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Abstract

English version

The subject of this thesis is electronic correlations in quantum matter, particularly in

low-dimensional metallic systems at low temperatures. In such conditions, the response

of electron liquids to external excitations, like electric fields and electromagnetic waves,

is remarkably modified by the presence of correlations: the latter make the response

nonlocal in space, meaning that electrons not only react at the coordinate where the local

perturbation is applied, but also at other spatial coordinates. This collective behaviour,

stemming from microscopic nonlocal correlations, allows us to treat the electron liquid

macroscopically as a viscoelastic fluid, in analogy with hydrodynamics and elasticity theory,

and to study the collective modes that emerge in the electrically neutral and charged

cases. This picture is naturally suitable to study the phenomenology of Fermi liquids,

which describes the normally-conducting state of many metals. Employing the viscoelastic

approach, we can analyze the collective modes of Fermi liquids and their interaction with

electric fields and electromagnetic radiation: depending on the excitation frequency and on

the scattering time, the response of the Fermi surface evolves from the one of a viscous fluid

to the one of an elastic solid, so that one can trace the phase diagram of such viscoelastic

quantum liquid. These phenomena leave observable traces in experiments: for instance, the

simultaneous presence of two degenerate electromagnetic modes that interfere coherently

inside the material, giving rise to oscillatory patterns in the optical transmission and

reflection spectra as a function of frequency, in the same way as anomalous skin effect that

shows in the surface impedance. This allows one to probe the finite-momentum response of

Fermi liquids with light. The analysis is specialized to low-dimensional systems: in fact, thin

metallic films are suitable for transport and optical experiments, and nonlocal correlations

are favored by low dimensionality, when the mean free path of electrons becomes greater

vii



than the sample thickness. The conclusion is that Fermi liquids, although well documented,

still exhibit new and useful properties when we introduce viscoelastic correlations into

the problem. Furthermore, such correlations at low temperature have repercussions on

the superconducting phase, when there is one. Indeed, Fermi liquids model the normally

conducting phase of many known superconductors, and many well-established theories of

superconductivity assume a Fermi liquid as the underlying normal state. In these materials,

pairing correlations are modified by low dimensionality by virtue of quantum confinement,

which produces quantized subbands and alters both the electronic density of states and

the pairing interaction. To observe these effects, one can play with the sample geometry

and produce superconducting thin films or interfaces, which are often characterized by a

low electron density. In these configurations, of low dimensionality and/or low density,

superconducting properties like the critical temperature Tc are significantly altered when

the Fermi level approaches any band edge in the bulk, or subband edge in a quantum-

confined geometry. We study these band-edge effects using a BCS approach for the pairing

interaction, for different dimensionality and multiband configurations. This allows us

to describe shape resonances, i.e. the oscillatory evolution of Tc as a function of the

confinement parameters like the film thickness. We apply the model to bulk low-density

superconductors like doped SrTiO3, thin films, and superconducting heterostructures like

LaAlO3/SrTiO3. We interpret the superconducting dome of LaAlO3/SrTiO3 as a shape

resonance due to quantum confinement on bulk SrTiO3.

Résumé en français

Cette thèse porte sur les corrélations électroniques dans la matière quantique, en particulier

dans les systèmes métalliques de basse dimensionalité et à basse température. Dans ces

conditions, la réponse du liquide composé par les électrons de conduction aux perturbations

est modifiée de manière significative par la présence des corrélations: celles-ci rendent la

réponse non-locale dans l’espace, c’est-à-dire que les électrons ne réagissent pas seulement

à l’endroit où l’on applique la perturbation, mais aussi dans la région environnante. En

raison de ce comportement collectif causé par les corrélations microscopiques non-locales,

il est possible de décrire macroscopiquement le liquide d’électrons comme un fluide visco-

élastique, en analogie avec la théorie de l’élasticité et l’hydrodynamique. Cette description

permet d’étudier les modes collectifs qui émergent dans un fluide neutre ou chargé élec-

triquement. Cette approche peut être appliquée pour comprendre la phénoménologie des

liquides de Fermi qui décrivent bien l’état de conduction normal de la majorité des métaux.

Grâce à l’approche visco-élastique, on peut analyser les modes collectifs qui existent dans
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le liquide de Fermi et leur interaction avec le champ électromagnétique: en fonction de la

fréquence d’excitation et du temps de relaxation des électrons, la réponse de la surface

de Fermi change et peut ressembler à la réponse d’un fluide visqueux ou à la réponse

d’un solide élastique; on peut ainsi tracer le diagramme de phase solide-liquide de ce

système quantique visco-élastique. Les phenomènes mentionnés ci-dessus laissent des

traces observables dans les expériences: par exemple, l’existence combinée de deux modes

