addition, a transition into a superconducting state was
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observed under high pressure[21].

These transitions, and the main electronic properties are not understood. Because
the dilution of the donor electrons is high (one donated electron per 6 vanadium sites),
the charge carriers are expected to acquire a polaronic character, in the sense that the
movement of electrons disturbs the nuclei in their vicinity [22]. Strong electron-phonon
coupling in β-Na0.33V2O5 was earlier supposed to lead to formation of bipolarons [23].

The high dilution of the electrons donated to the V sites could also result in an almost
equal redistribution of electrons on the three different V sites present at room temperature.
This, in principle, would explain very naturally the tripling of the unit cell at the metal-
insulator transition (remember that we have we have one donated electron per six sites).
However, as pointed by Yamada in Ref. [17], the long range magnetic transition present
in the system at TCAF = 22 requires that the donated electrons are close to one another,
and capable of interacting magnetically. This is surprising, since the dilution is high, and
hence the distance between donated electrons is large (one should not compare this is
with the situation in the high temperature oxides, since there the doped charge carriers
go into an antiferromagnetic background, but in β-Na0.33V2O5 they go on an ”empty”
lattice with no other d electrons present).

To give an answer to this type of considerations, more experimental data are needed.
Optical measurements on β-Na0.33V2O5 are scarce in literature, and they are almost com-
pletely absent for the new grown samples. That is why we considered that measurements
in infrared and visible range could settle many important issues in this compound. In the
Chapter 4 we present the results of our endeavor.

1.3 High temperature superconductors

The exotic properties of the oxides are probably best exemplified by the high tem-
perature superconductors, which is the subject of chapter 5. These are layered structures
of CuO2 square patterns, interleaved by various cations layers which provide different
doping to the CuO2 planes. They are also generally named cuprates, even though high
temperature superconductors without Cu have been found. If no doping is present, then
the copper atom is in the Cu+2 configuration, having a hole (d9 configuration) with a spin
of 1/2 on every Cu site. The system is then a Mott insulator, in the sense that a strong
on-site Coulomb repulsion localizes the electron wave function, and the system does not
conduct. Moreover, due to a super-exchange interaction between the Cu spins via the O
atoms, the ground state of these undoped cuprates is antiferromagnetic.

There are two types of dopings which can be induced in the CuO2 planes (by chang-
ing the concentration of cations, for example), electron and hole doping. The resulting
phase diagram is presented in Fig. 1.1. As we can see, by doping, the Neèl temperature
(TN) for the antiferromagnetic-paramagnetic transition decreases. The reason why this
decrease is faster in the hole doped regime, has to do with how the doping affects the
magnetic interaction. In the hole doped regime, holes enter into the oxygen p-orbital in
the CuO2 planes. This induces ferromagnetic coupling between the Cu+2 ions adjacent
to the partially empty oxygen orbital. As a result, significant spin frustrations develop in
the antiferromagnetic background, and a rapid decline of the Neèl state is observed. On
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the other hand, electron doping acts on the Cu+2 ions, giving rise to spinless Cu+ ions,
that dilute the antiferromagnetic background, but do not introduce strong spin frustra-
tions, and hence the Neèl state survives over a broader range of electron doping, as is
schematically drawn in Fig. 1.1.

Upon further doping of carriers, long-range antiferromagnetism vanishes, and super-
conductivity sets in. This came in the beginning as a surprise, since the parent undoped
compounds are insulators, in contrast to the ”classical” superconductors, which are met-
als. More important however, is the high temperature of superconducting transition at-
tained by the cuprates. This reaches as high as 134K at ambient pressure (and 164K with
a pressure of 30GPa) in Hg- based system HgBa2Ca2Cu3O8+δ. The transition tempera-
ture Tc for all hole-doped cuprates varies almost universally with the carrier concentration
per Cu ion as Tc = Tmax

c [1 − 82.6(p − p0)
2], where the maximum transition temperature

Tmax
c is obtained for p = p0 ∼ 0.16. The two doping regimes below and above p0 are

called underdoped and overdoped, respectively.

The high transition temperature of the hole doped superconducting cuprates has been
the driving force behind a huge theoretical and experimental research on these compounds.
An understanding of the basic mechanism leading to it is however still missing, unlike the
case of classical superconductors, which are described remarkably well within the frame
work of BCS theory. This came both as a disappointment and as a challenge to the
researchers in the field. The present situation looks like a game of puzzle, of which some
of the lost puzzle pieces are recovered, but even assembled in some way, they still do not
give the correct image. What is known, and what are generally accepted as the principal
marks of the cuprates? We will try to summarize a small part of the immense knowledge
accumulated over the past years.

A good understanding of the physics involved in the high temperature superconductors
requires a correct identification of the basic building blocks, and a theory which binds these
blocks together. BCS theory appeared in the beginning as a theory which, modified, may
explain some of the physical properties of the superconducting cuprates. The usual ac
Josephson effect frequency 2eV/h was still observed [24], and thus Cooper pairs may be
still formed. The observed flux quantum was also found to be of the usual magnitude
hc/2e[25].

However, the basic building blocks of the BCS theory, the quasi-particles of the Fermi-
liquid approach, were difficult to find in the normal state. This can be deduced from
ARPES studies of the single particle spectral function [26], or indirectly from the analysis
of different response functions of the system (such as spin or current) [27] and heat
transfer [28]. Photoemission data at momentum (0,π) in Bi2Sr2CaCu2O8+δ have revealed
that quasi-particles may exist in the superconducting state, but they disappear slightly
above Tc [29]. In addition, the optimally doped samples show the in-plane resistivity which
decreases linearly as the temperature decreases, as opposite to the quadratic behavior
predicted by the Fermi-liquid theory (though generally accepted, this observation is still
doubted by some researchers, see [30]).

As a result, most researchers would disregard Fermi-liquid approach as applicable in
the normal state, even though at asymptotically low temperature and energies the physics
may be dominated by quasi-particles [31]. This is not completely surprising, since the
cuprates are characterized by strong repulsion between electrons, and it does also not
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SC
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Figure 1.1: Generic phase diagram of the p-type and n-type cuprates. AFM designates
the antiferomagnetic state, SC the superconducting state, and TN , Tc, T∗ are the Neel,
superconducting and pseudogap transition temperatures, respectively.

completely disprove the BCS pair approach, but it led to the idea that maybe the pairing
is different, for example a collective phenomenon [31].

The ”glue” which binds the pair is another important ingredient to be found. In
the classical superconductors, the ”glue” is generated by the electron-phonon interaction.
This explained why the transition temperature was so low, of the order of few or tens
of K (the hierarchy gives EF À h̄ωD À kBTc). This is also the main reason why the
phonon interaction is disregarded as the interaction responsible for the high transition
temperature in the cuprates, even though electron-phonon influence was observed (see for
example the ARPES data from Ref. [32]).

Some remaining candidates for the ”glue” are the electrons themselves. For ex-
ample, a ’triplet’ state, which was found to give an excitation at around 41 meV in
YBa2Cu3O6.92 [33], was proposed to act as a binding agent [34]. Magnetically me-
diated superconductivity by quanta of the magnetic fluctuations was also observed in
UPd2Al3 [35, 36]. This may come as a surprise, since magnetism and superconductivity
look like oil and water, the Meissner effect assuring that the superconductor will expel
the magnetic field passing through it. However, the pairing may be given by the spin
fluctuations, as suggested by the recent discovery of a superconducting phase inside a
ferromagnetic phase in UGe2 [37].

More is known about the symmetry of the pair state. This has been long suspected
to have a d-wave symmetry [38] (the order parameter changes sign under 90 ◦ rotation).
By ingeniously designing tri-crystal substrates of SrTiO3, and rendering the surface with
a scanning SQUID microscope, Kirtley and coworkers [39] have been able to confirm the
d-wave symmetry of the order parameter, giving thus a big blow to the phonon coupling
schemes, which would result in the s-symmetry of the order parameter. This type of
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symmetry agrees also with the highly anisotropic form of the superconducting gap ∆(k)
[40].

Because the parent undoped cuprates are Mott insulators, the Hubbard on-site Coulomb
repulsion physics is expected to play an important role. As a result, many numerical com-
putational procedures where dedicated to the problem. One of the first results to come
out was the prediction of the so-called stripe order [41]. In the ground state, this consist of
antiferromagnetic domains separated by domain walls on which the charge carriers reside.
They could be in a static phase, or they could fluctuate. Their presence could explain
very elegantly the position of the incommensurate magnetic peaks observed in neutron
scattering measurements [42], as a function of the doping level. Later, more conclusive
evidence for their presence was found [43, 44] in YBa2Cu3O7−δ . Whether superconduc-
tivity originates in charge stripes is still a matter a debate, with arguments pro [44] and
against.

The high temperature superconductors are not only characterized by a low carrier
concentration (p0 ∼ 0.16 yields about 1021cm−3), but also by a short coherence length,
on the order of 2 or 3 lattice constants. This suggested that two ”doped holes” in close
proximity could form two-particle bound states, Cooper pairs, which would exist also in
normal state [45], and then Bose-Einstein condense below Tc. This type of real space pairs
was also dismissed (see for example the Ref. [31]), because then the chemical potential is
expected to lie below the bottom of the band, whereas experimentally it is found to lie in
the middle of the band.

Much attention was devoted over the time to the opening of the so-called ”pseudo-
gap”, which appears in the underdoped and slightly doped samples below a temperatures
denoted by T∗ in Fig. 1.1. The presence of the pseudo-gap manifest itself directly in
infrared optical conductivity [46], or by plotting the frequency dependent scattering rate
1/τ ∗(ω) [47], as a small spectral weight at low frequencies. Its evolution may be a sign
of the collective physics associated with the growth of the electronic correlations. One
option presented in Ref. [31], is that as the temperature is lowered, the antiferromagnetic
fluctuations develop, and since the antiferromagnetic excitations have a gap, one might
expect that these fluctuations would contribute to the pseudogap as well. It was also
argued that the superconducting gap would emerge from the normal state pseudogap,
which would have a d-wave symmetry as well [48]. A generally accepted picture of the
origin of the pseudogap is however missing.

To account for the observed experimental facts, many proposals have been put forward.
P.W. Anderson proposed in the beginning the interlayer tunnelling mechanism [3, 49],
where superconductivity arises from tunnelling of electron pairs between the copper oxide
planes. Later, however, Moler [50] and Tsvetkov [51] have disproved this theory by
measuring the c-axis penetration depth and the interlayer plasma frequency of electron
pair oscillations. They showed that interlayer tunnelling mechanism provides only 1% of
the condensation energy in Tl2Ba2CuO6.

A different approach was also invoked, a so-called Resonance Valence Bond (RVB)
state [52], a quantum ground state of the electronic system, which may play a decisive
role. This follows the belief that the Hubbard models, or simplified t-J models, lead to
correlation effects which may play the leading role [53]. A important consequence of this
theory is the spin-charge separation [54], in which low energy excitations consist of spinons
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(no charge) and holons(no spin). However, no direct evidence for spin-charge separation
has been obtained [55].

A phenomenological approach was used in creating the SO(5) theory [56]. It uses the
fact that the HTSC emerges upon doping from the antiferromagnetic compounds. In the
same way as a unification is usually done in the particle physics theories, SO(5) theory
tries to unite the superconducting and antiferromagnetic phases in a larger symmetry
group.

The superconducting state was also supposed to appear because frustrated kinetic
energy of single charge carriers may be recovered when pairs are formed [57–59]. A
model based on a kinetic energy driven mechanism of superconductivity may not require
subtle induced attractions, since it may derive directly from a strong repulsion between
electrons [31], but it would still require certain conditions, since a limited class of strongly
correlated systems presents superconductivity. The same reduction of kinetic energy was
invoked by Hirsch, who proposed a model in which the kinetic energy reduces when
two holes come closer[60]. However, only recently, plausible experimental evidence was
presented to support these scenarios, namely the optical measurements performed in the
visible range for Bi2Sr2CaCu2O8+δ [61, 62], which showed that indeed the kinetic energy
lowers in the superconducting state.

The behavior of the other part of the electron energy, namely the Coulomb correlation
energy, is not known. Leggett [63] has proposed that this energy would decrease in
the superconducting state, as a result of the improved screening due to Cooper pair
formation. He also proposed that the saving of the Coulomb energy would take place
primarily at midinfrared frequencies (0.1-2 eV ) and small momentum vectors q ≤ 0.3Å−1.
Some attempts have been done to measure these changes using Electron Energy Loss
Spectroscopy, but they proved unsuccessful, due to resolution problems of the technique.

Optical spectroscopy does have the necessary resolution, but it probes the response of
the system at much smaller momenta (given by the frequency of the light used). However,
it may provide useful indications. With these thought in mind, we endeavored ourselves to
measure carefully the temperature dependence of the optical properties for the underdoped
and optimally doped Bi2Sr2CaCu2O8+δ , and interpret the data in terms of the Coulomb
energy stored in the center of the Brillouin Zone, following an approach developed earlier
by Nozieres and Pines [64]. We hoped that our quest will cover one more piece of the
puzzle of the high temperature superconductors. The results are presented in the last
chapter of the thesis (chapter 5).



Chapter 2

Experimental Technique

2.1 General Introduction

The presence of the visible light coming from the sun was essential to the evolution
of the present forms of life, not only because it was a source of energy. The sunlight,
scattered from different objects, carries also an information about the objects themselves,
for example their color, form or dimensions. This type of information was crucial in the
species’s fight for survival. To receive this information, the species developed molecular
receptors in the visible part of spectrum (which has energies of about 1eV). The intensity
of this reaching the earth is high, and the energies of the first absorbtions in molecules may
be around 1eV, making them suitable as detectors. In that perspective, the present optical
spectroscopy is just an improvement of the technique of receiving even more information
about the objects themselves, with the use of better sources, detectors, etc.

The incoming sunlight has three main characteristics: wavelength, polarization and
intensity. As known, there are three molecule receptors to ”measure” the spectral dis-
tribution of the incoming light. The relative intensities given by the three sensors is
measured, thus providing us with the colorful image of the world. This is basically the
only thing which the human eye, and thus humans, can observe easily on some incoming
light. The small wavelenghts of the light (about 1µm, thousand time smaller than the
usual observable value of 1mm) can be observed only via some type of experiments, like
diffraction. The same happens with the quanta of light. It is interesting to note that the
human eye responds to absorbtion of a single quanta [65, 66], that is a single molecular
receptor is able to have a single absorbtion transition, and transmit further the informa-
tion to the brain. The signal is however not allowed to reach the brain, by some neural
filters, unless at least about 9 different photons are detected within less than 100 ms [65].
That is to avoid the ”quantum noise” in the low intensity light!

The polarization of light was not very important to the evolution of humans, because
the light coming from the sun is unpolarized, even though by reflection and refraction with
air molecules or different objects it acquires a certain degree of polarization. The portion
of the sky which is 90◦ away from the sun tends in this way to be partially polarized.
This is important for some insects, like bees for example. They use the sun as a compass,
being able to see the polarization pattern of the sky [67]. A Danish archaeologist, Thorkild
Ramskou, suggested [68] that the Vikings might have used also the polarization of the

11
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skylight, for navigation purposes. Their sagas describe some ”sunstones”, which the
Vikings would have used on a cloudy weather when reaching the coast of North-America.
A small, clear patch of sky close to the zenith would have been enough for determining
the position of the sun. Later, it was shown directly by Wilhelm K. von Haidinger (1795-
1871), that even the human eye can distinguish different states of polarization, thanks to
a small aberration or ”defect”.

As mentioned, after reflection on different surfaces, the light tends to be partially
polarized. The effect is well known to the fishermen whom, using polarized sun glasses,
can filter part of the sunlight reflected by the surface of the sea, having thus a better
image of the movement of the fishes below the surface. Reflections from different surfaces
polarize partially the light in different ways. In that sense, a measure of the way the light
is polarized after reflection is a measure of the surface properties.

2.2 Introduction to visible light ellipsometry

There are many ways in which a measurement of the reflected polarized light can
take place. All use however some components called polarizers, which linearly polarize
the light when travelling through them, and possible quarter-wave plates. For example,
the nulling ellipsometer technique uses one polarizer before the light touches the surface,
and a quarter-wave plate together with another polarizer (the analyzer) after the light
is reflected. The orientations of the quarter-wave plate and the analyzer are varied until
no light passes though the analyzer. From these orientations one extracts the surface
properties. Modern nulling ellipsometers use computers to rotate the elements and to au-
tomatically calculate the ellipsometry signal very quickly. However, the nulling technique
is not ideal for automated instruments because it is based on measuring a zero signal.
This was an advantage in the early ellipsometers because the human eye is very sensitive
to small changes in the signal around the ’null’. However, modern light detectors exhibit
significantly higher noise at low intensities.

Another technique is Phase Modulated Ellipsometry, where the polarization of the light
is modulated by a Photo-modulator. We encounter also Rotating Polarizer Ellipsometer
and Rotating Analyzer Ellipsometer. We will deal in the course of this theses with an
Rotating Polarizer Ellipsometer, and in Fig. 2.1 we detail its method.

As we can see from Fig. 2.1, the monochromatic light given by the monochroma-
tor passes through a fixed polarizer before touching the surface. This produces linearly
polarized light that can be decomposed theoretically into two linearly polarized compo-
nents, one in the plane of incidence (Ei

p) and one perpendicular to it (Ei
s), having the

same phase. Because of the geometry, if the sample measured is a bulk isotropic sample,
the two components are still linearly polarized after reflection on the sample, but the
two phases and amplitudes are now different. We can quantify this by defining different
reflectivity coefficients for the p and s components:

R̃p =
Ẽr

p

Ẽi
p

; R̃s =
Ẽr

s

Ẽi
s

; (2.1)
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Figure 2.1: The principle of a Rotating Analyzer Ellipsometer, described in text

where ∼ denotes complex numbers, and i and r stand for incidence and reflected
beams. In more general cases, when the sample is anisotropic, one should use the general
Jones matrices formalism [69] to define a reflection matrix:

(
Ẽr

p

Ẽr
s

)
=

(
R̃pp R̃ps

R̃sp R̃ss

) (
Ẽi

p

Ẽi
s

)
(2.2)

In any of the two cases, anisotropic or isotropic, the recomposed light after reflection
is elliptically polarized, because the relative amplitudes and phases of the two p and s
components have changed. The light ellipse is described basically by two numbers, its
orientation with the respect of the plane of incidence, and the ratio of the two principal
axes. These two real numbers are measured by the two remaining parts of the equipment
(see Fig. 2.1), the rotating polarizer (the analyzer) and the detector.

By rotating the analyzer, we can measure the intensity on the detector as a function
of the analyzer angle A. Because of the ellipse of the light, it has a simple sinusoidal form:

ID = I0[1 + α cos(2A) + β sin(2A)] (2.3)

By fitting the measured curve, we can obtain the values of α and β, and the only thing
left is to correlate them to the properties of the sample, namely the dielectric function. A
general anisotropic sample is described however by a three-dimensional complex tensor,
and one measurement is not sufficient. If the sample is orthorhombic, this tensor can be
reduced to 6 real numbers, provided the orientation of the sample is known, and thus, in
principle, three measurements are sufficient to find the tensor.

The case of isotropic samples is the simplest, since the dielectric tensor reduces to a
single complex number for each frequency. One measurement is thus sufficient. Here we
can define the complex ratio:

ρ̃ = tan Ψei∆ =
R̃pp

R̃ss

(2.4)

and then the coefficients α and β from 2.3 can be then expressed as :



14 CHAPTER 2. EXPERIMENTAL TECHNIQUE

10000 20000 30000

15

20

25

  Ψ - 72°
  Ψ - 78°

 CoSi
T=300K

∆  [ ° ]

Ψ
 [ 

° 
]

 

 

60

80

100

120

140

  ∆ - 72°
  ∆ - 78°

 

Energy [cm
-1
]

10000 20000 30000

0

4

8

12

  ε
1
 - 72°

  ε
1
 - 78°

 CoSi
T=300K

εε
22

εε 1

 

 

0

10

20

30

40

Energy [cm-1]

  ε
2
 - 72°

  ε
2
 - 78°

 

Energy [cm
-1
]

10000 20000 30000
0

25

50

75

100

 

 

R
 [

%
]

 

 

Figure 2.2: Left panel: Ψ and ∆ for two angles of incidence, measured for CoSi. Right
panel: The corresponding dielectric functions ε1 and ε2 calculated using Formula 2.9.
Inset of right panel: the reflectivity at normal incidence.

α =
tan2 Ψ− tan2 P

tan2 Ψ + tan2 P
(2.5)

β =
2 tan Ψ cos ∆ tan P

tan2 Ψ + tan2 P
(2.6)

where P is the angle of the first polarizer, which is kept fixed during the measurements.
Inverting these two equations, we obtain [69]:

tan(Ψ) =

√
1 + α

1− α
| tan(P )| (2.7)

cos(∆) =
β√

1− α2

tan P

| tan P | (2.8)

From the equations above we can have access to the values ∆ and Ψ, which are not
only connected to the dielectric properties of the surface measured, but also geometry
dependent. The relation between ρ̃ and the dielectric function ε̃ is obtained with the use
of Fresnel reflection laws [69], leading for an isotropic sample the following result:

ε̃ = sin2 θ


1 + tan2 θ

(
1− ρ̃

1 + ρ̃

)2

 (2.9)

where θ is the angle of incidence. Later in the thesis, we will use this relation for
anisotropic samples as well. However, in that case, we will call the function ε̃ the pseudo-
dielectric function, to stress the fact that it does not describe the real dielectric tensor.



2.3. THE INFLUENCE OF WINDOWS 15

In Fig. 2.2 we present the measurements on an isotropic material, namely CoSi. The
left panel shows the measured Ψ and ∆, for two angles of incidence. As we can see, there
is a strong angular dependence of these two experimental quantities. The corresponding
dielectric functions, calculated with formula 2.9 are presented in the right panel of Fig 2.2.
The two angle of incidence measurements give the same dielectric functions, as expected,
showing thus the precision of the experimental instrument.

A well known advantage of ellipsometry is that one can measure directly the two
components of the complex dielectric function of an isotropic sample. This is opposed
to reflectivity measurements, where one measures a single experimental function, namely
the reflectivity, and one uses Kramer-Kronig relations to calculate the complex dielectric
function[70]. A less obvious advantage is provided by the resolution of the instrument
to measure frequency dependent changes. As we can see from the inset of Fig. 2.2, the
reflectivity of CoSi is not strongly frequency dependent in the measured range (about
20%), but Ψ and ∆ are (about 50%). Other advantages of ellipsometry, as opposed to
reflectivity, include the fact that it does not need a reference to measure the absolute
values.

It is interesting to note that, since the instrument measures changes in polarization of
light, it probably should have been named polarimeter. However, when the technique was
well established to receive a name, the name polarimeter was already in use for a different
instrument, which measures the specific rotation of optically active materials. Since the
state of the light is elliptical after reflecting off the surface, as we have seen above, the
term ellipsometer was chosen.

2.3 The influence of windows

Measuring at low temperatures implies the presence of a cryostat. Ellipsometry is a
technique sensitive to thin layers, and one should use lower pressures than in the usual
reflectivity measurements. That is because the layer which is formed by air condensing
on the surface of the sample is easily detected in ellipsometry. We have used an Ultra
High Vacuum cryostat, with a base pressure of 2 ∗ 10−8mbar at room temperature, before
starting the cooling. After a rapid cooling process of about half hour to 4K, the pressure
in the chamber reaches 2 ∗ 10−9mbar very quickly, due to the fact that the cold finger of
the cryostat acts as a cryogenic pump. We have checked that a measurement time of few
hours assures that no ”ice” grows on the sample to values detectable by the ellipsometer.

A second problem introduced by the presence of windows is the change in the polar-
ization state of the incoming and outgoing light. We used quartz windows, which preserve
the polarization state if the incoming beam enters perpendicular on the windows. How-
ever, due to the particular construction geometry of the cryostat, the light enters at a
slightly tilted angle. This misalignment leads to different values of the measured Ψ and
∆. However, the changes introduced by the windows are not temperature dependent, and
thus one could correct for them, knowing the room temperature values of Ψ and ∆ in the
presence and in the absence of the windows. This can be done, most easily if the windows
have been aligned at least perpendicular to the plane of incidence.

If the windows are placed perpendicular to the plane of incidence, and for an isotropic
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Figure 2.3: Two measurements of Ψ and ∆ performed in the absence of windows (solid
line) and in their presence (dotted line). The points present the correction which was
performed on the data measured with windows, described in the text.

sample, each component of the light beam (p and s, see Fig. 2.1) preserves independently
its orientation. In other words, the p-polarized light remains p-polarized after entering the
first window of the cryostat, reflecting the surface, and passing through the exit window.
However, every time the light beam hits the surface of a window, some part of the p and
s components is reflected. Since the windows are tilted, one component is reflected more
that the other. This modifies also the ratio of the transmitted components, so after the
whole chain window-sample-window, the ratio of the p and s components are modified.
We can write the following relation:

Ẽe
p = Ẽi

p ∗ R̃wind1
p ∗ R̃sample

p ∗ R̃wind2
p (2.10)

Ẽe
s = Ẽi

s ∗ R̃wind1
s ∗ R̃sample

s ∗ R̃wind2
s (2.11)

where R̃ represents the complex reflectivity of different components, and Ẽ is the electric
field (in the complex form) of the incoming (i) or exiting (e) light beam. The effect of the
two windows can now be rewritten in a simpler relation, if we divide the upper relations,
and use the definition 2.4 :

ρ̃wp = ρ̃wind ∗ ρ̃wa (2.12)

where wp stands for the measurements with windows being present, and wa for the
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Figure 2.4: Left panel: Measured Ψ and ∆ together with the fit, for a Cu3N thin film
(18.6 nm) grown at 150◦ on a MgO substrate. Right panel: The corresponding pseudo-
dielectric functions (for the whole system) at the angles of incidence 60◦ (thin solid line)
and 80◦ (thick solid line). The dotted lines represent the calculated ε1 and ε2 of Cu3N
from the fit.

measurements with windows absent. We see thus the way in which the corrections can
be done for the measurements at low temperatures. One measures the room temperature
sample with and without the windows, obtaining ρ̃wp and ρ̃wa. Replacing this into 2.4
on gets ρ̃wind, the window correction values. At low temperatures, one measures ρ̃T

wp,
and uses the previously found value ρ̃wind (which is temperature independent) and 2.4 to
obtain the correct complex ratio of the sample ρ̃T

wa.
In Fig. 2.3 we have checked this procedure, by two measurements on GaAs performed

in the presence and absence of the windows. Prior to this, two other measurements were
performed in the same configuration for FeSi, from which the influence of the windows
was calculated using 2.12, namely ρ̃wind. This was used to correct the values measured
on GaAs in the presence of windows ρ̃wp, to see if we obtain the same values as for
the measurements done in absence of the windows. As we can see from figure 2.12,
the corrected values (represented as symbols) are located closely to the values obtained
from the measurements done in the absence of the windows, showing that the correction
procedure is working.

