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Abstract

Dans ce travail de thèse, je me suis intéressé à comprendre les aspects de la corrélation

électronique tels qu’ils se manifestent dans les nickelates de métaux de transition (TMO). Cette

famille de composés possède des caractéristiques intéressantes pour l’étude des phénomènes

corrélés à savoir : des transitions de phases électroniques qui s’opèrent par un changement

de température. Ceci facilite grandement leur étude par rapport à d’autres composés dont les

transitions de phase se font par dopage car leur identité chimique reste inchangée durant la

transition et l’on peut donc exclure la contribution des impuretés ou des défauts de cristallisation

lors de l’apparition des phénomènes observés. Dans les nickelates de terres rares, nous avons

au moins trois régimes identifiés. La phase isolante-antiferromagnétique (AFM), la phase

isolante paramagnétique (PM) ainsi que la phase métallique-paramagnétique. Certain de ces

composés passent par une seule transition: de la phase isolante AFM à la phase métallique PM.

D’autre passent par deux transitions à des températures distincts. D’abord une transition de

phase magnétique (MPT) puis une transition de phase métal-isolant (MIT). Nos échantillons

ont été préparés au sein du laboratoire du professeur Jean-Marc Triscone. Ils se présentent

sous la forme de couches minces de nickelate déposées sur un substrat par une technique de

sputtering. Les couches ainsi formées sont monocristallines et entièrement contraintes par

le substrat. La surface offerte par ces échantillons est importante et permet d’avoir recours

à la spectroscopie pour les caractériser. Ainsi, afin de sonder la structure électronique de

nos matériaux, j’utilisais la spectroscopie ellipsométrique. Cette méthode de mesure donne

accès directement à la constante diélectrique complexe du matériau. J’opérais des mesures

en température afin de sonder toutes les transitions de phase connues. A cette fin, j’utilisais

un cryostat dans lequel l’échantillon est refroidit à l’aide d’hélium liquide. Un vide poussé à

été réalisé afin d’éviter la condensation de gaz sur l’échantillon. La première observation faite

lors de ces mesures est la suivante : la phase isolante, qu’elle soit AFM ou PM, présente un

double pic dans sa conductivité optique dans le proche-infrarouge entre 0.5 et 1.5 eV. Ces deux

transitions disparaissent dans la phase métallique et ce, dans chacun de nos trois échantillons.

Une seconde observation est que la transition entre les phases métalliques et isolantes n’est
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pas de même nature dans tous nos échantillons. Alors qu’elle est de type premier ordre dans

les matériaux ayant une seule transition de phase, elle est du type second ordre dans les

matériaux présentant deux transitions distincts. Enfin, dans ces derniers matériaux, l’on peut

faire l’observation remarquable d’un "coude" dans la trace en température de la conductivité

optique aux alentours de la température de Néel. L’objet de mon travail de thèse consiste

donc à donner une explication à chacune de ces trois observations. A cette fin, j’utilisais le

formalisme de Ginzburg-Landau ainsi que, en collaboration avec le professeur Antoine Georges

et son équipe, des calculs numériques implémentant la DMFT. Notre point de départ pour

la représentation de la structure électronique de ces matériaux repose sur l’idée, par ailleurs

solidement confirmée par de nombreuses expériences, qu’il existe deux types de nickel différents

au sein des nickelates. Chacun de ces deux nickel est dans une configuration d8 mais seulement

un nickel sur deux forme un état lié avec des trous provenants du ligand oxygène. L’existence

de ces trous est dû au transfert d’électron de oxygène au métal de transition. En conséquent, il

existe une certaine hybridation entre les états 3d du nickel et les états 2p de l’oxygène. Ce sont

donc des états hybridés qui donnent lieu au spectre observé. Les calculs ab-initio basés sur ce

modèle reproduisent correctement les deux pics observés entre 0.5 et 1.5 eV. La transition de

plus faible énergie correspond à une transitions de part et d’autre du gap de Mott. Les calculs

montrent qu’un second "pseudo-gap" s’ouvre au sein des états vacants de Hubbard. Il s’agit

d’un pseudo-gap de Peierls dont les états "vacants" ont un caractère fortement hybridé avec

les trous du liguant. La deuxième transition observée expérimentalement se produit depuis

les états occupés de Hubbard vers ces états. En ce qui concerne le "coude" visible sur la trace

en température de la conductivité optique, l’approche phénoménologique basé sur la théorie

de Ginzburg-Laundau nous permet de donner l’explication suivante : Il existe un couplage

entre deux phases présentes au sein des nickelates. Chacune de ces phases est représentée par

un paramètre d’ordre, lequel contribue à l’énergie totale du système. L’une de ces phases est

associée au degrés d’asymétrie entre les deux types de nickel alors que la deuxième phase est

représentée par la magnétisation du système. Un couplage du type bi-quadratique entre les

deux paramètres d’ordre associés à chacune de ces phases permet de reproduire le "coude"

observé aux alentours de la température de Néel. La possibilité d’un tel couplage est renforcée

par le fait que l’intensité du double pic augmente dans la phase AFM. Bien que l’interprétation

microscopique de ce phénomène soit toujours manquante, on peut dorénavant affirmer que

l’ordre de charge couple avec l’ordre magnétique dans les nickelates de terres-rares.
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Chapter 1
Motivation of this research

According to the band theory of solids, each electron interacts with a static potential which

is formed by the fixed nucleus as well as the averaged positions of all other electrons. There

is no feedback from one electron to another. Correlation effects are replaced by an effective

one-particle potential, which greatly simplifies the computation of the available energy levels in

a given system. The quantum states of each energy level are determined by a linear combination

of all states available at a given energy level. Using this approximation, systems with a large

number of electrons can be tackled. The physics of independent electrons provides a solid

framework for understanding many properties such as electrical and thermal conductivity,

optical absorption, ductility or magnetic susceptibility.

The study of systems such as NiO however, show that the single electron approximation

is insufficient to capture the physics of every material [1]. In a Mott insulator, the Coulomb

interaction is strong enough to dictate new dynamics in which electrons are confined by their

interactions with others. Itinerancy drastically reduces and the system becomes insulating

when it should be metallic according to the band theory. The discovery of superconductivity in

oxide [2] further confronted the scientific community with the necessity of a new model for

electron dynamics.

Many unexpected properties emerge from the interplay between electrons. Colossal magne-

toresistance, multiferroicity and metal-insulator transition are among the many macroscopic

manifestations of the electronic correlation which occur in the transition metals and their

compounds (TMC). There are significant challenges to understanding these materials, and there

is an important industrial impact regarding the ability to synthesize or design high-temperature

superconductors. There are other properties of correlated materials with interesting technical

applications and potential economic impact. However, there are limitations without better un-

derstanding the underlying physical principles. Electronic correlations take different forms: The

electrostatic interaction (Coulomb) and the Pauli exclusion principle give rise to the exchange

interaction as well as spin interaction as revealed by Hunds rules. Other types of correlation
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1. MOTIVATION OF THIS RESEARCH

exist such as electron-phonon or spin-orbital. Such interactions are effective in every material

but are particularly strong in TMC.

The samples used in this study are epitaxially grown ultra-thin films of TMC on various

different substrate materials, synthesized in the group of professor J-M Triscone. The principles

of electronic correlation are understood to some extent but a complete landscape of this

type of interaction is still lacking. In this thesis, I describe the experiments performed using

spectroscopic ellipsometry on Rare-Earth (RE) nickelates within a temperature range allowing

the occurrence of both the metal-insulator and the magnetic phase transition which allowed us

to observe the change in dynamics in these systems. We explained the obtained spectra as well

as their temperature dependence in the context of dynamical mean field theory. Our goal was

to provide details concerning how the lattice, charge and spin degrees of freedom interact.

Nickel in the metallic state of Rare-Earth (RE) nickelates is in the formal electronic con-

figuration 3d7 which corresponds to the nominal valence 3+. Stabilizing the Ni3+ valence in

the RNiO3 structure requires extreme conditions which was accomplished for the first time

using high temperature and high pressure [3]. Further improvements of the initial technique

were achieved [4] but the single crystals obtained in this manner remain quite small (100 µm).

Nickelate single crystals were first obtained without needing high temperature pressure via

pulsed laser deposition [5] and chemical vapor deposition [6] on a perovskite oxide substrate

with a similar structure. Growing nickelate thin-films under low pressure is possible due to

their epitaxial stabilization on perovskite substrates. Epitaxially induced biaxial strains may act

as a substitute for the high pressure required to stabilize these oxides [7].
If a substrate stabilizes the nickelate structure, it also influences its properties [8]. The

metal-insulator transition temperature (TM I T ) for instance is higher when the strain imposed by

the substrate is tensile. On the other hand, a compressive strain has an opposite effect on the

transition temperature. A possible explanation for this behavior was offered by J-M Triscone et

al. [9] who explained the change of TM I T in terms of density of defects. Tensile strains favor

Ni2+ because this larger ion can accommodate the larger square (planar) unit cell. In order to

maintain electro neutrality, defects such as oxygen vacancies appear and the resulting higher

defect density then creates a more resistive crystal. For this reason, TM I T will increase. A more

reasonable assumption regards so-called bandwidth tuning which involves band overlapping as

a function of Ni-O-Ni angles. For small angles, the overlap between nickel and oxygen orbitals

is weak and the system is insulating, as represented in Figure 4.3. Such a situation occurs when

the central Rare-Earth ion is small. For larger RE ions, this angle increases. The overlap of

nickel and oxygen states is then larger and drives the system toward a more metallic state.

Films were deposited on various substrates by either chemical vapor deposition (CVD) or

physical vapor deposition (PVD). More details can be found about the deposition process in [9].
The samples under study consist of thin-films of RE nickelate (NdNiO3 and SmNiO3) deposited

on 0.5 mm thick substrates. Film thickness varies from 10 to 30 nm and is always small enough
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Figure 1.1: Figure from J.B. Torrance [10]. Bandwidth Overlap

Film
thickness

Substrate
thickness

Stress
Film

TI M T/TM PT

Bulk [11]
TI M T/TM PT

NNO
30 nm

NGO110
0.5 mm

Tensile 170/170 200/200

NNO
17 nm

NGO101
0.5 mm

Tensile 300/200 200/200

SNO
10 nm

LAO001
0.5 mm

— 350/200 400/200

Table 1.1: Summary of the three different studied systems. The magnetic phase transition (MPT)
and the insulator-metal transition (IMT) temperature are in Kelvin. Substrate crystal orientations
are in orthorhombic notation.

to ensure monocrystallinity and homogeneous strains.

For this study, we used three different samples: two neodymium nickelate (NNO) and one

samarium nickelate (SNO) One NNO thin film is grown on (110) oriented neodymium gallate

(NNO/NGO-110) and another is grown on (101) oriented NGO substrate (NNO/NGO-101)

Finally, SNO is grown on a (001) oriented lanthanum aluminate (SNO/LAO-001) substrate.
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Chapter 2
Experimental methods

In this chapter I describe the principles of modern ellipsometry and the best conditions for

optimal measurement. I also describe how we used a cryostat in order to characterize our

samples both regarding frequency and temperature.

2.1 Coupling of light and matter

In optics, the response of a material to an electromagnetic field is of interest. In this study we

consider only the electric component of light. Light-matter interaction is understood classically

in terms of the Drude-Lorentz model which describes how matter responds to light in terms

of classical oscillators. An electromagnetic wave propagates into a material by coupling to its

charge oscillations. A charge moving out of its equilibrium position creates an electric dipole.

The ease of a material of becoming polarized by an electric field is quantified by a physical

quantity called the electric susceptibility χe. The larger the susceptibility, the easier it is to

polarize the medium in which the light propagates. Electric susceptibility depends on the

presence of ’polarization modes’. For this reason, in a given material, χe is frequency dependent

and enters the expression of a more widely used physical constant, the complex dielectric

constant ε̃= ε1 + iε2

ε1 := 1+χe

The Drude-Lorentz model express the polarizability χe as:

χe =
Ne2

εvacme
·
�

1
ω2

0 −ω(ω+ iγ j)

�

With N the number of electrons of charge e and mass me contributing to the polarization of
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2. EXPERIMENTAL METHODS

the material. The "spring constant" forces the moving charges to return to their initial position

in such a way that they resonate at a frequencyω0. εvac being the dielectric constant of vacuum.

In the quantum mechanical framework, ω0 is the transition frequency of an electron between

two energy levels separated by ħhω0. For simplicity we assumed two discrete energy levels

however, in actual samples, all energy levels are smeared out and it is more appropriate to

write the former equation as:

χe =
Ne2

ε0me
·
∑

j

�

f j

ω2
0 j −ω(ω+ iγ j)

�

(2.1)

This equation sums up the contribution of all possible transitions j, each with frequency

ω0 j and transition strength f j. The oscillator strengths f j satisfy the requirement (oscillator

strength sum-rule)
∑

j f j = 1 which measure the relative probability of a quantum mechanical

transition.

A graphical representation of the frequency dependence of ε is provided in Figure 2.1. As

the frequency approaches the resonance frequencyω0, ε1 diverges (Figure 2.1 a)). Γ represents

the damping of an oscillator, its quantum-mechanical counter-part being energy dissipation in

the form of a decay process.