électromagnétiques dégénérés qui interfèrent de façon cohérente dans le matériau et qui

génèrent des oscillations dans les spectres de transmission et réflexion optique en fonction

de la fréquence. Ce mécanisme est similaire à l’“effet de peau anormal” qui se manifeste

par la saturation à basse température de l’impédance de surface des métaux. En bref, la

description visco-élastique permet d’investiguer grâce à la lumière la réponse diélectrique

non-locale et les modes collectifs dans les liquides de Fermi. Les analyses effectuées dans

cette thèse sont souvent specialisées à des systèmes de basse dimensionnalité: en fait, les

couches minces métalliques sont bien adaptées aux expériences optiques car les corrélations

non-locales sont amplifiées par la basse dimensionnalité quand le libre parcours moyen

des électrons est plus grand que l’épaisseur de la couche. La conclusion de ces études

est que les liquides de Fermi montrent des propriétés nouvelles et potentiellement utiles

quand on introduit les corrélations visco-élastiques dans le problème, en plus de leurs

autres propriétés déjà largement documentées. De plus, ces corrélations ont un impact

non-negligeable à basse température sur la phase supraconductrice, quand cette dernière

existe dans le matériau. En fait, les liquides de Fermi modélisent l’état de conduction

électrique normale des supraconducteurs conventionnels et plusieurs théories bien établies

de la supraconductivité supposent que l’état normal est un liquide de Fermi. Dans ces

matériaux, les corrélations sont modifiées par la basse dimensionnalité en raison du con-

finement quantique; ce dernier produit des sous-bandes quantifiées et change la densité

d’états électroniques ainsi que l’interaction de couplage. Afin d’observer ces effets, on

peut manipuler la géometrie des échantillons en fabriquant des couches minces supra-

conductrices ou des interfaces, lequelles sont souvent caractérisées par une basse densité

électronique. Dans ces configurations, c’est-à-dire basse dimension et basse densité, les

propriétés supraconductrices comme la température critique Tc sont altérées de manière

significative quand le niveau de Fermi approche le fond d’une sous-bande. Pour cette raison,

on étudie dans cette thèse les effets liés à la proximité d’un fond de bande électronique sur

l’état supraconducteur en utilisant une approche BCS pour l’interaction de couplage, en

présence de plusieurs bandes et en dimension deux et trois. Cette étude permet de décrire

les “résonances de forme” caractérisées par une évolution oscillatoire de Tc en fonction

des paramètres de confinement, comme l’épaisseur d’une couche mince. On applique ce
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modèle aux supraconducteurs 3D de basse densité comme le titanate de strontium (SrTiO3)

dopé, aux couches minces et aux interfaces supraconductrices comme LaAlO3/SrTiO3. On

interprète le dôme supraconducteur de l’interface LaAlO3/SrTiO3 comme une résonance

de forme provoquée par le confinement quantique qui agit sur SrTiO3.
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Chapter 1
Electronic correlations in metals

1.1 Introduction

Many-body systems, composed of a macroscopic ensemble of mutually interacting particles,

can show very different physical properties with respect to their individual microscopic

constituents. Such emergent properties result from correlations among particles: the

evolution of one body in space and time influences the behaviour of all other bodies in the

ensemble, and vice versa [1,2]. A prominent consequence of this dynamics in condensed

matter is given by collective excitations, whereby all correlated particles in a macroscopic

system react with a coordinated evolution in space and time, either spontaneously or

in response to an external perturbation of appropriate frequency and momentum. This

produces wavelike, self-sustained oscillatory patterns in the system that are named collective

modes. Classic examples of collective modes are mechanical waves in a rope that is

transversally shaken and fixed at one boundary, or waves on the surface of a fluid that is

excited by a transversal force at one spatial coordinate. Quantum systems possess collective

modes as well, like vibrational excitations of a crystalline lattice, i.e. phonons [3]. The

same conclusion applies to the liquid formed by nearly-free conduction electrons in metallic

solids.

For an electron liquid, the dispersion relations of density-density collective excitations in

the presence of weak correlations are known [4–6], and can be obtained through different

techniques, all similar to each other and successively proposed in the literature. The

common foundational assumption of most of these techniques is that, when the correlation

energy is much smaller than the characteristic kinetic energy of individual electrons,

we can treat the latter as nearly free particles; then, correlation effects amount only to

the renormalization of quasiparticle properties like effective mass and relaxation time.
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1. ELECTRONIC CORRELATIONS IN METALS

Among the different electronic systems that can exist in nature, Fermi liquids offer an

exemplary case to study such collective excitations, as their low-energy physics can be

described by nearly-independent quasiparticles according to Landau phenomenology; such

possibility permits to treat an intrinsically correlated system with the same methods that

have been originally developed for independent particles [7, 8]. Since electron liquids

are electrically charged, collective modes can be induced in such liquids by applying a

space- and time-dependent electric field. The liquid responds to the electric field, for

instance with a perturbation in the local electron density and/or by creating electric

currents in the system. We first consider the density response in many-body theory. From

the perspective of many-body correlation functions, the density collective excitations in

an interacting system can be analyzed through the density-density correlation function

Cn̂(~q,t)n̂(−~q,0) = 〈n̂(~q, t)n̂(−~q, 0)〉, which describes the correlation of the density operator

n̂(~q, t) at momentum ħh~q and time t, once we let it evolve from time 0. From linear response

theory, the density-density correlation function is linked to the charge susceptibility of the

system χn̂n̂(~q, t) = −iθ(t) 〈[n̂(~q, t), n̂(−~q, 0)]〉, that is the response to an applied electric

field [1,2]. The correspondent Fourier transform in frequency space is χn̂n̂(~q,ω). We write

the Dyson equation for the latter,

− 1
χn̂n̂(~q,ω)

=
1

Πn̂n̂(~q,ω)
+ Vint(~q) (1.1)

where the interaction potential is Vint(~q) and Πn̂n̂(~q,ω) is the many-body polarization,

which indeed describes the polarization of the system in response to the perturbation

Vint(~q) and sums all irreducible diagrams which screen the bare interaction [1,2,9].