2.4 Thin films

Probably the widest industrial application of ellipsometry today is the monitoring of
the thickness and properties of thin films. The sensitivity of an ellipsometer is such that
a change in film thickness of a few Angstroms is usually easy to detect. If a film is thin
enough to show an interference color pattern then it will probably be a good ellipsometric
sample. This effect is a result of the interference which takes place between the first part
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of the light beam reflected from the surface of the thin film, with the one reflected from
the surface of the film/substrate interface.

A proper description of the system gives a relation between the measured parameters
α, β and the intrinsic dielectric functions of both the substrate and thin film, and the
thickness of the latter [69]. Depending on the known dielectric properties and the thickness
of the thin film, a number of measurements may be necessary to extract the information.
For example, if the dielectric function of the substrate is known, two measurements would
be, in principle, sufficient to extract the dielectric function of an isotropic thin layer and
its thickness. It turns out however that, in practice, the pseudo-dielectric function of the
system is hardly angle dependent. Thus, most of the time, it is very difficult to determine
the exact thickness of the thin layer, if its dielectric function is not known, or at least
some information it is supplied about its general behavior. To exemplify this effect, we
present here measurements on a Cu3N layer (see Fig. 2.4).

Copper nitrides have attracted considerable attention as a new material for optical
storage devices. In Fig. 2.4 we present optical measurements performed at room tem-
perature on a thin layer of Cu3N (about 18nm) grown at 150◦ on MgO [71], with the
incidence polarizer kept fixed at 45◦. The measurements have taken place for two angles
of incidence, 60◦ and 80◦. From the lefthand side panel of Fig. 2.4 we see a strong angle
dependence of the measured experimental values Ψ and ∆. As discussed previously, in
principle, this means that we have 4 measured real numbers for each frequency, and thus
we would be able to find out both the thickness and the complex dielectric function of
the film, that is three real numbers at one frequency.

However, correlations in the measured data prevent this from happening. A better
way to see this is to plot the pseudo-dielectric function defined in Formula 2.9. From
the righthand side panel of Fig. 2.4 we see that the two pseudo-dielectric functions εps

1,2

for the two angles of incidence come almost one on the top of the other, as mentioned
previously. That means that the the big changes in Ψ and ∆ were given only by the angle
of incidence. A trial to fit both ε̃ and the thickness of the thin film, has given values from
2nm to 50nm for the thickness. We therefore had to use a different technique to measure
the thickness, namely X-Ray diffraction, and than use the resulting thickness to calculate
the intrinsic dielectric function of Cu3N . The result is presented in the righthand panel
of Fig. 2.4.

2.5 Magnetic Kerr effect

As discussed previously, in general non-isotropic materials, the dielectric function
describing the optical properties is a complex tensor ε̃T . This tensor has three equal
diagonal terms ε̃, and no off-diagonal terms for an isotropic sample. The presence of a
static magnetic field B influences this tensor. For an isotropic sample it acquires off-
diagonal terms in the plane perpendicular to the magnetic field. If the magnetic field B
is oriented along the x-axis, there is a non-zero off-diagonal element which couples the y-
and z-components of the optical E-field. The dielectric tensor ε̃T becomes:



2.5. MAGNETIC KERR EFFECT 19

10000 20000 30000
32

36

40

44

48

∆

Ψ

 

Energy [cm
-1
]

Ψ
 [ 

° 
]

20

30

40

q
1  , q

2ε 1 ,
 ε

2

EuO (50nm) on Cr.
      T=25K

 No magnetic field
 B +
 B -

∆  [ ° ]

10000 20000 30000
0

2

4

6

8
 ε

1

 ε
2

 

Energy [cm
-1
]

-0.05

0.00

0.05

0.10
EuO (50nm) on Cr.
      T=25K

 q
1

 q
2
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ε̃T =




ε̃ 0 0
0 ε̃ iq̃ε̃
0 −iq̃ε̃ ε̃


 (2.13)

where ε̃ = ε1 + iε2 and q̃ = q1 + iq2.
The effect of a static magnetic field on the dielectric tensor leads thus to measurable

magneto-optical effects. If these effects are observed in transmission, they are referred to
as Faraday effects (discovered by Michael Faraday). If they are measured in the reflection
configuration, they are referred to as the Kerr effects (by the name of its discoverer, the
Reverend J. C. Kerr).

EuO is a material known to present Kerr rotations and colossal magneto-resistance [72].
We have measured the Kerr effect for a thin film of EuO (50 nm) grown on a Cr layer. The
film was grown as described in Ref. [72], and later kept in air for more than two weeks,
prior to the optical experiments described here. In Fig. 2.5 we present magneto-optical
measurements done on EuO. The sample was measured at T = 25K. First, measurements
in the absence of magnetic field were performed. Knowing the thickness of the sample,
and the optical properties of the Cr layer on which the EuO thin film is grown, we de-
termined the dielectric function ε̃ of the isotropic EuO. The results are presented in the
righthand panel of Fig. 2.5. The sample presents a broad absorbtion spectrum around
12000cm−1 and an onset of a stronger absorbtion at 25000cm−1.

We then applied a magnetic field of the order of 0.01T , which was aligned at the
intersection of the surface plane with the plane of incidence (along x), in two opposite
directions. From the lefthand panel of Fig. 2.5 we see that changes are observed in Ψ and
∆. They are less than one degree, and cannot be explained only by the small value of the
magnetic field. We believe that also the degradation of the layer kept in ambient pressure
for a long time played a role.
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A new model for the experiment was created, using the tensor 2.13, the known thick-
ness of the layer, its previously calculated diagonal term ε̃, geometry factors, and the
known optical properties of Cr. The data measured in the presence of the field was then
fitted with the new model, leading to the off-diagonal q̃ presented in the right panel of
Fig. 2.5. The absolute value of q̃ is a result of the magnitude of the applied magnetic field
B. The plots show that the imaginary part the off-diagonal term q̃ is larger also around
12000cm−1 suggesting thus that the splitting induced by the magnetic field acts on the
same energy levels responsible for the transition.

It also shows that one can use bare ellipsometry measurements to calculate the off-
diagonal terms of magneto-optical media.

2.6 Normal incidence ellipsometry

Usual ellipsometry is done at the Brewster angle. This is defined as the angle where
the reflection of the p-polarized component is minimal. It was shown that this minimum
is zero in the case of isotropic transparent samples [69]. Measuring at this angle assures a
large ratio between the s-polarized and p-polarized components, and thus an easier way
to measure the parameters of the ellipse.

Normal incidence ellipsometry is useless thus for isotropic samples, since the incoming
polarized light remains linearly polarized after the reflection. There are, however, cases
in which ellipsometry at normal incidence may yield some information, and below we will
present such an example.

CuO is a monoclinic crystal, which presents interest mainly in connection with the
problem of high temperature superconductors [73]. It is an optical biaxial crystal, in
the sense that its axis b is perpendicular to the ac plane, but the axes a and c are
not perpendicular to each other, forming an angle of 99.5◦. In a system of orthogonal
coordinates xyz with x‖a, y‖b, and z lying in the ac plane, the axis z is slightly tilted
towards the axis c. The dielectric tensor can be written as:

ε̃T =




ε̃xx 0 ε̃xz

0 ε̃yy 0
ε̃zx 0 ε̃zz


 (2.14)

where ε̃xz = ε̃zx in the absence of magnetic field.
In principle, if all terms from the above matrix would be real, the matrix can be

diagonalized, meaning that one can choose a different orthogonal system of coordinates
x’y’z’ for which the tensor ε̃T would have only diagonal terms. The y′ axes of the new
system may be chosen as the old one, but the new x′z′ system would be rotated in the
ac plane with respect to the old xy system. The angle between the two systems would be
given by [74]:

tan 2ϕ =
2εxz

εxx − εzz

(2.15)

This angle would describe the rotation of the principal axes within the ac plane.
Because the dielectric function ε is frequency dependent, the angle ϕ is also frequency
dependent.
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Figure 2.6: ”Normal” AnE and Anisotropic Aps ellipsometry functions Ψ and ∆ measured
on CuO close to normal incidence (the angle of incidence is θ=11◦ )

In the general case however, the dielectric function is complex, and one usually di-
agonalizes the real part and imaginary part of the dielectric tensor ε̃T separately. The
formula 2.14 may still be used, but it will lead to a complex angle of rotation ϕ. We
want to exemplify in this subchapter that, by doing normal incidence ellipsometry, one
can have direct access to it.

Consider the dielectric tensor only in the ac plane, given by

ε̃ac =

(
ε̃xx ε̃xz

ε̃zx ε̃zz

)
(2.16)

For normal incidence, this is related directly to the Jones matrix of the complex
reflectivity tensor R̃ (defined in 2.1) by the following relation [74]:

ε̃ac =
[
(1− R̃)(1 + R̃)−1

]2
(2.17)

A direct use of this formula in 2.15, yields the following relation:

tan 2ϕ =
2R̃xz

R̃xx − R̃zz

(2.18)

We have aligned the sample close to normal incidence, with x‖p and z‖s. Even if we
discuss here normal incidence, we will refer to p and s, where p indicates now the direction
x on the sample surface and s perpendicular to that. We may thus write:
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tan 2ϕ =
2R̃ps/R̃pp

1− R̃ss/R̃pp

(2.19)

The values of the two complex ratios in 2.19 are directly available in a special type
of ellipsometric measurement, called generalized ellipsometry. This differs from the usual
type of ellipsometry measurements where the first polarizer is kept at 45◦ by choosing
different angles. The idea of this type of measurements is that, for a general anisotropic
sample, the coefficients α and β are not given by the simple relations 2.6, but by a more
complicated relation [75]:

α =
(|R̃pp‖2 − |R̃sp‖2) + (|R̃ps‖2 − |R̃ss‖2) tan2 P + 2[Re(R̃pp R̃∗

ps)−Re(R̃ss R̃∗
sp)] tan P

(|R̃pp‖2 + |R̃sp‖2) + (|R̃ss‖2 + |R̃ps‖2) tan2 P + 2[Re(R̃pp R̃∗
ps) + Re(R̃ss R̃∗

sp)] tan P

β =
2[Re(R̃pp R̃∗

sp) + Re(R̃ss R̃∗
ps) tan2 P + [Re(R̃pp R̃∗

ss) + Re(R̃sp R̃∗
ps)] tan P ]

(|R̃pp‖2 + |R̃sp‖2) + (|R̃ss‖2 + |R̃ps‖2) tan2 P + 2[Re(R̃pp R̃∗
ps) + Re(R̃ss R̃∗

sp)] tan P

If the sample is anisotropic, one can do measurements at the same angle of incidence
for more angles of the fixed polarizer P, and fit all the data together. One can thus obtain
the ”normal” ratio: ρ̃AnE = R̃pp /R̃ss , the anisotropic ”p into s” ratio ρ̃Aps = R̃ps /R̃pp

and ”s into p” ρ̃Asp = R̃sp /R̃ss. Equation 2.19 can be rewritten as:

tan 2ϕ =
2ρ̃Aps

1− 1/ρ̃AnE

(2.20)

We have done a generalized anisotropy measurement on the ac face of the CuO sample,
aligned with the a axis in the plane of incidence(a‖x‖p). The configuration was close to
normal incidence, with an angle of incidence of θ=11◦. The results of ρ̃AnE and ρ̃Aps are
presented in the Fig. 2.6, using their corresponding values of Ψ and ∆, according to 2.4.
Then, the real and imaginary parts of the complex angle ϕ where calculated using 2.20
and presented in the righthand panel of Fig. 2.7. In the lefthand panel of the same figure,
the pseudo-dielectric function of CuO is presented for E‖a and E ⊥ a.

As we can see from Fig. 2.7, the values of Im[ϕ] and Re[ϕ] are quite small, on the
order of few degrees. This is expected, since the angle between the a and c axes is close to
90◦. The imaginary part of ϕ is positive and shows an absorbtion behavior, and Re[φ] a
dispersive behavior. For the moment, it is not clear to us how the values of the complex ϕ
can be related to the orientation of the eigenmodes of different transitions. It is interesting
to note however, that Im[ϕ] has a similar behavior as the imaginary part of the pseudo-
dielectric function for E ⊥ a(see Fig. 2.7), with a peak around 25000cm−1. The latter
comes from a transition which takes place mainly along the c axis. It is thus expected
that the eigenmodes of this transition are tilted with respect the ones of the a axis, giving
the behavior of Im[ϕ].

2.7 Alignment of orthorhombic samples

An unusual use of the visible ellipsometer may be the alignment of orthorhombic
samples. This may sound not very important, but it is practical when measuring the
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Figure 2.7: Left panel: Imaginary part of the pseudo-dielectric function measured on the
(101) plane for E‖a (the angle of incidence is θ = 65) and E ⊥ a(θ = 65). Right panel:
The real and imaginary part of the complex angle describing the rotation of the principal
dielectric axes (see text).

samples themselves, since it reduces the time needed to align the samples in the X-Ray
diffractometer.

The principle of this alignment is simple. Usually we want to align the axes of the
orthorhombic sample with the axes of the equipment. If the sample is already cut along
one plane (and this was ab plane in the case of α′-NaV2O5) we want then to align one
axis, a or b, in the plane of incidence. This can be done by testing the polarization of the
outcoming light. The s polarized component must in this case remain s polarized after
reflection, due to symmetry, and the same must hold for the p polarized component.

Thus an easy check can be done directly by irradiating the sample with only s polarized
light (P=90◦), and rotate the surface of the sample, until the outcoming light presents
no p component. In this case the outcoming beam is again linearly polarized at 90◦ with
respect to the plane of incidence if the orthorhombic sample is correctly aligned. The
electric field on the detector must have then the following angular dependence

E ∼ sin(A) (2.21)

and thus the intensity on the detector can be written as:

ID ∼ sin2(A) ∼ 1− cos(2A) (2.22)

Comparing this with the intensity on the detector given by 2.3 we obtain α = −1 and
β = 0. Thus, a linearly polarized light beam at 90◦ with respect to the plane of incidence
gives α = −1 and β = 0. The only thing left to do in order to align the sample, is to
rotate the surface of the sample until α = −1 and β = 0.
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Figure 2.8: The response of the ellipsometer as a function of the rotation of the sample
around the normal of its measured plane, for an anisotropic material. The polarizer angle
is P=90◦ the angle of incidence θ = 60◦ frequency of the light ω=9800cm−1 and the
surface measured is ab of α′-NaV2O5. Inset: a zoom in for β crossing zero.

In Fig 2.8 we present such a measurement done on the ab surface of α′-NaV2O5.
The polarizer angle is P=90◦ the angle of incidence θ=60◦ and the frequency used is
ω=9800cm−1. As we can see, the sensitivity of β crossing zero is much larger than that of
α reaching -1. From the inset of Fig 2.8 we estimate that the sensitivity of the equipment
is in this case smaller than 0.4◦.

This does not represent however the error in the alignment of the sample, since sys-
tematic errors may appear. Thus, in our case, the crossing of β to zero happens at 353◦

and 262◦. The difference between these two angles is 91◦ showing thus that a systematic
error of 1◦ exists. However, we have checked using X-ray diffraction technique, that the
β crossing of the zero corresponds indeed to the sample having one axis in the plane of
incidence, the error between these two techniques being less than 2◦. We want to stress
however that this procedure may not work always, for example for the ab plane of the
high temperature superconductors, since they present usually a small in-plane anisotropy.



Chapter 3

Optical properties and electronic
structure of α′-NaV2O5

The dielectric function of α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2) was measured for the a
and b axes in the photon energy range 0.8-4.5 eV at room temperature. By varying the
Ca-concentration we control the relative abundancy of V4+ and V5+. We observe that
the intensity of the main optical absorption peak at 1 eV for E‖a is proportional to the
number of V5+-ions. This rules out its interpretation as a V4+ d − d excitation, and it
establishes that this is the on-rung bonding-antibonding transition.

The temperature dependence of the 1 eV peak was measured for temperatures down
to 4K in α′-NaV2O5. The peak shows a pronounced decrease of its intensity upon increas-
ing temperature, with an activation energy of about 25meV. No appreciable shift of its
frequency was found, showing that the change in the valence state of individual V atoms
at the phase transition is smaller than 0.06e. A remarkable inflection of this temperature
dependence at the phase transition at 34 K indicates that the low temperature phase is
associated with charge ordering.

The far infrared measurements on electron doped α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2)
samples do not reveal metallic behavior, in contrast to the usual doped anti-ferromagnetic
insulators, such as the high temperature superconductors. The Na deficient single crystals
α′-NaxV2O5 (0.85 ≤ x ≤ 1.00) present new optical transitions at about 2.8eV for E‖a and
3.2eV for E‖b , with a spectrum which ”converges” to the one of V2O5.

3.1 Introduction

α′-NaV2O5 is subject of intensive research as a result of its remarkable physical
properties. It belongs to the larger group of α′ vanadium pentoxides, with the chemical
formula AV2O5 [4] (A= Li, Na, Ca, Mg, etc.) Their structure is remarkably similar to
that of the parent compound V2O5, which consists of layers of square pyramids of O
surrounding a V+5 ion (see Fig. 4.1). The layers are kept together via weak forces, which
account for the easy cleavage of this oxide along (001).

The A atoms enter the space between the layers and act as electron donors for the V2O5

layers. In α′-NaV2O5 each Na atom donates one electron per every two V atoms. These

25
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Figure 3.1: The layered structure of α′-NaV2O5.

can be considered, in a simple picture, having no 3d electrons in V2O5, thus, in α′-NaV2O5

every second V atom would acquire one 3d electron, and the system is quarter-filled.

The basic building blocks forming the two-dimensional V2O5 layers are parallel two-
leg ladders of V atoms bridged by O atoms (see Fig.3.2). It is believed that the main
physics is described by the 3dxy orbitals of the V atoms. On the rung of the ladder
they are coupled through virtual hopping via π-bonded 2py states [10, 76] of the rung
oxygen atoms, indicated schematically in Fig.3.2. Along the legs of the ladder they are
also coupled via π-bonded 2px states of the other oxygen atoms. The effective hopping
parameter between V-sites are t⊥ ≈ −0.3eV on the same rung, and t‖ ≈ −0.2eV along
the legs of the ladder[10].

At Tc=35K a phase transition occurs, below which mainly two changes take place [6]:
(i) A doubling of the unit cell along the ladder direction, (ii) opening of a spin gap. A
big interest arose in this material when the opening of the spin gap gap was discovered
at the same temperature where the lattice doubles along the ladder direction. At that
time it was wrongly believed that the ladder consists of V4+ and V5+ linear chains [77].
In other words, the electrons donated by the Na atoms would stay only on one side of
ladder, forming a linear chain. Then a natural explanation of the opening of the spin gap
at the same temperature where the unit cell doubles is the spin-Peierls transition. This
is a transition where two by two electron spins of neighboring V atoms pair to form a
singlet, giving rise thus to the spin gap. The atoms move also closer together to increase
the value of the binding magnetic energy, at the expense of the lattice energy, giving also
the doubling of the unit cell in the chain direction. This would have made α′-NaV2O5 the
second inorganic material having a spin-Peierls transition after CuGeO3 [6].

Later however, it turned out from X-ray diffraction measurements, that, at room tem-
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Figure 3.2: The ladders formed by V atoms bridged by O atoms. The 3dxy orbitals of V
coupled through virtual hopping via π-bonded O 2py states is presented.

perature, all V-ions are crystallographically equivalent[8–10], and thus they do not form
one-dimensional chains of V5+. The type of transition was now questioned. Experimen-
tally, the transition temperature was found not to change much when applying a magnetic
field, in contradiction also with the behavior expected from spin-Peierls theory [78, 79].
Analysis of the specific heat anomaly at Tc also suggest [80] that only a small fraction of
the released entropy is connected with the magnetic subsystem.

Alternatively, a zig-zag charge ordering was proposed to take place at Tc [11], the
appearance of a spin-gap being only a side effect. Later, extensive work was done to
determine the α′-NaV2O5 structure below Tc. The main results from all measurements
confirmed the proposed zig-zag pattern of V sites [81, 82]. In addition, there are several
experimental hints for a charge redistribution below the phase transition, e.g. unaccounted
for changes in entropy[83], splitting of the V-NMR lines[84], inequivalent V-sites observed
with XPS[81]. At this moment, zig-zag charge ordering is the leading candidate [85–88]
for describing the properties of the ground state.

The mechanism of the phase transition, the main focus of research on α′-NaV2O5

is at this point not explained, even though several proposals exist. One mechanism
proposed [12] includes a symmetry broken configuration of the V-O-V rung, in which the
movement of the O atom towards one of the V atoms creates a stronger V-O bonding and
an additional spin singlet formation. Other proposal is the ”spin-isospin” model [85], in
which a proximity to a quantum critical point exists.

The solution of the α′-NaV2O5 problem lies in the understanding of the electronic
properties above and below Tc. Optical spectroscopy is a useful tool in revealing these
properties. This chapter presents the work which was done in Ref.[89] and Ref.[90] on
optical conductivity in the visible range. The temperature dependent optical conductivity
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of α′-NaV2O5 was measured in Ref. [90], the α′-Na1−xCaxV2O5 doping dependence in
Ref. [89] and that of α′-NaxV2O5 in Ref. [91]. In additon, this chapter presents the
doping dependence of the infrared optical conductivity of α′-Na0.8Ca0.2V2O5 which shows
no metallic behavior.

3.2 Optical measurements on α′-Na1−xCaxV2O5

At room temperature, the vanadium atoms have a uniform valence of +4.5, which
indicates a quarter-filled band, and suggests a metallic state. However, optical measure-
ments [13, 14, 89, 90] show insulating behavior. The charge gap seems to be around 1eV
in both directions. For E‖a the optical spectra exhibit a strong absorbtion peak at 0.9
eV, and for E‖b a broader peak appears at 1.2 eV.

Early density-functional calculations [10] indicated that α′-NaV2O5 can be seen as a
quarter-filled ladder compound with the spins carried by V-O-V molecular orbitals on
the rungs of the ladder. In other words, because the hopping in the rung t⊥ ≈ −0.3eV
is bigger than the one along the legs of the ladders t‖ ≈ −0.2eV , the system forms first
bonding-type molecular orbital states, made up of the 3dxy orbitals of a V-O-V rung. The
antibonding orbitals would be at 2|t⊥| ≈ 0.6eV higher in energy. The bonding orbitals
are coupled then with each other via the hopping term t‖ ≈ −0.2eV , giving thus rise to
a dispersion along the b direction. As presented in Ref. [10] the system would then have
a charge gap of roughly 2|t⊥| ≈ 0.6eV . At this frequency a peak would evolve in the
E‖a optical spectra corresponding to the bonding-antibonding transition of the on rung
molecular orbitals V-O-V. The value is close to 0.9 eV, and suggests thus the origin of
the 0.9 eV peak for the E‖a optical spectra [13].

Later however, other explanations were proposed for the 0.9 eV peak in σa(ω) of α′-
NaV2O5 including an on-site d-d transition between the crystal field split levels of the
V-ions[14]. To discriminate between these possibilities, we conjectured that by doping
α′-NaV2O5 with extra electrons, the intensity of the 0.9 eV peak would present opposite
behaviors: the intensity would decrease for a bonding-antibonding excitation, or the inten-
sity would increase for an on-site d-d transition. The electron doping is chemically realized
in the single crystals samples of α′-Na1−xCaxV2O5 which thus have to be measured.

3.2.1 Details of sample preparation and experimental setup

Partial substitution of the Na+ with Ca2+ leaves the α′ crystal structure of α′-
Na1−xCaxV2O5 intact, but alters the relative abundance of V4+ and V5+, V 4+ : V 5+ =
(1 + x) : (1 − x). Here we report spectroscopic ellipsfometry measurements on α′-
Na1−xCaxV2O5 (x=0, 0.075 and 0.15), in the energy range 0.8-4.5 eV. We employ the
dependence of the optical spectra on the V 4+ : V 5+ ratio to identify the main compo-
nents in the optical spectra, which in turn we use to reveal the electronic structure of this
material.

The crystals (CR8, 45008, and 45010) had dimensions of approximately 2, 1 and 0.3
mm along the a, b, and c axes respectively. The samples 45008 and 45010 were prepared
from NaVO3 flux [6]. In a first step a mixture of Na2CO3 and V2O5 is heated up to 550
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C in air to form NaVO3. In a second step the NaVO3 is mixed with VO2 in the ratio
of 8:1 and then heated up to 800 C in an evacuated quartz tube and cooled down at a
rate of 1 K per hour. The excess NaVO3 was dissolved in water. The doped samples were
produced by substituting in the first step Na2CO3 by CaCO3.

The chemical composition of the samples has been determined using Energy Dispersive
X-ray Fluoresence microprobe measurements. The results showed that the real Ca content
of some samples was smaller that the nominal one (with a factor of 0.75), and that position
dependent variations of the Na stoichiometry are below 2%. A standard spectroscopic
ellipsometer, described in the first chapter, was used to collect ellipsometric data in the
range of 6000 to 35000 cm−1, from the ab planes of the crystals, using two different crystal
orientations. It was used also to measure normal incidence reflectivity spectra of the bc
plane with the electric field vector along the c-direction.

3.2.2 Data collection and analyses

We performed ellipsometric measurements on the (001) surfaces of the crystals both
with the plane of incidence of the light along the a and the b axis. An angle of incidence
θ, of 660, was used in all experiments. As discussed in the first chapter, ellipsometry
provides directly the amplitude and phase of the ratio of the reflectivity coefficients of p-
and s-polarized light [69] rp(ω)/rs(ω). For an anisotropic crystal with the three optical
axes oriented along the surface normal (p ⊥), perpendicular to the plane of incidence
(s), and along the intersection of the plane of incidence and the surface (p ‖), this ratio
is related to the dielectric tensor elements along these three directions (εp⊥, εs, and εp‖)
according to the expression [89]:

rp

rs
=

[√
εp‖εp⊥ cos θ−

√
εp⊥−sin2 θ

][
cos θ+

√
εs−sin2 θ

]
[√

εp‖εp⊥ cos θ+
√

εp⊥−sin2 θ

][
cos θ−

√
εs−sin2 θ

] (3.1)

To extract the dielectric constant from the ellipsometric parameters we proceed in two
steps: First the pseudo-dielectric functions along the optical axes are extracted from the
ellipsometric data using the inversion formula given in the first chapter:

εps
p‖ = sin2 θ


1 + tan2 θ

(
1− rp/rs

1 + rp/rs

)2

 (3.2)

For isotropic crystals this expression provides the dielectric function directly. The
pseudo-dielectric function is close to the dielectric tensor elements along the intersection
of the plane of incidence and the crystal surface[92]. A biaxial crystal like α′-NaV2O5

has three complex dielectric functions, εa, εb and εc along each optical axis, and an ellip-
sometric measurement involves all three tensor components of the dielectric matrix. In
addition to the pseudo-dielectric functions displayed Fig.3.3a, εc(ω) is required. No ac or
bc crystal-planes were available large enough to do ellipsometry with our setup.