Polarization involves different mechanisms throughout the spectrum. At high frequencies,

no charge can follow the electric field oscillation and the dielectric constant resumes to that

of vacuum. The resonant oscillation for electric polarization occurs in the UV/Vis and in the

infrared region for vibrational polarization. When the frequency approaches 0, the value of ε1

is represented by the static dielectric constant εs. Equation 2.1 tells us that this value includes

the contribution of all frequency oscillations.

While ε1 is proportional to the electric permittivity, ε2 is proportional to light absorption in

the material. As explained earlier, the electric permittivity is due to the coupling (resonant inter-

action) of light with polarization modes. For this reason, any contribution to ε1 is concomitant

with a peak in ε2 as shown in Figure 2.1c.

The simplest form of light propagation regards a traveling wave φ = A· cos(K x −ωt)), with

K = 2π/λ the wave number and ω= 2πν the angular frequency. This expression represents a

wave with a periodicity in space (x) and time (t). The following equation is used to express

the propagation of the electric and magnetic component of light:

E = E0 · cos(K x −ωt)

B = B0 · sin(K x −ωt)

Light propagates through space and time as a periodic perturbation of the electro-magnetic

10



2.1 Coupling of light and matter

Figure 2.1: Figure from M. Dressel and G. Grüner [12] a) Real part of the dielectric function
with (γ 6= 0) and without (γ = 0) energy dissipation as a function of wavenumber. b) Different
contributions to the overall dielectric constant spectrum. c) Real and imaginary part of the complex
dielectric constant as described by the Drude-Lorentz model. d) Real and imaginary part of the
complex dielectric constant of a real sample.

field (Figure 2.2). While the electric field vector E interacts with the electric dipole moments,

the magnetic field vector B interacts with magnetic moment. Maxwells’ law of induction states

that electric field variation is always concomitant to a magnetic field variation.

As ε of the material is not equal to εvac, the speed of light inside the material (v) is not the

same as the speed of light in vacuum (c). The ratio of these two quantities is the refractive

index n := c/v, thus we have:

K =
ωn
c
=

2π
λ

We can then write the amplitude of the light electric field as:

E = E0 · cos
�ωn

c
x −ωt

�

(2.2)

using the Euler identity, we can rewrite the oscillation of the electric field as:
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2. EXPERIMENTAL METHODS

Figure 2.2: Figure from M. Dressel and G. Grüner [12] a) Electric and magnetic field of a periodic
electro-magnetic field perturbation. Figure from H. Fujiwara [13] b) Space and time evolution of
the electric field of light

Ẽ = E0 · ex p
h

i
�

ωt −
ωn
c

x
�i

Substituting n with its complex representation ñ= n− ik gives:

Ẽ = E0 · ex p
�

i
�

ωt −
ωñ
c

x
��

= E0 · ex p
�

−
ωk
c

x
�

ex p
h

i
�

ωt −
ωn
c

x
�i

The electric field amplitude now has a damping term (−ωk
c x) that accounts for the extinction

of light traveling into a medium. The wavelength of light then becomes 2πc
ωn and accounts for

the propagation velocity change. The refractive index has a clear physical meaning: the real

part causes the light to change its frequency when traveling into a material as shown in Figure

2.3a. The imaginary part k of the refractive index measures the amount of light absorbed by

the material (Figure 2.3b). This gives the expression of an electromagnetic wave propagating

through an absorbing medium in terms of physical observables.

2.2 Spectroscopic ellipsometry

Spectroscopic ellipsometry is an optical measurement technique relying on the change of

polarization state of light upon reflection or transmission onto a sample [13]. The term

"ellipsometry" originates from the fact that, most of the time, light polarization becomes

"elliptical" following interaction with the sample. In this chapter, I explain how light interacts

12



2.2 Spectroscopic ellipsometry

Figure 2.3: Figure from H. Fujiwara [13]. Representation of an electro-magnetic wave propagating
into a transparent medium (a) and light-absorbing medium (b)

with matter and how it is changed upon reflection and refraction. This knowledge allows

obtaining the dielectric constant of a material. One great advantage of spectroscopic ellipsometry

is that it gives access to both the real and imaginary parts of the dielectric constant. Other

spectroscopic techniques such as transmission or reflection require assumptions regarding

the parts of the spectrum outside the measured range in order to perform a Kramers-Kronig

transformation. Numerical extrapolations must be conducted outside the measured frequency

range which may influence the final result. Moreover, ellipsometry does not require any

reference measurement and thus the method is, so to speak, "self-calibrated". Ellipsometry is

precise, quick and well suited for film characterization.

2.2.1 Fresnel Coefficients

The Fresnel reflection coefficient r̃ expresses the ratio between reflected and incident electric

fields, Ẽr and Ẽi respectively. Because the response of the material to incident light differs from

one material to another, this ratio is a complex number that can be written in terms of the

ratio of the reflected and incident electric field magnitudes as well as their relative phase. This

provides a convenient method of separately handling these two quantities. This gives:

r̃ =
Ẽr

Ẽi

= |r̃|eiφ

The orientation of the electric field vector, or in other words the light polarization state,

can be written in terms of two orthogonal components: the s- and p- polarized light. They are

respectively perpendicular and parallel to the plan of incidence. When crossing an interface

between two materials with different refractive index, these two components behave differently

upon reflection. This gives:
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2. EXPERIMENTAL METHODS

r̃ s =
Ẽs

r

Ẽs
i

= |r̃ s|eiφs
r̃ p =

Ẽp
r

Ẽp
i

= |r̃ p|eiφp

Figure 2.4: Figure from H. Fujiwara [13]. Detail of the tangential and normal components of the
electric field vector for s- and p- polarized light.

Figure 2.5 a) shows the Fresnel coefficient as a function of the incident angle. For a purely

refractive medium r̃ p and r̃ s are real numbers. While r s is always negative, r p becomes negative

for angles of incidence larger than the Brewster angle. The sign of the coefficient is determined

from the phase variation that occurs when light is reflected and refracted at an interface.

The ratio between reflected and incident electric field amplitudes being negative represents

a phase shift of 180 degree, while this ratio being positive represents no phase shift. This is

represented by a step function as shown in Figure 2.5 b). This phase shift is a consequence of

the Maxwell equations which require that the electric field Ẽ must be continuous across the

interface. Referring to Figure 2.4, we can write:

Ep
i cosθi − Ep

r cosθr = Ep
t cosθt

Es
i + Es

r = Es
t

On the incidence side there are both the incident and reflected field and their sum must have

the same phase as the transmitted wave regarding the continuity conditions. Writing down the

boundary conditions for tangential and normal components (more details in Appendix A.1 ),

we find that the only way that continuity can be upheld is to have the incident and transmitted

waves in phase, while the reflected wave may be either exactly in or out of phase, depending

on whether the waves are crossing an increase or decrease in refractive index.

When light is reflected off the sample, r̃ s and r̃ p are superimposed. What ellipsometry
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2.2 Spectroscopic ellipsometry

Figure 2.5: Incident angle dependence of the Fresnel coefficients a) and the s- and p-reflectivities
b) In b) Rs and Rp are identical at normal incidence because there is no way to distinguish the two
polarizations in this configuration. The Brewster angle is at the vertical line.

actually measures is the ratio r̃p

r̃s . Due to difference in the electrical dipole radiation, p- and

s-polarization show different changes in amplitude and phase. This ratio is written as:

ρ̃ =
r̃ p

r̃ s
=

t gΨ p

t gΨs
ei(∆p−∆s) = t gΨei∆

t gΨ represents the amplitude ratio between reflected p- and s-polarization while ∆ express-

ing the phase difference between reflected p- and s-polarization.

2.2.2 Principles of ellipsometry

An ellipsometer measures two values Ψ and ∆ by using polarized incoming light and analyzing

its state of polarization. Several methods exist, such as nulling ellipsometry or phase-modulated

ellipsometry. In this work, we used a rotating analyzer ellipsometer (RAE) [13].
The typical configuration for RAE is as follow:

Source→ Polarizer→ Sample→ Analyzer→ Detector

The light emitted by the source is oriented towards a grating which resolves the beam into

monochromatic light. This monochromated light is linearly polarized by the first (fixed) polarizer.

The electric field component of the light can always be decomposed into two orthogonal

contributions: one in the plane of incidence (E i
p) and another perpendicular to it (E i

s). Before

hitting the sample, the linearly polarized light has these two components in phases. The sample

will reflect these two components not only with a different intensity, but also with a different

phase (even if the sample itself is optically isotropic) which causes the reflected light to become

elliptically polarized. Ellipsometry consists of measuring the degree of ellipticity of the light
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reflected off the sample as a function of analyzer angle A [14]. This is done by probing the

intensity of light in all possible directions of polarization. The analyzer, (a rotating polarizer),

modulates the light intensity into a signal that has the form:

I(A)
〈I(A)〉 = 1+αcos(2A) + βsin(2A)

with α and β the Fourier coefficients of the signal. We then have

α=
tan2Ψ − tan2P
tan2Ψ + tan2P

β =
2tanΨcos|∆|tanP

tan2Ψ + tan2P

with P the input polarizer azimuth with respect to the plane of incidence. The shape of

I(A) shifts in the horizontal direction (analyzer angle) as Ψ is varied. On the other hand, the

amplitude of I(A) reduces as the state of polarization changes from linear to elliptical. We can

see that the polarization state of the reflected light in RAE is determined by the variation of

light intensity with the change of the analyzer angle.

Solving the above equation for Ψ and |∆| gives:

tanΨ =

√

√1+α
1−α

tanP cos|∆|=
tanP
tanγ

β

1−α

The two parameters α and β are first determined by Fourier analysis of the measured

reflected light intensity. We then used the above equations to calculate Ψ and |∆|. Note that

additional information is required to obtain the sign of ∆.

2.3 Measuring with an Ellipsometer

2.3.1 Brewster Angle

When light meets an interface at an incident angle Θi 6= 0, light is transmitted into the medium.

The electric field resonates with the electric dipole of the material. The angle at which light is

refracted is given by Snell’s law. S- and p- polarized light behave differently at the interface.

When p-polarized light propagates through a medium, the polarization remains within the

plane of incidence, perpendicular to the direction of propagation as shown in Figure 2.6. As

the incident angle increases from 0◦ (normal incidence) to 90◦ (grazing incidence), the light

beam meets an angle at which the polarization of the medium oscillates in the same direction

as the reflected light. Because the electric field is always perpendicular to the direction of

propagation in this configuration, the angle between reflected and refracted light would be

90◦. However no light can be radiated parallel to the direction of oscillation. For this reason, at
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2.3 Measuring with an Ellipsometer

Figure 2.6: Figure from H. Fujiwara [13]. Incoming p-polarized light at the Brewster angle.
Refracted light propagates perpendicularly to the direction of the virtually reflected light. The
electric dipole oscillates perpendicular to the refracted light. Because no energy radiates in a
direction parallel to a charge oscillation, the reflected p-polarized light is suppressed

this particular incident angle, no p-polarized light is reflected. This angle is called the Brewster

angle. As shown in Figure 2.5 b), the reflectivity Rp goes from a non-zero value at θi = 0 to

0 at θi = θBrewster . For incident angles larger than θB, it rises again to 1 at normal incidence.

S-polarized light behaves quite differently as indeed, no matter the value of the incident angle,

the polarization will always be perpendicular to the reflected beam. For this reason, Rs increases

gradually with an increasing incident angle. Thus, at the Brewster angle only s-polarized light

is reflected. This is why this angle is also called the polarization angle.

Figure 2.7: Phase change of the s- and p-polarized light upon reflection off the sample a) Incident
angle dependence of Ψ and ∆. The Brewster angle is at the vertical line.

2.3.2 Optimal Angle Determination

In order to maximize the signal intensity observed by the detector, light must be as circularly

polarized as possible. This occurs at the Brewster angle, the angle at which reflected light
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is perfectly s-polarized. As shown in Figure 2.7 b), at this angle, ∆ goes from 180 (linearly

polarized light) to 0 (no phase difference as one polarization drops to zero). The value of

∆ does not follow a step-like function because, in reality, the material is absorbing. Instead,

the transition from 180 to 0 is smoothed and ∆ goes through the value of 90 degrees. The

signal from the detector will thus be optimal at the Brewster angle since the light is circularly

polarized. For this reason, we measure at a ∆ as close to 90 degrees as possible. Since the

reflected light is constituted by at least two reflections (thin film and substrate), we talk about

a pseudo-Brewster angle. The value of this angle depends on the effective refractive index

of the system (film + substrate) and is thus highly material as well as frequency dependent.

Usually, the higher the refractive index, the higher the Brewster angle. With our fixed angle

ellipsometer, it is thus impossible to optimally measure across the whole spectrum. Moreover,

as we cross the MIT, the refractive index of our sample changed significantly, which complicated

measuring the temperature-dependent dielectric constant spectrum. We made it possible at a

fixed angle at the cost of some singularities in the spectra that we corrected afterwards. This

issue is addressed in detail by the numerical method below.

2.4 Temperature cycle

In order to achieve greater insight into the electronic structure as we pass through the phase

transitions (IMT and MPT), we need a temperature-dependent evolution of the dielectric

constant of the material. To this end, we cooled our sample to 50◦ K inside a homemade

cryostat using liquid helium as a cryogenic liquid. In order to avoid condensation of air

components on the surface of the sample, we set a vacuum of 10−8 mbar by first using a primary

pump to reach to 10−2 mbar. We then used a turbo-pump to reach 10−7 mbar and finally an

ionic pump to reach 10−8 mbar. Once a sufficient vacuum was achieved, we began to cool down.