Equation (1.1) can be solved formally for the susceptibility χn̂n̂(~q,ω), giving

χn̂n̂(~q,ω) =
−Πn̂n̂(~q,ω)

1+ Vint (~q)
V Πn̂n̂(~q,ω)

(1.2)

The graphical representation corresponding to the Dyson equation (1.2), in the case of the

density susceptibility χn̂n̂(~q,ω), is

−χn̂n̂(~q,ω)

=
Πn̂n̂(~q,ω)

+

The stable collective excitations of density for the interacting system are given by the
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1.1 Introduction

poles of the susceptibility χn̂n̂(~q,ω) in equation (1.2), for which the polarization response

is not damped, Im {Πn̂n̂(~q,ω)}= 0. Indeed, we have

χn̂n̂(~q,ω)→∞ : 1+ Vint(~q)Πn̂n̂(~q,ω) = 0 (1.3)

Im {Πn̂n̂(~q,ω)}= 0

In general, there are various kinds of solutions for equation (1.3): sound waves, of

dispersion ωλ(~q) = vλq, with vλ sound velocity for the branch λ; power-law waves, with

dispersion ωλ(~q) = βqα, with {α,β} ∈ R; plasmons, of dispersion ωλ(~q) = ω0 + αq2 +
o(q3), α ∈ R, for long-ranged interaction Vint(~q); Charge Density Waves (CDW), of static

ω= 0 and periodic q 6= 0 character. In this chapter, we will concentrate on the first three

kinds of solutions to equation (1.3), namely sound, other power-law waves, and plasmons.

The results to be shortly derived will be mainly applied to Fermi liquids, for which

the dispersion of sound-like excitations has been calculated in detail, and experimentally

observed, for example in liquid helium [10,11]. The inclusion of electronic correlations

complicates the problem, and exact general treatments are still lacking; therefore, multiple

complementary approaches have been developed, to account for correlation effects in

specific regimes of momentum and frequency. Among these approaches, the hydrodynamic

perspective offers analytical solutions to the density-density and current-current correlation

functions, whenever we can treat the electronic ensemble as a fluid [12]; this simplicity of

the formalism and its predictive power make the hydrodynamic approach appealing for

correlations phenomenology, and its validity for vanishing wave vector q→ 0+ makes it

suitable for optics experiments, that probe this realm around zero wave vector [4,5,13].
Having a sound-like mode is in fact a quite general property of condensed matter systems:

this occurs each time the hamiltonian has a continuous symmetry (e.g. the translation

symmetry), which is spontaneously broken by elementary excitations; such symmetry

breaking generates low-energy collective modes (so called Goldstone modes) [14]. We

can distinguish two categories of sound-like excitations, depending on the nature of the

mechanism that causes the perturbation:

• Normal sound: wave of linear dispersion, originating from pressure gradients on the

particle density;

• Zero sound: wave of linear dispersion, stemming from direct short-range interactions

between quasiparticles.

As such, zero sound (also called isothermal first sound [15]) can propagate even at zero

temperature, depending only on short-range quasiparticle interactions that persist even

3



1. ELECTRONIC CORRELATIONS IN METALS

in the absence of collisions: this is the very origin of the term “zero sound”. On the other

hand, normal sound results from pressure gradients and can only exist in the presence

of collisions. Sound-like excitations possess a real dispersion relation, with self-sustained

propagation, when the collision time among quasiparticles τc is sufficiently long compared

to the excitation frequency ω, according to ωτc → +∞; this is the regime where zero

sound propagates. In the opposite collisional regime ωτc � 1 the mechanism for sound is

governed by collisions in local equilibrium, and the crossover to normal sound develops.

Notably, the inclusions of correlations, that introduce spatial nonlocality in the linear

response, originate additional propagation modes with respect to the uncorrelated situation,

as described in multiple references [12,16,17]; in this chapter, we will see how additional

propagation modes for electromagnetic radiation appear in electron liquids characterized

by a nonlocal response.

1.2 Sound collective excitations in random phase approx-

imation

We first recall the theoretical foundations of the density excitation spectrum in the random

phase approximation (RPA), which will serve as a comparison with later sections. In

RPA, we take a simple particle-hole bubble as the approximation for the true polarization

Πn̂n̂(~q,ω); this means that we can excite particle-hole pairs, but the particle and hole

remain mutually independent. In turn, the independence of the particle and the hole in a

loop allows to describe such processes through the retarded density-density correlation

function, or charge susceptibility χ0
n̂n̂(~q,ω), for independent fermions,

χ0
n̂n̂(~q,ω) =

∑

~k,σ

fF D(ξ~k)− fF D(ξ~k+~q)

ω+ ξ~k − ξ~k+~q
(1.4)

Here, fF D(ξ~k) is the Fermi-Dirac distribution for fermions with dispersion ξ~k = E~k − µ,

and µ is the chemical potential. Furthermore, in a free-particle system with dispersion

E~k =
ħh2k2

2m , the momentum sum in equation (1.4) can be performed analytically at zero

temperature. Then, the polarization Πn̂n̂(~q,ω) in RPA is

Πn̂n̂(~q,ω) = −χ0
n̂n̂(~q,ω) (1.5)