We therefore measured the c-axis reflectivity (Fig. 3.3b) of the bc-plane of the pristine
material (sample CR3). The spectrum contains no absorption peaks in the frequency
range below 2.5eV, as was reported earlier [93, 94], and a very weak absorption at high
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Figure 3.3: (a) Pseudo-optical conductivity σps
1 (ω) of α′-NaV2O5 at T = 300K. The

spectra were taken on the (001) surface with a and b axes successively lying in the plane
of incidence. (b) E‖c reflectivity at T = 300K. (c) Optical conductivity σa(ω) and σb(ω)
corrected for contributions of the c-axis dielectric function to σps

1 (ω).

frequencies around 4eV, providing a reliable determination of the dielectric function εc

using Kramers-Kronig analysis. Due to the absence of strong resonances, εc has a minor
influence on the recorded ellipsometric spectra. In Fig. 3.3c the optical conductivity
is displayed taking into account all corrections due to the anisotropy. We see that the
conversion from εps(ω) to ε(ω) leads, in essence, to a factor 0.5 re-scaling of σ(ω). The
shape of the optical conductivity remains however almost unchanged.

The data presented in Fig. 3.3 are in general agreement with previous results [13, 14]
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intensity. The dashed line indicates the theoretical intensity of on-site V d-d transitions
versus doping. The dotted line indicates the theoretical intensity according to the model
Hamiltonian Eq.3.3.

using Kramers-Kroning analysis of reflectivity data. Along the a-direction we observe a
peak at 0.9 eV with a shoulder at 1.4 eV, a peak at 3.3 eV and the slope of a peak above
4.2 eV, outside our spectral window. A similar blue-shifted sequence is observed along
the b-direction. The 0.9eV peak drops rather sharply and extrapolates to zero at 0.7
eV. However, weak absorption has been observed within the entire far and mid-infrared
range[13, 94]. The strong optical absorbtion within the entire visible spectrum causes the
characteristic black appearance of this material.

In Fig. 3.4 we present the results on the α′-Na1−xCaxV2O5 single crystals. The peak
position at 0.9 eV appear to be doping independent, but the striking observation is that the
intensity of the peaks depends strongly on doping. In particular, the measured intensity
of the 1 eV peak for the a axis is directly proportional to 1−x (Fig. 3.5). The 1 eV peak
for the b axis shows also a decrease upon doping.
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3.2.3 Main elements of the electronic structure

Before entering the interpretation of the data, we need to discuss in some more detail
the main elements of the electronic structure of these compounds. The basic building
block of the crystal structure of α′-NaV2O5 is formed by V-O-V dimers (see Fig. 3.2).
These dimers form the rungs of quasi one-dimensional ladders. The V-ions forming the
rungs are bonded along the ladder direction via oxygen ions.

The backbone of the electronic structure is formed by the oxygen 2p and V3d states.
Photoelectron spectroscopy[95] has provided crucial information on the occupied elec-
tronic levels: the oxygen 2p states have the lowest energy (the highest binding energy).
They form a band about 4 eV wide, which is fully occupied. The occupied part of the
V 3d states is located about 3 eV above the top of the oxygen bands. Due to ligand
field splittings the V 3d manifold is spread over a range of at least 3 eV. The 3dxy of the
V4+ is occupied with one electron. The unoccupied dxz and dyz levels have an energy at
least 1 eV higher. These in turn are located about 2 eV below the dx2−y2 and the dz2

levels[10]. The relevance of the O 2p bands is that they provide a path for virtual hopping
processes between the V-sites. The coupling between V-sites is through virtual hopping
via π-bonded O 2py states, indicated schematically in Fig. 3.2 and Fig.3.7b. The effective
hopping parameter between V-sites is t⊥ ≈ −0.3eV on the same rung, and t‖ ≈ −0.2eV
along the legs of the ladder[96, 97]. The number of electrons is one per pair of V-atoms.
Approaching the ladders as a linear array of rungs, weakly coupled along the direction of
the ladder, results in a model of electrons occupying a narrow band of states formed by
the symmetric combination of the two V 3d-states forming the rungs, hereafter referred
to as V-V bonding levels.

Hence, we see that the basic building block are the pairs of V3d states, together
forming the rungs of the ladders. The essential charge and spin degrees of freedom of a
single rung are identical to the Heitler-London model of the H+

2 ion, with the V3dxy states
playing the role of the H 1s states[96]. The relevant Hamiltonion is

H = t⊥
∑

σ

{
d†LσdRσ + d†RσdLσ

}

+∆
2

∑
σ {nLσ − nRσ}+ U {nL↑nL↓ + nR↑nR↓}

(3.3)

where d†L(R),σ creates an electron in the lefthand (righthand) dxy orbital on the rung, and
σ is the spin-index. The bias potential ∆ between the two V-sites accounts for a possible
left/right charge imbalance[13]. The most relevant states for the ground state are dL,xy

and dR,xy. Pure NaV2O5 contains one electron per rung in the ground state. Important in
the present discussion are the eigenstates and energies of a rung with 0, 1 or 2 electrons.
The eigenstates and energies are listed in Table 3.1.

In Fig. 3.6 the level diagram is displayed. In this representation Ne = 0(2) corresponds
to the one electron removal(addition) states, for noninteracting electron picture indicated
as the ”occupied” (”empty”) states. In Fig.3.7 we display the same information repre-
sented as the one electron removal and addition spectral function. For non-interacting
electrons this represents the occupied (left) and unoccupied (right) states.

In the absence of electron-electron interactions, here represented by the on-site Hub-
bard repulsion parameter U , the Fermi energy would be located in the middle of the
bonding band, resulting in a metallic conductor. In Figs.3.6 and 3.7 we have adopted
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Ne State vector Energy
0 |0〉 0

1 |2Bσ〉 = (ud†Lσ + vd†Rσ)|0〉 −1
2
ECT − EF

|2Aσ〉 = (vd†Lσ − ud†Rσ)|0〉 +1
2
ECT − EF

2 |1L̃R〉 = αK |1LR〉+ βK |1E〉 −K − 2EF

|3LR1〉 = d†L↑d
†
R↑|0〉 −2EF

|3LR0〉 =
√

1
2
(d†L↑d

†
R↓ + d†L↓d

†
R↑)|0〉 −2EF

|3LR−1〉 = d†L↓d
†
R↓|0〉 −2EF

|1Õ〉 = α∆|1O〉+ β∆αK |1E〉 − β∆βK |1LR〉 U + K/2−
√

(K/2)2 + ∆2 − 2EF

|1Ẽ〉 = α∆αK |1E〉 − α∆βK |1LR〉 − β∆|1O〉 U + K/2 +
√

(K/2)2 + ∆2 − 2EF

Definitions
u
v
≡

√
1 + [∆/2t⊥]2 + [∆/2t⊥] ECT ≡

√
4t2⊥ + ∆2

|1LR〉 ≡
√

1
2
(d†L↑d

†
R↓ − d†L↓d

†
R↑)|0〉 K ≡

√
U2/4 + 4t2⊥ − U/2

|1E〉 ≡
√

1
2
(d†L↑d

†
L↓ + d†R↑d

†
R↓)|0〉 αK

βK
≡

√
1 + [U/4t⊥]2 + [U/4t⊥]

|1O〉 =
√

1
2
(d†L↑d

†
L↓ − d†R↑d

†
R↓)|0〉 α∆

β∆
≡

√
1 + [K/2∆]2 + [K/2∆]

Table 3.1: Eigenstates and energies of a rung with Ne=0, 1 and 2 electrons. The Ne=2
state vectors and energies were derived for the limit ∆ ¿ U .

U = 4 eV. The model now predicts a gap of order ECT '1 eV. The Fermi energy is lo-
cated within this gap. The fact that these materials are insulating therefore is associated
with the large on-site Hubbard interaction.

The excitation of an electron across the gap involves a change of occupancy of two of
the rungs: The final state has one empty and one doubly occupied rung. It is important
in this context, that the two electrons |3,1LR > are in a correlated state: in the limit
U → ∞ one electron is located on the lefthand V-atom and the other on the righthand
V-atom, because their repulsion would be infinite if sitting on the same atom.

3.2.4 Discussion of the experimental spectra

The 0.9 eV peak marks the fundamental gap of the optical spectrum. The interpretation
of this peak was subject of a scientific controversy. Several interpretations have been put
forward:

1. Transitions between linear combinations of V 3dxy-states of the two V-ions forming
the rungs[10, 13, 96]. In Refs.[10] and [96] even and odd combinations were consid-
ered. The 0.9 eV peak in σa(ω) (peak A) would then correspond to the transition
from V-V bonding to antibonding combinations on the same rung[13] (Fig.3.7b). In
Ref.[13] this model was extended to allow lop-sided linear combinations of the same
orbitals, so that the 0.9 eV peak is a transition between left- and right-oriented
linear combinations.

2. On-site d-d transitions between the crystal field split levels of the V-ions[14]. Be-
cause V5+ has no occupied 3d-levels, such processes involve the V4+ ions.
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Figure 3.6: Diagram of the many-body eigenstates of a VOV rung, occupied with 0, 1
and 2 electrons, obtained within the Heitler-London model for U = 4eV , ∆ = 0.8eV , and
t = t⊥ = 0.3eV .

3. Transitions between the on-rung V 3dxy bonding combination and final states of dxz

and dyz character[98].

The last two assignments are motivated by the fact that in α′-Na1−xCaxV2O5 the optical
selection rules allow on-site d-d transitions by virtue of the low point-symmetry at the
V-sites. Optical transitions having values below 2 eV were also seen in V6O13 and VO2.
In V2O5 they have very small intensities, and were attributed to defects [99].

To determine which one of these assignments is true, we have measured the doping
dependence of the 0.9 eV peak in σa(ω) in Ca-substituted α′-NaV2O5 (Fig.3.4a). Because
Ca is divalent, substituting Na with Ca has the effect of increasing the average density
of V4+ ions. In the local d-d scenario the intensity of the on-site V 3d-3d transitions
would be proportional to the density of V4+ ions. As a result the intensity of on-site
d-d transitions would increase upon substituting Na with Ca. In Fig. 3.5 we display the
experimentally observed doping dependence of the intensity together with the theoretical
expectation within this scenario. Clearly the experimental intensity of the 0.9 eV peak
in Fig. 3.4 behaves opposite to the expected behaviour of dd transitions. This definitely
rules out item number 2 of the above list.

This also rules out item number 3 presented in Ref.[98]: if the transition from the V
3d+

xy bonding combination to the dxz and dyz orbitals involves mainly transitions among
orbitals at the same site, the same argument as for item 2 applies. If it involves mainly
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transitions between molecular orbitals formed by different sites on the same rung, the
transition from the V 3d+

xy bonding combination to the antibonding V 3d−xy would still be
the dominant transition.

To explain the intensity decrease of about x% upon substituting x% of the Na ions
with Ca (see Fig.3.5), let us have a look at the many-body nature of the ground state and
the excited state properties of NaV2O5. The rungs which are occupied with two electrons
due to the Ca-doping will be in the many-body ground state (see Table 3.1) |1L̃R〉. Due to
the validity of dipole selection rules, the optical excitation with the electric field along the

rung-direction is |1L̃R〉 → |1Õ〉. The energy to make this excitation is 1
2
U +

√
U2/4 + 4t2⊥.

Hence the effects of Ca doping are (i) to remove the peak at ECT ≈ 1eV for the rungs
receiving the extra electron, and (ii) to place a new peak at an energy U ≈ 4eV . Hence,
the observed x% decrease of intensity of the |B〉 → |A〉 transition peak for the x% Ca
doped sample is in excellent quantitative agreement with the expected value.

Using the tight binding sum rule

∫
σ(ω)dω = (ed/h̄)2πt⊥/(2V )〈d†LσdRσ + h.c.〉 (3.4)
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the intensity of the |1L̃R〉 → |1Õ〉 peak relative to the 0.9 eV peak of the singly occupied
rungs is (assuming ∆ = 0 for a doubly occupied rung):

I(0) + I(2)

2I(1)
=

αKβK

uv
=

√
1

1 + (U/4t)2
≈ 4t⊥

U
(3.5)

With the parameters relevant to NaV2O5 this implies that the |1L̃R〉 → |1Õ〉, |1Ẽ〉
transitions have factor 2-4 smaller spectal weight than the |B〉 → |A〉 transition. The fact
that we do not see an additional spectral weight at around 4 eV in the Ca doped samples
does not disprove the above arguments. Besides the fact that this spectral weight is small,
it can occur above 4.5 eV, or in the proximity of the 3.5eV peak, in which case its doping
dependence is hindered.

Hence we conclude that only the assigment of item number 1 is consistent with our
data: The 1eV peak in σa(ω) is the on-rung |2Bσ >→ |2Aσ > transition with an excitation

energy ECT ≡
√

4t2⊥ + ∆2.
The 1.1 eV peak in σb(ω) (peak B) involves transitions between neighboring rungs

along the ladder. In the non-interacting model (U = 0) this would correspond to a
Drude-Lorentz optical conductivity centered at ω = 0, with a spectral weight

∫ ∞

0
σb(ω)dω = (e/h̄)2t‖πb(2ac)−1 (3.6)

As a result of the correlation gap in the density of states, indicated in Fig. 3.7a, the
optically induced transfer of electrons between neighboring rungs results in a final state
with one rung empty, and a neighboring rung doubly occupied, in other words, an electron
hole pair consisting of a hole in the band below EF , and an electron in the empty state
above EF indicated in Fig. 3.7a. This corresponds to the process

2|2Bσ >→ |3,1LR > +|0 > (3.7)

Note that the final state wavefunction is qualitatively different from the on-rung bonding-
antibonding excitations considered above, even though the excitations are close in energy:
it involves one rung with no electron, and a neighboring rung with one electron occupying
each V-atom. The energy of this process is approximately 2t⊥ + δV , where δV represents
the increase in Coulomb interaction energy by bringing two electrons together on the same
rung. Since the distance betweeen the electrons changes from about 5.0Å to 3.4Å, and
taking into account a screening factor ε ≈ 6, we estimate that δV ' 0.2eV .

This value of δV corresponds closely to the difference in peak positions along the a and
b directions. According to this interpretation the absorption at 1.1 eV along b corresponds
to the creation of a free electron and hole, capable of carrying electrical currents. The on-
rung excitation at 0.9 eV along the a-direction is a localized (charge neutral) excitation,
in other words an exciton. In this case the energy of the exciton involves the states of a
single electron only, whereas the free carrier states involve many-body interactions.

Doping with Ca creates doubly occupied rungs, whose ground state energy is not
2|2Bσ > but |1L̃R〉. Consequently, the electrons on these rungs will not be involved in
the processes of Eq. 3.7, thus decresing the intensity of the B peak upon doping, as seen
from Fig. 3.4b.
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The room temperature crystal structure has four V-atoms per unit cell, organized
in ladders with up and down oriented apical oxygens alternating along the a-direction,
resulting in a double degeneracy of the electronic states discussed above. The coupling
between adjacent ladders lifts the degeneracy of these states, resulting in a ”Davidov”
splitting of the peaks A and B. This can create the two additional ”shoulders” in σ(ω) at
1.4 and 1.7 eV for peak A and B respectively.

With ARPES[95] it has been observed that an energy of 3 eV separates the V3d band
from the O2p. We therefore attribute the peaks at 3.3 eV in σa(ω) and the peak at 4 eV
in σb(ω) to transitions of the type

|2Bσ >→ |2p1LR > (3.8)

where the 2p hole is located on the oxygen on the same rung for peak A (see Fig. 3.7b),
and in between the rungs for peak B. This is further supported by previous optical mea-
surements on V2O5 [99], which showed a peak at about 3 eV. In V2O5 all V-ions have a
formal V3d0 configuration, hence the 3 eV peak cannot be attributed to d-d transitions.
However, the O2p →V3d transitions should appear at approximately the same photon
energy as in NaV2O5, which further supports our assignment of the 3 eV peak in NaV2O5

to O2p →V3d transitions.

In summary, we have measured the dielectric function along the a and b axes of
CaxNa1−xV2O5 for x=0, 0.06, 0.15 and x=0.20. The 0.9 eV peak in σa(ω) was shown
experimentally to be a bonding-antibonding transition inside the V2O rung and not a
vanadium d-d transition due to crystal field splitting. We identified the 3.3eV peak in
σa(ω) as the transition from the oxygen orbitals to the antibonding one of the V2O rung.
This strongly supports the notion, previously expressed in Refs [10, 13, 96] that NaV2O5

is an insulator due to a combination of three factors: a crystal field splitting, an on-
site Hubbard interaction, and an on-rung bonding-antibonding splitting of the two V3dxy

orbitals, each of which is large compared to the inter-rung hopping parameter.

The above proposed assignment of the 0.9eV peak for E‖a , as a bonding-antibonding
transition within the Heitler-London model [89], was confirmed by later calculations. We
can cite here band structure calculations done within the local spin density approximation
(LSDA) + U, taking into account a large Coulomb on site interaction(U = 2−3eV) [100].
Also the t−J−V numerical calculations on clusters of vanadium atoms leads to the same
results [97, 101].

However, we want to mention that very recent ab initio cluster calculations [76, 102]
propose a different picture than the one accepted up to now in literature, and presented
above. Usually, it is believed that the py orbital of the on rung oxygen atom has two
electrons, but the calculations cited above suggest that it has mainly one electron. In
other words, the py orbital of O would have only one electron, and the two V atoms
would have each a full electron on its dxy orbital. The V-O-V rung would have thus
predominant V 3d1

xy - O2p1
y - V 3d1

xy character, rather than V 3d0.5
xy - O2p2

y - V 3d0.5
xy .

The implications of this picture, if true, are still not considered in the literature, even
though some attempts are emerging [12]. However, as the interpretation of the 0.9eV
peak for E‖a is concerned, it does not change substantially. According to Ref.[76], it does
not correspond to a transfer of charge from the O atom to the V ones, but rather to a
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redistribution of electrons on the V atoms, as in the bonding-antibonding picture. This
results however in a different spin coupling scheme [12].

3.3 Low temperature ellipsometry of α′-NaV2O5

Here we present the measurements of the optical conductivity of α′-NaV2O5 in the
visible range, as a function of temperature [90]. In our spectra we observe a strong tem-
perature dependence of the 0.9eV peak for E‖a . This was considered [90] to be an
indication of a strong charge redistribution between the rungs of the ladders at elevated
temperature, which at the same time provides a channel for electrical conductivity with
an activation energy of about 25 meV. In a later work [103], this behavior is explained
by the destruction of short-range antiferromagnetic correlations. We also report a re-
markable inflection of the temperature dependence at the phase transition, which was
interpreted [90] as an inflection of the charge redistribution process due to a particular
correlated electronic state in which the charge and spin degrees of freedom are frozen out
simultaneously.

3.3.1 Data collection and analyzes

The crystal (sample CR8) with dimensions of approximately 2, 3 and 0.3 mm along the
a, b, and c axes respectively, was mounted in a ultra high vacuum (UHV) optical cryostat
in order to prevent the formation of ”ice” on the surface. The pressure was about 10−8

mbar at 300K and reached 10−9 mbar at 4K.

We performed ellipsometric measurements on the (001) surfaces of the crystals both
with the plane of incidence of the light along the a and the b axis. An angle of incidence
Θ of 800 was used in all experiments. In the previous section we described the details of
the procedure followed to obtain ε(ω). The results are presented in Fig. 3.8 and Fig .3.9.

Based on the doping dependence of the optical spectra of Na1−xCaxVO5 we established
in the previous section [89] the assignments made in Refs.[10, 13, 96], namely that the
peaks at around 1 eV along the a and b directions are due to transitions between linear
combinations of V 3dxy-states of the two V-ions forming the rungs[10, 13, 96]. In Refs.[10]
and [96] even and odd combinations were considered. The 0.9 eV peak in σa(ω) (peak A
in Fig. 3.8) would then correspond to the transition from V-V bonding to antibonding
combinations on the same rung[13]. In Ref.[13] this model was extended to allow lop-sided
linear combinations of the same orbitals, so that the 0.9 eV peak then is a transition
between left- and right-oriented linear combinations. Our work presented in Ref. [89],
and in the previous section, definitely rules out the assignment of these peaks to crystal
field-type Vd− d transitions proposed in Refs. [14, 98].

The 1.1 eV peak in σb(ω) (peak B in Fig .3.9) involves transitions between neighboring
rungs along the ladder. As a result of the correlation gap in the density of states, the
optically induced transfer of electrons between neighboring rungs results in a final state
with one rung empty, and a neighboring rung doubly occupied, in other words, an electron
hole pair consisting of a hole in the band below EF , and an electron in the empty state
above EF . Note that the final state wavefunction is qualitatively different from the on-rung
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Figure 3.10: Intensity of the 1 eV peaks detected along the a and b axes (peak A and
B, respectively), plotted vs. temperature. Solid lines are fits to the formula I(T ) =
I0(1− f e−E0/T ).

bonding-antibonding excitations considered above (peak A), even though the excitation
energies are the same[89] : it involves one rung with no electron, and a neighboring
rung with one electron occupying each V-atom. We associate the lower energy of peak
A compared to peak B with the attractive electron-hole Coulomb interaction, favoring
on-rung electron-hole pairs.

Optical transitions having values below 2eV were also seen in V6O13 and VO2. In
V2O5 they have very small intensities, and were attributed to defects [99]. The peak
at 3.3 eV in σa(ω) was attributed to a transition from the 2p orbital of oxygen to the
antibonding level within the same V2O cluster[89].

3.3.2 Temperature dependence above the phase transition

Let us now address the temperature dependence of the spectra. As we can see in
Fig. 3.8b and 3.9b, there is a strong decrease of the intensity of the peaks A and B with
the increase of the temperature. The spectral weight for both cases is not transferred to
low frequencies[13]. The spectral weight of the B peak seems to be recovered up to and
above 4eV. The spectral weight of the 3.3eV peak in the a direction is recovered also in
the nearby high frequencies [93, 98], whereas the intensity of the A peak is not recovered
up to 3 eV [93].
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The evolution of the 1 eV peaks can be seen from Fig. 3.10, where the integrated
intensities in σ1(ω) from 0.75 eV to 2.25 eV were plotted as a function of temperature.
The data was fitted with an activation energy formula I(T ) = I0(1 − f e−E0/T ). It gave
f=0.35 and E0=286K for the a direction, and f=0.47 and E0=370K for the b direction.
From the fits we see that the activation energy E0 is about 25meV, which is very small for
the frequency range of the peaks, but is comparable to the activation energy in resistivity
measurements at low temperatures [104]. A decrease of the intensity of the A peak takes
place below the phase transition, but otherwise there are no features related to it. The
splitting of the A peak of about 55meV (Fig.3.8c) exists even at 100K. Judging from its
sharp shape and the value of splitting, it can be attributed to a phonon side-band.

Band structure calculations have indicated that the dxy orbitals are well separated
from the other d orbitals [10] and ESR experiments have led to g-values which indicate
the complete quenching of the orbital momentum [105]. There are then no other low-lying
crystal levels, about 25 meV above the ground state, to play a role in the temperature
dependence behavior of the A peak. Comparing the doping dependence of the A peak
in CaxNa1−xV2O5 [89] and the high temperature dependence from Fig.3.8b we see that
the two behaviors resembles each other, presenting no shifting or splitting with respect
to one another. But, as discussed in Ref [89], the intensity of the A peak decreases upon
doping because doping induces doubly occupied rungs. The same mechanism can then be
responsible for the decrease of the intensity of the A peak with increasing temperature.
The bonding-antibonding transition (A peak) on the rung will have a reduced intensity, as
there are fewer singly occupied rungs, as in the case of CaxNa1−xV2O5[89]. The transitions
on the doubly occupied rungs are at an energy U , around 4 eV, with a factor (t⊥/U)2

reduction of the original spectral weight[89]. The activation energy of 25meV would then
be the energy required to redistribute the electrons between the rungs, either on the same
ladder, or between different ladders. Eventually, at very high temperatures, only half of
the rungs would be occupied with one electron, so the intensity of the A peak would be
at half the low temperature value (f = 0.5 in the fitting formula of Fig.3.10).

At first glance, the processes leading to partial emptying of rungs, while doubly oc-
cupying others, would seem to be of the order of the energy of peak B (1eV), which
corresponds exactly to such a process and one may wonder how such a low energy scale
could exist. However, processes involving the collective motion of charge can be at a
much lower energy than the single particle charge transfer, as a result of short range
(nearest neighbor) Coulomb interactions. An example of such a collective mode is the
zig-zag ordering [11, 97] involving an (almost) soft charge mode for k at the Brillouin
zone boundary. These charge modes, because k is at the BZ boundary, can appear only
indirectly (e.g. phonon assisted) in σ(ω), and therefore are at best weakly infrared active.
Under favorable conditions the spin degrees of freedom[13] in addition results in a weak
but finite σ(ω). Another way in which the electrons can move from one rung to another is
by forming topological defects, such as domain walls separating charge ordering domains.
Macroscopically this could lead to double occupancy of some rungs and emptying others.

Recent calculations on a t-J-V model [103], motivated by our work [90], proposed
however a different picture for explaining this temperature dependence. In Ref.[103] it
is argued that a simple charge ordering model based on a simple isospin picture [11, 85]
does not lead to the strong temperature effects observed, and one has to include either a
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Figure 3.11: Left panel: Integrated optical conductivity for a (dot-dashed) and b (solid
and dashed lines) calculated for the 1eV peaks in the t-J-V model for different parameters.
Right panel: Integrated optical conductivity for two standard parameters in a selected
temperature interval. Both graphs are reproduced from Ref. [103]

more complete spin-pseudo spin model [85], or a t-J-V picture. In Fig. 3.11 we reproduce
the results from Ref.[103]. In both panels, the calculated integrated optical intensity
(IOC), roughly corresponding to the integrating intensity in the 1eV peaks, is presented
as a function of temperature. In the left panel two energy scales are recognized. First,
there is a decrease of the IOC at a temperature around J ∝ t2b/Va, which was reported
to be J = 48.2 meV in Ref.[6] and J = 37.9 meV in Ref.[106, 107]. This is thus of the
order of room temperature, where we indeed see the changes. A stronger decrease in
IOC takes place at higher temperatures of the order T ≥ Vb which is around Vb ≈ 1eV ,
thus at much higher temperatures. That is why the isospin model without spins would
fail to predict the temperature changes at the observed temperatures. A zoom in on the
measured temperature range for the selected parameters tb = 0.2eV and txy = 0.15eV is
presented in the right panel of Fig. 3.11. The temperature dependence resembles indeed
the measured data presented in Fig. 3.10.