In order to attain high temperature resolution, we ensured the cooling process was sufficiently

slow for one spectrum to be taken every single Kelvin. To accomplish this, we used a valve

that regulates helium flow in combination with a heater near the sample. Such an installation

grants full control over the speed at which the sample is cooled down. This allows achieving the

required resolution and a precise insight of the sample’s behavior at the transition temperature.

Additional precaution is taken to ensure cooling and warming occurs at fixed and constant

rates.

Because ellipsometry is highly sensitive to surface morphology as well as incident angles,

we want to minimize the deviation from the initial position due to contraction of the sample

holder. Our homemade cryostat is designed in such a way that the sample is suspended to the

piece in contact with the cold finger by a collection of thin copper wires as shown in Figure 2.8.

In this way, linear contraction due to cooling is minimized and the light beam always hits the
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2.4 Temperature cycle

sample at the same position.

Figure 2.8: Heat bridge comprised of copper wire providing minimum contraction the during cool
down process

Figure 2.9: a) Details of the substrates as well as their film-covered counterparts. On the left, are
the two different substrates: up) NGO down) LAO. On the right: up) NNO/NGO down) SNO/LAO.
Both ultra-thin films already show noticeable absorption in the visible range. Surface is as free of
imperfection as it can be. b) The sample holder is designed to position the surface of the film at the
focal point of incident light. The edges are designed so that any light falling around the sample
will not be reflected toward the detector. Samples are glued with silver paste in order to guarantee
adequate heat contact.
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Chapter 3
Numerical methods

In this section, the numerical tools used to process the raw measured data are presented.

3.1 Fresnel Equations

We explain the derivation of Fresnel equations for the system under study: involving a three-

layer model with two semi-infinite layers (air and substrate) and one thin film. Such a system

consists of two interfaces. Light is reflected at each interface so the total reflected light is the

superposition of several beams. Fresnel equations consist of a set of relations that relate the

intensity of the reflected light beam with the incident angle and the refractive indexes of the

different mediums.

In order to describe these relationships we begin with the representation of the two orthog-

onal polarizations of light: the s- and p-polarizations. The s-polarization (from the German

senkrecht meaning perpendicular) is perpendicular to the plane of incidence while p-polarized

light is parallel to the plane of incidence. Any light polarization state can be described in terms

of these two perpendicular polarization states. Figure 3.1 shows the electric field vector of

the p-polarized light before and after reflection. The reflected light r is by definition the ratio

between the reflected electric field Er and the incident electric field Ei intensities. For the two

perpendicular s- and p- polarizations of light we have:

r s =
Es

r

Es
i

r p =
Ep

r

Ep
i

The amplitudes of reflected light r s and r p are called the Fresnel coefficients. In general, the

phase-shift imprinted to the light at the interface requires the use of complex electric field Ẽ. In

such situation, reflectivities are complex values (r̃). Writing down the constraints imposed by
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Figure 3.1: Figure from H. Fujiwara [13]. This represents the model for Fresnel equations. c) The
total light reflected off the sample is given by the sum of the light reflected at each interface. ri j
and t i j represent amplitudes of reflected and transmitted light respectively.

the boundary conditions we have: (see Appendix A.1 )

r̃ p =
Ñt cosθi − Ñicosθt

Ñt cosθi + Ñicosθt

r̃ s =
Ñicosθi − Ñt cosθt

Ñicosθi + Ñt cosθt

(3.1)

with i and t the index of the optical path, namely the incident or transmitted light, respectively.

Ñ := n+ ik is the complex refractive index of the material and θ the angle between the light

beam and the line perpendicular to the surface at the reflection point.

For systems with more than one interface, Figure 3.1c shows how multiple reflections adds

up to form the resulting overall reflection. Of course, interferences occur in such configuration

and for this reason, we are interested in knowing the phase shift between the primarily reflected

beam and all other beams reflected from the interface below. Figure 3.1b shows the optical

path difference between two consecutive beams traveling toward the medium of incident light.

We define the film phase thickness as β . The phase difference 2β is proportional to the optical

path difference of the two beams. The quantity 2β represents the phase difference acquired by

the light by traveling twice through the film: once transmitted from the incident light, and once

again from the interface below. This process, represented in Figure 3.1c, occurs repeatedly. At

each iteration of this process, the light acquires a phase shift 2β . We then have (see Appendix
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3.1 Fresnel Equations

A.3 )

β =
2πdn1

λ
· cosθ1 (3.2)

The phase of the light electric field after traveling twice through the film is then e−2iβ . This

allows us to sum the contribution of all beams as the total reflectivity r̃012. There is virtually an

infinite numbers of beams that contribute to the total reflectivity. The sum of all these terms

forms an infinite series that resumes to a simple fraction (see Appendix A.4 )

r̃ s
012 =

r s
01 + r s

12e−2iβ

1+ r s
01r s

12e−2iβ
r̃ p

012 =
r p

01 + r p
12e−2iβ

1+ r̃ p
01r p

12e−2iβ
(3.3)

were 0,1 and 2 are indexes that indicate the medium where the beam is considered. Regarding

Equations 3.1, index i and t (incident and transmitted beams) would be 0 and 1 respectively. At

this point, we have everything required to calculate the complex refractive index of the film. As

can be seen from Equation 3.1, 3.2 and 3.3, however, it is impossible to write Ñ1 as a function of

r̃012 in analytically closed form. Thus Ñ1 must be determined numerically. The algorithm is as

follow: we first compute r̃012 by guessing Ñ1 and then varying this quantity until we reproduce

r̃012 that was measured with the ellipsometer. The numerical process used to solve this inverse

problem is discussed below. This algorithm is represented graphically in Figure 3.2

Figure 3.2: First we calculate ρ̃Mod from mathematical models with initial n1 and k1. The real and
imaginary parts of ρ̃Mod are compared to the real and imaginary part of ρ̃Ex p. The two differences
are minimized to a given threshold. That is χ2 is minimized in the least square sense. At this stage,
provided the model is correct, we have the value of n1 and k1
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3.2 Inversion of measured data

In this subsection, I explain the implementation of the mathematical model discussed above as

well as how to calculate N1 = n1+ ik1 backwards from Ψ and ∆. Full details of the code can be

found in Appendix A.5. I also show how an inverse problem can be addressed using iterative

process.

Using the Python programming language version 2.7, we write down functions that compute

the different reflectivities as well as β

def r1s(n1,k1):

a = n0*np.cos(phi0)

b = (n1+k1*1j)*np.cos(phi1(n1))

Reflect1s = (a - b) / (a + b)

return Reflect1s

...

def delt1(n1,k1):

delta1 = 2*np.pi*(n1+k1*1j)*thick1*np.cos(phi1(n1))/wl

return -delta1

def ReflectS(n1,k1):

Rs = (r1s(n1,k1) + r2s(n1,k1)*np.exp(-2*1j*delt1(n1,k1))) \\

/ (1 + r1s(n1,k1)*r2s(n1,k1)*np.exp(-2*1j*delt1(n1,k1)))

return Rs

...

def CalcRho(n1,k1):

rho = ReflectP(n1,k1) / ReflectS(n1,k1)

return rho

We then evaluate rho (ρ) calculated using the above Fresnel equations (ρEx p) with respect

to the rho provided by the measured ellipsometric data ρEx p =
Rs
Rp
= t gΨei∆. We minimize the

differences between these two values by varying the value of Ñ1. As we handle complex numbers,

we must minimize both the real and the imaginary parts differences. This is accomplished by

writing an "objective function" that returns a single value (χ2) that accounts for the differences

between the two numbers:

def Fit_n1(Initn1):

In1 = Initn1['n1'].value

diff = CalcRho(In1,k1) - ExpRho

return diff.real**2 + diff.imag**2

def Fit_k1(Initk1):

Ik1 = Initk1['k1'].value
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3.2 Inversion of measured data

diff = CalcRho(n1,Ik1) - ExpRho

return diff.real**2 + diff.imag**2

n1 and k1 are fitted sequentially because minimization algorithms usually deal with a set of

parameters rather than complex numbers explicitly. The many variables that enter a model may

be constrained. For a complex number, the Kramers-Kronig relationship relate their real and

imaginary parts. In this code, I did not use such constraints and my data are thus Kramers-Kronig

inconsistent. The reason of doing this is that the ellipsometry measurements themselves may

deviate from Kramers-Kronig consistency due to experimental signal noise. Thus the algorithm

would not successfully fit KK-consistent variables to KK-inconsistent data.

Using least-square minimization routines (the "minimize" method from Minimizer object) as

implemented in Lmfit [15], we instantiate a Minimizer object by providing the above-mentioned

objective function plus an initial guess for n1 and k1. The minimize method will then return

the fitted value of the parameters n1 and k1 together with the χ2 value.

for l in range(NbrIter):

CC = Minimizer(Fit_k1,Param_k1,nan_policy='omit')

DD = CC.minimize(method=MinMethod)

k1 = DD.params['k1'].value

Set_k1(k1)

AA = Minimizer(Fit_n1,Param_n1,nan_policy='omit')

BB = AA.minimize(method=MinMethod)

n1 = BB.params['n1'].value

Set_n1(n1)

Alln1[i] = BB.params['n1'].value

Allk1[i] = DD.params['k1'].value)

The problem to be solved here at each point of the spectrum, is a problem with two unknowns

(n1 and k1) for two measured variables (Ψ and ∆). While being fully determined, this problem

is not uniquely defined. Indeed, ρ̃calc cannot be written in terms of n1 and k1 since it is a

functional of Rp(n1, k1) and Rs(n1, k1). Due to the presence of several local minima, direct data

inversion (unambiguous analytical solution) is impossible and the minimization algorithm is

likely to converge to a wrong solution. This problem was addressed by Gilliot who proposed

to draw a map of all available solutions and choose the physically relevant one [16]. In our

lab, using Reffit, we managed to isolate two of the many available solutions. Since one was

unphysical (wrong sign of Im(ε̃), we were left with a unique solution.
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Figure 3.3 shows how well the fit converged. Also, it shows a comparison between two

different methods used in our lab. The one described here and the other one implemented in

Reffit.

Figure 3.3: Top: Real (a) and imaginary (b) part of ρ(ω) at 80◦ K. The initial guess is the pseudo-
dielectric function calculated directly from the ellipsometric measurements of the film+substrate.
The fit was tested against several initial guess and is quite robust. Bottom: comparison between
epsilon inverted using the above method (point-by-point fit) and using a Drude-Lorentz fit (reffit)
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Chapter 4
Theoretical Models of the RE nickelates

4.1 Electronic Correlation

The many-body physics of interacting electrons is key to the understanding of any material

properties such as color, transparency, heat and electric conductivity. Every property of a material

can be understood knowing its electronic structure and dynamics. Many properties such as

resistivity or light absorption can be understood in terms of independent particle dynamics.

The physics of independent electrons describes single electrons traveling in a static potential,

meaning without dynamic interaction with other electrons and/or lattice vibrations. In solid

state physics, this is known as "band theory" and has been successfully used to understand

simple solids such as copper and silver.

Most materials however cannot be understood in terms of single particle physics, copper

oxide CuO being one example. Density functional theory predicts a 0.3 eV gap in NiO resulting

from anti-ferromagnetic order [17], whereas cluster calculations accounting for the Coulomb

interactions arrive at a gap of 5 eV [18]. The gap was experimentally found to be 4.3 eV [1].
Many other materials such as transition metal oxides violate the expectation of the band theory.

Such materials, which are supposed to be metallic according to band theory but are actually

insulators, are called "Mott insulators". They represent a class of materials where the interaction

between electrons plays a central role. Such materials cannot be understood in terms of single

electron dynamics. Indeed, due to electronic correlation the electrons are coupled and give rise

to several many-body states. Electronic correlation is strongest in d and f shells as these shells

are deeply confined inside the atom.

Mott was the first to formulate the idea that electronic correlation may be due to the

Coulomb interaction [19]. From this idea, Hubbard showed that sufficiently strong on-site

Coulomb repulsion can localize electrons [20]. A gap that opens due to a Coulomb interaction

is called a Mott gap.

Figure 4.1 shows a schematic representation of the electronic structure of a Mott insulator.
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Figure 4.1: Figure from S. Ciuchi [21]. Density of states of a Mott insulator a) and a Charge
Transfer Insulator b). The Coulomb interaction U splits the band into a Upper Hubbard Band (UHB)
and a Lower Hubbard Band (LHB), where the bandwidth W is proportional to the inter-atomic
hopping. The distance between the two bands is proportional to the magnitude of U.

O2p states are represented because of possible hopping process between O2p and TM d states.