4



1.2 Sound collective excitations in random phase approximation

In diagrammatic representation, this corresponds to

Πn̂n̂(~q,ω)

=

−χ0
n̂n̂(~q,ω)

Inserting expression (1.5) in the Dyson equation (1.2), we find the RPA charge suscep-

tibility

χRPA
n̂n̂ (~q,ω) =

χ0
n̂n̂(~q,ω)

1− Vint(~q)χ0
n̂n̂(~q,ω)

(1.6)

From equation (1.6), we see that the RPA takes into account correlations due to particle-

hole loops, with the particle and the hole that propagate freely between creation and

recombination, while the renormalization of the particle and hole propagators, and vertex

corrections, are both neglected. Therefore, the RPA sums over an infinite number of

particle-hole loops connected by the interaction Vint(~q). Physically, the random phase

approximation is expected to be more accurate for a gas of nearly-independent fermions at

high density: in fact, in the high-density limit the kinetic energy becomes the dominant

energy scale in the interacting electron gas with respect to electron-electron interactions;

then, it is more probable for the excited electron-hole pairs to simply recombine after free

propagation instead of interacting with the rest of the Fermi sea. Based on expression

(1.6), we can draw the famous graph representing the density excitations of the interacting

homogeneous fermion gas [2, 5, 6, 14]; this graph is reported in figure 1.1. In RPA, the

dispersion of the principal density collective modes can be calculated analytically [2,6,9]
for a given interaction potential Vint(~q). In order to perform the calculation, first we have to

know the bare susceptibility χ0
n̂n̂(~q,ω), which is (1.4) for free fermions in three dimensions

and at zero temperature. One proceeds by defining a spherical coordinate system where one

axis lies along ~q, with ~k forming an angle θ with respect to ~q. Then, one transforms the sum

over ~k in equation (1.4) in an integral according to
∑

~k→ 1
(2π)3

∫

d~k, and introduces the

Fermi-level density of states N el
0 (0) =

mkF

π2ħh2 per unit volume for the homogeneous electron

gas in 3 dimensions. The Fermi functions in equation (1.4) restrict the integration to

k < kF , where kF =
�

3π2n
�

1
3 is the Fermi wave vector. Finally, it is convenient to define

adimensional variables of momentum and frequency according to x = q
2kF

and z = 2mω
ħh2q2 .

After integration, the imaginary part of the bare susceptibility (1.4) is

Im
�

χ0
n̂n̂(~q,ω)

	

= −πN el
0 (0)

8x

�

max
�

0,1− x2(z − 1)2
	−max

�

0, 1− x2(z + 1)2
	�

(1.7)
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x =
q

2kF
x =

q

2kF

y
=
ω 4ǫ

F

x − x2

x
2
+

x

x
2
−

x

ω = ħhvFq

(a) (b)

0

0

0

0.5

1

1

1

q
2k

F

2k
F

q

q

Figure 1.1: Density excitation spectrum in the 3D homogeneous fermion gas for (a) long-range
and (b) short-range interaction. The color scale represents the value of χRPA

n̂n̂ (~q,ω), and shows
the plasmon in (a) and the zero sound in (b) as bright lines. Typical particle-hole excitations
are sketched in (a). From reference [2].
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1.2 Sound collective excitations in random phase approximation

which is an odd function of frequency ω. The real part of χ0
n̂n̂(~q,ω) results

Re
�

χ0
n̂n̂(~q,ω)

	

=
N el

0 (0)

4x

�

x(z − 1) +
1
2

�

1− x2(z − 1)2
�

ln

�

�

�

�

1+ x(z − 1)
1− x(z − 1)

�

�

�

�

�

−
N el

0 (0)

4x

�

x(z + 1) +
1
2

�

1− x2(z + 1)2
�

ln

�

�

�

�

1+ x(z + 1)
1− x(z + 1)

�

�

�

�

�

(1.8)

The static limitω→ 0 of equation (1.8) gives the Lindhard function for dielectric screening

[1,3], while in the static long-wavelength limit the free-fermion susceptibility is χ0
n̂n̂(0, 0) =

−N el
0 (0) [2,3]. For a given interaction potential Vint(~q), it is sufficient to insert the bare

susceptibility χ0
n̂n̂(~q,ω) in equation (1.6) to obtain the total RPA susceptibility χRPA

n̂n̂ (~q,ω).
We first focus on the sound excitationsω(~q) = vSq, with vS sound velocity. These excitations

exist provided that the interaction is short-ranged. The unrenormalized polarization equals

minus the density susceptibility, according to equation (1.5); for long wavelength q→ 0,

and seeking solutions of the kind ω(q)∝ q, the particle-hole loop contributions can be

explicitly evaluated, giving [2,5,6]

l im
︸︷︷︸

ω∝q→0

χ0
n̂n̂(~q,ω) = −N el

0 (0)