The fact that the 25meV energy scale of the temperature changes is much smaller than
the optical gap of 1eV is not entirely surprising. In fact, there are experiments which
indicate charge degrees of freedom at a much lower energy. Resistivity measurements
yielded an energy gap ranging from 30meV at lower temperatures to 75 meV at high
temperatures [104]. The dielectric loss ε′′ for frequency of 16.5 GHz along b direction is
rather constant up to 150 K and then increases very rapidly above 200K [87] (so that the
microwave signal is lost at room temperature), meaning that an absorption peak could
start to evolve at 200K for very low frequencies. A low frequency continuum was observed
near 25 meV with infrared spectroscopy [13] and at 75 meV with Raman spectroscopy [14].
Also infrared measurements [13] found that σ1,a increases with increasing temperature.
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3.3.3 Temperature dependence across the phase transition

Perhaps most striking of all is the fact that the peak positions turn out to be temperature
independent throughout the entire temperature range and also across the phase transition.
This behavior should be contrasted with the remarkable splitting of the V-NMR lines in
two components below the phase transition[84]. It has been suggested [10] that the Tc

marks the transition from a high temperature phase where every rung is occupied with
an electron residing in a H+

2 type bonding orbital (formed by the two V 3dxy orbitals), to
a low temperature phase, where the system is in a charge ordered state (e.g. the zigzag
ordered state[11, 108] with an alternation of V4+ and V5+ states, or, as suggested in Refs.
[81, 109] with V4+/V5+ ladders and V4.5+/V4.5+ ladders alternating). In Refs.[13, 97]
estimates have been made of the potential energy difference between the left and righthand
V-sites on the same rung, in order to reproduce the correct intensity and photon-energy
of the 1 eV peak along a, as well as producing a V4.9+/V4.1+ distribution between left and
right. This turned out to be ∆ = VL − VR ≈ 0.8eV , with an effective hopping parameter
t⊥ ≈ 0.4eV .

To have V4.5+/V4.5+ above and V4+/V5+ below the phase transition, requires that the
potential energy difference changes from ∆ = 0.8eV below Tc to 0 at and above Tc. As
a result the ”1 eV peak” would shift from 0.89 eV to 0.8 eV in the temperature interval
between 0 and 34 K, and would remain constant above Tc. The observed shift is less than
0.03 eV within the entire temperature interval, and less than 0.01 eV between 0 and 34
K. This suggests that the change in ∆ (and consequently the charge of the V atoms) at
the phase transition is very small. In fact, a change of ∆ from 0.1eV to 0 across Tc,
compatible with the experimental results, would yield a change in the valence state from
V4.44+/V4.56+ to V4.5+/V4.5+ between 0 and 34 K, which is an almost negligible effect.
Thus we conclude that, irrespective of the possible charge configurations V4.5+/V4.5+ or
V5+/V4+, the changes in the charges of the V atoms at the phase transitions are very
small (smaller than 0.06e).

Recent ab initio cluster calculations [12, 102] confirmed that the charge redistribution
at the phase transition is indeed very small. There is an apparent contradiction with
the inelastic neutron scattering experiments [110], which predicted large effects at the
phase transition. This was explained in Ref. [102] by the fact that the inelastic neutron
measurements are more sensitive to the spin ordering, which is believed to be different
than the charge ordering [102].

3.3.4 Temperature dependence below the phase transition

The suppression of intensity below the phase transition (Fig.3.10) seems to mark a
redistribution of charge which is associated with the spin gap. X-ray diffraction indicates
that the superstructure below Tc consists of a group of 4 rungs [109]: 2 neighboring rungs
of the central ladder, 1 on the left-hand and 1 on the right-hand ladder. The presence of
a spin-gap indicates that the 4 spins of this structural unit form an S = 0 state below Tc.

To account for the absence of a change of the valence of the V atoms at the phase
transition, as well as for the slight doubly occupancy below the phase transition, the
following scenario has been put forward. Below Tc the structure would be formed by
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Figure 3.12: The correlated electron state in the low temperature phase is a superposition
of the four configurations displayed in the figure.

singlets (see Fig. 3.12). If they are arranged in a quantum mechanical configuration, as
in Fig 3.12, this gives a slight double occupancy of the rungs. The reduced intensity in our
spectra below Tc then reflects the amount of singlet character involving doubly occupied
rungs. Passing the phase transition they would evolve independently. This would result
in a random configuration with an average valence of +4.5 for the V atoms, and also a
spin susceptibility for high temperature phase due to appearance of some free spins. The
nature of the weak charge-redistribution which we observe at low temperature would then
be manifestly quantum mechanical.

A different explanation of the fact that, across the phase transition, the intensity
has a small (about 1% from Fig. 3.10) but a sharp change, may include the shifting of
the atoms. Indeed, they would change the interatomic distances, affecting directly the
integrated optical conductivity, according to Formula (2) of Ref. [13]. A contra-argument
to this is however that the change is observed only along the a axis.

In summary, we have measured the temperature dependence of the dielectric func-
tion along the a and b axes of α′-NaV2O5 in the photon energy range 0.8-4.5 eV for
temperatures down to 4K. No appreciable shifts of the 1 eV peaks were found, thus show-
ing that the change in the valence state of the V atoms at the phase transition is very
small (smaller than 0.06e). A strong decrease of the 1 eV peaks with increasing temper-
ature was observed. We assigned [90] this temperature dependence behavior to collective
charge redistribution, namely the redistribution of the electrons among the rungs resulting
in double occupation of some rungs as temperature increases, with an activation energy
of about 25meV. A more complex approach, involving the destruction of the short-range
antiferromagnetic correlation has been also put forward [103]. Below the phase transi-
tion, a small (about 1% ) but sharp decrease of intensity of the 0.9 eV peak in σa(ω) was
found. It was attributed to a finite probability of having, in the singlet state below Tc,
configurations with electron pairs occupying the same rung. A simple picture in which
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the intensity decreases just as result of changing the atomic distances across the phase
transition is however much more probable.

3.4 Doping dependence of the far-infrared conducti-

vity of α′-Na1−xCaxV2O5

As discussed already, a very useful tool in the study of strongly correlated systems is
doping. This leads to spectacular effects in the doped anti-ferromagnetic insulators, such
as the high temperature superconductors. Going away from the ”right” stoichiometry,
or by replacing the atoms forming the charge reservoirs, would in principle change the
density of mobile charge carriers. In most cases, where a model of ”rigid” bands may
be assumed, they give metallic behavior, due to the fact that the bands are now only
partially filled.

However, a non-stoichiometric compound presents one additional complication: prob-
able disorder of the substituting atoms or vacancies created. This may, or may not, play
an important role in the dynamics of the charge carriers. In the high-temperature su-
perconductors for example, it is generally accepted that this role is small. In the case
of β-NaxV2O5 this influence is big, and leads probably to the suppression of metallicity.
The magnitude of this influence is given by many factors, including the magnitude of the
potential of the random donors (acceptors), screening, and type of the charge carries.

If the random potential is stronger than approximately twice the width of the band,
Anderson localization of the charge carriers is expected indeed to take place[111]. If the
charge carriers are small polarons, they are also usually bound to the donor (or acceptor)
sites [22]. Particulary the one-dimensional metals are susceptible to the influence of the
random fields, since the carriers are confined to a chain which may be ”broken” by a
single impurity potential, and they cannot go around the impurity as it would be possible
in higher dimensions. The system looses then easily its metallic behavior.

A single crystal sample of α′-Na0.8Ca0.2V2O5 was measured in the far-infrared range.
As discussed above, the Ca doping introduces 20% more electrons in the vanadium ladder.
In a ”rigid” band picture this is thus expected to be a metal.

In Fig. 3.13 we present the normal incidence reflectivity measurements for the two
possible polarizations of the light E‖a and E‖b . The surface measured was (001). From
Fig. 3.13 we remark immediately the absence of a Drude peak for both polarizations,
showing thus the lack of metallicity. However, even though the α′-Na0.8Ca0.2V2O5 sam-
ple measured was plane parallel, the fringes present in the α′-NaV2O5 for E‖b at low
frequencies are not present in α′-Na0.8Ca0.2V2O5. This suggest that the low frequency
conductivity of α′-Na0.8Ca0.2V2O5 is higher than that of α′-NaV2O5 as expected, but not
sufficiently high to give metallic behavior. In Fig. 3.14 we present the optical conductivity
σ1(ω) obtained from the Kramer-Kronig transformations. The lack of metallicity is clear
in this plot as well.

We think that the insulating behavior still present in the α′-Na0.8Ca0.2V2O5 single
crystals is caused by the Ca atoms which localize the charge carriers. This can take place
easily in a one-dimensional system such as α′-NaV2O5 as discussed above.

From Fig. 3.14 we see that the far-infrared spectra of α′-NaV2O5 and α′-Na0.8Ca0.2V2O5
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Figure 3.13: Room temperature frequency dependence of the reflectivity for E‖a (upper
panel) and E‖b (lower panel)

look quite similar, as expected due to the small Ca concentration. There seems to be no
noticeable difference for the E‖b polarization. For the E‖a few differences can be noticed.
First, a new peak with a shape of a broader phonon, evolves around 720cm−1 upon dop-
ing. This should be in principle compared with the far infrared spectrum of α′-CaV2O5

where a phonon could be naturally found for this polarization. Unfortunately, there are
no measurements done up to now for crystals. Far infrared measurements on powder
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Figure 3.14: Optical conductivity σ1(ω) of α′-Na0.8Ca0.2V2O5 at room temperature for
E‖a (upper panel) and E‖b (lower panel).

α′-CaV2O5 [112] show however no peak around 720cm−1. From Figure 3.14 we see that
the spectral weight in the 505cm−1 phonon of α′-NaV2O5 seems to be recovered in the
720cm−1 peak of α′-Na0.8Ca0.2V2O5. In other words, the V-O3 stretching phonon which
appears at 505cm−1 in α′-NaV2O5 [112] must evolve now in a mode with a much higher
much higher frequency in α′-Na0.8Ca0.2V2O5 at 720cm−1. This is however much higher
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Figure 3.15: Far infrared optical conductivity of α′-NaxV2O5 reproduced from Ref. [91].
Inset: Schematic representation of the V 3dx,y-IB transitions proposed in Ref. [91] for the
0.44eV peak.

than the stretching V-O3 frequency of 515cm−1 attributed in Ref. [112] from the powder
measurements of α′-CaV2O5.

Moreover, Ca is a heavier atom than Na atom, thus, in principle, no phonon peaks
would be expected at higher frequencies than the one observed (at 505cm−1) in α′-NaV2O5.
One explanation of this apparent contradiction may be that the 720cm−1 absorbtion peak
it is due to a localized vibration due to the Ca atoms within a Ca-free environment, and
thus may not be necessarily present at the same frequency in α′-CaV2O5.

Besides the appearance of a new phonon peak, we remark the diminution of the far
infrared continuum which appears around 300cm−1. The presence of the continuum is
still unexplained in literature, even though a few explanations have been proposed. They
include the ”charge magnon” picture [13], and the photoexcitation of a three particle
continuum: two spinons plus a low energy charge excitation [85]. The FIR continuum is
related to the special physics of α′-NaV2O5 and probably disappears in α′-CaV2O5, as
seems to be suggested from the measurements of the powder samples in Ref. [112]. It
is thus not unexpected that its intensity decreases. The same seems to happen with the
continuum around 900cm−1 which decreases as well in α′-Na0.8Ca0.2V2O5 as compared
with α′-NaV2O5.

Optical measurements have previously been done on sodium deficient α′-NaxV2O5

samples, which can be seen as hole doped α′-NaV2O5, as opposed to the electron doped
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α′-Na1−xCaxV2O5. They are reproduced in Fig.3.15 from Ref. [91]. As we can see, they
also didn’t show metallic behavior. In addition, transport measurements on the sodium
deficient samples α′-NaxV2O5 [113] revealed that the doping into the 1-D chain by means
of Na-deficiency does not induce clean metallic behavior. The conductivity, even though
increased with Na deficiency, has a temperature dependence consistent with variable range
hopping model.

3.5 Optical measurements on α′-NaxV2O5

In the α′-NaxV2O5 case, the sodium deficiency does not alter the α′ crystal structure [6]
down to x=0.7, but changes the relative abundance of V4+ and V5+ as in the case of α′-
Na1−xCaxV2O5, but in the case of Na deficiency more ”extra” holes (V5+) are introduced.

The optical properties of sodium-deficient α′-NaxV2O5 (0.85 ≤ x ≤ 1.00) single crys-
tals have been analyzed from 0.75 to 4.5 eV, using spectroscopic ellipsometry, at room
temperature. The samples had dimensions typically of about 2×4×0.4 mm3 in the a, b,
and c axes, respectively. The ellipsometric measurements were done on the (001) surfaces
of the crystals, with the plane of incidence along the a and b axes successively. The results
of the pseudo-dielectric functions, given by the formula 3.2, are presented in Fig.3.16.

The bands at the energies 0.9, 1.2 and 3.2 eV for E‖a and 1.2, 1.6 and 3.7 eV for
E‖b are found in accordance with previously presented measurements on α′-NaV2O5 and
α′-Na1−xCaxV2O5. The sodium deficiency causes the activation of new optical transitions
at about 2.8 eV for E‖a and 3.2 eV for E‖b . The 1.2 eV peak for E‖b does not extrapolate
to zero at low frequencies, suggesting the existence of a peak at lower frequencies. Indeed,
the far-infrared measurements performed in [91] confirmed the existence of a peak at
0.44 eV for E‖b , as we can see from Fig. 3.15, which was reproduced from Ref.[91]. The
2.8 eV peak which evolves in the sodium-deficient samples for E‖a was found [91] to be
responsible for the resonant behavior of the (aa) polarized Raman spectra. The intensity
of the 495-cm−1 mode, presented in the inset of Fig.3 of Ref.[91], mimic the change of
optical conductivity presented here.

At a first glance, the E‖a spectrum of the sodium-deficient samples should be a super-
position of the V2O5 spectra given by the empty rungs of the ladder, and that of α′-NaV2O5

given by the rungs having a single electron, and this seems to be the case for the visible
part of the spectra. Measurements on V2O5 for E‖a (which is the same direction in α′-
NaV2O5) show the appearance of a single high-intensity peak at 2.8 eV [114–116] with
only a shoulder around 3.2eV. In Fig. 3.17 we have reproduced the dielectric function of
the V2O5 from Ref. [114] for comparison. Also in the c direction of V2O5 (which is the b
direction in the notations of the α′-NaV2O5 unit cell) a broad feature around 3 eV exists,
and only a shoulder around 3.8eV (see also Fig. 3.17). In other words, through the ap-
pearance of the 2.8eV peak for E‖a and 3.2 eV peak for E‖b , the spectrum ”converges”
to the one of V2O5 [114].

This is however not true in the far-infrared range, where a new peak evolves around
0.44 eV for E‖b , which does not exist in V2O5 (see Fig.3.15). Its high frequency side is
observed also in Fig.3.16. This peak is probably connected with the lack of metallicity in
the sodium-deficient samples, and resembles the polaronic peak present in β-Na0.33V2O5,
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Figure 3.16: The imaginary part of the dielectric function for α′-NaxV2O5 at room tem-
perature, for E‖b (upper panel) and E‖a (lower panel)

which we will discuss in the next chapter.

When comparing the spectra from the α′-NaxV2O5 samples presented in Fig. 3.16 with
the ones from V2O5 presented in Fig. 3.17, a striking difference regarding the amplitude
of the 3eV features is observed. Indeed, the intensity of these absorbtions in α′-NaV2O5

seems to be about 4 times smaller than in V2O5 for E‖a , and 3 times for E‖b . As
previously discussed, they are usually interpreted as transition from the 2p orbitals of
oxygen to the 3d orbitals of vanadium. In V2O5 there are no d electrons, and the 2p
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Figure 3.17: The imaginary part of the optical dielectric function of V2O5 reproduced
from Ref. [114]. The crystallographic axes (a) and (c) are presented. They correspond to
the a axis and b axis respectively in α′-NaV2O5.

orbitals of oxygen are believed to be fully occupied, giving thus a maximum in the intensity
of this transitions. In α′-NaV2O5 new electrons coming from the Na atoms are spread
over the 3dxy orbitals of vanadium. Some of the previous transitions from the 2p orbitals
of oxygen to the 3d orbitals of vanadium will have now a final state containing two 3d
electrons on the same V atom, and thus a higher energy (increased about 3eV, which is
the value of the on-site Coulomb repulsion energy). The intensity in the 3eV structures
will then decrease. This explanation may not be sufficient, since in a simple picture, on
the basis of the number of 3d electrons of α′-NaV2O5 we would expect that the intensity
would decrease with only a factor of two. It could be possible that the occupancy of
the 2p orbitals of the O atoms of the ladder is also smaller (the 2p orbitals are not fully
occupied) as was already suggested by very recent ab initio cluster calculations [76, 102].

3.6 Summary

An important role in understanding the physics of α′-NaV2O5 is played by the ab-
sorption peak present at 1 eV for E‖a in the dielectric function. We have been able to
rule out its interpretation as a V4+ d− d excitation, and establish that this is an on-rung
bonding-antibonding transition. For that, we have measured the dielectric function of the
a and b axes of α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2) in the photon energy range 0.8-4.5 eV
at room temperature. By varying the Ca-concentration in this compounds, the relative
abundancy of V4+ and V5+ was chemically controlled. The doping dependence of the
intensity of the 1 eV peak for E‖a is in agreement with this transition being an on-rung
bonding-antibonding transition.

The temperature dependence of the dielectric function of α′-NaV2O5 was also moni-
tored. In special, the temperature dependence of the 1 eV peak (measured down to 4K)
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showed an interesting behavior, namely a decrease of its intensity upon increasing tem-
perature, with an activation energy of about 25meV (thus much smaller than the position
of the peak). At the phase transition, no appreciable shift of its frequency was found.
Because the 1eV was previously established as being a bonding-antibonding transition, a
correlation could be established between its peak position and the valence of the individ-
ual vanadium ions. In this way, we have been able to show that, at the phase transition,
the change in the valence of the vanadium ions is smaller than 0.06e.

In addition to optical dielectric measurements in the visible range, far infrared mea-
surements where also performed on the electron doped α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2).
Contrary to what is expected from the usual doped anti-ferromagnetic insulators, the
samples did not reveal metallic behavior.

The hole doping of α′-NaV2O5 is realized in the Na deficient single crystals of α′-
NaxV2O5 (0.85 ≤ x ≤ 1.00). We have measured their optical conductivity in the visible
range, and show that they present new optical transitions at about 2.8eV for E‖a and
3.2eV for E‖b .



Chapter 4

Charge ordering signatures in the
optical properties of β−Na0.33V2O5

Temperature dependent optical spectra are reported for β−Na0.33V2O5. The sodium
ordering transition at TNa = 240 K, and in particular the charge ordering transition at
TMI = 136 K strongly influence the optical spectra. The metal-insulator transition at
TMI leads to the opening of a psuedogap (h̄ω = 1700 cm−1), and to the appearance of a
large number of optical phonons. These observations, and the presence of a mid-infrared
band, typical for low-dimensional metals, strongly suggests that the charge carriers in
β−Na0.33V2O5 are small polarons.

4.1 Introduction

In some solid state materials, the movement of the electrons may be considered as
taking place in a rigid environment of nuclei, and in others the vibrational degrees of
freedom of the nuclei must be taken into account. A general criteria of distinguishing
the two cases is given by the Born-Oppeinheimer principle. Consider the case when the
electron density is high. Then the Fermi velocity vF of electrons is also high. As a
result, because the mass of nuclei is much higher than that of the electrons, the nuclei
can’t ”follow” the electronic excitations any more. Consequently, the electrons can be
seen as moving in an rigid environment given by the average potential of the nuclei.
However, if the system of electrons is very dilute, vF is no longer large, and the above
Born-Oppeinheimer limit breaks down. The nuclei can now ”follow” partly the electrons.
The electron moves in the crystal disturbing the nuclei in its vicinity, forming a so-called
polaron.

The literature makes a distinction [117] between materials where the electron affect
the atoms at large distances (large polarons) and the electrons which affect the atoms only
at small distances (small polarons). There does not seems to be a general experimental
criteria for clearly identifying when this polaronic behavior is big enough to be taken into
account. However, there are specific characteristics, and those include optical spectra, as
it is the case for the material studied in this chapter, β-Na0.33V2O5.

55
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In some polaronic materials, such as Fe3O4 and Ti4O7 [118], a metal-insulator transi-
tion (MIT) is induced by small polaron ordering (Verwey state) at a certain temperature.
In general, low dimensional metals feature a variety of MIT resulting from electron-phonon
or electron-electron interactions. In charge density wave systems, like NbSe3 [119] and
K0.3MoO3 [120, 121], a MI transition is induced by a strong electron-phonon coupling
(Peierls state). Also in systems lacking sufficiently strong electron-phonon interaction,
such as for instance (Me2 − DCNQI)2Li1−xCux [122, 123], a MIT may occur due to
charge ordering resulting from electronic Coulomb interactions (Wigner crystal).

Materials presenting a MIT in the cases where the properties are dominated by
electron-phonon interaction often show the appearance of a large number of phonons
in the infrared spectrum in the insulating state (along the chain direction if the are one-
dimensional). This phenomena has been found in several materials [118–121], including
those showing a Verwey transition. One of the intriguing features is that they may show a
so called mid-infrared band in the optical spectra. It has been argued that for Fe2O3 [124]
and many other materials [117] that the mid-infrared band can be understood as a pola-
ronic response. However, also materials where Hubbard physics dominates may show a rel-
atively strong mid-infrared band resulting from intra-band transitions[122, 123, 125, 126].

We present here another 1D material showing a MIT, namely β-Na0.33V2O5 which
has the above discussed features: 1) in the insulating state many new infrared active
phonons develop in the chain direction and 2) a strong mid-infrared band is present. The
recent discovery[17] of a clear metal-insulator transition (MIT) in the vanadium bronze
β−Na0.33V2O5 has sparked a revival of interest in this quasi-1D metallic system. In addi-
tion to the MIT, where a redistribution of the charge carriers on the V atoms was proposed
to take place[127], β−Na0.33V2O5 undergoes a structural sodium ordering transition at
higher temperatures, a magnetic transition at low temperatures, and a transition into a
superconducting state under high pressure[21].

In our data we observe the appearance of a large number of optical phonons in the
chain direction, just below the MIT, which can be put in connection with similar effects on
the usual CDW systems. This effect was clearly established in the 1D charge density wave
systems NbSe3 [119] and K0.3MoO3 [120, 121], where the new phonon lines evolve below
the Peierls transition temperature. The effect was explained by M.J.Rice [128] for the
1D organic semiconductor TEA(TCNQ)2 in terms of the so-called phase-phonons. They
result from the coupling of the molecular vibrations to the conduction electrons, enhancing
thus their optical intensity in the chain direction, which otherwise may be small or not
present due the symmetry reasons. The model worked in the case of NbSe3 [119] as well.

The same appearance of many new phonon lines below a certain temperature was
observed in the polaronic materials Fe3O4 and Ti4O7 [118]. Their case can be very rel-
evant to our material, since both materials present the Verwey transition (that is the
ordering, below a certain temperature, of otherwise random small polarons, due to a
good balance between their kinetic and correlation energy) as it was also proposed for
β−NaxV2O5 [22]. The appearance of the sharp phonon lines below the Verwey tempera-
ture transition is however not yet explained. In Ref. [118], three models are put forward
for Fe3O4 and Ti4O7, including a fingerprint of bipolaronic order, tunnelling through a
double well potential barrier, or the phase-phonon approach of M.J.Rice [128]. There are
other similarities with these materials, which include the proposed presence of bi-polarons
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Figure 4.1: a) Room temperature structure of β−Na0.33V2O5 The available V sites are:
V1 (dark octahedra) , V2 (light octahedra) and V3 (light pyramids) b) An enlarged view
of the zig-zag chain consisting of two types of V1 atoms below TNa. At room temperature
the positions of V1 are equivalent.

in β−Na0.33V2O5 [23] and Ti4O7 [129].
A second similarity, as mentioned above, is the presence in β−Na0.33V2O5 of a mid-

infrared feature around 3000cm−1 for light polarized along the chain direction. A similar
feature is present also in Fe3O4, and it was assigned to the small-polaron transitions[124].
However, we found no temperature dependence in the low frequency region above the MIT
transition, in contrast to the expected [117] and measured[130] behavior of the small po-
larons. The presence of bi-polarons in β−Na0.33V2O5 (proposed by Chakraverty[23] in con-
junction with low temperature specific heat measurements) has been put under question
by later measurements of the temperature dependence of the magnetic susceptibility[17],
which indicated that the the spins remain unpaired for any temperature, implying that
spin-zero bi-polarons, if present at all, represent an insignificant fraction of the polaronic
charge carriers.

4.2 The structure and thermodynamical properties

The room temperature crystal structure [15, 16] of β−NaxV2O5 is shown in Fig. 4.1.
For x = 1/3, the unit cell is described by the formula NaV6O15. The six vanadium atoms
occupy three pairs of crystallographically distinct sites, labelled V1 (dark octahedra) , V2

(light octahedra) and V3 (light pyramids). The Na atoms occupy lattice positions which
can be represented as a ladder along the b axis (small black circles in Fig. 4.1).

In Nuclear Magnetic Resonance measurements it has been observed [131] that the 23Na
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TMI
TNa

TMagn

Figure 4.2: Lefthand panel: Temperature dependence of the resistivity for β−Na0.33V2O5.
Righthand panel: Temperature dependence of the magnetic susceptibility. Both figures
are reproduced from Ref. [17].

nuclei have no Knight shift, and consequently are monovalent, donating thus their outer s-
shell electrons to the V atoms. There is a controversy, between old and new measurements,
as regards on which V atoms these Na electrons go. In 1970 Goodenough [132] argued, on
the basis of the V-O bond lengths, that the electrons should enter either the dyz orbital
of the V1 atoms or the dzx orbital of the V2 atom, preferably the first one. The x, y, z axes
are presented in Fig.4.1, according to the choice of Goodenough [132]. He pointed out
that the electron, if present on the V1 site, would hop on site V3 via the intermediary O
atom, so a small occupancy of V3 would be expected as well in that case. Later, from the
measurements of the nuclear quadrupole effect [131] and anisotropic Knight shift of the
51V site [133], it was reported that most of the Na donated electrons are stabilized on the
dyz-orbitals of V1. A small fraction would be presented on the V3 as well [131, 134, 135],
but the V2 chain would be empty. However, recent measurements [127] report that these
electrons are shared among all three V chains above TMI' 130K, and that they condense
either on the V1 or the V2 chain below TMI' 130K.

For x = 1/3 in β−NaxV2O5 only 50 % of the lattice sites forming the Na ladder is
occupied. One possibility is that each rung of the Na ladder hosts one Na atom randomly
distributed between the lefthand and righthand side of the ladder. A recent paper [136]
suggests that the Na atoms may also form regular zigzag chains along the b axis, with
a 2b periodicity. Perpendicular to the b axis these zigzag chains would be randomly
distributed, and thus the probability of occupation for one site would be half on average.