Within this picture, an additional energy scale, ∆, is needed to represents the energy required

to transfer an electron from an O2p level to a TM 3d level. Figure 4.1 a) shows the situation

where U < ∆. In this situation, because the two Hubbard bands are well separated, the band

gap energy in such systems is mainly controlled by U. On the other hand, we can have the

situation ∆ > U (b). In this situation, the oxygen level takes place within the Mott gap and the

gap energy is measured between the top of the O2p level and the bottom of the UHB. Such

systems are called charge transfer insulators because the lowest energy excitation involves the

transfer of an electron from an O2p orbital to an TM 3d orbital. In these materials, the band

gap is then mainly controlled by the amplitude of ∆. In this context, we would expect that a

sufficiently small charge transfer gap, ∆, would progressively lead to a metallic behavior. What

occurs in reality is the opening of a gap due to the hybridization of the ligand p states and the

transition metal (TM) 3d states. For small to negative charge transfer, these states are indeed

very close in energy, allowing the formation of bonding and antibonding states as predicted by

the molecular orbital theory. Hybridization separates the states of similar energy in order for

the electrons to coexist, thus forming an energy gap. Such a gap leads to a so-called covalent

insulating regime [22] also referred to in literature as a negative charge transfer insulator [23].
The charge transfer energy is the energy required to create a ligand hole L. When this energy is

negative, hole creation is energetically favorable and spontaneous.

4.2 Rare-Earth Nickelates

According to the Zaanen-Sawatzky-Allen (ZSA) scheme [24], nickelates enter the class of

negative charge transfer insulators and are thus discussed within this context. The electronic
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configuration of nickel in nickelates is formally 3d7 but the hybridization of the Ni d orbital

with the ligand hole creates other states such as 3d8L or 3d9 L2. The ground state of nickelate

can then be written as a superposition of all these states:

|GS〉= α
�

�d7
�

+ β
�

�3d8 L
�

+ γ
�

�3d9 L2
�

Calculations show that β is the largest coefficient [25]. We then assume from now on that

the ground state of nickelates is essentially a 3d8 L state. Important here is the existence of a

hybridized hole state. Such a state may be delocalized over the whole network and will be

used to explain an ambiguity in nickelates regarding the presence of bond-disproportionation

without charge-ordering.

Synchrotron X-ray diffraction (SXRD) of Y N iO3 [26], neutron diffraction [27,28] as well as

Mössbauer spectroscopy [29] show evidence of two different Ni-O bond lengths in the insulating

phase. Crystallographic evidences also exist for bond-disproportionation in all nickelates in

the insulating phase [30–33] which indicate a common feature for this class of material. The

insulating phase is characterized by two sublattices. In one of them, the Ni-O bond-length

is decreased compared to the metallic state. In the second, this bond-length is increased,

effectively forming a bond-disproportionated state.

Charge-ordering has been discussed extensively to explain the presence of inequivalent

bond-lengths within the same crystal [30,34,35]. Charge-order has also been invoked to explain

the highly unusual AFM structure of the insulating phase. Several experiments suggest that

there are two different types of nickel electronic configurations [10,36]. A complete charge-

disproportionation of the type 2Ni3+→ Ni2+ + Ni4+ has been proposed. Such a configuration

would create a magnetic d8
S=1 as well as a non-magnetic d6

S=0 state. The magnetic states would

couple antiferromagnetically, effectively doubling the unit cell of the magnetic phase. This

magnetic phase thus involves 4 unit-cells and gives rise to the propagation vector k = (1/2, 0,

1/2) which is common to the whole family of nickelate compounds [10,36,37].

Despite being so likely, the experimental evidence so far that confirms the existence of a

charge-order is indirect. Moreover, the exact state is difficult to define. Actually, such a charge

configuration would involve electron transfer from one nickel site to another, but is expected to

be forbidden because of the large Coulomb repulsion acting within the nickel 3d shell. Recent

X-ray diffraction seems to confirm this assumption [38].

An alternative view has emerged however, involving an inhomogeneous hole distribution

over the crystal. Sawatzky et al. first conducted Hartree-Fock calculations [39] on 3d TM

oxides with small to negative ∆. They showed that ligand holes, just like nickel sites, may

undergo a charge order. They proposed that one oxygen site over two may have more holes

than the other half. This excess of holes causes FM coupling between two Ni sites, explaining

the up-up-down-down spin stacking. In this picture, the spin ordering at the metal site couples
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with the charge order at the oxygen site without explicit doping or any orbital ordering.

Similar to this picture is the idea of inhomogeneous hole distribution around Ni sites termed

by Marianneti et al. as site-selective Mott insulators [40]. Each nickel sublattice is surrounded

by a different hole density. In the extreme limit of this picture, the nickel 3d electron of one

sublattice forms a long-bond (LB) and is completely decoupled from the surrounding nickel,

while the d electron of the second sublattice forms a short-bond (SB) which is strongly coupled

between each other. The DMFT calculation showed that each site has a high-spin 3d8 electronic

configuration. On the LB site (Ni1), this results in a local moment while on the SB site (Ni2),

the coupling to the two oxygen holes lead to a singlet state.

The insulating phase of nickelates shows a characteristic two-peak structure in the near-

infrared part of the spectrum [41]. The nature of these two optical transitions is explained

in detail in the next chapter. We showed that the insulating phase of nickelate is a mixed,

Peierls-Mott phase. In such a phase, the long range partial charge order (breathing distortion)

opens a Peierls gap (in the energy range 0.5-0.7 eV) above the Fermi energy. The insulating

nature of the nickelate originates from the Coulomb repulsion U and the Hund’s coupling J

acting within the eg state. A Mott gap opens provided the effective Coulomb energy U-3J is

smaller than the energy difference between the two different nickel sites. The two transitions

observed in the insulating phase come from transitions across the Peierls gap and across the

Mott gap as described in more detail in [42]

Figure 4.2: Figure and caption from Park et al [40]. The local magnetic susceptibility χ(ω = 0) of
LuNiO3 calculated via DFT+DMFT as a function of temperature in the paramagnetic state using
the low T P21/n structure with a mean bond length difference of 0.104 . Red circles, Ni1 (large
Ni-O bond length). Blue square, Ni2 (small bond length). Inset: static magnetic moments from
DFT+DMFT calculations.
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4.3 Phase Transitions

Figure 4.3: Figure from J.B. Torrance [10]. Metal-Insulator and magnetic phase diagram for
different RE Nickelates as a function of the tolerance factor or, equivalently the RE ionic radius.

Many substances have a complicated phase diagram with phase transition lines meeting a

polycritical point. This cannot be explained in terms of a single order parameter theory [43]. It

may be understood that the phase transition structure results from the interplay of more than one

mode of ordering, that is, from the competition between two or more order parameters. Among

systems exhibiting such behaviour are those showing competition between ferromagnetic and

antiferromagnetic ordering [44] or between structural and magnetic orderings [45]. In the

nickelate in particular we have a complex interplay between charge, spin and lattice degrees of

freedom. The two electronic transitions characteristic of the insulating phase become stronger

as we enter the magnetically ordered phase. This behavior is observed in all studied nickelates

and is likely to be common to all nickelates. This change occurs at a temperature close to TN .

For this reason, we infer a tight relationship between electron spin and charge distribution in

these materials. The following sections show how we tackle the problem of understanding such

complex systems.

The presence of a soft-phonon mode associated with the NiO6 octehedra which soften when

temperature is lowered has been identified [46]. This softening is different for the TN=TAF

regime and the TN < TAF . Charge disproportionation alone is unlikely to induce a phonon mode
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softening which support the idea of a intimate correlation charge spin and lattice degree of

freedom

4.4 Landau Theory

The Landau theory (LT) of phase transition is a theoretical framework constituted by thermo-

dynamics and symmetry considerations [47]. Based solely on symmetry considerations, the

LT can provide a reliable description of the behavior of a system’s equilibrium near a phase

transition. Within the framework of the theory, the existence of a transition is an experimental

fact considered as a starting point. LT is thus a phenomenological theory. It relates measurable

quantities to one another using a minimum set of input parameters which can be determined

either by comparison with experiment or from first-principle calculations. The explanatory

power of this theory is to establish the overall consistency of the microscopic characteristics of

the transition ( space-symmetry and structural charges ) and the results of the measurements

of macroscopic quantities. Landau theory can therefor serve as a conceptual bridge between

microscopic model and observed macroscopic phenomena [47]. Because it assumes spatial

averaging of all local fluctuation, LT is particularly well suited to systems with long-range

interactions such as superconductivity and ferroelectricity.

In his classic 1937 paper, Landau notes that a system cannot change smoothly between

two phases of different symmetries [48] [49]. Furthermore, the thermodynamic states of two

phases that are symmetrically distinct must be the same at their common transition line. For

this reason, the symmetry of one phase must be higher than that of the other.

The Landau theory defines two basic concepts: the order parameter and the free energy

F . The symmetry properties of these two quantities make it possible to infer on the one hand,

symmetry characteristics of the system such as degeneracy of the "low-symmetry" phase. On the

other hand, macroscopic quantities can be classified as a function of their relationship with the

order parameter. The order parameter represents the degree of freedom which allows describing

the symmetry and physical change accompanying the phase transition in a system. It is a physical

entity that is zero in the high-symmetry (disordered) phase and changes continuously to a

finite value once the symmetry is lowered. The key result of Landau theory is that the order

parameter will take a non-zero value below the transition temperature Tc.

A central Ansatz of the Landau approach is that the free energy can be represented as a

series expansion of the order parameter in the vicinity of the transition. If the order parameter is

multicomponent, then the Landau free energy is constituted from all scalar terms consistent with

the system’s symmetries that are powers and scalar products of the order parameter components.

In the next chapter, we will show how the free energy F , in the vicinity of the transition, is

written as a Taylor expansion of the order parameter F(p) with only the symmetry-compatible
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terms. The function F(p) is a variational free energy and not the equilibrium free energy of the

system. The equilibrium value of the order parameter is defined as the one that minimizes the

value of the variational free energy. Concerning the form of the variational free energy, one

assumes that F is a continuous and derivable function of its variables ( temperature, pressure

and/or order parameters ).

The central property of the variational free-energy is its symmetry: F is invariant by the

symmetry transformation of the (high temperature) structure. The specific form of F thus

determines the symmetries of the potentially stable phase below Tc. Is also determines the

degeneracy of these phases as well as the temperature dependence of the relevant physical

quantities.

With these tools in hand, we may ask ourself when does LT break down ? The power-law

form of F is expected not to be valid very close to the transition [50] Furthermore LT is based

on the premise that local fluctuations in the order parameter are small. This is expected that

this will be the case far away from the transition. Levanyuk and Ginzburg have developed a

criterion which uses Landau theory to estimate its own demise [51] [52]. Qualitatively their

criterion suggests that LT works well when the dimentionality is large or the interaction are

long-range.

4.4.1 Phenomenological Model for coupled magnetic and charge-order

in the RE Nickelates

We write down the free energy F as a Taylor expansion of two order parameters: one for the

charge-ordered phase (Φ) and another for the magnetic phase (m). This gives:

F =
∞
∑

n=0

An(BnΦ+ Cnm)n

Expanding the power series gives:

F = A0

+ A1 (B1Φ+ C1m)

+ A2

�

B2Φ
2 + 2B2C2Φm+ C2m2

�

+ A3

�

B3Φ
3 + 3B3C3Φ

2m+ 3B3C3Φm2 +m3
�

+ . . .
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Concerning the symmetry of the order parameter, the magnetization vector field m represents

the average of the elemental spin. Without a symmetry-breaking vector field such as a magnetic

field, the Hamiltonian is symmetric against the inversion of the sign of m. For this reason,

the Landau free energy is an even function of m. A similar argument holds for the charge-

disproportionated order parameter Φ which represents the oxygen-breathing distortion of the

NiO6 octahedra as represented in Figure 4.4. When non-zero, the system is in the charge-

disproportionated state with alternating long-bond (LB) and short-bond (SB) sites. The starting

point of the alternance is set by the sign of Φ: We either have LB-SB-LB-SB or, for the opposite

sign of Φ, SB-LB-SB-LB. As their relative position and their relative number remain identical,

the Landau free energy remains the same. The free energy is then independent of the sign of Φ

and is then an even function as well. For this reason, only the even terms of the expansion are

considered here. Condensing the product of coefficient An, Bn and Cn into single parameters,

we can write an already simplified version of the expansion:

F = F0

+αΦΦ
2 +αmm2

+ βΦΦ
4 + βC plΦ

2m2 + βmm4

+ γΦΦ
6 + γC pl1Φ

2m4 + γC pl2Φ
4m2 + γmm6

Figure 4.4: Figure from S. Ciuchi [21]. Illustration of the effect of charge disproportionation on
the local BO6 octahedral site. In the (paramagnetic) metallic state, all octahedra are equivalent. In
the insulating state, the octahedra disproportionate into inequivalent sites. Charge-transfer between
one nickel site to the other dilate one site while contract the other. Such configurations resemble a
"breathing" mode

From this expression, we can proceed to some simplifications. On the one hand, as our

data strongly suggest (Figure 5.1), we assume that the metal insulator transition is a first-

order transition [9,53]. Such transition involves the coexistence of two phases (discontinuous

transition between charge-disproportionated states). For this reason, the free energy must

present two minima. The sixth power is enough to produce this feature 4.6b). The power

expansion of the Φ order parameter is then truncated at the sixth power. On the other hand,
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the magnetic phase transition is assumed to be second order (continuous transition) meaning

that only one minimum must be present in the free energy. The power expansion of the m

order parameter is then truncated at the fourth term (4.6a).