�

1− ζ
2

ln

�

�

�

�

1+ ζ
1− ζ

�

�

�

�

�

(1.9)

where ζ= vS
vF
= ħhq

mvF
,and vF =

ħhkF
m =

ħh
m

�

3π2n
�

1
3 Fermi velocity. As derived, (1.9) is valid for

free fermions at temperature T = 0. Notice that, by only focusing on the long-wavelength

limit q → 0 for the interaction Vint(0) = limq→0 Vint(~q), we assume that the interaction

is local, that is, we are neglecting nonlocal effects in the density response. According to

the criterion (1.3), the sound collective excitations for the susceptibility (1.9) satisfy the

dispersion relation

−1+
ζ

2
ln

�

�

�

�

1+ ζ
1− ζ

�

�

�

�

=
1

Vint(0)N el
0 (0)

(1.10)

Solving this equation for ζ, we find the sound velocity vS,RPA = ζvF . On the graphical

representation in figure 1.2, we see that there are always two solutions, one with ζ < 1,

and one with ζ > 1. The first solution implies vS,RPA < vF , and corresponds to a damped

sound. Indeed, this collective excitation is not self-sustained: if ζ < 1, the line y = ζx in

figure (1.1) lies within the region where Im {Πn̂n̂(~q,ω)} 6= 0, meaning that the excitation

is not stable, but Landau-damped - see also section 1.5.3. On the contrary, the solution

with vS,RPA > vF corresponds to a propagating sound mode, as we see graphically in figure

(1.1), panel (b). In the limit of vanishing interactions, the velocity of this sound approaches

the Fermi velocity vF . The physical nature of the sound-like solution of equation (1.10) is

7
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0 0.5 1 1.5 2
ζ

−1

−0.5

0

0.5

1

1.5

2

1
Vint(0)Nel

0 (0)

−1 + ζ
2
ln

∣∣∣1+ζ
1−ζ

∣∣∣

Figure 1.2: Graphical representation of the sound wave solutions (1.10) for the RPA density-
density susceptibility [2]. The orange and light blue shaded areas represent the regions of
Landau-damped zero sound and propagating zero sound, respectively.

different from the one of normal sound. In the latter case, oscillations of particle density

away from thermodynamic equilibrium cause mechanical pressure gradients in the system,

which constitute the driving force for the collective excitation. This means that particles

have to collide with each other at a sufficient rate 1
τc
> 0, in order to transfer the excitation

energy and momentum through the ensemble and propagate the collective mode. In

other words, in the time interval between two density oscillations, local thermodynamic

equilibrium must be restored for a normal sound to propagate. As the density oscillation

rate is set by the excitation frequency ω, this means that the typical collision time τc has to

be short compared to ω, i.e. ωτc < 1. For an ordinary Fermi liquid, τc typically increases

like 1
T2 with decreasing temperature T , so that the collisional regime ωτc < 1 is no longer

satisfied as T → 0: that is why ordinary sound disappears at low temperature. On the other

hand, the solution of equation (1.10) is not generated by mechanical pressure gradients like

normal sound. Instead, the driving force for this collisionless sound is the direct interaction

between particles. Not depending on collisions, this mode can propagate down to zero

temperature, where we reach ωτc → +∞: this is why such excitation is called zero sound.

Hence, equation (1.10) describes the transition from damped zero sound to propagating

zero sound by increasing the particle velocity vS
vF

.

The sound-like waves (1.9) in standard RPA do not distinguish between longitudinal

and transverse excitations, in the long-wavelength limit q → 0. In order to distinguish
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1.3 Theoretical toolbox for radiation-matter interaction

different spatial polarizations of collective modes, we have to move away from the q→ 0

limit: in other words, we must have some information on the magnitude and the direction

of the excitation wave vector ~q, with respect to the mode propagation wave vector ~k. In

these conditions, the longitudinal and transverse responses show their differences, and we

can have multiple oscillation modes of longitudinal or transverse character for the same

electronic system. We will later focus on longitudinal and transverse RPA sound-like modes,

and we will later apply the same arguments to electrically charged Fermi liquids. Another

kind of density-density collective mode that can be analyzed in RPA is the plasmon. This

corresponds to a dispersion ω(~q) =ω0 +αq2 + o(q3), α ∈ R, which is admitted for long-

ranged interaction Vint(~q) such that Vint(0)χRPA
n̂n̂ (0,ω) 6= 0 with ω> 0. Expanding equation

(1.3) with the RPA polarization (1.5) for q
ω → 0, ω> 0 at first order in 3 dimensions, we

obtain

ω2 = (ωp)
2





1
2
+

1
2

√

√

√

1+
12
5
(vF)2

(ωp)2
q2



 (1.11)

where ωp =
Ç

ne2

mε0
. Therefore, equation (1.11) becomes ωp at q = 0, and shows the

quadratic dispersion ωplasmon(~q) =ωp +
3(vF )2

10ωp
q2 +O(q3) at second order in momentum ~q.

All in all, the RPA is a good way to describe density-density excitations in simple metals,

when correlation effects are weak. For example, the quadratic plasmon dispersion has

been observed and found experimentally in good agreement with RPA, for Na, Mg, Al,

and Si [2]. However, there are cases where some deviations with respect to RPA are

visible, even for metals such as K, Rb, and Cs [18]; typically, these cases exhibit stronger

correlation effects, which cannot be entirely captured by the single electron-hole excitations

of RPA [6,19]. In fact, as previously mentioned, the random phase approximation neglects

both the renormalization of the quasiparticle-quasihole propagator and vertex corrections:

for example, the exchange hole for quasiparticles possessing the same spin, due to the

Pauli exclusion principle [6]. As described in multiple references [6], going beyond RPA is

not a straightforward task, and an exact solution is still lacking.