Below room temperature, the system undergoes three phase transitions, shown in
Figures 4.2 and 4.3. Around TNa ' 240 K a 2nd order structural phase transition takes
place to a low temperature structure where the unit cell is doubled along the b direction,
as revealed by X-ray diffraction[17]. Recently it was reported [136] that this transition
takes place in two steps: a resistivity anomaly at TNa−2D = 240K was observed and a
hysteretic phase transition at TNa−3D = 222K. Generally, it is believed that the reported
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Figure 4.3: Left panel: Temperature dependence of the heat capacity for the stoichiomet-
ric and off-stoichiometric β−NaxV2O5 samples from Ref. [17]. Right panel: Temperature
dependence of the X-Ray diffraction peak revealing the doubling of the unit cell below
TNa from Ref. [137]

doubling of the unit cell is a result of the zig-zag pattern of Na atoms being present
below TNa. Lowering the temperature, a transition from metal above TMI = 136 K to
insulator below TMI takes place. This is accompanied by a tripling of the unit cell along
the b axis[18]. A magnetic transition from paramagnet above TCAF = 22 K to a canted
anti-ferromagnet below TCAF [19, 20] is also present.

These transitions are evident from the measurements presented in Fig. 4.2 and Fig. 4.3.
In the left panel of Fig. 4.2 the resistivity data is reproduced from [17]. It shows the one-
dimensional behavior of β−Na0.33V2O5: the resistivity along the chain direction b is two
order of magnitude smaller that the one perpendicular to the chains. The metal insulator
is presented around TMI = 136 K, above which a metallic behavior is observed. Above
TNa ' 240 K the resistivity for the b axis presents a plateau.

However, the metallic characteristics are rapidly lost for dopings away from x =
0.33 [17], and the MIT disappears as well (see Fig.4.3). The presence of metallic behavior
for only a sharply defined charge carrier concentration is different from conventional MIT
in 2 or 3 dimensions, where the metallic phase occurs in a broad range of carrier densities
above the critical value. The strange doping dependence of β−Na0.33V2O5 is probably due
to the combination of (i) quasi one-dimensionality and (ii) broken translational invariance
due to excess Na+-ions or Na-vacancies when x 6= 1/3. In other words, the potential cre-
ated by the neighboring Na atoms influences the movement of the electrons. Doping away
from 1/3 would create an empty or fully occupied rung of the Na ladder. This creates a
greater disturbing potential for the electrons than the rung occupied with exactly one Na
atom, as it the case for x = 1/3

The righthand panel of Fig. 4.2 presents the magnetic susceptibility of β−Na0.33V2O5.
If the magnetic transition at TMagn is easily visible, the other two transition are hardly
visible. Fig.4.3 presents two other important aspects of the β−Na0.33V2O5 samples. First,
the MI transition at TMI is very sensitive to doping, as mentioned earlier. For a doping
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of x = 0.34 the transition already disappeares, and the sample is insulating at all tem-
peratures [17]. The righthand side panel shows the intensity of the X-ray diffraction peak
related to the doubling of the unit cell. It is a result of the presence of the zig-zag Na
chains below TNa. The figure shows that this peak develops gradually, suggesting that
in fact the metal-insulator transition takes place at TMI = 136K, when the Na atoms
are fully ordered in zig-zag chains. This would strengthen our previous argument that
the Na potential influences strongly the movement of the electrons of the V chains. The
way it is doing it is unexpected, since at high temperature, where there is more disorder,
the system is metallic. However, the ordering which takes place below TNa allows the
formation of the insulating state, as will be argued in the remainder of this chapter.

4.3 Description of the experiment

Single crystals have been prepared as described in [17]. Two crystals with dimensions
of 6 × 1 × 0.5 mm have been used for collecting optical spectra, giving identical results.
One of them was checked on the X-ray diffractometer that it presents the tripling of the
unit cell at TMI having thus the right stoichiometry. Because of the needle shape of the
crystals, only one crystal face available was measured, namely (101).

We measured the reflectivity in the range 20-6000 cm−1 as a function of temperature
with polarization parallel to the b-direction (i.e. parallel to the conducting chains) and
with the polarization perpendicular to b. In Fig. 4.4 the reflectivity spectra are displayed
for some selected temperatures. In the inset Fig. 4.4e the reflectivity for the two samples
is compared. At low frequencies, the one which was plane parallel presented interference
fringes for E‖b , showing thus the insulating behavior of this direction.

In addition, we did temperature dependent spectroscopic ellipsometry measurements
and room temperature reflectivity measurements from 6000 to 36000 cm−1. With the
help of Kramers-Kronig relations, the optical conductivity was calculated between 20 and
36000 cm−1 (Fig. 4.5).

4.4 Room temperature data

Optical spectrum of a sample is a powerful tool in determining its electronic properties.
Its main features reflect the dipole allowed electronic excitations of the sample. For exam-
ple, the presence of a Drude peak implies a metallic behavior, and a constant reflectivity
for ω → 0 implies insulating behavior. The richness of the spectrum (as presented in 4.4)
may add additional information to the already established main features. We will try to
approach the presentation of the measured data by beginning with the high frequency
part, in Fig. 4.5.

4.4.1 High frequency excitations

Prominent bands around 3 eV similar to those in Fig. 4.5 have been been observed in
α′−NaV2O5 [90], and also in its ”matrix material” V2O5 [114–116]. They correspond to
charge transfer excitations between the occupied oxygen 2p levels and the empty vanadium
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Figure 4.4: a) and b) Reflectivity spectra of β−Na0.33V2O5. Inset c): Zoom in for the E‖b
polarization. Inset d) Temperature dependence of the reflectivity for a selected frequency.
Inset e) Reflectivity of the insulating direction E ⊥ b for two samples measured. The
presence of fringes on the plane-parallel sample (2) shows that the samples are transparent
for this polarization.
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Figure 4.5: Optical conductivity at room temperature. Inset: The effective number of
electrons per V atom, calculated with formula 4.1 for two polarizations: E‖b (thin line)
and E ⊥ b(thick line)

3d states. This is important, because the insulating V2O5 has no electron donors for the V
chains. In a simple picture, there would be no electrons on the V-3d orbitals in V2O5. Most
probably however, their occupancy is not zero, since some covalent V-O bonds exist, being
especially strong for the shortest bonds. However, the electrons present in this covalent
bonds play no role in the low excitations, which mainly determine the physical properties.
The fact that there are no excitations lower than 3eV in V2O5 strongly suggest that those
excitations lower than 3eV, which are presented in the doped V2O5 related compounds,
come only from the Na donated electrons.

For E ⊥ b, σ(ω) of β−Na0.33V2O5 has an intense peak at 1eV (see Fig.4.5). By
integrating the intensity below the peak, and adopting the bare mass me and charge e
for the electrons, as well as the density of the V atoms nV , we can calculate an effective
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V-O α′-NaV2O5 α′-NaV2O5 β-NaxV2O5

T=300K T=15K T=300K

Va-O [Å] 1.83 1.89 1.95

Vb-O [Å] 1.83 1.76 1.78
Angle [◦] 140.8 141.5 134.24

Va-Vb [Å] 3.44 3.44 3.44

Table 4.1: The dimensions of the V1-O5-V3 bond unit in β−Na0.33V2O5 and of the rung
V-O-V bond in α′-NaV2O5 (The Va and Vb refer to the vanadium atoms of the V-O-V
bond considered). The values are taken from Ref. [15]and Ref. [81].

number of electrons per V atom taking part in transition:

8
∫ ωm

0
σ(ω)dω = n∗(ωm)

4πnV e2

me

. (4.1)

If integrating only the valence electron transitions up to ∞, this should yield n∗(∞) =
1/6, the average occupation number of 3d electrons on V atoms. The result is presented
in the inset in Fig.4.5. We obtain a n∗ of about 0.052 if the integration is carried out up to
15000 cm−1 that is n∗(15000) = 0.052. This number is only three times smaller than the
average occupation number of 3d electrons on V atoms, which is n = 1/6. In analogy with
the case of α′-NaV2O5 [89], this transition cannot be an on-site d− d transition, because
its intensity is high. On-site d − d transitions are optically forbidden by symmetry in
the free atom, but in the crystal they can be visible, due to breaking of this symmetry.
However, their intensity would be small, and this is not case here. Thus it may be a
charge transfer transition.

In α′−NaV2O5 a transition around the same energy has been attributed to a bonding-
antibonding transition inside the V-O-V rung [89, 90]. As discussed in the introduction, in
β-Na0.33V2O5 it is was suggested that most of the electrons occupy the V1 chains [131, 133,
135], even though new measurements suggest that the electrons are spread on all three
V sites [127]. If the donated 3d electrons occupy mainly the V1, a very good candidate
exists for this transition. To create the transition at 1 eV in the direction E ⊥ b and in
the plane (101), the electron may hop to the V3 due to a large V1-O-V3 angle. The V1-V3

direction is also close to the direction of the polarization of the light.
In fact, the molecular unit V1(dyz) - O5(p) - V3(t2g), was also identified by Good-

enough [132] as giving strong electron-phonon interaction. In Table 4.1 we present a
comparison between the V-O-V rung molecular unit of α′-NaV2O5 and the unit V1-O5-V3

of β-NaxV2O5. As we can see, the values are quite close. However, one should also note
that in β-Na0.33V2O5 the V atoms have different on-site potential, since they are inequiv-
alent. The shape is also broader in the case of β-Na0.33V2O5. Its intensity is smaller as
compared to the case of α’-NaV2O5 because the number of electrons is also smaller.

4.4.2 Mid-Infrared feature

In a previous study[138], a minimum in the E‖b reflectivity at 7200 cm−1 has been
attributed to a plasma edge. We can see from the Fig. 4.5 that the main contribution
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conductivity for a selected frequency.
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to the oscillator strength associated with this plasma minimum arises from a prominent
mid-infrared band centered at 3000 cm−1, and not from the free carriers. From the inset of
Fig. 4.5 the spectral weight of the mid-infrared feature estimated from n∗ at 10000 cm−1

is about 0.1, that is n∗(10000) ' 0.1. This is close to the average occupation number
n = 1/6 of 3d electrons on V atoms. The high oscillator strength of the mid-infrared peak
as shown by the value of n∗ shows that it is given by the doped carriers.

As mentioned earlier, mid infrared peaks are predicted by various models, including
the small polaron model [117, 124] and Hubbard chains [123, 139]. As known, away from
half filling, the Hubbard chain gives metallic behavior. At filling close to 1/4, it also
give a peak at frequencies slightly higher than the hopping parameter t [123]. However,
there is no exact knowledge of the room temperature filling in β−Na0.33V2O5. Previous
anisotropic Knight shift data [133] suggested that most of the Na donated electrons are
stabilized on V1. Later, the presence on all three V sites was reported[127]. It could be
possible that most of the electrons are actually located on a single type of V site, since
a large redistribution of electrons at the MIT[127] would give new mid-infrared peaks
in the optical spectrum of both axes, which is not observed in the present work. The
system can be thus close to 1/4 filling, and if the electrons would stay mainly on V1 they
would form two weakly coupled linear chains [140] (see Fig.4.1b). The hopping parameter
inside the chain would be t = 0.2eV [140], thus close to the energy of the mid-infrared
peak. However, the spectral weight of the low frequency part of the mid-infrared peak
up to 1500cm−1 is about 10% of the total mid-infrared feature (see the inset of Fig.4.5),
much smaller however than the Drude weight expected from calculations [125, 141], which
exceeds 50%. Thus, the Hubbard model alone cannot account for the large amount of
oscillator strength present in the mid infrared peak.

On the other hand, the small polaron presents in optical conductivity not only a
peak at few times the frequency of phonons [117], but also a finite conductivity at low
frequencies. Our mid-infrared feature has a finite conductivity at low frequencies (see
Fig. 4.6), which extrapolates to 200 Ω−1cm−1 a value somewhat higher than the DC
conductivity 100 Ω−1cm−1 [17].

4.4.3 Far-infrared region

One can see from Fig.4.4 that β−Na0.33V2O5 is indeed a quasi 1D conductor: at low
frequencies, the b-axis reflectivity extrapolates to 100 % for ω → 0, which is a charac-
teristic feature of a conducting material. The corresponding extrapolated conductivity is
about 200 Ω−1cm−1 (see Fig.4.6a). This value is somewhat higher than the DC conduc-
tivity 100 Ω−1cm−1 obtained previously [17]. For E ⊥ b the reflectivity is characteristic
of an insulating material, and optical conductivity extrapolates to very low values.

At room temperature two prominent optical phonons are visible at 340cm−1 and 530
cm−1 E‖b , and several other for the perpendicular polarization E ⊥ b, as we can see
from Fig.4.6b. The complex of phonons around 970cm−1 in the E ⊥ b spectrum (see
Fig. 4.6b and Fig. 4.7) may be attributed to the vibrations of the short bonds V1-O4,
V2-O6, V3-O8. As can be seen from the structure [15], these bonds are perpendicular to
the b axis, explaining the absence of this vibrations in the E‖b spectrum. Their high
frequency is a result of the the fact that the bonds are short.
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Figure 4.7: The phonons given by the shortest V-O bonds presented only in the optical
spectrum for E ⊥ b. Inset: Temperature dependence of the intensity of two phonons:
990 cm−1 (empty triangles) and 950 cm (full squares) present in this spectrum.

The presence of strong electron-phonon coupling is deduced by integrating the intensity
in the phonon peaks for E‖b , and using the ionic charges of the atoms. The resulting
effective charge would be e∗ = 1 in the case of no electron-phonon coupling, but instead
we obtain e∗ = 1.9 at 300 K.

4.5 Low temperature data

In this section we present the evolution of the measured optical conductivity trough
the three phase transitions present in β−Na0.33V2O5: Na atom ordering (TNa ' 240K),
metal-insulator transition (TMI ' 136K), and the magnetic transition (TMagn= 22K).

4.5.1 The effect of the Na ordering on the optical spectra

The phase transition at TNa' 240K has little effect on the infrared spectra of the
metallic axis, but it presents new phonons in the insulating direction. A clear case where
the intensity develops for T < TNa is formed by the phonon at 990 cm−1 which gradually
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develops in the insulating direction (see inset of Fig. 4.7). The same 2nd order type
evolution with temperature has been observed for the intensity of X-ray satellites[137]
corresponding to the doubling of the unit cell which take place below TMI thus to the Na
ordering (see Fig. 4.3). They both suggest that the MIT takes place at a temperature
where the Na atoms are fully ordered. This would strengthen our previous argument that
the Na potential influences strongly the movement of the electrons of the V chains.

4.5.2 Metal-insulator transition

The MIT has a clear effect on the optical spectra of the metallic axis (see Fig. 4.6a).
At 4K the low frequency part of the mid infrared feature, below 1700cm−1, it looks more
like a pseudo-gap. Inside this pseudo-gap, a large number of sharp optical absorption
lines evolve. This is exemplified also by the temperature dependence of σ(ω) for 750
cm−1 shown in the inset Fig .4.6c. The way this pseudo-gap develops below the MIT is
similar to the temperature dependence of the low frequency part of the polaronic peak
at 0.6eV in magnetite [130]. There, below the Vervey transition TV , the low frequency
part of the mid-infrared feature (the polaronic peak in that case) goes to zero, and thus
the opening of a gap was deduced [130]. In a similar fashion our low frequency part of
the mid-infrared peak at 3000cm−1 would go to zero, if the phonons and some electronic
continuum would not be present below 1700 cm−1.

There is however a major difference between magnetite and our sample. The gap which
opens in magnetite below the Vervey transition TV has the same energy as the activation
energy of D.C. electrical conductivity at low temperatures [130]. In β-Na0.33V2O5 the
activation energy of the D.C. conductivity estimated between 85K and 42K is 46meV [17]
(about 371 cm−1). Thus, this is much smaller that our observed energy of the pseudo-
gap, which is about 1700 cm−1. It looks like this pseudo-gap is not directly related
to the physical mechanism which determines the MIT, because the gap is expected to
have an energy close to the activation energy of the D.C. conductivity. In fact, we can
calculate a gap using the B.C.S. formula for the gap [142], 2∆ = 3.5∗kB ∗TMI = 317cm−1

or ∆ = 158cm−1 and this is indeed of the order of the activation energy of the D.C.
conductivity, even though half of its value. In usual CDW systems, one expects the
presence of the optical gap at about twice the value of the D.C. activated energy [128],
and we can only remark here that around that value, about 650cm−1 a continuum develops
in the metallic direction below the MIT, as we can see in see Fig.4.6. From the same figure,
a continuum is present around that energy, 700cm−1 at all temperatures, in the E ⊥ b
spectrum.

Below MIT, the infrared reflectivity spectra show the appearance of a large number
of sharp optical absorption lines for both polarizations (see Figs. 4.4, 4.6 and 4.8). For
E‖b we counted more than 60 additional peaks. They develop gradually below TMI =
136K. This is also illustrated by the temperature dependence of the 950 cm−1 phonon
shown in the inset of Fig. 4.7. However, as we can see from the inset Fig.4.4c, traces of
some of the additional phonons are still present in the 145 K spectrum. Some of them
can be viewed as splitting of the already present phonons (see Fig. 4.8), as for example at
105cm−1 147cm−1 180cm−1 191cm−1 for E ⊥ b, or 109cm−1 for E‖b . The large phonon
in the metallic direction at 515cm−1 seems to be split already above MIT. Even though
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Figure 4.9: A zoom of the optical conductivity of the two directions at 5K.

a change in crystal structure takes place at TMI = 136K, which triples the unit cell along
b direction[18], we think that the appearance of so many new peaks is a result of strong
electron-phonon coupling. In other words, the new phonons are activated below TMI by
the structural change, but they become visible because they acquire strength from the
coupling with the charge degrees of freedom.

As discussed in the introduction, similar effects were observed in the CDW systems[119,
120] below the Peierls temperature, and polaronic materials [118] below the Verwey tran-
sition temperature. Both are in fact charge ordering mechanisms, and in this sense the
effect is a signature of this ordering. We want to stress here that β−Na0.33V2O5 is not
a usual CDW system, and the mid-infrared feature is not the CDW gap, since it exist
at all temperatures. However, this does not exclude the possibility that the MIT is a
CDW transition of the quasi-particles which can result from a particular type of physics,
Hubbard for example. The reorganization of charge carriers at TMI which are supposed
to condense on a single chain chain below TMI [127], suggest however that our system is
closer to the polaronic materials presenting the Verwey transition [118], as was also pro-
posed by Mott [22]. With respect to the M.J.Rice mechanism of the phase-phonons [128],
we can extract no supplemental information regarding the symmetry of the Raman and
far-infrared phonons since their number is huge, and coincidence may easily happen. In
Fig. 4.9 we exemplify this by plotting the optical conductivity at 5K in both axes. In
optical conductivity it seems that there are phonons which have the same energy in both
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Figure 4.10: Optical conductivity for E‖b which presents the appearance of a continuum
around 100 cm−1. The dotted line is fit performed on the data with the Fano model
develop in Ref. [143].

polarizations, as the ones at 105cm−1 and 120cm−1. If so, they would prove the disap-
pearance of the center of inversion at 5K, but as we said, it may be just coincidence.

At low temperatures, in the metallic direction, spectral weight seems to be transferred
from the 50cm−1 region to 100 cm−1, giving rise to a continuum (see Fig. 4.10). The
existence of this continuum is made clearer by the presence of the phonon resonances which
sit like ”dips” on the top of it, confirming a strong electron-phonon coupling. Fig. 4.10
presents fits of the data within a Fano model developed in Ref. [143]. The phonons are
assumed to be Lorentzian with no strength in the absence of electron-phonon coupling,
and their width is set to zero. They acquire then their strength, width and shape only
through a single parameter, which is the coupling strength. As we can see, good fits
have been obtained, with the strength of phonons of 2, 2.2, 1.8 cm−1. The origin of the
continuum is still unclear, but it must be remarked that some excitations at low energies
have been observed in other CDW systems as well. In K0.3MoO3 an excitation around 40
cm−1 was assigned to a bound collective mode resonance.
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4.6 Discussion

An important clue for the interpretation of the optical spectra below 10000 cm−1

is provided by the observation that while a gap opens in the optical spectrum and the
DC-resistivity below 136 K, the magnetic susceptibility is almost unaffected by the metal-
insulator transition (see Fig.4.2). If the gap were of the garden variety like in silicon, the
spin-fluctuations would become strongly suppressed below the same temperature where
the optical conductivity becomes gapped. However, in β−Na0.33V2O5 there is no forma-
tion of a spin-gap when charge transport gets suppressed below TMI=136 K [17]. This
aspect of the data reflects the presence of strong on-site Hubbard-type repulsions between
the charge carriers, which in one-dimension causes the electrons to behave like spinless
fermions, and it may thus be an experimental candidate for the material which can re-
produce the main theoretical expectations of the partly occupied Hubbard chain: spin
charge separation, and fractionalization of the charge [144]. This can be due to the pola-
ronic character of the charge carriers and/or a Hubbard model with a large ratio of the
on-site Coulomb repulsion U to the band width W . Supporting this, no changes in the
optical spectrum of β−Na0.33V2O5 are detected at the magnetic transition temperature
TMagn= 22 K. The relative independence of the spin and charge channels has been noticed
before for the Bechgaard salts [145], the presence of a pseudogap in the optical excitations
being opposed to the absence of a gap for spin excitations. A large peak at IR region and,
in addition, an in-gap mode was also observed.

Another important clue is provided by considering the optical response of the charge
carriers. As discussed above, the integrated spectral weight of the mid-infrared feature
for E ⊥ b corresponds to n∗(10000cm−1) ' 0.10 electrons per V atom (see inset of
Fig. 4.5), which is rather close to the nominal chemical doping of n = 0.166 electrons per
V atom. The difference between n and n∗ can be easily understood from the fact that, in
these transition metal oxides, the effective mass of the electrons is about 2me. The high
oscillator strength of the mid-infrared peak as given by the value of n∗ shows that it arises
from the doped charge carriers. In contrast, the spectral weight of the low frequency part
up to 1500 cm−1 is about 10% of the total mid-infrared feature (see inset of Fig. 4.5).
Finally, the relative intensity of the low frequency spectral weight is almost independent
of temperature above TMI' 136K.

From studies of the Hubbard model in one dimension we know that part of the intra-
band spectral weight shows up as a band of mid-infrared excitations. However, these
studies have also demonstrated that for doping far away from half-filling of the Hubbard
band, the intensity of the mid-infrared band is less than 20 % of Drude spectral weight[125,
126]. This rules out an interpretation of the mid-infrared peak in β−Na0.33V2O5 in terms
of a pure Hubbard model. At the same time we underscore the crucial role of Hubbard-
type correlations for the independence of the spin response from the charge-gap in this
material.

The most trivial explanation of the 3000cm−1 peak (”MIR peak”) would be that it is
a direct transition between bands which are formed as a result of the Umklapp-potential
of the Na-superlattice below 240 K. However, the potential landscape caused by the Na
ions becomes random above 240 K. Although even a random potential would give rise
to a mid-infrared peak, the position of the mid-infrared peak would become strongly
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temperature-dependent in such a scenario, in contrast to our experimental observations.

The remaining candidate for the mid-infrared band is to assume that the charge carri-
ers are small polarons. Derived basically from the Frank-Condon model, the small polaron
peak [117] can be viewed classically as an instantaneous transition from a localized state
to a neighboring localized state in a rigid ionic environment. The environment responds
to the new electronic configuration by emitting a wave package of multi-phonon oscilla-
tions, the envelope of which corresponds to the line shape of a polaron. It acquires not
only a peak at several times the frequency of phonons, but also a finite conductivity at
low frequencies. Our mid-infrared feature has a finite conductivity at low frequencies.
The small polaron optical line shape, being influenced by the movement of ions, depends
strongly on temperature [117]. This is indeed what we observe for the mid-infrared feature
in its high frequency part (see Fig. 4.6a). The low frequency part is unchanged down to
the TMI = 136K, in contrast to what is expected[117] and measured[130] for the small
polarons. This unexpected behavior may have a connection to the disorder potential cre-
ated by the Na atoms, which could smear out the influence of the temperature at low
frequencies. As discussed above, the measured intensity of the 990 cm−1 phonon which
gradually develops in the insulating direction below TNa being fully developed at TMI (see
inset of Fig. 4.7), strongly suggest that the MIT takes place at a temperature where the
Na atoms are fully ordered.

The zig-zag ordering of Na ions induces an alternating potential Vn = (−)nV0 on
vanadium sites, which in principle opens a charge gap 2V0. This gap must be rather small,
as apparently it has little effect on the transport and optical properties of this system
below TNa. A strong reduction of the amplitude V0 could come from a near cancellation
of the electric fields from the neighboring rungs of the zig-zag ordered sodium ladder, since
this can be viewed as a collection of dipoles aligned alternatively in opposite directions.
Importantly, such a cancellation occurs in the ordered state, and in the exact stoichiometry
only: for totally random positions of the Na ions, the potential on vanadium sites is also
random and its amplitude is about five times larger than the amplitude V0 in the ordered
state. This would explains naturally why the resistivity along the b-direction shows a
decrease below the sodium ordering temperature (being almost constant above) [17], and
possibly also the insulating behavior of non-stoichiometric samples. A large random
potential on the vanadium sites also strongly suppresses the instability towards a periodic
state, which is probably why the metal-insulator transition is delayed until Na ions become
almost fully ordered. This supports the picture in which the Na zig-zag chain units form
below TNa [17], and not above [136].

The small influence of the MIT transition on the magnetic susceptibility suggests thus
a polaronic picture and/or a Hubbard model in which electrons propagate along chains
with a large ratio of the on-site Coulomb repulsion to the band width. In the latter case,
electronic charges and spins are decoupled: the charge excitations in a partially filled
chain are spinless fermions, while the spin excitations are spinons [146]. A fermion band
is unstable towards a Peierls-like transition into an insulating charge-density-wave (CDW)
state. Such a transition could take place at TMI where the tripling of the unit cell in the
chain directions was observed. The tripling may be obtained for some particular electron
filling of the occupied chains. A strong electron-lattice coupling could also result in a spin-
Peierls type of transition, which could open a spin gap [144], but instead, a transition
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into a canted antiferromagnetic state was found at TCAF = 22 K[19, 20], indicating the
importance of interchain spin interactions. The type of polaron, magneto-elastic polaron
or spin-polaron may not be determined with certainty from our data. It may well be that
both types of renormalization of the bare electrons are involved[147].

4.7 Summary

In summary, optical spectra have been presented for β−Na0.33V2O5. The spectra
show a delayed opening of a charge pseudogap at a MIT temperature TMI = 136 K,
well below the Na ordering transition at TNa ≈ 240 K, and support a picture in which
the Na atoms order gradually, allowing the formation of the ordered electronic state at
TMI . Both the mid-infrared peak at 3000 cm−1 and the observation of strong electron-
phonon coupling support the picture that the charge carriers in β−Na0.33V2O5 should
be regarded as small polarons. The strong Hubbard-type interactions are responsible for
the observed independent behavior of the spin and charge channels at the metal-insulator
phase transition.

Below the phase transition the insulating state is a charge ordered phase. Future ex-
periments will have to establish the detailed nature of the charge ordered state. Although
in a way a regular array of polarons also represents a CDW, a distinguishing feature in
this case, is that in an ordinary CDW the spin- and charge sectors should be gapped
simultaneously, which clearly does not happen in β−Na0.33V2O5 at 136 K, and the spin
even orders at a still lower temperature. The nature of the crystallographic phase transi-
tion at 136 K (i.e. the tripling of the unit cell along the chains) suggests that below 136 K
the charges have become ordered with a commensuration of order 3 on the three different
types of V-chains and ladders in the unit cell. This would imply that the doped charges
are distributed equally over all V-atoms or in a 2/3-1/3 ratio over the V1 and V2 atoms,
resulting in a high degree of dilution. This is a favorable condition for the formation of
small polarons, consistent with the above interpretation of the spectra.