If the coefficient of the highest order term of the expansion in m (or Φ) is negative, the

most stable solution occurs for infinite m (or Φ). For this reason, the coefficient of the highest

term of the expansion will always be positive. The stiffness of the "well" is controlled by the

coefficient of the highest term. In order for the free energy to show a minimum away from 0,

that is, in order for the system to reach an ordered phase, we must allow the coefficient of the

lower terms to be negative. These two scenarios are represented in Figure 4.6

The coupling constants between the two order parameters βC pl and γC pl quantify the

dependence between the two different phases in our material. That is, how the charge-ordered

phase influences the magnetic phase and reciprocally. For small values of the order parameters

we can restrict the coupling terms to the lowest order one, i.e. we retain only the term

proportional to m2Φ2 and exclude those proportional to m2Φ4 and to m4Φ2. This biquadratic

coupling has been used extensively already [54]. In order to terminate our simplification, we

must consider the term in m2 with care. If negative, this term signifies that the magnetic phase

can occur without the charge-disproportionated phase. Our measurement however, shows that

this is unlikely as the two peaks present in the optical conductivity spectrum in the magnetic

phase are already present in the CD phase (Figure 5.1). They are the signature of the CD phase

as shown by [42]. As these two peaks furthermore increase in the magnetic phase, we state

that the CD phase is a condition sine-qua-non for the magnetic phase to appear and thus cannot

occur alone. For this reason, we drop the term m2 in our expression of the free energy.

We can thus write down the free energy expansion as:

F − F0 = αΦΦ
2 + βΦΦ

4 + βCΦ
2m2 + βmm4 + γΦΦ

6

The occurrence of the magnetic phase is still possible in this expression via the mixed term

βC plΦ
2m2 provided Φ 6= 0. This term must furthermore be allowed to be negative, just like the

lower term of the expansion in Φ. For this reason, we chose αΦ and βC pl to be temperature

dependent with the form:

αΦ = α0

�

T
TM I T

− 1
�

βC pl = β0

�

T
TN
− 1

�

Figure 4.5 a) shows the simulated behavior of the two coupled order parameters. As we cool

down, the CD phase appears first and then the magnetic phase. As we continue to cool down

35



4. THEORETICAL MODELS OF THE RE NICKELATES

we observe a change in behavior of Φ. Its curvature, shown in Figure 4.5 b), becomes positive

at about 100 K. This behavior is associated with the coupling constant βC pl . This mimics the

behavior of σ1(T ) that shows a kink around TN in the two samples where the two transitions

occur at different temperature. This is an indication that the two phases in our sample are

indeed entangled.

Figure 4.5: a) Temperature dependence of the two coupled order parameters. In this example, we
wrote the free energy expansion using the following parameters: α0 = 20, β0 = 15, βm = 5, βΦ = 5
and γΦ = 2. The two critical temperatures TN and TM I T can be read on the graph and are 150 and
300 respectively. b) Curvature of the order parameter associated with the charge-disproportionation
as a function of the temperature.

To further investigate the behavior of our model, the evolution of the free energy calculated

using the chosen parameter is shown in Figure 4.7. At low temperature, we have a steep energy

well located at about (m, φ) ∼ (1,1). The minimum is well below zero with already a tendency

toward the non-magnetic phase (toward m = 0). This tendency is indeed confirmed in the free

energy surface at TN where the minimum is now more flat. We now see a tendency toward the

metallic phase (toward Φ = 0). Finally, at T = 350 K well above the two critical temperatures,

the system is driven toward (m, φ) ∼ (0,0). At this high temperature, we can see that the

energy-well is now quit flat compared to the one at low temperature. The evolution of the free

energy with the temperature reproduces the behavior expected from the phase diagram [55].
We are thus confident that this model can be used to shine some light on the entanglement

between the charge disproportionated and the magnetic phase. In the section on the data

analysis, I will thus go into more detail about this model and how to use it to interpret our

measurements.
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4.4 Landau Theory

Figure 4.6: Representation of the free energy as a Taylor expansion of the order parameter. a)
Second-order (continuous) phase transition. As the coefficient of the x2 term is varied, the system
goes smoothly from a non-zero order parameter to zero. b) First-order (discontinuous) phase
transition. The presence of two minima is possible due to the negative coefficient of x2 and x4.

Figure 4.7: Contour plots of the Landau free energy as a function of the two order parameters at
four different temperatures. a) Insulating, antiferromagnetic phase b) insulating phase at TN c)
insulating paramagnetic phase and d) metallic paramagnetic phase
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Chapter 5
Optical spectroscopy and the nature of the

insulating state of rare-earth nickelates

In this chapter I present optical data of RENiO3 for different compositions, show the detailed

temperature dependence of the spectra, and demonstrate how these optical spectra are related

to the electronic structure of the paramagnetic metal state and the bond disproportionated

insulator state. I also show that the peak intensity is a measure of the charge disproportionated

phase. The presence of a double peak is characteristic of the insulating phase [41,56]. Second

we show how this phase is coupled with the magnetic phase: As the intensity of the two peaks

in the optical conductivity spectrum scales with the degree of charge disproportionation, we

stated that the optical conductivity is an indicator of the order-parameter associated with bond-

disproportionation [57]. Furthermore, as it couples with the magnetisation order parameter,

we see a change in the behaviour of σ1 at the Néel temperature. For this reason, we were able

to probe the magnetic order using optics. In this section, we provide experimental evidence

of the coupling between magnetic order and charge-disproportionated state. We explain this

coupling within the framework of Landau theory of phase transition.

This chapter has been adopted with small modifications from Physical Review B 92, 155145

(2015), J. Ruppen, J. Teyssier, O.E. Peil, S. Catalano, M. Gibert, J. Mravlje, J.-M. Triscone, A.

Georges & D. van der Marel.

5.1 Introduction

The rare earth nickelates RNiO3 form a remarkable group of materials [?, 10,33,55]. While

LaNiO3 remains metallic down to very low temperatures, all other nickelates undergo a metal-

insulator phase transition (MIT) and antiferromagnetic (AF) ordering as the temperature is

lowered. The two transitions coincide for Pr and Nd but they are distinct, with TAF < TMIT, for

all rare-earth cations smaller than Nd (Sm, Gd, and so on down to Lu) [33]. The mechanism
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of this MIT, which differs from that of a homogeneous Mott transition, raises questions of

fundamental importance. Furthermore, the possibility of controlling the MIT by chemical

substitutions, strain, heterostructures, gating or light pulses [?, 33, 55, 58–60] makes these

materials particularly interesting for potential applications. For those reasons, nickelates have

recently been the subject of intensive research and attention.

The insulating phase is characterized by a lowering of the crystal symmetry from orthorombic

to monoclinic and by a disproportionation of Ni-O bond lengths: the NiO6 octahedra undergo

a breathing distortion, with alternating long-bond (LB) and short-bond (SB) octahedra on

each sublattice. This lattice modulation is accompanied by some form of charge-ordering, the

precise nature of which has been the subject of debate. Early work [39,61] emphasized the

formation of ligand-holes, and the importance of the d8 L local configuration, in contrast to the

d7 configuration corresponding to the nominal Ni3+ valence. This leads to a physical picture

for the charge-ordering in which Ni-O bonds are involved (rather than Ni atomic sites). In an

extreme limit of this picture, LB octahedra are associated with the d8 configuration (with a

large local moment) and SB ones with d8 L2 (with the Ni local moment screened by the two

ligand holes) [25,40]. Recently, theoretical work has provided support to this physical picture:

in Ref. [40] the MIT was explained as a ‘site-selective’ Mott transition associated with the d8 LB

sites, and in Ref. [42] a corresponding low-energy description was proposed, focusing on the

strongly hybridized Ni-O states with eg symmetry.

In this description, consistently with the proposal of Ref. [62], an effectively attractive

interaction between electrons with parallel spins in different orbitals naturally leads to the

formation of a bond density-wave. Since the bands are quarter filled, the corresponding

doubling of the unit cell opens a gap above the Fermi level, leaving the material metallic at the

band-structure level. The observed insulating state results in fact from the combination of unit

cell doubling and Mott physics (local moments) at the LB sites. Although a consistent picture

of the MIT appears to be emerging, a direct comparison to experiments is still lacking.

In this paper, we report experimental optical spectra on three different nickelate systems.

These spectra show a common feature: the appearance of two peaks as the MIT is crossed -

hence a ‘universal’ feature of the MIT. We show that this provides direct insight into the structure

of the insulating phase, and that the 2-peak structure results from the bond-disproportionated

nature of the low-T phase, with two kinds of nickel sites. We perform dynamical mean-field

theory (DMFT) calculations within the theoretical framework introduced in Ref. [42], which

are found to reproduce quite well the main features of the optical spectra. Based on these

calculations, we provide a simple analytical understanding of these main features, and of the

relative roles of the Peierls and Mott mechanisms in the MIT of nickelates.
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Figure 5.1: Top) Real part of the dielectric function (first row) and optical conductivity (second
row) of NdNiO3 on a NdGaO3 (110) substrate (left), NdNiO3 on a NdGaO3 (101) substrate (middle)
and for SmNiO3 on a LaAlO3 (100) substrate (right). Bottom) Real part of the optical conductivity
for selected temperatures and energy/temperature color maps of samples a) NNO/NGO-110, b)
NNO/NGO-101 and c) SNO/LAO-001. Metal-insulator phase transitions are indicated by arrows on
the colormaps. A and B designate two peaks in the insulating phase. Data at 0 eV come from DC
measurements.
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5.2 Experiment

Scanning tunneling microscopy [63] and Terahertz time-domain [64] spectroscopy experiments

have been interpreted as evidence of a charge-density wave formation. Previous optical studies

of NdNiO3 films have already shown that in crossing from the correlated metalllic (mass

enhancement of order 4 [65,66]) to the insulating phase strong peaks appear at approximately

0.5 eV and 1.0 eV [41,67]. The Drude spectral weight is redistributed up to at least 5 eV when

the system becomes insulating [41, 67, 68], which was interpeted as an indication of Mott

physics [41] or effects of electron-phonon interaction [68]. However, a clear mechanism of the

optical response of the insulating phase has thus far been lacking.

The following thin film/substrate combinations were used in the present study: NdNiO3 on

an (110) oriented NdGaO3 substrate (NNO/NGO-110)1, NdNiO3 on NdGaO3 (101) (NNO/NGO-

101) and SmNiO3 on LaAlO3 (001) (SNO/LAO-001). These high quality epitaxial films were

prepared as described in Refs. [69,70]. The dielectric function was determined in the range

from 0.5 and 2 eV using ellipsometry at a reflection angle between 65 and 72 degrees with the

surface normal.

Measurements were performed in steps of 1 K using a special UHV cryostat with a vacuum

better than 10−9 mbar. Data of substrate films and substrates were combined to calculate the

complex dielectric function, ε(ω) = ε1(ω) + i4πσ1(ω)/ω, using the Fresnel relations. The

resulting thin film dielectric functions for all three samples are presented in Fig. 5.1 for a

limited set of temperatures.

DC resistivities of the films were measured as a function of temperature using the four

terminal method. Drude Lorentz-fitting to the DC resistivity (symbols at zero energy in Fig. 5.1)

and the complex dielectric function from 0.5 to 2 eV was used to interpolate the optical data

below 0.5 eV. While the spectral weight of σ1(ω) integrated from 0 to 0.5 eV is accurately

represented by this procedure due to the constraints imposed by simultaneously fitting σ1(ω)
and ε1(ω) [71], fine details such as phonons are not captured in this representation. Figure 5.1

shows the energy dependence (upper panels) and energy/temperature color maps (lower panels)

of the real part of the optical conductivity for samples NNO/NGO-110 (a), NNO/NGO-101 (b)

and SNO/LAO-001 (c). In the insulating state, at low temperatures, the dominant features of

the optical conductivity are two peaks at 0.6 (A) and 1.4 eV (B) for all three samples (Fig. 5.1

a-c). Upon increasing the temperature and passing through the insulator-metal transition, the

peaks vanish and a broad 1 eV peak along with a weak feature at 0.5 eV for samples (b) and

(c) appear instead. Formation of free carriers is clearly visible with the growth of a zero energy

mode in the optical conductivity for ħhω® 1 eV (Fig. 5.1) and a sign change in the real part of

the dielectric function (Fig. 5.1).

1Note that NdGaO3 is orthorhombic, and that we employ the corresponding notation for the crystal planes.The
(110) and (101) planes of NdGaO3 correspond to (001)pc and (111)pc in pseudo-cubic notation.
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Figure 5.2: The bare (GGA) band structure of the monoclinic phase of SmNiO3. The color represents
the site character of the states: LB (red) and SB (blue). Note the Peierls splitting at an energy
+0.5–0.7 eV. The position of the Fermi level is ε = 0.

From the metallic to the insulating state, all three samples present a comparable amount

of spectral weight, of approximately 3 eV2, which is transferred from the region below 0.5 eV

(representative of the free carriers in the system) to higher energy range which extends to at

least 5 eV pointing to strong correations in the insulating state [41].

5.3 Theoretical calculations

To understand the nature of the optical excitations observed experimentally, we have performed

DMFT calculations for the bulk low-T phase of SmNiO3 (space group P21/n), within the low-

energy framework introduced in Ref. [42]. This approach involves only the states with eg

symmetry resulting from the anti-bonding combinations of Ni-3d and O-2p states. At the band-

structure level, this corresponds to eight bands, reflecting the four Ni-sites per unit cell with two

eg states per site, and a total occupancy of 4 electrons per unit cell (one per site on average).