1.3 Theoretical toolbox for radiation-matter interaction

1.3.1 The dielectric function and linear response

The dielectric function ε(~q,ω) provides the traditional grounding for calculating the optical

properties of materials, and specifically metals. The physical reason for this is that ε(~q,ω)

9



1. ELECTRONIC CORRELATIONS IN METALS

represents the screening reaction of the material to external electric fields, which renor-

malizes the latter fields; in the language of many-body theory, this is naturally connected

to the many-body polarization of the medium, entering into the susceptibility (1.1). We

will comment more on the many-body aspects of screening in the next section 1.3.2, while

here we rapidly review the most relevant aspects of classical macroscopic properties of

dielectrics, for what concerns this work.

In linear and isotropic media, the macroscopic electric and displacement fields, ~E(~r, t)
and ~D(~r, t), are colinear. In this case, the two fields are related via the dielectric function

ε(~r − ~r ′ , t − t
′
): in real space of coordinates ~r and time t, and for a translation-invariant

response in space and time, we have

~D(~r, t) =

∫

d~r
′
∫

d t
′
ε(~r − ~r ′ , t − t

′
)~E(~r

′
, t
′
) (1.12)

which, in reciprocal space of momenta ~q and frequency ω, becomes

~D(~q,ω) = ε(~q,ω)~E(~q,ω) (1.13)

We notice that the real-space form (1.12) highlights a fundamental property of dielectric

response: the latter is nonlocal in space and retarded in time, in general: the field at

coordinates {~r, t} is not only determined by the excitation at the same coordinates {~r, t},
but it is also influenced by the excitation at other coordinates

�

~r
′
, t
′	

. This happens

because the material response function, which is the dielectric function in equation (1.12)

is spatially nonlocal and retarded in time. In the same way as the electric displacement

field in equation (1.12), this holds for the current response through Ohm’s law

~J(~r, t) =

∫

d~r
′
∫

d t
′
σ(~r − ~r ′ , t − t

′
)~E(~r

′
, t
′
), (1.14)

where σ(~r − ~r ′ , t − t
′
) is the conductivity [1, 4, 5], or in Fourier space of momenta and

frequency
~J(~q,ω) = σ(~q,ω)~E(~q,ω). (1.15)

Let us focus on spatial nonlocality of the response: applying an excitation at ~r
′
produces

a response at ~r
′

but also at other points ~r. However, one often simplifies the analysis

of transport and optical experiments by assuming a local response: this means that the

response function does not depend on the distance ~r − ~r ′ , which corresponds to neglecting

the momentum dependence through the limit q→ 0. Indeed, if ε(~r−~r ′ , t) does not depend

10



1.3 Theoretical toolbox for radiation-matter interaction

on ~r − ~r ′ , its Fourier transform (1.15) is ε(~q,ω)∝ δ(q). In reality, the response depends

on spatial distance: in this case, taking the limit q→ 0 means taking the spatial average of

the ~r − ~r ′-dependent response function. This is what optical experiments commonly do,

since electromagnetic radiation probes the limit q→ 0 of the material response [1,4,5].
Nevertheless, we have seen throughout this chapter that we cannot operate this limit in

particular instances, like for metals at low temperatures. We will see that, in the latter

situation, one is able to probe finite-momentum physics with electromagnetic radiation,

because of the nonlocality of the material response

It is convenient to separate the fields in two components, one parallel and the other nor-

mal to the wave-vector ~q, also named longitudinal and transverse respectively: ~E(~q,ω) =
~E‖(~q,ω) + ~E⊥(~q,ω) with ~q · ~E‖(~q,ω) = qE‖(~q,ω) and ~q · ~E⊥(~q,ω) = 0, and similarly for
~D(~q,ω). Likewise, the dielectric function is split in longitudinal and transverse components

εL(~q,ω) and εT (~q,ω), so that

~D‖(~q,ω) = εL(~q,ω)~E‖(~q,ω) (1.16a)

~D⊥(~q,ω) = εT (~q,ω)~E⊥(~q,ω) (1.16b)

In the longitudinal channel, the sources of ~D‖(~q,ω) and ~E‖(~q,ω) are the “free” portion

and the total charge density ρ = en, respectively [5]: physically, this means that ~D‖
considers the net dielectric response taking into account the medium polarization, i.e. how

the electron density in the material reacts to a longitudinal electric field with εL(~q,ω).
Likewise, in the transverse channel ~D⊥ takes into account the dielectric response εT (~q,ω)
of the material in the perpendicular direction with respect to the wave vector ~q. Since

electromagnetic waves are transversally polarized, εT (~q,ω) is the quantity involved in the

study of radiation-matter interaction.

1.3.2 The photon propagator

The dielectric polarization of a material, in response to interactions with incident electro-

magnetic radiation, can also be analyzed from a complementary viewpoint with respect

to the dielectric function formalism of section 1.3.1: rather than describing the material

dielectric polarization and screening with ε(~q,ω) in reaction to the electromagnetic field of

the incoming wave, we can equivalently describe with a vector potential ~AT (~q,ω) how the

propagation of the electromagnetic radiation is affected when the wave enters the material.