The presence of a strong electron-phonon coupling leads to the appearance of a large
number of optical phonons below TMI , in a similar way as the CDW systems[119, 120]
below the Peierls temperature, and polaronic materials [118] below the Verwey transition
temperature.
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Chapter 5

Coulomb energy in Bi2Sr2CaCu2O8+δ

We experimentally try to address the behavior of the correlation energy in the long wave-
length limit (k = 0), for underdoped and optimally doped Bi2Sr2CaCu2O8+δ high tem-
perature superconductors, using an approach which starts from the measured in-plane
dielectric function in the interval 50 − 20000cm−1. The results show that the Coulomb
energy for k = 0 increases in the superconducting state with respect to the extrapolated
normal state, with about 0.2meV per Cu atom, a value comparable with the condensation
energy. An extrapolation to higher momentum, taking into account the layered geometry
of Bi2Sr2CaCu2O8+δ yields the same result, suggesting that the saving of the energy in
the superconducting state is not due to the Coulomb energy, but probably due to kinetic
energy, as reported earlier [61].

5.1 Introduction

The high-temperature superconductivity in ceramic compounds containing copper-
oxide planes is still an unsolved theoretical problem. This is opposed to the conventional
superconductivity, as described by the Bardeen, Cooper and Schrieffer (BCS) [148], whose
main predictions are well established in the experimental work. Here, the Fermi-liquid
approach, which results in the presence of quasiparticles in the normal state, is still
applicable. These quasiparticles would then interact by exchanging phonons, leading to
the formation of Cooper pairs, which condense into a coherent macroscopic state at a
certain superconducting transition temperature Tc. The pairs have a fully symmetric, or
s-wave, internal symmetry, and they lead to an opening of an isotropic gap ∆.

Many of the properties of the high temperature superconductors (HTSC) can be as
well described in terms of the usual BCS and Ginzburg-Landau theories. For example, it
is believed that the formation of Cooper pairs with zero net momentum is still present,
because the usual ac Josephson effect frequency 2eV/h is still observed [24], and the
observed flux quantum is of the usual size hc/2e[25]. However, HTSC materials differ also
in many aspects from the conventional superconductors. In the normal state above Tc no
quasiparticles are found, and thus the Fermi-liquid approach is not anymore applicable.
The superconducting gap ∆(k) is highly anisotropic [40] and the formed Cooper pairs
have a d-wave symmetry.

75
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To explain these unusual features of the HTSC, different models have been put for-
ward, mostly discussing a ”glue” that binds the carriers, different from phonons. One is
the presence of a Resonance Valence Bond (RVB) state [52], which is based on a common
belief that the Hubbard models, or simplified t-J models, lead to correlation effects which
may play the leading role [53]. The SO(5) theories [56] exploit the fact that the HTSC
emerge upon doping from their antiferromagnetic compounds, trying to unite the super-
conducting and antiferromagnetic phases in a larger symmetry group. A model proposed
by Hirsch predicts a reduction of kinetic energy when two holes become closer[60]. The
forming of the Cooper pairs, which may be regarded as the reason for the presence of the
superconducting state, was also proposed to take place because frustrated kinetic energy
of single charge carriers may be recovered when pairs are formed [57, 58], or because they
may lower the ab-plane zero-point kinetic energy [59]. The presence of the Cooper pairs in
the normal state was also proposed [45]. In this case they would Bose-Einstein condense
below Tc.

An important issue in the modelling of the HTSC refers to the way the total energy of
the system is lowered in the superconducting state. Usually, by choosing a wavefunction
formed by Cooper pairs, the expectation value of the Hamiltonian, which is the energy
of the system if that wavefunction would be the groundstate, is lowered compared to
the case where no Cooper pairs are present. This approach finds a good example in the
BCS model of classical superconductors[148]. If we decompose the total energy in the
kinetic and Coulomb part, we see that in the conventional BCS case the potential energy
in the superconducting state is lowered more then the increase of the kinetic energy,
the difference providing the so-called condensation energy which drives the system into
the superconducting state. We see that in general, this approach suffers from the poor
definition of the ”normal state” at T = 0.

Nevertheless, important information can be extracted if a different approach is taken.
The internal energy of the system, plotted as a function of temperature, may show a
kink around the phase transition when entering the superconducting state, as expected
for the optimally doped high temperature superconductors. Since the system prefers the
superconducting state, the kink should be downward, in the sense that the internal energy
is lowered more at the phase transition as a consequence of entering the superconducting
state. We think that the same type of plot can be done for the expectation values
of the kinetic energy operator of the electrons, or for the electron-electron interaction
energy operator. The sign of the kinks in these plots, if present, would give information
on the mechanisms leading to the phase transitions. In the conventional BCS case, if
measured, the expectation value of the Coulomb energy would show a downward kink in
the superconducting state (showing a lowering of the Coulomb energy), and an upward
kink for the kinetic energy. This approach does not require a state at T = 0 to be called
a ”normal state”, but it gives information about the temperature dependence of different
expectation values. Nevertheless, we will refer to an ”extrapolated normal state” as a
state at T = 0K which has the same expectation values as the normal state ones (above
Tc) extrapolated to T = 0K.

We have shown in a previous paper [61] that, if one relates the transfer of spectral
weight of optical conductivity in Bi2Sr2CaCu2O8+δ to the kinetic energy, the expectation
value of the kinetic energy can be extracted. The measurements suggested that the system
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lowers its kinetic energy when entering the superconducting state (the kinetic energy shows
a downward kink when entering the superconducting state), with a value comparable with
the condensation energy. These results have been confirmed by subsequent works [62].
This is opposite to the behavior in the classical superconductors, as discussed previously,
and points out to an unconventional pairing mechanism for the HTSC.

As far as the Coulomb correlation energy for the high-temperature superconductors is
concerned, Leggett [63] has proposed that this energy would decrease in the superconduct-
ing state. This would come from an improved screening due to Cooper pair formation,
and it would have thus the same sign as in the classical superconductors. The saving of
the Coulomb energy would take place primarily at midinfrared frequencies (0.1-2 eV ) and
small momentum vectors q ≤ 0.3Å−1. Some attempts have been done to measure these
changes using Electron Energy Loss Spectroscopy, but they proved unsuccessful. The op-
tical spectra (k=0) does however shows changes in the midinfrared range when entering
the superconducting state, and we can try to relate these changes to the Coulomb energy.
We think that, even if optical measurements cannot give a complete (for all k) answer, it
may still give an indication of the behavior of the Coulomb energy.

5.2 BCS superconductors

There is one surprise in the success of the Bardeen-Cooper-Schrieffer (BCS) model of
the superconductors [148] which shows, in a way, the general trend of solving problems in
solid state physics. Take, for example, the average distance between valence electrons in
a metal. This is of the order of few Å. Calculating the bare Coulomb interaction between
two electrons, we get a number of order 5eV. Visualizing now that these electrons would
move randomly in the sample, they would create a random potential of the order of a
few eV (or tens of thousands K), and consequently no ”special effects” would be expected
even at room temperature, since they would be smeared out by the random potential.
However, as we all know, most of the metals present the transition to the superconducting
state at few K, and even much lower in temperature! This shows that the electrons do
not behave independently and in a random way, but they rather order in one-electron
or many-body states. The huge number of electrons makes it impossible to find out in
general the exact nature of those states. However, in the case of classical superconductors,
Bardeen, Cooper and Schrieffer were able to find a good approximation for the ground
state state [148], which enabled them to explain the main physical properties of the
classical superconductors. One can see that there is no theorem that such a state may be
in general found, since it may be mathematically too complicated to be accessible, but it
is one of the things which solid state physicists are trying to identify!

We will start here with a short reminder on the phonon-mediated interaction for
metals. As is known from Fermi Liquid theory, below a certain temperature T smaller
than the Fermi energy, not all the electrons must be taken into account to describe the
transport properties. In fact, the physics is described by those conduction electrons which
are in a range kBT around the Fermi energy, and the rest may be considered ”frozen” in
the Fermi sea. The expected interaction among them would still be the repulsive Coulomb
force:
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V (q) =
4πe2

q2
(5.1)

In a first stage, a renormalization due to the screening of these conduction electrons
occurs, leading in the Thomas-Fermi approximation to:

V (q) =
4πe2

q2 + k2
s

(5.2)

where k2
s = 6πne2/εF gives a screening length of the order of few Å. The interaction is

smaller, but still repulsive. However, one should take into account the presence of phonons
as well. The electron-electron interaction mediated by phonons is attractive if the energy
of electrons is within a ωD range [149], where ωD is the Debye frequency. As it was shown
in a simple jellium model [150], this can also overcome the screened Coulomb repulsion,
leading to a total attractive interaction.

Since, as mentioned above, the electrons which ”count” are those within kT energy
range below and above the Fermi energy, for temperatures kT << ωD the interactions
among all these electrons would be finally attractive, creating thus the premise for the
Cooper pairs to form. The relation kBT << ωD is fulfilled for most metals at a few K,
since the Debye frequency is of the order of hundreds of K.

A many-body Hamiltonian for these electrons, containing a kinetic energy and a
Coulomb energy part, can be then approximated as [142, 148]:

Hred =
∑

kσ

(µ + ξk)nkσ +
∑

kl

Vklc
∗
k↑c

∗
−k↓c−l↓cl↑ = Hkin + Hp (5.3)

The first part of the Hamiltonian is the kinetic energy part Hkin, and the second term
is the reduced interaction energy part Hp, µ being the chemical potential. The operator
which creates one electron with the momentum k was denoted by c∗kσ, and the one giving
the number of electrons nkσ = c∗kσckσ. The energy dispersion of the bare fermions is given
by ξk. The interaction was set to be present only for the electrons having energies within
ωD of the Fermi energy, as discussed above:

Vkl =

{
−V for |ξk| ≤ h̄ωD and |ξl| ≤ h̄ωD

0 for |ξk| > h̄ωD or |ξl| > h̄ωD
(5.4)

with V being a positive constant, because the interaction is attractive. Bardeen, Cooper
and Schrieffer have been able to find a good approximation of the ground state (given by
the Hamiltonian 5.3):

|ψS〉 =
∏

(uk + vkc
∗
k↑c

∗
−k↓)|ψ0〉 (5.5)

where the coefficients are defined as:

v2
k =

1

2
[1− ξk√

∆2 + ξ2
k

] = 1− u2
k (5.6)

Here ∆ is the gap energy and, at T = 0K, it may be expressed in term of the density of
states at the Fermi level N(0):
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∆ =
h̄ωc

sinh[1/N(0)V ]
(5.7)

The expectation value of the Hamiltonian on the |ψS〉 groundstate will be lower (be-
cause of the attractive interaction) than the one calculated on the ”extrapolated normal
state” |ψN〉 obtained from 5.5 setting ∆ = 0. In fact the difference can be calculated
exactly, giving

〈E〉s − 〈E〉n = [
∆2

V
− 1

2
N(0)∆2]− ∆2

V
= δEkin + δEp = −1

2
N(0)∆2 < 0 (5.8)

The result shows that the system, by forming the state given by 5.5, decreases its
potential energy by |δEp| = ∆2/V . This decrease is larger in absolute value than the
increase due to the kinetic energy δEkin = ∆2/V −N(0)∆2/2, the system preferring thus
the superconducting state given by 5.5.

The previous line of arguments, showing the behavior of the Coulomb and kinetic en-
ergy expectation values, was possible because the model of the classical superconductors
is solved, and one is able to write down the correct Hamiltonian and its solution. What
about the general case, and in particular, what about the high temperature superconduc-
tors? Can one find out the expectation values of the potential energy and kinetic energy
on the ground state? Can one determine which part of energy (kinetic, Coulomb or both)
is saved when entering the superconducting state?

5.3 The general form of the Coulomb interaction en-

ergy

Nozieres and Pines have shown [64] that in general, the expectation value of the
Coulomb energy on the groundstate can be traced down to an experimentally measurable
quantity, namely the dielectric complex function ε(k, ω). We want to follow in this section
their approach, bearing in mind that, due to the momentum space limitations inherent to
optical spectroscopy, we have to reduce even further their result, to the in-plane optical
dielectric constant ε‖(ω) of Bi2Sr2CaCu2O8+δ .

We start from the ”original” Hamiltonian describing the interaction among electrons:

H =
1

2m

∑

j

p2
j +

1

2

′∑

i,j

e2

|xi − xj| + v(x) (5.9)

where xi and pi are the position and momentum operators of the i electron, v(x) is the
background potential in which the electrons move, and e is the bare charge of the electrons.
By Fourier transforming the interaction potential, the positive background removes the
term in k = 0, and one can express the Hamiltonian in terms of density operators:

H =
1

2m

∑

j

p2
j +

∑

K6=0

2πe2

K2
(ρ∗KρK − n) (5.10)
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where n is the average electron concentration and the density operator ρk is given by:

ρK =
∑

j

e−iK·xj (5.11)

From the Hamiltonian 5.10, one can write down the expectation value of the Coulomb
interaction energy in the ground state as:

Eint =< 0| ∑

K6=0

2πe2

K2
(ρ∗KρK − n)|0 > (5.12)

To make the connection between the Coulomb energy and dielectric function ε(k, ω),
Nozieres and Pines [64] used the definition of the dielectric constant ε(k, ω), which is
made in analogy to the Fourier transforms of Poisson equations. By introducing into
the system a charge distribution of wavevector q and frequency ω, the following charge
density is obtained:

erq[e
−i(ωt+qx) + c.c.] (5.13)

with rq real. The Poisson equations are:

−iq ·Dq = −iε(q, ω) q · Eq = 4πerqe
−iωt (5.14)

−iq · Eq = 4πe(rqe
−iωt+ < ρq >) (5.15)

where Eq is the longitudinal electric field and < ρq > is the expectation value of the
density fluctuation ρq in the presence of the test charge (see formula 5.11). In other
words, the dielectric function ε(k, ω) measures the response of the system to the presence
of the external oscillating charge, and can be obtained by dividing 5.14 and 5.15:

1

ε(q, ω)
= 1 +

< ρq >

rqe−iωt
(5.16)

The imaginary part of the dielectric function 1/ε(k, ω) was directly calculated by Nozieres
and Pines [64] using the above expression, and expressed as:

Im[− 1

ε(q, ω)
] = −4π2e2

q2

∑
n

| < n|ρq|0 > |2[δ(ω + ωn0)− δ(ω − ωn0)] (5.17)

where n runs over the |n > excited states whose energies are ωn0, measured from the
ground state. On integrating over all positive frequencies ω, the sum over n drops out,
and one obtains:

∫ ∞

0
dωIm[− 1

ε(q, ω)
] =

4π2e2

q2
< 0|ρ+

q ρq|0 > (5.18)

Summing the previous relation over q, and using relation 5.12 for the ground state, one
obtains:

Eint =
∑
q

[
1

2π

∫ ∞

0
dωIm[− 1

ε(ω,q)
]− 2πne2

q2
] (5.19)
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In integral form this becomes:

Eint =
Ω

(2π)4

∫
d3k

{∫ ∞

0
d(h̄ω)Im

[ −1

ε(ω,k)

]
− 2πne2

k2

}
(5.20)

where n in the average density of the electrons and Ω is the volume of the sample for which
the energy is calculated. Thus Eint is likewise determined by the measured dielectric
constant ε(k, ω). This form was used further by Nozieres and Pines to determine the
ground state energy of the free electron gas, by use of the Feynman relation

E0(e
2) = E0(0) +

∫ e2

0

dg

g
Eint(g) (5.21)

which assumes the energy to be characterized by the variable coupling constat g (in
our case, e2). From the experimental point of view this relation is hardly useful, since
one would need measurements of the dielectric function ε(k, ω) for different interaction
strengths e!

5.4 Coulomb interaction energy of the layered gas

We want to express here the Coulomb energy given by the formula 5.20 considering
the special layered geometry of Bi2Sr2CaCu2O8+δ . We will add also few considerations
on the non-local effects on the optical dielectric function.

Since we concentrate our attention on the charge carriers from the valence band of
Bi2Sr2CaCu2O8+δ we will use the following screened form for the interaction potential
appearing in 5.9:

V (xi − xj) =
e2

εsc|xi − xj| (5.22)

Here εsc describes the screening by the polarizable ions. Generally, εsc is frequency and
momentum dependent, but to a good approximation we will consider it constant and
equal to the real part of the optical dielectric function at high frequencies (this is about
εsc = 3.5 in case of Bi2Sr2CaCu2O8+δ ).

The k-dependent dielectric function ε(k, ω) is the ratio between an externally oscil-
lating electric field and the induced field in the solid, as decribed in the previous section.
Since we are interested in the dielectric constant due to the charge carriers in the system,
we treat the external field to be screened by the ion cores. This yields an effective dielec-
tric constant ε̃(k, ω) = ε(k, ω)/εsc. By putting this into formula 5.20, the following form
of the interaction energy is obtained:

Eint =
Ω

(2π)4

∫
d3k

{∫ ∞

0
d(h̄ω)Im

[ −εsc

ε(ω,k)

]
− 2πne2

k2

}
(5.23)

As we can see, the second term in the integral is temperature independent. The tem-
perature dependence in the interaction energy comes only from the first term, through the
dielectric function ε(k, ω). Since we will monitor carefully the experimental temperature
dependence of the dielectric function (to find out the behavior of the Coulomb energy
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when entering the superconducting state), we drop the second temperature independent
term.

Moreover, we will take into consideration the layered geometry of the high temperature
superconductors such as Bi2Sr2CaCu2O8+δ . Neglecting the small in-plane anisotropy,
we can make further the approximation in which ε(ω,k) is not dependent on the in-plane
direction:

ε(ω,k) = ε(ω, k, q) (5.24)

where k represents the magnitude of the projected reciprocal vector k on the planes
of the layers, and q perpendicular on the planes. Using the above approximations the
temperature dependence of the Coulomb interaction energy expressed in 5.23 becomes:

Eint(T ) =
Ω

(2π)4

∫ km

0
2πkdk

∫ qm

−qm

dq
∫ ∞

0
d(h̄ω)Im

[ −εsc

ε(ω, k, q, T )

]
(5.25)

Defining nl as the number of layers per unit cell, which has dimensions (a, a, c), we can
write the formula for the Coulomb interaction energy stored in the unit cell as:

Eint(T ) =
nl

2

∫ ∞

0
d(h̄ω)C(ω, T ) (5.26)

where the function C(ω), which may be regarded as the frequency increment of the
Coulomb interaction energy Eint, is given by:

C(ω, T ) =
2a2c/n

(2π)4

∫ km

0
2πkdk

∫ qm

−qm

dqIm

[ −εsc

ε(ω, k, q, T )

]
(5.27)

The above formula still poses the problem of the integration limits. If we may take
qm = π/s, where s is the distance between two successive layers, km is given by the wave
vector beyond which the plasmons are unstable towards electron-hole pairs [151]. For a
two-dimensional electron system this may be obtained [152] by solving the equation:

k2
m = 2me2[

√
k2

m + 2kmkF − km] (5.28)

where kF is the Fermi momentum and m the mass of the electrons. Replacing in the
upper formula the appropriate Fermi wavevector for Bi2Sr2CaCu2O8+δ we obtained a
cut-off wavevector km which is very close to the Brillouin zone boundary wavevector 2π/a,
where a is the unit cell dimension along the a direction. This value was also given by
Leggett in Ref. [63] as defining the possible ”scale” of the in-plane behavior. We have
thus decided to choose km = 2π/a as the cut-off wavevector, and to refer to the Coulomb
energy stored in the first Brillouin zone.

We see thus that the main ingredients are given in the formulas 5.25 and 5.27 for
calculating the temperature dependence of the Coulomb interaction energy per a certain
volume, provided that the dielectric function ε(k, ω) is measured at large momentum k as
well. But this large momentum sector is not accessible to optical spectroscopy, because
optical spectroscopy measures the dielectric constant at a very small k compared with
the Brillouin zone boundary. Measurements of the large momentum sector can be done
using inelastic scattering of charged particles with large momentum transfer, but this
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technique does not have yet the precision to measure changes associated with the onset
of superconductivity. We are thus forced to use extrapolations to simulate the behavior
at large k. Before discussing one of these extrapolations, we make few considerations as
regards non-local effects on the optical dielectric function.

It is usually assumed that the complex optical dielectric function ε(ω) is given as the
following limit:

ε(ω) = lim
k→0

ε(k, ω) (5.29)

However, this is not generally true. The dielectric response is a matrix ε(q + G,q +
G′, ω) in the in the Bragg umklapp wave vectors G and G′ [153], since an electric field of
small wave vector q will induce microscopic fields of different wave vectors q + G:

Vtot(q + G′, ω) = ε−1(q + G′, q + G,ω) ∗ Vext(q + G,ω) (5.30)

The macroscopic dielectric function measured in the experiment must then be calcu-
lated first by first inverting the matrix ε(q + G,q + G′, ω) in the small q limit:

ε(ω) = lim
q→0

1

ε−1(q,q, ω)
(5.31)

This is called the local field correction [153]. The idea behind this correction is that
when one applies a long wavelength optical electrical field, the response of the system is
given not only by the q → 0 components, but also by the superimposed Bragg reflections.
In a simplified tight binding approach it will lead to the Clausius-Mosotti local field
factor. In a nearly free electron solid this local field effect is unimportant, and one can
use formula 5.29.

We have chosen to use the above formula 5.29 due to complications in taking into
account this local field correction, and since anyway we have to use extrapolations to
higher momentum k in order to calculate the interaction energy. We believe, however, that
even though the local field corrections may change slightly the absolute values obtained,
they will not lead to a picture very different from the one proposed here.

5.5 Coulomb energy in the low momentum sector:

the ”k = 0” approximation

As mentioned above, we have to use extrapolations to simulate the behavior at large
k, in order to estimate the temperature dependence of the Coulomb interaction energy
with the formula 5.25. A slightly different point of view may be however that, by using
optical spectroscopy, we measure directly only the Coulomb energy stored in the center
of the Brillouin zone, according to formula 5.25.

The amount of Coulomb interaction energy stored in the center of the Brillouin zone,
which could come out from our measurements, is however sensitive to the choosing of
the boundary of this ”center”. One can choose, for example, a value which is ten times
smaller than km = 2π/a, the Brillouin zone boundary, but it may lead to very small
values of Coulomb interaction energy. A more direct way is to integrate up to km in the
in-plane direction and up to 2π/s in the out-of-plane direction, and to assume that the
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temperature dependent changes in the integrated loss function at higher momentum are
the same as at low momentum, and given by the in-plane dielectric function ε‖(ω):

∆
∫ ∞

0
Im

[ −1

ε(ω,k)

]
dω ' ∆

∫ ∞

0
Im

[ −1

ε‖(ω)

]
dω (5.32)

We call this the ”k=0” approximation. The principal reason why we have chosen the
in-plane loss functionf Im[−1/ε‖(ω)] and not the out of plane one Im[−1/ε⊥(ω)] , is that
the spectral weight in the former loss function is much larger than in the latter, due to the
metallic behavior along the planes. Also, the in-plane optical dielectric function given by
ε‖(ω) = ε(ω, k‖ = kλ, q⊥ = 0) (here kλ is the wave vector of light) spans a larger space in
the Brillouin zone than the out of plane dielectric function ε⊥(ω) = ε(ω, k‖ = 0, q⊥ = kλ).
Last, but not at least, the change of the kinetic energy in the out-plane direction at the
phase transition in the high temperature superconductor T l2Ba2CuO6 is two orders of
magnitude smaller then the condensation energy [51], whereas the in-plane kinetic energy
in Bi2Sr2CaCu2O8+δ was found to be of the order of the condensation energy [61].

The above ”k=0” approximation is, of course, very rough, but it gives us a way to
measure the changes of the Coulomb energy stored in the low momentum sector. If this
extrapolation would yield values bigger than some limiting values, like the condensation
energy, then the changes in the low momentum sector are to be important, otherwise the
changes in the large momentum sector are expected to be more important. We emphasize
here however that the sign obtained at the phase transition is the true sign for the Coulomb
interaction energy stored in the center of the Brillouin zone.

This assumption results effectively in choosing ε(ω, k, q, T ) = ε‖(ω, T ) in the formulas
5.25 and 5.27. When taking the integration limits km = 2π/a and qm = π/s (where s is
the distance between two successive layers of cooper-oxide planes) into account, it yields
the following form of the C(ω) function defined in 5.27:

C(k=0)(ω, T ) = Im

[
− εsc

ε‖(ω, T )

]
(5.33)

We see that this function is proportional to the usual loss function Im
[
−1/ε‖(ω, T )

]

and it yields a very simple formula for the interaction energy per unit cell, according to
the Eq. 5.26:

Eint(T ) =
n

2

∫ ∞

0
d(h̄ω)Im

[
− εsc

ε‖(ω, T )

]
(5.34)

Here n is the number of layers per unit cell (n=2 in case of Bi2Sr2CaCu2O8+δ ).
The only thing left is then to carefully measure the temperature dependence of the in-

plane loss function Im
[
−1/ε‖(ω, T )

]
, integrate over the frequency range (which should be

as broad as possible) at each temperature, and then calculate the temperature dependence
of the Coulomb interaction energy according to the formula 5.34.

In order to achieve this, an Woollam Variable Angle Ellipsometer, as described in the
second chapter of this thesis, was used for temperature dependent in-plane measurements
in the frequency range 6000− 20000cm−1. To avoid absorbtion of residual gas molecules,
the samples have been placed in an ultra high vacuum cryostat, with a base pressure of
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Figure 5.1: The room temperature in-plane loss function Im
[
−1/ε‖(ω)

]
of optimally and

underdoped Bi2Sr2CaCu2O8+δ

10−9 mbar. The pseudo-dielectric function of the in-plane (001) face of the samples was
then measured. The monochromator of the ellipsometer was kept fixed to one frequency,
and the temperature was varied in the cryostat, to acquire as many temperature points
as possible. When the whole temperature range 5-300K was measured, the frequency was
changed and the procedure restarted. Later, a c axis temperature independent correction
was applied to the pseudo-dielectric function.

For the lower frequency range 50 − 6000cm−1 normal incidence reflectivity measure-
ments have been performed. The ellipsometry data were then used as an input for the
Kramers-Kronig transformations to obtain accurate information of the dielectric function
in the low frequency range. The loss function was then calculated from the dielectric
function.

In Fig.5.1 we present the room temperature results for the in-plane loss function
Im

[
−1/ε‖(ω, T )

]
of the optimally doped (TC=88K) and underdoped (TC=66K) samples

of Bi2Sr2CaCu2O8+δ . As we can see, the loss function is peaking at the plasma frequency.