The bare (GGA) band structure of monoclinic SmNiO3 is displayed in Fig. 5.2. The bands with

eg character form a well-isolated set of bands of total bandwidth ' 2.3 eV, separated by a gap

of ∼ 0.5eV from the low-lying t2g and oxygen states (not shown on Fig. 5.2). At the LDA/GGA

level, these materials are metallic in both the orthorhombic and monoclinic structure, with the

Fermi level crossing the eg manifold. As clearly seen on Fig. 5.2, the breathing distortion (bond

disproportionation) in the monoclinic structure leads to the opening of a Peierls-like gap in the

energy-range 0.5−0.7 eV. This gap separates 4 lower-lying bands with dominantly LB character

and four higher-lying bands with dominantly SB character. Due do the breathing distortion of

the low-T phase the local on-site energies of LB and SB sites are split by ∆s ' 0.25 eV. This in

43



5. OPTICAL SPECTROSCOPY AND THE NATURE OF THE INSULATING STATE OF
RARE-EARTH NICKELATES

0.0 0.5 1.0 1.5 2.0 2.5
Frequency, ω (eV)

1

2

3

4

5

O
p

ti
ca

l 
co

n
d

u
ct

iv
it

y,
 σ

 (
×1

03
Ω
−

1
cm

−
1
)

A

BBB

U=1.0, J=0.85

U=1.2, J=0.8

U=1.4, J=0.8

U=1.6, J=0.8

U=2.0, J=0.85

0.4 0.6 0.8 1.0 1.2
J (eV)

0.5

1.0

1.5

2.0

2.5

3.0

U
 (

e
V

)

Mott

U−
3J
−∆ s

=0

BDI

U<J

Figure 5.3: Calculated optical spectra for several values of U and J . The two peaks are denoted by
A (constant position) and B (varying position). Inset: Phase boundary of the bond-disproportionated
insulating state. The symbols indicate the values of U , J , chosen such that the leading edge is kept
approximately constant of order 0.5 eV.

turn results in the opening of a Peierls-like gap in the band-structure (of magnitude ∼∆s) at

an energy of order +0.5 eV above Fermi level corresponding to half-filling (two electrons per

site). This Peierls mechanism alone is therefore insufficient to account for the insulating nature

of this phase, and correlations play an essential role.

As was demonstrated in Ref. [42], considering the Coulomb repulsion U and Hund’s coupling

J acting within the set of eg states allows one to describe the MIT provided that U − 3J ®∆s.

As illustrated on the partial phase diagram in the inset of Fig. 5.3, a ‘bond-disproportionated

insulator’ (BDI) phase is found in this regime, in which the eg occupancy is modulated, with a

smaller value on the SB sites and a larger one on the LB sites. Orbital polarization is weak in

this BDI state, with both eg orbitals approximately equally occupied on each site.

We applied an ab initio LDA+DMFT approach to the low-T phase of SmNiO3 and calculated

the electronic spectral functions and the optical conductivity using the Kubo formalism. We

display in Fig. 5.3 the calculated optical spectra, for a set of values of U and J within the

BDI phase. The values, indicated in the inset of Fig. 5.3, are chosen in such a way that the

leading edge is roughly constant and close to the observed experimental value (∼ 0.5 eV). In

agreement with experimental data, all the theoretical spectra demonstrate the presence of two

peaks (denoted by A and B in the figure). While the position of peak A is fixed by the choice of

parameters, both the position of peak B and its relative intensity increase as one moves from

the upper to the lower boundary of the phase diagram, i.e. as U − 3J becomes more negative

and the disproportionation increases.

To identify the optical transitions associated with these two peaks, we display in Fig. 5.4 the
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momentum-resolved spectral functions plotted for the two extreme points (both at J = 0.85 eV):

U = 2.0 eV (smaller disproportionation) and U = 1.0 eV (larger disproportionation). Three

sets of states can be identified, split by a correlation-induced indirect gap at the Fermi level

and by a pseudo-gap (originating from the Peierls LB/SB site modulation) at around +0.5 eV.

The Peierls pseudo-gap is clearly seen in the density of states (side panels of Fig. 5.4) and the

momentum locations at which it opens are indicated by circles in the main panel. The states

below Fermi level always have dominant LB character, in accordance with the largest occupancy

of LB states. In contrast, the nature of the lowest unoccupied band immediately above the gap

changes from dominantly LB at U = 1 eV to dominantly SB at U = 2 eV.

The optical transitions responsible for the lower-energy peak A are the ones across the

insulating gap, while the second peak is due to optical transitions across the Peierls pseudo-gap,

as indicated by arrows on Fig. 5.4. The current operator has only inter-site matrix elements, with

largest nearest-neighbor components coupling sites with different characters. This explains why

the first peak has higher relative intensity when the states on either side of the gap have different

characters, i.e. on the upper side of the BDI phase boundary (smaller disproportionation).

5.4 Analysis and discussion

Fig. 5.4 reveals that the dominant site character of the lowest unoccupied states above the gap

is different for the two values of U . Specifically, it is LB-like for U = 1.0 (corresponding to the

lower part of the BDI region in the phase diagram) and SB-like for U = 2.0 (upper part). To

understand better the electronic structure and, in particular, the structure of unoccupied states

we first note that the self-energies in the BDI phase can be well described at low energy by

Σ′
SB
(ω)−µ=εSB Σ′

LB
(ω)−µ=

δ2

ω− εp
+ εLB (5.1)

These expressions have a simple physical meaning. The lower occupancy SB sites are weakly

correlated and hence have an approximately constant self-energy. The LB sites, in contrast,

have a self-energy typical of a Mott insulator, with a pole-like divergence at ω= εp ' 0 which

is responsible for the opening of the insulating gap (with a magnitude controlled by the energy

scale δ). This is consistent with the ‘site-selective Mott’ picture of Ref. [40].

Simplifying further, let us consider a model with only two sites (LB and SB) per unit cell

and nearest-neighbor hopping tk, so that the non-interacting Hamiltonian reads:

H0
k =

�

ε
(0)
LB tk

t∗k ε
(0)
SB

�

, (5.2)
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Figure 5.4: Momentum-resolved spectral function (color intensity map) for two selected parameter
sets: U = 1.0 eV, J = 0.85 eV (top) and U = 2.0 eV, J = 0.85 eV (bottom). The colors represent
the site character of a state: red for LB, blue for SB (violet for a mixed LB/SB character). A darker
(lighter) tone corresponds to higher (lower) spectral intensity. The circles indicate the energy-
momentum locations where the Peierls pseudo-gap opens. The indirect Mott-like gap is indicated by
the black arrow connecting the highest occupied states between R and Z and the lowest unoccupied
states at Γ -point. Side-panel: momentum-integrated spectral functions (density of states) for LB
(red) and SB (blue) sites, with arrows indicating the optical transitions corresponding to the two
peaks (see text).
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Figure 5.5: Left-hand side of the quasi-particle equation Eq. (5.3) and graphical construction of
the three QP branches. The green (shaded) area shows the region of allowed values of the RHS:
0 ≤ |tk|2 ≤ W 2/4, where W is the bandwidth. ωi, i = +,−, and ω = εSB are the roots of the
equation for tk = 0. The order of the roots ω+ and εSB depends on the regime (Mott or Mott-Peierls,
see text).

The dispersion, ω = ωk of quasiparticles (QP) is then determined from the zeros of the

determinant of ω+µ−H0
k − Σ̂(ω), leading to (εp is neglected below):

�

ω− εLB −δ2/ω
�

(ω− εSB) = |tk|
2 , (5.3)

where εLB,SB = ε
(0)
LB,SB − µ + Σ

∞
LB,SB. This cubic equation has three QP branches, which are

displayed on Fig. 5.6 for a simple one-dimensional tight-binding band tk =W (1+ ei2ka)/4 (with

W the bandwidth).

To analyze this equation we plot the LHS as a function of ω, as depicted in Fig. 5.5, bearing

in mind that the allowed states are limited by the range of values of the RHS, 0≤ |tk|2 ≤W 2/4.

(The plot is done for εSB > 0, since the BDI state has site occupancies nLB > nSB.) From the

figure we immediately see that the Mott gap at around zero frequency is an indirect one, as

expected, and the Peierls gap is direct. For k = ±π/2a ≡ kP , which is the Fermi momentum of

the half-filled system at which the Peierls gap opens, one has tk = 0 and the three roots read:

ω− =
1
2

�

εLB −
q

ε2
LB + 4δ2

�

, (5.4)

ω+ =
1
2

�

εLB +
q

ε2
LB + 4δ2

�

, (5.5)

ω=εSB. (5.6)

The occupied QP states correspond to ω− < 0 and have predominantly LB character. The

insulating gap is always indirect, corresponding to transitions between the top of the occupied
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model discussed in the text. Top: Mott regime, bottom: Mott-Peierls regime. Colors indicate the
LB/SB character, as above. The indirect Mott-like gap is indicated with the thin arrow in the main
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band at k = kP and the bottom of the lowest unoccupied band at k = 0 (Γ -point). It can be

estimated as:

∆g '
4δ2εSB

W 2
+

1
2

�q

ε2
LB + 4δ2 − εLB

�

(5.7)

Note that it vanishes for δ = 0 as expected.

The nature of the lowest unoccupied branch above the insulating gap depends on the sign

of:

∆eff
s = εSB −ω+ = εSB −

1
2

�

εLB +
q

ε2
LB + 4δ2

�

(5.8)

whose magnitude |∆eff
s | is the Peierls direct gap renormalized by correlations, which separates

the two unoccupied branches and opens at k = kP (as indicated by circles in Fig. 5.6). For

∆eff
s > 0 the lowest branch of unoccupied states has dominantly LB character: this corresponds

to the regime of large disproportionation in which the almost half-filled LB band undergoes

a Mott transition (top panels of Fig. 5.4 and Fig. 5.6, corresponding to the lower boundary

of the BDI phase). For ∆eff
s < 0 the situation is reversed, and the states above the insulating

gap are dominantly SB (bottom panels in Figs. 5.4, 5.6; corresponding to the upper boundary

of the BDI phase with smaller disproportionation). In this ‘Mott-Peierls’ regime, the Mott

mechanism has pushed the upper Hubbard band above the unoccupied band of SB states, and

the states on either sides of the insulating gap have different characters (analogously to what

happens in a charge-transfer insulator). Relative intensity and separation of the two peaks in

the experimental data, suggest that the nickelates studied here may be more in the Mott-Peierls

regime or in the crossover between the two regimes.

5.5 Conclusions

In summary, using ellipsometry we have measured the detailed temperature dependence of the

optical conductivity spectra of strained RNiO3 epitaxial thin films. The insulator is characterized

by the occurrence of a conspicuous double-peak structure. Ab initio calculations and model

considerations indicate that this optical signature reveals the peculiar structure of the insulating

state suggested earlier [25,40,42]. Specifically, the two peaks in the optical conductivity of the

insulating phase can be assigned to transitions from the lower Hubbard band to unoccupied

bands split by a renormalized Peierls gap. Moreover, the model reveals two possible regimes

with the lowest unoccupied states being of either LB or SB character, with the considered

nickelate systems being close to the crossover between the two regimes. This provides another

possibility of tailoring the properties of these materials by controlling the charge carrier density

via stoichiometry or heterostructure engineering.
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Chapter 6
Impact of antiferromagnetism on the optical

properties of rare-earth nickelates

In this chapter I demonstrate the connection between the optical spectra and the magnetic

state of the RE nickelate. This chapter has been adopted with small modifications from Physical

Review B 96, 045120 (2017), J. Ruppen, J. Teyssier, I. Ardizzone. O. E. Peil, S. Catalano, M.

Gibert, J. M. Triscone, A. Georges & D. van der Marel.

6.1 Introduction

Rare earth nickelates form a class of transition metal oxides that undergo a metal-insulator

transition as a function of the temperature T , and the so-called tolerance factor, t, which

describes the distortion of the crystal structure associated to tilting and rotations of the oxygen

octahedra surrounding the Ni-atoms. Depending on t that can be tuned by rare earth radius or

strain, the material (i) remains metallic for all temperatures, (ii) switches in a first order phase

transition to an antiferromagnetic insulator at TM I , or (iii) traverses two phase transitions,

the highest one at TM I being from metal to paramagnetic (PM) insulator, and the lowest

one being the Néel temperature TN where the material becomes antiferromagnetic (AF). The

insulating phase of rare-earth nickelates is understood in terms of inequivalent nickel sites. In an

extreme picture, every second nickel site is in a d8 configuration and carries a magnetic moment

while the other ones are in a non-magnetic d8 L2 configuration [25, 26, 39, 40, 42, 72]. Due

to electron-lattice coupling the long-range charge order (CO) is accompanied by a breathing

lattice distortion [62, 73] opening a Peierls gap in the energy range 0.5-0.7 eV above the

Fermi energy [42, 57]. The magnetically ordered phase is characterized by a wave-vector

k = (1/4,1/4,1/4) [74] in pseudocubic notation. Two magnetic structures were proposed

to explain the magnetic origin of this diffracted intensity: up-up-down-down [74] and non

collinear ordering [75]. More recent measurements confirm the non-collinear structure [76].
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Figure 6.1: Optical conductivity spectra for selected temperatures of SmNiO3 on a LaAlO3 (001)
substrate, NdNiO3 on NdGaO3(101), and NdNiO3 on NdGaO3(110) [57].