The latter perspective, utilized in quantum electrodynamics, requires the calculation of the

transverse photon propagator.

11



1. ELECTRONIC CORRELATIONS IN METALS

As a matter of principle, one has to distinguish the longitudinal and transverse responses

of the medium. The magnetic field ~B(~q,ω) and propagating photons are purely transverse;

the transverse part of the vector potential ~AT (~q,ω) is gauge-invariant, whereas the longitu-

dinal component transforms like ~A
′
L(~q,ω) = ~AL(~q,ω)+∇Ξ under the gauge transformation

Ξ and is not physical. Therefore, everything that is measured by propagating light is in the

transverse sector, while the static electric screening and the electron-loss-density spectra

are exclusively longitudinal and couple to the charge density [5, 17]. The macroscopic

field ~A(~q,ω) is generated microscopically by the propagation of photons, the quanta of

electromagnetic radiation. In order to see this, one quantizes the electromagnetic field into

optical modes whose state α is specified by wave vector ~q, frequency ω and polarization ~u,

in analogy with the quantization of the harmonic oscillator [17,20]. Hence, photons are

destroyed and created according to the annihilation and creation operators
�

Âα, Â†
α

	

. One

can also consider photons in the basis of space coordinates ~r and time t through the usual

Fourier transforms. In the thermodynamic limit, we retrieve the classical electromagnetic

fields from the microscopic description of photons. Many-body theory can effectively de-

scribe the interaction of such ensemble of photons with the surrounding matter. In metals,

the radiation propagates inside the material and excites interaction processes with the

electron liquid, so that, by propagating a photon at point ~r and at time 0 and measuring it

at point ~r
′
and time τ, we can infer its interactions with the medium. This is the physical

concept of the photon propagator. We assume again a translationally-invariant response,

which leads to

Aαβ(~r − ~r ′ ,τ) = −
¬

T̂τÂα(τ)(~r)Â
†
β
(0)(~r

′
)
¶

(1.17)

The photon operators obey the same gauge invariance as the corresponding macroscopic

fields, so we can decompose equation (1.17) into its longitudinal and transverse com-

ponents, with the latter that enters into the electromagnetic transverse response. In the

domain of momenta and frequency, the transverse photon propagator becomes

AT (~q,ω) =
1

ε0(ω2 − c2q2) +Π~J ~J(~q,ω)
(1.18)

where Π~J ~J(~q,ω) is the transverse (current) many-body polarization of the medium, which

contains the information about the interaction processes of photons with the material.

In fact, the correlated electron system responds to the propagation of electromagnetic

radiation; this affects the optical properties. Equation (1.18) directly stems from the

Dyson equation of the photon propagator [21], in the same way as equation (1.1) for the

density susceptibility. In the present case, it describes the interacting photon propagator

due to the material response. The correspondence with the macroscopic electromagnetic
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1.4 Nonlocal density and current responses

fields is always preserved: choosing the radiation gauge in which the scalar potential

φσ = 0 [5,21], the photon propagator satisfies the wave equation, consistently with the

macroscopic Maxwell equations. From equation (1.18), one obtains the relation between

the microscopic many-body polarization and the macroscopic dielectric function. For a

homogeneous and isotropic body and in Fourier space of momenta and frequency, this

relation reads

Π~J ~J(~q,ω) = ε0 [εT (~q,ω)− 1]ω2 (1.19)

Therefore, the dielectric function can be obtained in terms of the transverse many-body

polarization as

εT (~q,ω) = 1+
Π~J ~J(~q,ω)
ε0ω2

(1.20)

The dielectric function (1.20) is manifestly nonlocal, depending on q as well as on ω. This

way, inserting equation (1.20) into the definition (1.18), the photon propagator can be

written in an equivalent form

AT (~q,ω) =
1
ε0

1
εT (~q,ω)ω2 − q2c2

(1.21)

A pole in the photon propagator (1.21) signals the emergence of a transverse collective

mode for the light-matter system, in the same way as the divergence of the many-body

susceptibility (1.2) in section 1.1 indicates the propagation of a density-density collective

mode. In turn, a stable pole in equation (1.21) implies that there is no imaginary part,

Im
�

εT (~q,ω)ω2 − q2c2
	

= 0, i.e. the polarization response is not damped. Analogously, for

the photon propagator we have Im {AT (~q,ω)} →∞: this is the same general principle

for propagating collective modes as for the density susceptibility (1.2) in section 1.1. When

the polarization response of the system is not damped, i.e. Im {εT (~q,ω)}= 0, the photon

propagator becomes real, i.e. Im {AT (~q,ω)}= 0∀{~q,ω}. In this case, a collective mode

simply corresponds to the divergence of the real photon propagator, |AT (~q,ω)| → +∞.