Since we are interested in the changes at the phase transition, careful temperature
scans have been performed for many frequencies, at an interval of 0.5K. From Fig. 5.2,
where we present some particular scans, we see that phase transition changes appear in
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Figure 5.2: Few selected temperature scans of the in-plane loss function Im
[
−1/ε‖(ω)

]
.

The arrows at the bottom of the scale indicate the transition temperature Tc in each of
the two cases. The loss functions for 19000cm−1 and 13000cm−1 have been rescaled with
a constant background to fit the window. Full symbols refer to the lefthand scale and
open symbols to the righthand scale.

the dielectric function not only in the far infrared range, but also in the visible range.
The transition temperatures have been shown in the figure by small arrows. The general
characteristic is that the loss function further increases when the system enters the su-
perconducting state in the visible range (see the frequency 10000 cm−1 in Fig. 5.2) and is
further lowered in the FIR range (below 1000 cm−1), as expected from the opening of the
gap (as exemplified by the 320cm−1 frequency in the same plot). At 13000cm−1 no clear
change is observed in the loss function both in the optimally and underdoped samples.
At higher frequencies, a decrease which starts at a temperature higher then Tc may be
suggested in the optimally doped samples, as seen from the 19000cm−1 plot of Fig. 5.2.

Using formula 5.34, one can now calculate for each temperature the corresponding
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Figure 5.3: Coulomb energy per Cu atoms in the ”k = 0” approximation for
Bi2Sr2CaCu2O8+δ . The integration over a few frequency ranges according to for-
mula 5.35 is presented. Full symbols refer to the lefthand scale and open symbols to
the righthand scale. The data for the frequency range 14000 − 21000cm−1 were rescaled
with a constant background to fit the window (140 meV for the optimally doped sample
and 128 meV for the underdoped sample) . The arrows indicate the phase transition
temperatures.

Coulomb energy. An integration up to ∞ is not possible, and we have chosen to integrate
over the entire measured range (50 − 21000cm−1), and also over other small ranges, to
quantify which frequency range plays the most important role, using:

Eint[ω1, ω2](T ) =
n

2

∫ ω2

ω1

d(h̄ω)Im

[
− εsc

ε‖(ω, T )

]
(5.35)

In Fig. 5.4 and 5.3 we present the results, for different ranges of integration [ω1, ω2].
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Figure 5.4: Coulomb energy per Cu atoms in the ”k = 0” approximation for
Bi2Sr2CaCu2O8+δ . The integration over a few frequency ranges according to for-
mula 5.35 is presented. Full symbols refer to the lefthand scale and open symbols to
the righthand scale. The data for the the frequency range 6000-15000cm−1 were rescaled
with a constant background to fit the window (38 meV for the optimally doped sam-
ple and 23 meV for the underdoped sample). The arrows indicate the phase transition
temperatures.

First we discuss the optimally doped samples. For the total measured range 50−21000cm−1

(see the full squares of the Fig. 5.3) we observe an extra increase of the Coulomb energy
when entering the superconducting state (SCS), of about 0.2 − 0.3 meV per Cu atom.
The behavior of the Coulomb energy when calculated on smaller ranges must be put in
correlation with the loss function from Fig. 5.2. Thus, for example, in the far infrared
range (frequency 320cm−1 in Fig. 5.2), the loss function decrease further in the SCS due
to the opening of the charge gap. The value of this decrease is however about 10 times
smaller than the one for 10000cm−1 and it leads to a decrease of the Coulomb energy in
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the SC state of only about 0.01 meV, if integrating from 50− 1000cm−1 (see Fig. 5.4).
The main increase in the total measured range 50− 21000cm−1 comes from the range

6000− 15000cm−1 as seen from Fig. 5.4. This is not unexpected, since the loss function
shows the plasma peak exactly in this region (see Fig.5.1). At very high energies, in the
interval 14000− 21000cm−1 Fig. 5.3 suggests a decrease in the SCS which would start at
slightly higher temperatures than TC . This is due to the previously discussed decrease
in the loss function around 19000cm−1. Thus, summarizing, apart from a small extra
decrease of the Coulomb energy in the SCS in the lower and possibly very high frequency
range, an overall extra increase of the Coulomb interaction energy when entering the SCS
of about 0.2− 0.3 eV per Cu atom is given by the whole measured range 50−21000cm−1.

The underdoped Bi2Sr2CaCu2O8+δ sample seems to present the same behavior as
the optimally doped one, with the main difference that the phase transition is not so sharp
in our data. The best argument is the shape of the 320cm−1 loss function of Fig.5.2. The
visible frequency 10000cm−1 presented in the same plot indicates however a clear extra
increase at the phase transition. Consequently, the range 6000− 14000cm−1 gives a clear
extra increase of the Coulomb energy when entering the superconducting state of about
0.3 eV (see Fig. 5.4), which is thus the same value as in the optimally doped samples.
This behavior is conserved in the plot of the total measured energy range 50−21000cm−1.

As a conclusion of this section, it seems that the ”k = 0” approximation indicates
an extra increase of the Coulomb energy when entering the superconducting state, for
both the optimally doped and underdoped Bi2Sr2CaCu2O8+δ samples, with a value
of about 0.2 − 0.3 meV per Cu atom. This gives the exact sign of the change of the
Coulomb energy stored only in the center of the Brillouin Zone, which increases thus in
the superconducting state. The absolute value is close to the condensation energy [154],
and thus cannot give a conclusive answer as to the question of which part of the Brillouin
Zone plays the most important role, but it still suggests that the low momentum one is
important.

An open question still remains the unmeasured range, especially at higher frequencies.
In the next section we will show, on the basis of a well-known sum-rule, that the changes
in the interaction energy given by the frequencies higher the 21000 cm−1 will not overcome
the changes given by the measured range 50− 21000 cm−1.

5.6 Transfer of the spectral weight of the loss func-

tion

In the previous section we have tried to derive an approximation which connects the
in-plane dielectric function ε‖(ω) to the Coulomb energy stored in the small momentum
region of the Brillouin Zone. But, in principle, we would still have to integrate in the
whole frequency range from 0 up to∞, according to formula 5.34. Our measured frequency
range 50− 21000cm−1 is finite and we have have to check the influence of the remaining
ranges. We do this by using the well known sume-rule [155]:

∫ ∞

0
ωdωIm

[
− 1

ε(T, ω)

]
=

4π2ne2

4m
(5.36)
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Figure 5.5: Sum rule check on the loss function in the Bi2Sr2CaCu2O8+δ samples,
calculated with the formula 5.37 for different frequency ranges. Full symbols refer to the
lefthand scale and open symbols to the righthand scale. The arrows indicate the phase
transition temperatures.

The value of the integral in Eq. 5.36 calculated for a finite frequency interval range we
designate as SR2(T ):

SR2[ω1, ω2](T ) =
∫ ω2

ω1

ωdωIm

[
− 1

ε(T, ω)

]
(5.37)

The results for SR2[ω1, ω2](T ) calculated for different frequency intervals are plotted in
Fig. 5.5 and Fig. 5.6. As we can see, an overall temperature independent value seems to be
obtained for the optimally doped samples for the whole measured range 50− 21000cm−1.
The sum rule 5.36 seems thus to be satisfied in this case for the 4 − 300K temperature
range. However, at a closer look, an upward kink is still present at the phase transition
when entering the superconducting state (SCS). This is clearer when integrating only
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Figure 5.6: Sum rule check on the loss function in the Bi2Sr2CaCu2O8+δ samples,
calculated with the formula 5.37 for different frequency ranges. Full symbols refer to the
lefthand scale and open symbols to the righthand scale. The arrows indicate the phase
transition temperatures.

up to 15000 cm−1. In the underdoped case, the sumrule 5.36 calculated for the whole
measured range 50 − 21000cm−1 (see Fig. 5.5) is not satisfied in the 4 − 300K range. It
also presents an upward kink when entering the SCS.

The qualitative behavior of the sum rule 5.37 is presented in the Fig. 5.7. In the
low frequency range (LFR), below ωLR (few thousands cm−1), the loss function of the
superconducting state (SCS) at 4K is lower than the one of the ”extrapolated normal
state” (ENS), because of the opening of the superconducting gap (as exemplified by the
frequency range 50 − 1000 from Fig. 5.5). By ENS, as discussed in the introduction of
this chapter, we understand a virtual state whose properties would equal the normal state
properties extrapolated to T = 0K.

In the visible range (VISR), which extend from ωLR (few thousands cm−1) to ωHR
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Figure 5.7: Schematic behavior of the ”omega times loss” function.

(roughly 14000cm−1), the situation is reversed. Fig.5.5 and Fig.5.6 also show that the
phase transition step of the sum rule integral 5.36 in the VISR is few order of magnitude
larger that in the LFR. In other words, the dashed area in the VISR from Fig.5.7 is much
larger then the one from the LFR. But according to the sum-rule 5.36, this difference
must be compensated at very high frequencies. Since, as seen from Fig. 5.5, the very
low frequency does not play an important role, the VISR range stores in the SCS (as
compared with the ENS) an additional spectral weight coming from the high frequency
range (HFR), i.e. above ωHR (roughly 14000cm−1). Here, an extra decrease of the loss
function in the SC state would be observed. Only a part of this HFR was measured,
namely 14000− 21000cm−1. The Fig.5.6 suggests that this may the case.

This aspect is crucial in determining the sign of the Coulomb energy calculated in
the ”k = 0” approximation. The amount of spectral weight transfer in the ”omega times
loss” function 5.36 must be divided by ω to get the one in the loss function. In other
words, an additional transfer from HFR to VISR in the ”omega times loss” function
5.36 when entering the superconducting state, as found experimentally (see the frequency
range 50 − 21000 of Fig.5.5), means more gain for the loss function in the VISR than
decrease in the HFR.

Consequently, the increase found in the previous section for the Coulomb interaction
energy when entering the superconducting state, is partially reduced by the decrease at
very high frequencies in the unmeasured range above 21000cm−1 but it remains positive.

One may wonder about two different discussions of the transfer of the spectral weight.
The one just presented involved the omega-loss function. A second one on the optical
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conductivity was presented earlier[61]. There it was shown that, when the system enters
the superconducting state, additional spectral weight is transfered the optical conductivity
from the high frequency part (above 10000 cm−1) to the low frequency part. Does this
transfer of spectral weight in the real part of the optical conductivity induce the one in
the ”omega-loss function” 5.37? A rough check was performed by using the approximate
formula for the loss function of a Drude peak:

Im

[
− 1

ε(ω)

]
' πωp

2
δ(ω − ωp) (5.38)

where ωp is its plasma frequency. More spectral weight in the optical conductivity (quan-
tified by ω2

p) at low frequency in the SCS than in the ENS means indeed more weight in
the loss function around the plasma frequency in the SS state.

From Formula 5.26 and Fig.5.3 we can correct back for the number of layers n = 2,
dielectric constant εsc = 3.5 and the number of Cu atoms per unit cell N = 8 to obtain:

∆
∫ ∞

0
Im

[ −1

ε‖(ω)

]
dω ' 1.1 meV (5.39)

According to 5.38 this would lead to an extra increase of the plasma frequency at the
phase transition of about ωp ' 0.7 meV . The same value is obtained from the transfer of
spectral weight in the optical conductivity, as can be seen in Fig 2. of Ref.[61]. Despite
the fact that the two spectral weights are related, one should not disregard completely
the information preserved in the loss function, since, as argued earlier, it can also give an
indication of the changes in the Coulomb interaction energy.

5.7 Coulomb interaction in the layered electron gas:

the ”DI” - approximation

In this section, a different extrapolation to higher momentum k, which take into
account the layered structure of Bi2Sr2CaCu2O8+δ is deduced. The dielectric constant
of a layered material can quite generally be written in the form:

ε̃(k, q, ω) = 1− V (k, q)[k̃2Π′
‖(k, q, ω) + q̃2Π′

⊥(k, q, ω)] (5.40)

where k̃2s2/2 = cosh(ks)− 1 and q̃2s2/2 = 1− cos(qs). Here k runs in the in-plane direc-
tion, q perpendicular to the layer planes, s is the interlayer distance and Π′ is related to
the bare polarization bubble. This form is suggested by the random phase approximation
method [156].

In the limit k, q −→ 0 both
∏′
‖ and

∏′
⊥ become finite constants. In the layered material

with s being the distance between layers, the interaction potential may be approximated
as [157]:

V (k, q) =
4πe2

Ω

(s/2k) sinh(ks)

cosh(ks)− cos(qs)
(5.41)
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In the small k limit (k → klight, q → 0), from Eq. 5.40 and 5.41, the dielectric function
for a layered material can thus be approximated with:

ε̃(k, q, ω) = 1 +
(ks/2) sinh(ks)

cosh(ks)− cos(qs)

[
ε̃‖(ω)− 1)

]
(5.42)

with ε̃‖(ω) = ε‖(ω)/εsc. It provides a way of extrapolating the dielectric function at larger
momentum k.

By putting formula 5.42 into formula 5.27, and integrating over q, we obtain the
function C(ω) which leads to the Coulomb interaction energy per unit cell according
to 5.26. The integration uses a simple contour integral over the unit circle, since the used
limit of the integration is qm = π/s, and uses also km = 2π/a as discussed above, yielding:

CDI(ω) =
1

β2
Im




∫ β

0

z2f(ω)dz√
z2f(ω)2/4 + z ∗ f(ω)/tanh(z) + 1


 (5.43)

where β = kms and

f(ω) =
ε‖(ω)

εsc

− 1 (5.44)

The C(ω) function calculated in this way for Bi2Sr2CaCu2O8+δ and designated
CDI(ω), is presented in Fig. 5.8. As we can see, above 12000cm−1 its value is about
the same as the function Ck=0(ω) of the ”k=0”-approximation defined in 5.33 (which is
proportional to the loss function). Below 12000cm−1 it is smaller. It is also peaking at
higher frequencies.

The temperature dependence for two selected frequencies is presented in Fig. 5.9. The
phase transition can be seen in these plots, but the signs of the kinks at the phase transition
seem to be opposite to the signs of the normal loss function plotted in Fig. 5.2. Thus,
there is an extra decrease this time for 10000cm−1 and an extra increase for 17000 cm−1

when entering the SC state. This behavior is probably related to the to the shift of the
plasma peak from a lower value in Ck=0(ω) to a higher value in CDI(ω) (see Fig. 5.8).

By replacing the function CDI(ω) into Formula 5.26, we calculated the temperature
dependence of the Coulomb interaction energy integrating over different finite frequency
ranges:

Eint[ω1, ω2](T ) =
n

2

∫ ω2

ω1

d(h̄ω)CDI(ω, T ) (5.45)

and plotted it in Fig. 5.10. The behavior is clearer in the optimally doped case. This time
the increase in the Coulomb interaction energy takes place in the very high frequency
range 13500 − 21000 cm−1 and it has a value of about 0.3 − 0.4 meV pe Cu atom. The
frequency range 50− 13500cm−1 gives a smaller decrease of about 0.1 meV.

Overall, an increase of 0.2 − 0.3 meV for the Coulomb interaction energy Eint is
obtained when entering the superconducting state, for the total measured range 50 −
21000cm−1 (see Fig. 5.10). This value and sign remarkably agrees with the results of the
”k = 0” approximation. The underdoped sample does not show a clear effect for the
whole measured range 13500− 21000 cm−1 probably due to the smooth behavior at the
phase transition.
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Cβ<<1(ω).

Since the formula 5.43 for the function CDI(ω) can only be integrated numerically, one
may wonder if appropriate approximations may be found. We show here two formulas, for
the two cases β >> 1 and β << 1. Since, in the case of Bi2Sr2CaCu2O8+δ β = kms ' 18,
we start with the first approximation β >> 1.

For β >> 1, formula 5.43 can be simplified using tanh(z) ' 1, considering that z >> 1
on most of the range [0 : β]:

Cβ>>1(ω) =
1

β2
Im




∫ β

0

z2f(ω)dz√
z2f(ω)2/4 + z ∗ f(ω) + 1


 (5.46)

By analytical integration, this yields a C(β>>1)(ω) function form suggested previously
in Ref.[158]:

C(β>>1)(ω) =
2

β2
Im

[
4Ln[1 + βf(ω)/2]

f(ω)2
− 2β

f(ω)

]
(5.47)



96 CHAPTER 5. COULOMB ENERGY IN BI2SR2CACU2O8+δ

0 2 4 6 8

0.046

0.047

0.048

0.049

0.050  LOSS510000_B

"β<<1" approximation

C
D

I(T
)

C
β<

<
1(T

)

 LOSS510000_B

T2 (104 K2)

0.140

0.145

0.150

0.155

0.160

0.165

 LOSS517000_B

0.350

0.351

0.352

0.353

0.354

 10000 cm-1

 LOSS410000_B

0.388

0.392

0.396

0.400

0.404"DI" approximation

17000 cm-1

 LOSS417000_B 

Figure 5.9: The loss function of optimally doped Bi2Sr2CaCu2O8+δ calculated in the
”β << 1” and ”DI” approximations for two selected frequencies. Full symbols refer to
the lefthand scale and open symbols to the righthand scale.

with f(ω) as in 5.44. This function is presented in the Fig. 5.8 as well. Because kms ' 18
in the case of Bi2Sr2CaCu2O8+δ we can see that it yields almost identical results with
the DI approximation formula given in 5.43. Consequently, the Coulomb interaction
energy shows the same behavior, as already presented in Fig 5.10.

In the β = kms << 1 case, we can write z < β << 1 in 5.43, and tanh(z) can be then
approximated as tanh(z) ' z. The formula 5.43 then yields:

C(β<<1)(ω) = Im


2h(ω)

β3

∫ β

0

z2dz√
h(ω)2 · (z/β)2 + 1


 (5.48)
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Figure 5.10: Coulomb energy per Cu atoms in the ”DI”-direct integration approximation
for Bi2Sr2CaCu2O8+δ calculated for different frequency ranges using formula 5.45. Be-
sides the total measured range, the integration over two other ranges is presented. Full
symbols refer to the lefthand scale and open symbols to the righthand scale. The data for
the frequency range 13500− 21000cm−1 were rescaled with a constant background to fit
the window (39.8 meV for the optimally doped sample and 43.3 meV for the underdoped
sample).

where the following definition for h(ω) was used:

h(ω) =
β

2

[
ε‖(ω)

εsc

− 1

] √
εsc

ε‖(ω)
(5.49)

Analytically integrating now the equation 5.48, we obtain:
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Figure 5.11: Coulomb energy per Cu atoms in the ”kms << 1” approximation for
Bi2Sr2CaCu2O8+δ . Full symbols refer to the lefthand scale and open symbols to the
righthand scale. The data for the frequency range 13000− 21000cm−1 were rescaled with
a constant background to fit the window (5.3 meV for the optimally doped sample and
6.5 meV for the underdoped sample).

C(β<<1)(ω) = Im




√
1 + h(ω)2

h(ω)
−

Ln
[
h(ω) +

√
1 + h(ω)2

]

h(ω)2


 (5.50)

The function C(β<<1)(ω) presented in Fig 5.8 gives a smaller value than the one in the
”DI”-approximation, with a factor of about 3 in the high frequency range. Its temperature
dependence for two selected frequencies 10000cm−1 and 17000cm−1, plotted in Fig. 5.9,
resembles the DI-approximation.

The Coulomb interaction energy in the β << 1 approximation, presented in Fig 5.11,
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shows an extra increase in the SC state of about 0.2 meV, when integrating the whole
measured range 50 − 21000 for the optimally doped sample. The plot shows also that
this increase seems to start at a temperature which is slightly higher than the transition
temperature. The underdoped sample does not show obvious changes when entering the
SC state. These results must be however treated with caution since, as mentioned above,
β = 18 in case of Bi2Sr2CaCu2O8+δ and thus the approximation β << 1 may not be
appropriate here.

5.8 Pair-correlation functions in the BCS theory

We have seen in the beginning of this chapter (formula 5.12) that, up to a constant
factor, the interaction energy can be written as:

Eint =
∑

k

Vk〈Ψ0|ρ̂kρ̂−k|Ψ0〉 (5.51)

where ρ̂k is the Fourier transform of the particle density operator, given by the for-
mula 5.11. The interaction potential Vk acts on the valence band electrons, which are
considered to be screened by the polarizable ions. Its real space representation is given
by the equation Eq. 5.22. The above formula can be rewritten as

Eint =
∑

k

Vkgk (5.52)

if we use the definition of the pair-correlation function:

gk = 〈Ψ0|ρ̂kρ̂−k|Ψ0〉 (5.53)

By using 5.11, one can Fourier transform the above relation and obtain the real space
representation of the pair correlation function:

g(r, r′) = 〈Ψ0|n̂(r)n̂(r′)|Ψ0〉 (5.54)

The approach above considers the bare electrons of the valence band interacting
through the screened potential expressed in Eq. 5.22. The same correlation energy can
be however also expressed in terms of the quasiparticles. For example, for a conventional
superconductor, one may use the quasi-particles of the normal state Fermi-liquid, which
become paired in the superconducting state.

The formula 5.52 then becomes:

Eint =
∑

k

V qp
k gqp

k (5.55)

where V qp
k is the interaction between quasi-particles and gqp

k is their pair-correlation func-
tion. The above approach may lead to slightly different values of the interaction energies
Eint, since the quasi-particles do not describe exactly the complete situation, but it would
however conserve the main physics involved. The potential V qp

k may change drastically.
Even simple RPA-screening replaces the k−2 behavior of the bare Vk with a well-behaved
function for small k.
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The advantage of this approach is that the quasi-particle pair-correlation function
may be computed in some cases. For example, the pair-correlation function for the Fermi
liquid is [155]:

gps
k = N2

e δk,0 +
∑
p

fp(1− fp+k) (5.56)

In the general BCS approach, one can also compute this pair-correlation function.
From the behavior of the observed interaction energy one can then estimate the interaction
potential between quasi-particles, knowing the behavior of the pair-correlation function.
Consider the difference of the interaction energy in the normal and superconducting state:

Es
int − En

int =
∑

k

V ps
k [〈Ψs|ρ̂kρ̂−k|Ψs〉 − 〈Ψn|ρ̂kρ̂−k|Ψn〉] =

∑

k

V ps
k δgps

k (5.57)

This equation describes the change in interaction energy when the system prefers the
superconducting state |Ψs〉 over the normal one |Ψn〉. The form of the superconducting
state |Ψs〉 is known, and it was given in 5.5, namely.

|ψS〉 =
∏

(uk + vkc
∗
k↑c

∗
−k↓)|ψ0〉 (5.58)

In a more general case than the one presented in the introduction, the coefficients are
defined as:

v2
k =

1

2
[1− ξk√

∆2
k + ξ2

k

] = 1− u2
k (5.59)

where different forms may be taken for the bandstructure ξk and gap ∆k. The normal state
is again defined as the superconducting state with the choice ∆ = 0. In Eq. 5.57 we have
defined the difference between the pair correlation in the normal and superconducting
state, as

δgps
k = 〈Ψs|ρ̂kρ̂−k|Ψs〉 − 〈Ψn|ρ̂kρ̂−k|Ψn〉 (5.60)

This value can now be directly computed, yielding:

δgps
k =

∑
p

(
|up+k|2 − θp+k

) (
θp − |up|2

)
+

∑
p

up+kvp+ku
∗
pv
∗
p (5.61)

where θp may be obtained from:

∆k =
2θp

1− θ2
p

ξp (5.62)

We have chosen to calculate δgps
k in two cases: a two-dimensional (2D) BCS s-wave

superconductor and a 2D BCS d-wave superconductor. The assumed band structure had
the same form in both cases:

εk =
W

4
[cos kxa + cos kya]− µ (5.63)

The order parameter ∆k has the form

∆k = ∆0Θ(|εk − µ| − ωD) (5.64)
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Figure 5.12: The k-space representation of the superconductivity induced change of pair-
correlation function δgps

k for the s-wave (lefthand panel) and d-wave symmetry (righthand
panel). Parameters: ∆/W = 0.2, ωD/W = 0.2. Doping level is x = 0.25.

for the 2D s-wave superconductors, and

∆k = ∆0 [cos kxa− cos kya] Θ(|εk − µ| − ωD) (5.65)

for the d-wave superconductors.
In Fig.5.12 we present the results. To obtain the plots, we have used ∆/W = 0.2,

ωD/W = 0.2, and EF /W = 0.43. This leads to x=0.25 hole doping counted from half
filling of the band. To keep this value of the hole doping constant, the chemical potential
in the superconducting state was calculated selfconsistently [159–162].

From the lefthand panel of Fig.5.12 we see that the pair correlation function δgps
k

is always positive in the case of s-wave symmetry. Formula 5.55 shows then that the
system can lower its interaction energy Eint in the superconducting state, if the interaction
energy V ps

k is negative (the interaction between the quasi-particles is attractive), at least
in some parts of the momentum space k. This is an expected result for the conventional
superconductors having s-wave symmetry.

In Fig. 5.13 we have plotted the spatial representation of the pair-correlation δgps(r−r′)
(see also formula 5.54). From its lefthand panel we see that δgps(r − r′) reaches its
maximum at r − r′ = 0 for s-wave pairing. Thus, in this case, the best interaction which
stabilizes the superconducting state by lowering the interaction energy Eint, is the on-site
attractive potential.

We are however interested more in the case of d-wave superconductors, the case of
high temperature superconductors. From the righthand panel of Fig.5.12 we see the pair
correlation function δgps

k is positive near the (0, 0) point and negative near the (π, π)
point. If the interaction energy would be the one to stabilize the superconducting state,
this could take place assuming Vk > 0 for k in the (π, π) region, or Vk < 0 for k near the
origin. The real space representation of δgps

k (r − r′), presented in the righthand panel of
Fig. 5.13 exhibits a maximum at (0,1) and (0,1). If there would an attractive nearest-
neighbor potential V, this would then stabilize the superconducting state through the
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of pair-correlation function δgps(r − r′) for the s-wave (lefthand panel) and d-wave sym-
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lowering of the interaction energy.
In the previous subsection we have shown that the ”k=0” approximation gives the

correct behaviour of the Coulomb interaction energy stored in the center region of the
Brillouin zone. It increases when entering the superconducting state, as shown by the
Fig.5.3, and thus the saving of the total energy when entering in the superconducting
state cannot come through the (0,0) region of the Brillouin Zone.

From the above calculations, it is still possible that there is a lowering of Coulomb
energy given Vk > 0 for k in the (π, π) region. The saving of internal energy, when entering
the superconducting state, may also come not through a lowering of the Coulomb energy,
but of the kinetic energy, as proposed in Ref. [61]. In this case an unconventional pairing
mechanism in Bi2Sr2CaCu2O8+δ is necessary.

5.9 Summary

In this chapter we have experimentally tried to approach the problem of the Coulomb
interaction energy of Bi2Sr2CaCu2O8+δ and its behavior at the superconducting phase
transition. Our starting point was formula 5.20, which relates the Coulomb energy to
the loss function Im[−1/ε(k, ω)]. In principle, by measuring its complete momentum
dependence, one could directly calculate the Coulomb interaction Eint and its temperature
dependence.