The relationship between the charge- and the magnetic order is still under debate. The optical

conductivity in the insulating phase of RNiO3 is characterized by two strong peaks at 0.6 eV

and 1.3 eV (peaks A and B respectively) [57, 66, 77] (Fig. 6.1). In a recent paper we have

reported the changes of the optical conductivity spectrum of SmNiO3 and NdNiO3 films [57],
and compared the spectra in the metallic and insulating states. The aforementioned features of

the optical spectra were found to be well reproduced by Dynamical Mean Field Theory (DMFT)

calculations, allowing the identification of two peaks at 0.6 and 1.3 eV as the transitions across

the Mott-insulating gap and the Peierls pseudogap respectively. The optical conductivity in the

metallic phase is characterized by a zero-energy mode and a peak at 1 eV.

Here we report on the impact of AF order on the optical conductivity spectrum. We observe

that antiferromagnetism in SmNiO3 and NdNiO3 thin films strongly influences peaks A and

B, and causes an enhancement of the oscillator strength of these two peaks. The observed

temperature dependence corresponds to a soft onset at the Néel temperature, signaling a

positive reciprocal feedback between AF and charge order. Hysteresis of the optical spectra is

strong when AF and charge order occur simultaneously, and negligible when these occur at

separate temperatures, consistent with Refs. [33,55,59,60,78–80].
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6.2 Experiment

We analyze thin films [70] of SmNiO3 (SNO) and NdNiO3 (NNO) on LaAlO3 (LAO) and

NdGaO3 (NGO) substrates, labeled SNO/LAO-001, NNO /NGO-101 and NNO/NGO-110 using

orthorhombic notation for NGO. These samples have TM I ∼ 380, 318 and 180 K respectively.

The optical conductivity (Fig. 6.1) was measured as described in Ref. [57]; NNO/NGO-101 was

remeasured to improve signal-to-noise. The metal insulator transition is revealed in the optical

conductivity as the loss of the zero-frequency mode and the appearance of the peaks at 0.6 eV

(peak A) and 1.3 eV (peak B).

To highlight the temperature dependence through TM I and TN we show in Fig. 6.2 the

temperature dependence of the optical conductivities of SNO/LAO-001 and NNO/NGO-101 for

selected photon energies.

Also shown are color plots of dσ1(ω, T)/dT in the frequency-temperature plane. Most

clearly visible in these data is the metal-insulator transition at TM I . However, for some of the

photon energies there is a soft step at temperatures Ti close to the Néel temperature (TN =240K

for NNO/NGO-101 and 210 K for SNO/LAO-001) (highlighted by arrows in Fig. 6.2). The

softness of these steps is an important feature helping us to understand better the nature of

the coupling between charge order and AF order, to which we will return below. For now we

notice that the strength of the steps of σ1(ω, T ) around Ti seems to correlate with peaks A and

B. In dσ1(ω, T )/dT this shows up as the maxima at Ti for peak A and peak B.

We are interested in the additional conductivity spectrum, σA(ω), arising from the AF order.

Leaving the softness of the step at Ti for discussion later in this article, we fitted for each

photon energy a polynomial of the form s0
± + s1

±(T − Ti) + s2
±(T − Ti)2 to σ1(ω, T ) in a broad

temperature range (about 100 K) above (+) and below (−) the inflection point Ti. The quantity

σA(ω) = [s+1 (ω)− s−1 (ω)]Ti/2 then represents, apart from a factor of order one, the additional

conductivity spectrum extrapolated to zero temperature. The results of this analysis are shown

in the bottom panel of Fig. 6.2. We see, that this corresponds to a reinforcement of the double

peak structure already present in the PM insulating phase.

We now turn to an experimental observation that is of crucial importance for the subsequent

discussion. As pointed out in the introduction, we can directly associate peaks A and B with

spectral features reflecting the CO state, which are absent in the metal phase. The extra spectral

weight in the two peaks as the temperature is lowered below TN indicates that the charge

ordering is enhanced by the AF order. We moreover see, that the effect of AF order is by and

large limited to an increase of the intensity of peaks A and B. The intensity at or near the

peak position, is therefore a measure of the order parameter Φ characterizing the charge order.

More precisely, since the optical spectra and free energy are insensitive to the sign of Φ, we

associate this intensity, apart from a temperature independent background contribution, to

Φ2. To analyze what happens at TN we follow a phenomenological approach employing the
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Figure 6.2: Temperature dependence of the optical conductivity, σ1(ω, T), at selected photon
energies for (top left) SNO/LAO-001 and (top right) NNO/NGO-101. The small jump at 150 K
in the NNO/NGO-101 data is an experimental artifact and is ignored in the discussion. Middle
panels: color plots of dσ1(ω, T )/dT . Bottom panels: The optical conductivity spectra at the Néel
temperature, σ1(ω, TN ) (red curves), and the antiferromagnetism induced contribution to the
optical conductivity, σA(ω) (blue circles).

Landau theory of phase transitions, where the antiferromagnetism is characterized by the order

parameter m. The free energy is an even function of both m and Φ, and can be expanded as
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follows 1 [54,81]

f = aΦ2 +
b
2!
Φ4 +

c
3!
Φ6 +λΦ2m2 +αm2 +

β

2!
m4 (6.1)

While a secondary role of charge order has been realized in a PrNiO3/PrAlO3 superlattice

under compressive strain [82], the generic behavior of the nickelates is, that no antiferro-

magnetism occurs in the metal phase. This indicates that charge order is necessary for the

antiferromagnetism to occur, implying that α= 0. We will assume that the main temperature

dependence close to the magnetic and metal-insulator transitions enters through a and λ

a(T ) = a0 ([T/TM I]
η − 1)

λ(T ) = λ0 ([T/TN]
η − 1) (6.2)

The AF and charge order parameters m(T ) and Φ(T ) saturate at low temperatures, which we

qualitatively describe by η = 4 (the precise value of η is not essential to our arguments). Below

the temperatures TM I (TN ) the coefficient a (λ) becomes negative. TM I and TN are materials

parameters that depend on the tolerance factor t, for which we will use the phenomenological

parameterization

TN (t) = θN (t − tN )

TM I(t) = θM I(t
+
M I − t)(t − t−M I) (6.3)

with the parameters given in Table 6.1. Since we are not interested in the absolute values of

m, Φ and f , we choose the scale of these quantities such as to provide c = β = a0 = 1. This

leaves b and λ0 as the only adjustable coefficients of our model. Finally we note, that several

experiments indicate that for large values of the tolerance factor there is a single first order

transition, whereas at least in part of the phase diagram where there are two phase transitions,

the AF transition is second order and the metal-insulator transition weakly first order. The latter

could indicate that the metal-insulator transition is a priori second order, while driven first order

by coupling to the lattice. The splitting of a single first order transition into a set of second

order transitions requires that b = 0, a fine tuning that is unlikely to occur by chance. Since

several experiments have indicated first order behaviour at TM I for most, if not all, values of the

tolerance factor, we will choose b = −0.25 for the coefficient associated to CO, and λ0 = 0.8

for the Φ2m2 coupling. The negative value of the parameter b (implying a first order transition

at TM I everywhere in the phase diagram) is to be understood as a consequence of the positive

feedback of the electron-lattice coupling on the charge order. As we will see, this choice of

1In Ref. [81] a complex SDW order parameter ψ = meiθ was introduced, leading to θ -dependent terms in the
free energy containing odd powers of Φ : f = υΦm2 cos 2θ + um4 cos 4θ + .... When evaluated at its minimum
with respect to θ this leads to an even function of Φ which is independent of m, and the next leading coupling
between m and Φ allowed by symmetry is of the form Φ2m2.
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Figure 6.3: a) Calculated phase diagram in the temperature / tolerance factor plane of RNiO3.
Hysteresis limit curves enlargement centered on SNO/LAO-001 and on NNO/NGO-110 are shown in
b) and c) respectively. d-f) Temperature dependence of the AF (m2) and metal insulator (Φ2) order
parameters for three selected values of the tolerance factor, such as to match the Néel temperature
and metal-insulator transition temperatures observed in the temperature dependence of the optical
conductivity at the maximum of peak A of g) SNO/LAO-001, h) NNO/NGO-101 and i) NNO/NGO-
110.
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parameters illustrates qualitatively several thermodynamic aspects of these materials, including

the temperature dependence of the optical experiments reported in the present manuscript.

a0 b c λ0 α β
1 -0.25 1 0.8 0 1

θN (K) tN θM I (K) t+M I t−M I η
2597 0.804 101198 0.927 0.773 4

Table 6.1: Parameters used for the calculations in Figs. 6.3 and 6.5.

The phase diagram in the tolerance factor / temperature plane can now be reproduced

with the help of the parameters described above and with Eq. 6.1. The result is displayed in

Fig. 6.3a). In the region of hysteresis the free energy has a metastable minimum coexisting

with the stable one. Interestingly the phase diagram shows a widening of this region around

t = 0.915 for the following reason: The free energy (Eq. 6.1) at its minimum with respect to m

equals

f = aΦ2 +
b̃
2!
Φ4 +

c
3!
Φ6 (6.4)

b̃ = b−λ2 (T < TN ) ; b̃ = b (T > TN )

Since a first order transition requires a negative value of the coefficient b̃, the −λ2 contribution

to b̃ enhances the first order character and the size of the hysteresis loop around TM I , and this

can only happen when TN > TM I . The hysteresis of about 15 K is close to the behavior observed

in the bulk compound NdNiO3 (and sample NNO/NGO-110). Such hysteresis is also present in

the optical spectra, shown in Fig. 6.4 for the original ellipsometric parameters Ψ and ∆ from

which the optical conductivity was obtained using the method described in Ref. [57]. Since

these thermal cycles take several hours, the small differences observed in SNO/LAO-001 and

NNO/NGO-101 during heating and cooling may be partly or entirely caused by instrument drift

or absorption and desorption of a small quantity of gas molecules at the sample surface.

In the middle panels of Fig. 6.3 the temperature dependence of Φ2 and m2 calculated for

t = 0.895 (SNO/LAO-001, Fig. 6.3b), t = 0.905 (NNO/NGO-101, Fig. 6.3c), and t = 0.915

(NNO/NGO-110, Fig. 6.3d) is shown. While for all cases the calculation shows that the transition

at TM I is first order, the hysteresis of the two formers are too small to display on this scale

whereas, for the latter, the hysteresis is about 10 K, and shows clearly in the temperature

dependence. The experimental data of the optical conductivity at an energy close to peak A,

shown in Fig. 6.3e-g, closely follow these trends.

We now turn our attention to the details of the temperature dependence close to TN . If the

intensity of peaks A and B were to track the antiferromagnetic order, a kink would be expected

at TN . The experimental data in the top panel of Fig. 6.2 and bottom panel of Fig. 6.3 show only

an inflexion point, not a kink. In principle it is not unusual that some broadening occurs, for
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example if TN would not be completely homogeneous across the area of the sample. The kink in

σ1(ω, T ) would then be replaced by an inflection point, and one would be tempted to associate

the average Néel temperature with this inflection point. However, the phenomenological Landau

modeling tells a different story: Minimizing f (Φ, m) (Eq. 6.1, c = β = 1) with respect to Φ and

m and eliminating λ, leads to the following relation between the equilibrium values of Φ2 and

m2

Φ2 = −b±
Æ

b2 − 2a+ 2m4/Φ2 (6.5)

Deep inside the insulating state and close to TN we can expand the right hand side in m4/Φ2.

The leading order of this expansion is proportional to m4, which close to the transition is

proportional to (TN − T)2. This soft onset of the AF-induced contribution to Φ2 is a direct

consequence of setting α = 0, so that the (remaining) m2 term in the free energy expression is

proportional to the charge order parameter Φ2, in other words that charge order is a conditio

sine qua non for the occurence of AF order (at least of the type that we are considering here).

In particular it implies that the temperature derivative dΦ2/dT should have a kink at TN

as shown in the top panel of Fig. 6.5. Comparing this to the temperature derivative of the

experimental optical conductivity at energies close to peaks A and B of samples SNO/LAO-001

and NNO/NGO-101 (bottom panel of the same figure) we conclude that, with the parameters

λ0 = 0.8, b = −0.25, and α = 0 the temperature trend of the SW and its behaviour at the

phase transitions, is very well described by the Landau-theory. The requirement that α = 0

corroborates another experimental observation, namely that these compounds are paramagnetic

in the metal phase. Note also that, as a result of the soft onset, the inflection point in the Φ2(T )
curve occurs well below the actual TN .
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6.2 Experiment
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Figure 6.5: Temperature derivative of the charge order parameter Φ2 (top panels) and the temper-
ature derivative of the optical conductivities of SNO/LAO-001 and NNO/NGO-101 (bottom panels)
measured at photon energies corresponding to the maximum of peaks A (navy) and B (red).
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6. IMPACT OF ANTIFERROMAGNETISM ON THE OPTICAL PROPERTIES OF
RARE-EARTH NICKELATES

6.3 Conclusions

We observed a significant impact of antiferromagnetic (AF) order on the optical conductiv-

ity spectrum of RNiO3. The intensity of two prominent conductivity peaks was previously

demonstrated to track the charge order (CO) accompanied by bond disproportionation in these

compounds [57]. We now observe that in the antiferromagnetic state an additional spectral

weight is added, proportional to m4 where m is the antiferromagnetic order parameter. This soft

onset of the AF-related spectral weight proves that the charge order is a conditio sine qua non

for the AF order, and is excellently described by a Landau model for the free energy with two

coupled (CO and AF) order parameters. The temperature dependence upon thermal cycling

indicates that the transition into a simultaneously charge and AF ordered phase, has much

stronger hysteresis than the transition into a charge ordered phase without AF order. This

aspect is also very well described by the aforementioned Landau model. These observations

and conclusions permit to describe a wealth of transport and spectroscopic data in a unified

thermodynamic framework, using a small set of Landau parameters that may serve as a basis

of future microscopic models.
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Appendix A
Fresnel Equations

A.1 Mathematical derivation

Full derivation of Fresnel equation. After [83]

A.2 s and p polarized light reflection

The interface imposes boundary conditions. At the interface, the electric field vector in both

medium must be equal ( in direction and amplitude ). For the p-polarization, we can write:

Ep
i cosθi − Ep

r cosθr = Ep
t cosθt

Bp
i + Bp

r = Bp
t

with E = c
n B we can write eq.nbr as

Ep
i

ni

c
+ Ep

r

ni

c
= Ep

t

nt

c

Ep
t =

ni

nt
(Ep

i + Ep
r )

Substituting Ep
t in eq.nbr, we have:
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A. FRESNEL EQUATIONS

Ep
i cosθi − Ep

r cosθr =
ni

nt
Ep

i cosθt +
ni

nt
Ep

r cosθt

Ep
i (cosθi −

ni

nt
cosθt) = Ep

r (cosθr +
ni

nt
cosθt)

rp =
Ep

r

Ep
i

=
cosθi −

ni
nt

cosθt

cosθr −
ni
nt

cosθt

rp =
nt cosθi − nicosθt

nt cosθi + nicosθt

Similar arguments hold for rs =
Es

r
Es

i
.

A.3 Phase Factor

We define the propagation number K = 2π
λ . It represents the phase change per unit length along

the optical path. In a medium of refractiv index n we write K = 2π
λ n. The phase difference

between the two beam ∆Φ is:
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∆Φ=∆ΦAC −∆ΦAD

∆ΦAC = KAB + KBC

∆ΦAD = KAD

AB = BC = d
1

cosθ1

AD = ACsinθ0

AC = 2d · t gθ1

AD = 2d · t gθ1 · sinθ0

sinθ0 =
n1

n0
sinθ1 (Snel l law)

t gθ =
sinθ
cosθ

AD = 2d
n1

n0

sinθ1
2

cosθ1

∆ΦAC = K · 2 · d
1

cosθ1
=

4πdn1

λcosθ1

∆ΦAD =
2πn0

λ
· 2d

n1

n0

sinθ1
2

cosθ1
=

4πdn1

λcosθ1
· sinθ1

2

∆Φ=
4πdn1

λcosθ1

�

1− sinθ1
2
�

=
4πdn1

λcosθ1

˙cosθ1
2

=
4πdn1

λ
· cosθ1

A.4 Total Reflectivities

r012 = r01 + t01 t10r12e−2iβ + t01 t10r10r2
12e−4iβ + ...

This is an infinit serie of the form y = a+ar+ar2+ar3+ ... that can be reduce to y = a 1
1−r .

Writing

a = t01 t10r12e−2iβ

b = r10r12e−2iβ
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we have

r012 = r01 +
t10r12e−2iβ

1− r10r12e−2iβ

with

r10 = −r01

t01 t10 = 1− r2
01

we can write

r012 = r01 +
(1− r2

01)r12e−2iβ

1+ r10r12e−2iβ

=
r01 + r2

01r12e−2iβ + (1− r2
01)r12e−2iβ

1+ r10r12e−2iβ

=
r01 + r2

01r12e−2iβ + r12e−2iβ − r2
01r12e−2iβ

1+ r10r12e−2iβ

=
r01 + r12e−2iβ

1+ r01r12e−2iβ

To summarize, for s- and p-polarized light we have:

r s
012 =

r s
01 + r s

12e−2iβ

1+ r s
01r s

12e−2iβ
r p

012 =
r p

01 + r p
12e−2iβ

1+ r p
01r p

12e−2iβ

r s
jk =

N j cosθ j − Nkcosθk

N j cosθ j + Nkcosθk
r p

jk
=

Nkcosθ j − N j cosθk

Nkcosθ j + N j cosθk

β =
1

2
∆Φ =

2πdn1

λ
· cosθ1

A.5 Numerical Inversion

#!/usr/bin/python2.7
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A.5 Numerical Inversion

#

# Arguments number 1 and 2 are Substrate Eps1 and Eps2

# Arguments number 3 and 4 are Film-Subst Psi and Delta

# Arguments number 5 and 6 are Initial guess for film Eps1 and Eps2

# Arguments number 7 and 8 are Incident angle and film thinckness

# Argument number 9 is whether or not to display Rho at the end of the fit

#

# Related jupyter notebook is: PhdData/NoteBook/2017.07.30-Plot-Fresnel-Equations.ipynb

#

# Summary in PhdData/Documents/2015.02.19-ComplexFitting

#

# Should check if all provided input file have the same length

#

# Laste edited 2017.07.31

# julien.ruppen@gmail.com

#

import os

import sys

import numpy as np

import matplotlib.pyplot as plt

from lmfit import minimize, Minimizer, Parameters, report_fit

IncAngle = sys.argv[7]

FlmThick = sys.argv[8]

PlotRho = sys.argv[9]

def RefractIndex(Eps1,Eps2):

n = ( ((Eps1**2 + Eps2**2)**(0.5) + Eps1 ) / 2 )**(0.5)

k = ( ((Eps1**2 + Eps2**2)**(0.5) - Eps1 ) / 2 )**(0.5)

return n,k

def DielecCste(n,k):

e1 = n**2 - k**2

e2 = 2*n*k

return e1,e2

# Initial guess for film diel. cste

TmpFilmEps1 = np.loadtxt(sys.argv[5])

TmpFilmEps2 = np.loadtxt(sys.argv[6])

FilmEps1 = TmpFilmEps1[:,1]#+0.0

FilmEps2 = TmpFilmEps2[:,1]#+0.0

#-----------------------------------------------------------

AllReffit_n1= RefractIndex(FilmEps1,FilmEps2)[0]
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AllReffit_k1= RefractIndex(FilmEps1,FilmEps2)[1]

#-----------------------------------------------------------

# Bulk Substrate Eps1 and Eps2

TmpSubstEps1 = np.loadtxt(sys.argv[1])

TmpSubstEps2 = np.loadtxt(sys.argv[2])

SubstEps1 = TmpSubstEps1[:,1]

SubstEps2 = TmpSubstEps2[:,1]

#-----------------------------------------------------------

AllExp_n2 = RefractIndex(SubstEps1,SubstEps2)[0]

AllExp_k2 = RefractIndex(SubstEps1,SubstEps2)[1]

#-----------------------------------------------------------

# Film-Substrate PSI and DELTA

TmpPsi = np.loadtxt(sys.argv[3])

TmpDelta = np.loadtxt(sys.argv[4])

ExpPsi = TmpPsi[:,1] * np.pi/180

ExpDelta = TmpDelta[:,1] * np.pi/180

#-----------------------------------------------------------

AllExpRho = np.tan(ExpPsi) * np.exp(1j*(ExpDelta))

#-----------------------------------------------------------

# WaveNumber

WveNbr=TmpPsi[:,0]

#-----------------------------------------------------------

All_WL = 1/WveNbr # in cm

#-----------------------------------------------------------

def SetSystemCst(inc_angle,flm_thick):

global phi0,thick1

phi0 = np.float(inc_angle)*np.pi/180

thick1 = np.float(flm_thick) #(cm)

# Air refractive index

global n0,k0

n0=1

k0=0

def SetSystemVar(Idx):

global ExpRho

ExpRho = AllExpRho[Idx]
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global n2,k2

n2 = AllExp_n2[Idx]

k2 = AllExp_k2[Idx]

global wl

wl = All_WL[Idx]

global Param_n1, Param_k1

Param_n1 = Parameters()

Param_k1 = Parameters()

def Set_n1(Input_n1):

global n1

n1 = Input_n1

Param_n1.add('n1', value=n1)

def Set_k1(Input_k1):

global k1

k1 = Input_k1

Param_k1.add('k1', value=k1)

# THESE ARE THE FRESNEL EQUATIONS FOR A THIN FILM ON A BULK SUBSTRATE

def phi1(n1):

phi1 = np.arcsin(n0/n1 * np.sin(phi0))

return phi1

def phi2(n1):

phi2 = np.arcsin(n1/n2 * np.sin(phi1(n1)))

return phi2

def r1s(n1,k1):

a = n0*np.cos(phi0)

b = (n1+k1*1j)*np.cos(phi1(n1))

Reflect1s = (a - b) / (a + b)

return Reflect1s

def r1p(n1,k1):

a = n0*np.cos(phi1(n1))

b = (n1+k1*1j)*np.cos(phi0)

Reflect1p = (a - b) / (a + b)

return Reflect1p

def r2s(n1,k1):

a = (n1+k1*1j)*np.cos(phi1(n1))

b = (n2+k2*1j)*np.cos(phi2(n1))
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Reflect2s = (a - b) / (a + b)

return Reflect2s

def r2p(n1,k1):

a = (n1+k1*1j)*np.cos(phi2(n1))

b = (n2+k2*1j)*np.cos(phi1(n1))

Reflect2p = (a - b) / (a + b)

return Reflect2p

# wavelength (wl) and thickness of layer 1 (thick1) must have the same unit

def delt1(n1,k1):

delta1 = 2*np.pi*(n1+k1*1j)*thick1*np.cos(phi1(n1))/wl

return -delta1

# two interface reflection

def ReflectS(n1,k1):

Rs = (r1s(n1,k1) + r2s(n1,k1)*np.exp(-2*1j*delt1(n1,k1))) \\

/ (1 + r1s(n1,k1)*r2s(n1,k1)*np.exp(-2*1j*delt1(n1,k1)))

return Rs

# two interface reflection

def ReflectP(n1,k1):

Rp = (r1p(n1,k1) + r2p(n1,k1)*np.exp(-2*1j*delt1(n1,k1))) \\

/ (1 + r1p(n1,k1)*r2p(n1,k1)*np.exp(-2*1j*delt1(n1,k1)))

return Rp

def CalcRho(n1,k1):

rho = ReflectP(n1,k1) / ReflectS(n1,k1)

return rho

# This is the objective function

def Fit_n1(Initn1):

In1 = Initn1['n1'].value

diff = CalcRho(In1,k1) - ExpRho

return diff.real**2 + diff.imag**2

def Fit_k1(Initk1):

Ik1 = Initk1['k1'].value

diff = CalcRho(n1,Ik1) - ExpRho

return diff.real**2 + diff.imag**2

MinMethod = 'leastsq'

PrintInfo = 1
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NIterRI = 3

IndexMin = 0

IndexMax = len(WveNbr)

SetSystemCst(IncAngle,FlmThick)

SpecLen = IndexMax - IndexMin

Alln1=np.zeros((SpecLen))

Allk1=np.zeros((SpecLen))

CalcRho_Reffit = np.zeros((SpecLen),dtype=complex)

CalcRho_FromFt = np.zeros((SpecLen),dtype=complex)

Set_n1(AllReffit_n1[IndexMin])

Set_k1(AllReffit_k1[IndexMin])

for i in range(SpecLen):

Idx = IndexMin + i

SetSystemVar(Idx)

CalcRho_Reffit[i] = CalcRho(AllReffit_n1[Idx],AllReffit_k1[Idx])

# Here the number of iteration from real to imag N for a single freq

for l in range(NIterRI):

CC = Minimizer(Fit_k1,Param_k1,nan_policy='omit')

DD = CC.minimize(method=MinMethod)

k1 = DD.params['k1'].value

Set_k1(k1)

AA = Minimizer(Fit_n1,Param_n1,nan_policy='omit')

BB = AA.minimize(method=MinMethod)

n1 = BB.params['n1'].value

Set_n1(n1)

Alln1[i] = BB.params['n1'].value

Allk1[i] = DD.params['k1'].value

CalcRho_FromFt[i] = CalcRho(n1,k1)

71



A. FRESNEL EQUATIONS

if (PrintInfo):

print "Index: ", IndexMin+i, " WaveNbr: ", np.int(WveNbr[IndexMin+i])

print BB.message, "Fit_n1 ChiSqrt: ", BB.chisqr

print DD.message, "Fit_k1 ChiSqrt: ", DD.chisqr

Output_e1 = np.zeros((len(Alln1),2))

Output_e2 = np.zeros((len(Alln1),2))

Output_e1[:,0] = WveNbr

Output_e2[:,0] = WveNbr

Output_e1[:,1] = DielecCste(Alln1,Allk1)[0]

Output_e2[:,1] = DielecCste(Alln1,Allk1)[1]

FittedFilm_e1 = "FittedFilm.Eps1.txt"

FittedFilm_e2 = "FittedFilm.Eps2.txt"

np.savetxt(FittedFilm_e1,Output_e1,fmt="%8.10e")

np.savetxt(FittedFilm_e2,Output_e2,fmt="%8.10e")
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