The formula 5.20 mentioned above is linear in the loss function Im[−1/ε(k, ω)], mean-
ing that one has to measure its value in every point of the Brillouin Zone (BZ), and sum
up the contributions. Unfortunately, using optical spectroscopy, we have been able to
measure carefully the temperature dependence only for the in-plane dielectric function
ε‖(ω) = ε(ω, k‖ = kλ, q⊥ = 0) , where the momentum k‖ runs in the in-plane direction, q⊥
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Figure 5.14: Coulomb energy per Cu atoms in the ”k = 0” and ”DI” approximations for
Bi2Sr2CaCu2O8+δ . Full symbols refer to the lefthand scale and open symbols to the
righthand scale. The arrows indicate the phase transition temperatures. The integration
is done on the whole measured range 50− 20000cm−1.

perpendicular to the planes, and kλ is the wave vector of light. This leads to a knowledge
of the above loss function Im[−1/ε(k, ω)] only for a single circle of points in the center
of the BZ, namely k = (k‖ = kλ, q⊥ = 0).

The behavior of the loss function Im[−1/ε(k, ω)] for other points in the center of
the BZ, below a certain border of this ”center”, is expected to be the same as the
one given by the measured points k = (k‖ = kλ, q⊥ = 0), because kλ ' 0. We
can thus use the formula 5.20 to sum up all the equal contributions of the loss func-
tions Im[−1/ε(k, ω)] = Im[−1/ε‖(ω)], to get the total Coulomb energy stored in this
”center” (basically to multiply with its volume).

The border of the ”center” is however difficult to estimate. A value ten times smaller
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then the BZ edge would be satisfactory, however it may be underestimated. Due to
this problem, we have chosen to sum up the optical loss function Im[−1/ε(k, ω)] =
Im[−1/ε‖(ω)] in the whole BZ, and call this the ”k=0” approximation. Thus, the Coulomb
energy obtain in this way gives the same sign as the one stored in the ”center” of the
BZ, but the absolute value is only indicative. The advantage of this approach is that, if
one obtains changes at the superconducting phase transition much larger than the con-
densation energy, one could conclude safely that the behavior at low momentum is very
important, giving thus very probably the correct sign for the total Coulomb energy.

Fig.5.14 summarizes our results for the ”k=0” approximation. It shows an extra
increase of the Coulomb energy when entering the superconducting state, for both the
optimally doped and underdoped Bi2Sr2CaCu2O8+δ samples, with a value of about
0.2− 0.3 meV per Cu atom. As mentioned above, this approximation provides the exact
sign of the change of the Coulomb energy stored only in the center of the Brillouin zone,
which thus increases in the superconducting state. The absolute value is close to the
condensation energy of about 0.06-0.25meV per Cu atom [154], being not much larger
than that. As discussed above, it cannot give a conclusive answer to which part of the
Brillouin zone plays the most important role. It is also not very small, leaving open the
possibility that the low momentum part of the BZ plays an important role. We have also
shown that the increase of the Coulomb interaction energy in the ”k=0” approximation,
when entering the superconducting state, is partially reduced by the decrease at very high
frequencies in the unmeasured range above 21000cm−1 but that it nevertheless it remains
an increase.

To account better for the layered geometry of Bi2Sr2CaCu2O8+δ we have used also
a different extrapolation for the dielectric function at higher momentum, namely for-
mula 5.42, and denote this approach the ”DI” (direct integration) approximation. Its
results are also presented in Fig.5.14. Remarkably, in the case of optimally doped sam-
ples, it leads to the same sign and value of the Coulomb energy change when entering
the superconducting state as the ”k=0” approximation. Counted on smaller frequency
ranges, the behavior of the two approximations are different, probably due to the shift
of the ”plasma frequency” of the function C(ω) (given by Eq. 5.27) from lower values
in the ”k=0” approximation to higher values in the ”DI” approximation (see Fig. 5.8).
The behavior in the underdoped samples is not that clear, probably due to changes which
starts at higher temperatures than Tc, as suggested also by the plot for the ”k=0” ap-
proximation.

To conclude, this work shows that the Coulomb interaction energy stored in the center
of the Brillouin zone, for optimally and underdoped Bi2Sr2CaCu2O8+δ increases when
the system enters the superconducting state. It also suggests that this may be the case
for the total Coulomb interaction energy, since the absolute values of this increase are
comparable with the condensation energy.



Chapter 6

Summary

An optical spectrometer may be unfamiliar to an outsider of the physics community.
But in fact, it is a natural evolution of our way of perceiving the environment. Light
coming from the sun is scattered by objects. The eye, by receiving this scattered light,
gains some information about the objects themselves, such as their color, brightness, and
thus shape. In the same way, an optical spectrometer is designed to gain even more
information. It has a source to send light on some objects, and a hi-tech detector to
measure the reflected light.

After the material is measured, a relation must be established between its optical
response and its main physical properties. We consider here the case of solid state ma-
terials. These are materials where the atoms are in close proximity to one another, and
arranged in repetitive patterns on macroscopic distances, to make the structure as com-
pact as possible (the best know example is NaCl). To establish the above relation, a
procedure consisting of two steps is taken. First, for each frequency of the incident light,
the optical response of the surface (reflectivity, absorbtion, etc.) is measured. The re-
sult is then quantified in the so called dielectric function of the bulk ε(ω) (e.g. some
numbers for each frequency). In the second step, this function is further related to the
main physical properties of the measured solid state material, through the knowledge of
its particular structure, as determined before by a different type of measurement, namely
X-ray diffraction. Today, optical spectroscopy became an standard tool of investigating
new solid state materials.

The chapters 3 and 4 of this thesis are concentrated on two phases of the same solid
state material NaxV2O5 (with x=0..1). The first phase, namely α′-NaV2O5, presents an
interesting transition at the temperature Tc=35K (which is about -238◦C). Part of the
electrons responsible for the main physical properties, namely those from the d-shell of
vanadium atoms, order in a zig-zag pattern below Tc. The magnitude of this ordering is
important in understanding the mechanism behind the ordering process. It can be that
those electrons move entirely from the vicinity of one vanadium atom in the vicinity of
a different vanadium atom. Or it can be that one electron, being shared equally by two
atoms above Tc, will spend, below Tc, more time in proximity of one atom than in the
proximity the other, creating thus, on average, a small electron charge distribution.

According to the above scheme, after relating the optical response of α′-NaV2O5 to
the dielectric function ε(ω), we have to establish a relation between ε(ω) and the amount

105
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of electron charge displaced at the phase transition. This relation was deduced form
measurements on the related compound α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2). They clearly
established that the peak which appears in the optical conductivity spectrum given by
ε(ω) at the energy 0.9 eV (which in frequency is about 2·1014Hz), is due to a transition
between two states of the same electron being shared by only two neighboring vanadium
atoms. One state is called bonding energy state and the other anti-bonding state, in
analogy with the H+

2 ionic molecule. We have shown that the energy of this transition,
which is thus 0.9eV, is directly related to the amount of time the electron is shared by
one or the other vanadium atom.

By using the above relation, and by measuring the temperature dependence of the
energy of the 0.9eV peak in α′-NaV2O5, we could trace down the amount of charge
redistribution at the phase transition. Our measurements showed then that only a small
fraction of the electron cloud (namely smaller than 6%) is redistributed at the phase
transition.

Our spectroscopic data also provided additional information. For example, a very
strong temperature dependence of the intensity of the 0.9 eV peak was observed. After the
publication of our results, the effect was explained by theoretical calculations using a so-
called t-J-V model, which strongly emphasizes the importance of the interaction between
electrons. Also, infrared spectroscopic measurements performed on the α′-Na1−xCaxV2O5

samples showed their lack of metallicity. This somehow unexpected behavior was related
to the sensitivity of one-dimensional systems like α′-NaV2O5 to the presence of small
additional disorder (introduced by additional atoms like Ca, in α′-Na1−xCaxV2O5). We
think that overall our measurements strongly contributed to a better understanding of
the physics involved in the new material α′-NaV2O5, especially to the important problem
of the phase transition.

A second phase of the compound NaxV2O5 was also investigated, namely β-Na0.33V2O5.
Due to a different sodium concentration, the atoms pack differently in β-Na0.33V2O5 than
in α′-NaV2O5, creating a completely different ordered structure, with different physical
properties. Even though the β-Na0.33V2O5 material has been known for a long time, a
crystal with a concentration of sodium atoms close to x=0.33 was obtained only very
recently. It was shown that it presents interesting physical properties, including a metal
to insulator transition at a certain temperature TMI=136K (which is about -137◦C) and
superconductivity at even lower temperatures and high pressures.

Our optical spectroscopic study on β-Na0.33V2O5, described in chapter 4, revealed the
main behavior of the electrons when they travel inside the crystal. In this process, they
strongly change the positions of the neighboring nuclei, creating a so-called small polaron
(”small” because only the nuclei very close to the electron are affected). In addition,
a different picture emerged from our optical spectrum (which reveals mainly the charge
response of the electrons) than the one in magnetic susceptibility measurements (which
gives insight in the behavior of the spins of the electrons). Namely, a gap develops in
the optical spectrum below TMI , but not in the magnetic susceptibility. This different
behavior of the spin and charge channels at the metal-insulator phase transition, was
assigned to a strong interactions between electrons, which does not allow them to be in
the proximity of one another.

In addition, our infrared spectroscopic measurements of β-Na0.33V2O5 revealed the
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appearance of a large number of optical phonons below TMI (they can be seen as high
frequency vibrations of the nuclei). We think that this is a natural result of the strong
coupling between the phonons and electrons. Below the phase transition, the insulating
state is a charge ordered phase. Future experiments will have to establish the detailed
nature of the charge ordered state.

The last chapter of the thesis presents an optical study of the solid state material
Bi2Sr2CaCu2O8+δ . This is called a high temperature superconductor, because below
temperatures around Tc=90K (-183◦ C), it conducts electricity without losses. The term
”high temperature” denotes a temperature much higher then the one of the previously
known superconductors, the so-called classical superconductors, which have transition
temperatures of the order of few K. However, this ”high temperature” remains well below
room temperature T'300K. The hope is that, by understanding the mechanism of su-
perconductivity in Bi2Sr2CaCu2O8+δ , different superconductors may be more efficiently
discovered, and finally one may find a material which remains superconducting even at
room temperature. However, even though the Bi2Sr2CaCu2O8+δ superconductors were
discovered in the eighties, the understanding of the physical mechanism leading to the
superconductivity is lagging behind.

We wanted to attack here a particular physical property of Bi2Sr2CaCu2O8+δ , namely
the change in the interaction between electrons at the superconducting phase transition.
More precisely, one can quantify this interaction in terms of an interaction energy, which
in principle is related to the energy necessary to separate all the electrons from one
another. A small part of the interaction energy changes at the superconducting phase
transition, because the electrons reorganize. To measure this change, we started from a
general approach previously developed, which relates the interaction energy to a general
dielectric function, the momentum dependent dielectric function ε(k, ω). However, to
measure ε(k, ω), one has not only to shine light on the surface of the materials, but also
to scatter electrons from the crystal at different energies and angles. Today’s experimental
instruments for measuring ε(k, ω) do not provide sufficient resolution for measuring the
changes at the phase transition. The optical methods presented here do however have
the necessary sensitivity, although they only provide information for a limited range of
moments. Thus, they give us only a partial answer.

Our results showed that a part of the interaction energy (the one which could be
measured with optical spectroscopy, and which is stored in the ”optical sector”) increases
in the superconducting state. Extrapolations have been used to estimate the change,
taking into account the particular layered geometry of Bi2Sr2CaCu2O8+δ . They gave a
result which is of the order of the condensation energy (if the superconducting state is
seen like a golf ball in the hole, the condensation energy is the equivalent of the energy
required to pull the ball out of the hole, in other words, the energy required to destroy
the superconducting state).

In the classical superconductors, the superconducting state appears because at low
temperatures an additional attractive interaction appears between electrons. This is quan-
tified in a lowering of interaction energy. Our study for Bi2Sr2CaCu2O8+δ suggests that
this interaction energy increases on going into the superconducting state (in other words
the electrons repel each other more strongly) and it can thus not provide the mechanism
which drives the system superconducting. Even though our study is only indicative with
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respect to the total interaction energy, it puts some bounds on the further theoretical
models, since they would have to be able to explain the increase of the interaction energy
stored in the ”optical sector”, as measured by us.



Bibliography 109

Bibliography

[1] Y.Ren et. al. Nature, 1998:441, 1978.

[2] G. C. Xiong et al. Appl. Phys. Lett., 66:1427, 1995.

[3] P.W.Anderson. The Theory of Superconductivity in the High-Tc Cuprates. Princeton
Univ. Press, 1997.

[4] J. Galy. J. Solid State Chem., 100:229, 1992.

[5] J.L.Atwood. Nature Materials, 1:91, 2002.

[6] M. Isobe and Y. Ueda. J. Phys. Soc. Jpn., 65:1178, 1996.

[7] D.M.Haldane. Phys. Lett. A, 93:464, 1983.

[8] A. Meetsma et. al. Acta Cryst. C, 54:1558, 1998.

[9] H. G. von Schnering et. al. Z. Kristallogr., 213:246, 1998.

[10] H. Smolinski et. al. Phys. Rev. Lett., 80:5164, 1998.

[11] M. Mostovoy and D. Khomskii. Solid State Comm., 113:159, 1999.

[12] L.Hozoi, C.Presura, C. de Graaf, and R.Broer. to be published.

[13] A. Damascelli et. al. Phys. Rev. Lett., 81:918, 1998.

[14] S. Golubchik et. al. J. Phys. Soc. Jpn., 66:4042, 1997.

[15] A.D. Wadsley. Acta Cryst., 8:695, 1955.

[16] H. Kobayashi. Bull. Chem. Soc. Japan, 52:1315, 1979.

[17] H. Yamada and Y. Ueda. J. Phys. Soc. Jpn., 68:2735, 1999.

[18] Jun-Ichi Yamaura, M.Isobe, H.Yamada, T.Yamauchi, and Y.Ueda. to appear in J.
Phys. Chem Solids (2002).

[19] A. N. Vasil’ev, I. Marchenko, A. I. Smirnov, S. S. Sosin, P. L. Kapitza, H. Yamada,
and Y. Ueda. Phys. Rev. B, 64:174403, 2001.

[20] Y.Ueda, H.Yamada, M.Isobe, and T.Yamauchi. J.Alloys and Compounds, 317-
318:109, 2001.

[21] T. Yamauchi, Y. Ueda, and N. Môri. unpublished.
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Samenvatting

Een optische spectrometer is wellicht onbekend voor een buitenstaander van de ph-
ysische gemeenschap. Maar in feite is het een natuurlijk gevolg van de manier waarop we
naar onze omgeving kijken. Licht dat van de zon komt wordt weerkaatst door objecten.
Het oog verkrijgt, door dit weerkaatste licht op te vangen, informatie over het object zelf,
zoals de kleur, helderheid en derhalve vorm. Een optische spectrometer is op dezelfde
manier ontwikkeld om zelfs nog meer informatie te verkrijgen. Het heeft een lichtbron om
licht op objecten te laten schijnen en een hi-tech detector om het gereflecteerde licht te
meten.

Nadat een materiaal is gemeten moet een relatie gelegd worden tussen de optische
respons en de belangrijkste fysische eigenschappen. We behandelen hier de vaste stoffen,
waarin de atomen dicht bij elkaar zitten en georganiseerd zijn in herhaalde patronen op
microscopische schaal, om de structuur zo kompakt mogelijk te maken (het best bekende
voorbeeld is keukenzout, NaCl). Om de bovengenoemde relatie vast te kunnen leggen
wordt een tweestaps procedure gevold. Als eerste wordt voor iedere frequentie van het
invallende licht de optische respons (reflectiviteit, absorptie, etc.) van het oppervlak
gemeten. Het resultaat wordt dan gekwantificeerd in de zogenaamde dielectrische func-
tie van het systeem ε(ω) (wat getallen voor iedere frequentie). In de tweede stap wordt
deze functie verder gerelateerd aan de belangrijkste fysische eigenschappen van het geme-
ten materiaal, gebruik makend van de kennis van de specifieke struktuur, zoals gemeten
door middel van een ander type metingen, namelijk X-ray diffractie. Hedentendage is
optische spectroscopie geworden tot een standaard methode om nieuwe vaste stoffen te
onderzoeken.

Hoofdstukken 3 en 4 van dit proefschrift zijn geconcentreerd rond twee fasen van
hetzelfde materiaal NaxV2O5 (met x=0..1). De eerste fase, namelijk α′-NaV2O5, heeft een
interessante overgang bij een temperatuur van Tc=35K (rond -238◦C). Een deel van de
elektronen die verantwoordelijk zijn voor de belangrijkste fysische eigenschappen, namelijk
die van de d-schil van de vanadium atomen, rangschikken zich in een zig-zag patroon
beneden Tc. De mate van deze rangschikking is belangrijk voor het verkrijgen van een
begrip van het mechanisme van dit rangschikkingsproces. Het kan zijn dat deze elektronen
volledig van de nabijheid van het ene vanadium atoom naar de nabijheid van een ander
vanadium atoom bewegen. Of het kan zijn dat een elektron boven Tcgelijk gedeeld wordt
door twee atomen, terwijl het beneden Tcmeer tijd doorbrengt in de nabijheid van het
ene atoom dan van het andere, en daarmee dus, gemiddeld, een kleine ladingsdistributie
creëert.

Volgens bovenstaand schema, na de optische respons van α′-NaV2O5 gerelateerd te
hebben aan de dielektrische funktie ε(ω), moeten we een relatie vinden tussen ε(ω) en
de hoeveelheid verplaatste elektron lading tijdens de faseovergang. Deze relatie werd
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verkregen uit metingen aan het gerelateerde materiaal α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2).
Deze metingen lieten duidelijk zien dat de piek die verschijnt in het optische conduc-
tiviteits spectrum, gegeven door ε(ω) bij een energie van 0.9 eV (wat in frequentie ongeveer
2*1014Hz is), veroorzaakt wordt door een overgang tussen twee toestanden van hetzelfde
elektron dat door slechts twee naast elkaar gelegen vanadium atomen gedeeld wordt.
De ene toestand wordt bindings toestand genoemd en de andere anti-bindings toestand,
analoog aan het H+

2 molekuul. We hebben aangetoond dat de energie van deze overgang,
die dus 0.9 eV is, direkt gerelateerd is aan de hoeveelheid tijd die het elektron deelt met
het ene of het andere vanadium atoom.

Door de bovengenoemde relatie te gebruiken, en door de temperatuursafhankelijkheid
van de energie van de 0.9eV piek in α′-NaV2O5 te meten, konden we de mate van herverdel-
ing van de lading bij de faseovergang bepalen. Onze metingen hebben aangetoond dat
slechts een klein gedeelte van de elektonwolk (namelijk minder dan 6%) herverdeeld wordt
bij de faseovergang.

Onze spectroscopische data heeft nog meer informatie opgeleverd. Er is bijvoorbeeld
een hele sterke temperatuursafhankelijkheid van de intensiteit van de 0.9 eV piek gezien.
Na de publicatie van onze resultaten werd dit effekt verklaard met theoretische berekenin-
gen aan een zogenaamd t-J-V model, wat het belang van de interacties tussen de elek-
tronen sterk benadrukt. Tevens lieten infrarood spectroscopische metingen aan de α′-
Na1−xCaxV2O5 monsters een gemis aan metaalachtigheid zien. Dit wat onverwacht resul-
taat was verbonden met de gevoeligheid van één-dimensionale systemen zoals α′-NaV2O5

voor de aanwezigheid van een lichte mate van wanorde (veroorzaakt door extra atomen
als Ca in α′-Na1−xCaxV2O5). Al met al denken we dat onze metingen in belangrijke
mate hebben bijgedragen aan een beter begrip van de fysica die een rol speelt in het
nieuwe materiaal α′-NaV2O5, en in het bijzonder aan het belangrijke probleem van de
faseovergang.

Een tweede fase van het materiaal NaxV2O5 is ook onderzocht, namelijk β-Na0.33V2O5.
Ten gevolge van een andere sodium concentratie stapelen de atomen zich anders in β-
Na0.33V2O5 dan in α′-NaV2O5en creeëren daarmee een totaal andere geordende structuur,
met andere fysische eigenschappen. Hoewel het β-Na0.33V2O5 materiaal al lange tijd
bekend is, is een kristal met een concentratie van natrium atomen dicht bij x=0.33 pas zeer
recent beschikbaar gekomen. Aangetoond is dat het interessante fysische eigenschappen
heeft, waaronder een metaal-isolator overgang bij een temperatuur TMI=136K (rond de
-137◦C) en supergeleiding bij lagere temperaturen en hogere drukken.

Ons optische spectroscopie onderzoek aan β-Na0.33V2O5, beschreven in hoofdstuk 4,
openbaarde het belangrijkste gedrag van de elektronen wanneer ze in het materiaal voort-
bewegen. In dit proces veranderen ze sterk de positie van de nabijgelegen kernen en
creëeren daarbij een zogenaamd klein polaron (”klein” omdat alleen de kernen dicht bij
het elektron worden bëınvloed). Daarnaast kwam van ons optisch spectrum (wat voor-
namelijk de ladingsrespons van de elektronen weergeeft) een ander beeld naar voren dan
van magnetische susceptibiliteits metingen (die inzicht geven in het gedrag van de spins
van de elektronen). Beneden TMIopent zich namelijk een ’gap’ in het optisch spectrum,
maar niet in de magnetische susceptibiliteit. Dit verschillend gedrag van de spin- en
ladingskanalen bij de metaal-isolator faseovergang werd toegeschreven aan sterke wissel-
werking tussen de elektronen, waardoor de elektronen niet dicht bij elkaar kunnen zijn.
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Daarnaast lieten onze infrarood spectroscopische metingen van β-Na0.33V2O5 een groot
aantal optische fononen zien beneden TMI(ze kunnen gezien worden als hoog frequente
vibraties van de kernen). We denken dat dit een logisch gevolg is van de sterke koppeling
tussen de fononen en de elektronen. Beneden de faseovergang is de isolerende fase een
ladings geordende fase. Toekomstige experimenten zullen de gedetailleerde structuur van
de ladings geordende toestand moeten blootleggen.

Het laatste hoofdstuk van dit proefschrift presenteert een optische studie van het mate-
riaal Bi2Sr2CaCu2O8+δ . Dit wordt een hoge temperatuur supergeleider genoemd omdat
beneden een temperatuur van rond Tc=90K (-183◦ C) het elektriciteit geleid zonder en-
ergieverlies. De term “hoge temperatuur” slaat op de critische temperatuur Tcdie veel
hoger is dan de voorheen bekende supergeleiders, de zogenaamde klassieke supergelei-
ders, die een overgangstemperatuur hebben van de grootte van enkele K. Echter, deze
“hoge temperatuur” blijft nog steeds ruimschoots onder kamertemperatuur, T'300K. De
hoop is dat, door het mechanisme van supergeleiding te begrijpen in Bi2Sr2CaCu2O8+δ ,
andere supergeleiders makkelijker gevonden kunnen worden en wellicht vindt men uitein-
delijk een materiaal dat zelfs bij kamertemperatuur supergeleidend blijft. Hoewel de
Bi2Sr2CaCu2O8+δ supergeleiders in de jaren tachtig ontdekt zijn, ligt het begrip van het
fysische mechanisme van supergeleiding hierop achter.

We wilden een speciale fysische eigenschap van Bi2Sr2CaCu2O8+δ onder de loep
nemen, namelijk de verandering van wisselwerking tussen de elektronen bij de supergelei-
dende faseovergang. Men kan in deze wisselwerking kwantificeren in termen van een
interactie energie, die in principe gerelateerd is aan de energie die nodig is om alle elek-
tronen van elkaar te scheiden. Een klein deel van de interactie energie verandert bij
de supergeleidende faseovergang omdat de elektronen zich herorganiseren. Om deze ve-
randering te meten zijn we begonnen met een eerder ontwikkelde algemene aanpak, die
de interactie energie relateerd aan een meer algemene dielectrische functie, de impuls
afhankelijke dielectrische functie ε(k, ω). Echter, om ε(k, ω) te kunnen meten moet men
op het oppervlak van het materiaal niet alleen licht schijnen, maar ook elektronen van ver-
schillende energieën. De huidige experimentele instrumenten om ε(k, ω) te meten hebben
niet voldoende resolutie om de veranderingen bij de faseovergang te meten. De optische
metingen die hier gepresenteerd worden hebben wel de benodigde gevoeligheid en leveren
ons dus een deel van het antwoord.

Onze resultaten toonden aan dat een deel van de interactie energie (dat deel dat
met optische spectroscopie gemeten kon worden en dat is opgeslagen in de “optische
sector”) toeneemt in de supergeleidende toestand. Extrapolaties zijn gebruikt om de
verandering af te schatten, waarbij rekening is gehouden met de gelaagde structuur van
Bi2Sr2CaCu2O8+δ . Het resultaat was van de orde van grootte van de condensatie energie
(als de supergeleidende fase gezien wordt als een golf bal in de hole, dan is de condensatie
energie het equivalent van de energie die nodig is om de bal uit de hole te halen. In andere
woorden, het is de energie om de supergeleidende toestand te vernietigen).

In de klassieke supergeleiders verschijnt de supergeleidende fase omdat bij lage tem-
peraturen er een extra aantrekkende wisselwerking tussen de elektronen ontstaat. Dit
wordt gekwantificeerd door een verlaging van de interactie energie. Onze studie naar
Bi2Sr2CaCu2O8+δ suggereert dat die energie juist toeneemt in de supergeleidende toe-
stand (in andere woorden, de elektronen stoten elkaar meer af) en het kan dus niet zor-



120 Samenvatting

gen voor een mechanisme dat het systeem in de supergeleidende fase brengt. Hoewel
onze studie alleen een indicatie geeft wat betreft de totale interactie energie, legt het wel
beperkingen op aan theoretische modellen, aangezien die de toename dienen te voorspellen
van de interactie energie, opgeslagen in de “optische sector”, zoals door ons gemeten.
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Stellingen

1. The main optical absorption peak at 1 eV for E‖a in α′-NaV2O5 is an
on-rung bonding-antibonding transition. (Chapter 3)

2. The change in the valence state of individual vanadium atoms at the
phase transition in α′-NaV2O5 is smaller than 0.06e. (Chapter 3)

3. The electron doped α′-Na1−xCaxV2O5 (0 ≤ x ≤ 0.2) does not show
metallic behavior. (Chapter 3)

4. A strong electron-phonon coupling exists in β-Na0.33V2O5, leading to
the appearance of a large number of optical phonons below the metal-
insulator transition. (Chapter 4)

5. The Coulomb interaction energy stored in the center of the Brillouin
zone, for optimally and underdoped Bi2Sr2CaCu2O8+δ , increases when
the system enters the superconducting state. (Chapter 5)

6. At small periodic structures, scatterometry goes specular.

7. The more we have, the less its marginal utility is.

8. The success of the present capitalistic system is a result of giving our
internal ego a possibility to satisfy itself.

9. It is less painful to learn from others mistakes, than to learn from our
own mistakes.
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