1.4 Nonlocal density and current responses

The standard RPA formalism of section 1.2 allows us to describe density excitations in the

local limit q→ 0, which are sound waves. However, as sketched in the previous section

1.3, many physical properties of correlated electronic systems depend on spatially nonlocal

response functions: the state of one electron at position ~r influences the state of another

electron at position ~r
′ 6= ~r, which translates into a ~q dependence of the response in reciprocal

space [6,22,23]. Notice that this happens even if the excitation potential is completely local,
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1. ELECTRONIC CORRELATIONS IN METALS

Figure 1.3: Schematic representation of nonlocal response of an electron liquid to an electric
field ~E(~r, t): in real space, electrons - depicted as blue particles - are mutually coherent up to
a distance equal to the mean free path lM F P = vFτc; this coherence volume is represented as
green spheres. Mutually coherent electrons give rise to a nonlocal response, whereby by exciting
locally one electron at coordinate ~r, also other electrons respond at different coordinates ~r

′

and ~r
′′

within the coherence volumes set by lM F P .

limq→0 Vint(~q), because the nonlocality emerges anyway from the q-dependent response

function like the dielectric function (1.15). As we will see in this section, the typical

spatial distance over which electrons respond coherently, and therefore influence each

other nonlocally, is the mean free path lM F P = vFτc, with τc ∈ R+ an interaction-dependent

relaxation time. At distances beyond lM F P , electrons lose coherence and their behaviour

becomes diffusive: hence, the mean free path sets the length scale above which the response

function of electrons is governed by diffusion. This picture is schematically illustrated by

figure 1.3. In ordinary metals, lM F P can increase by some orders of magnitude at cryogenic

temperatures, due to the increase of the relaxation time [3]: for this reason, the results of

this section are relevant for low-temperature metallic systems. When the electronic density
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1.4 Nonlocal density and current responses

n(~r, t) is redistributed in the system by nonlocal perturbations, giving rise to electron

diffusion at distances beyond lM F P , this behaviour is dissipative [22, 23]: in fact, the

change of the local density field causes local relaxation among quasiparticles with energy

dissipation. By the fluctuation-dissipation theorem [14], a change in density in response to

an excitation potential Vint(~q) is given by the density susceptibility (1.2). Here we evaluate

the corrections to the results of the previous section 1.2, when nonlocal correlations are

not negligible. There are many momentum-dependent interaction processes that could

give rise to nonlocality in the density response. How can we distinguish the most relevant

processes in electron liquids? We still retain the quasiparticle picture by which the low-

energy elementary excitations are electron-hole excitations. In the next section 1.4.1, we

will see that a first-order effect of a short-ranged interaction Vint(~q)|q→0 is to generate a

self-energy Σ(~k,ω), the imaginary part of which gives a finite lifetime τl f = τc < +∞ for

quasiparticle excitations. Physically, since we have an interacting quasielectrons ensemble,

the medium react to a density (charge) excitation through a many-body polarization

Πn̂n̂(~q,ω). In section 1.2, we considered a single noninteracting electron-hole bubble (1.5)

for the polarization, according to RPA. This becomes inaccurate for interacting electrons:

the properties of the quasielectron and the quasihole in a bubble are renormalized by the

self-energy Σ(~k,ω), due to interactions with the ensemble. This influences the many-body

polarization of the medium, i.e. Πn̂n̂(~q,ω), which is now calculated with renormalized

propagators [1,2].

Here, we consider the effect of short-ranged impurity scattering in first Born approxima-

tion - see section 1.4.2 - to model the self-energy that we add prior to the RPA resummation.

In this approach, the renormalized electron and hole in a bubble are still noninteracting.

This approximation holds provided that interactions between the renormalized electron

and hole in a bubble are sufficiently weak compared to their energies ξ~k. In this case, we

can neglect vertex corrections, which represent the sum of all irreducible processes that

renormalize the interaction at the vertex of an electron-hole bubble [1, 2, 23]. In this

physical picture, the density response of the system to an external ~q-dependent excitation

is given by an RPA series of nearly-independent electron-hole pairs, renormalized by a

long-wavelength potential V0, e.g. representing impurity scattering. The polarization

bubble of quasielectrons at kF naturally depends on momentum, i.e. it is nonlocal. For

q→ 0+, the simultaneous presence of nonlocality and of a finite quasiparticle relaxation

time τc gives rise to a diffusive pole for the solid angle-averaged polarization 〈Πn̂n̂(~q,ω)〉ang ,

which depends on the mean free path lM F P = vFτc. In view of the arguments above, we
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1. ELECTRONIC CORRELATIONS IN METALS

can write the interacting density susceptibility as

χn̂n̂(~q,ω) =
χ I

n̂n̂(~q,ω)

1− Vint(~q)χ I
n̂n̂(~q,ω)

(1.22)

where the susceptibility χ I
n̂n̂(~q,ω) = −ΠRPA

n̂n̂ (~q,ω) takes into account the finite relaxation

time τc for free propagators, as in section 1.4.1.

In the following sections, we first model the relaxation time τc, then we calculate the

many-body polarization ΠRPA
n̂n̂ (~q,ω), which will lead us to the RPA dielectric properties of

the system.

1.4.1 Single-particle self-energy and lifetime

In RPA, the electron and hole propagators are given by the free particle Green’s functions,

which are written as G 0(~k,ω) = 1
ω−ξ~k in reciprocal space of momentum and frequency. In

the latter expression, ξ~k = E~k −µ are the electron energy eigenvalues E~k at momentum ~k

referred to the chemical potential µ. Being noninteracting, these propagators represent

stable excitations of infinite lifetime. However, single-particle excitations do interact with

their surroundings in practical condended-matter systems. In general, the interacting

propagator acquires a self-energy Σ = Σ(~q,ω), which is the result of all the interaction

processes experienced by the particle throughout its propagation in the ensemble. [1,2].
Intuitively, one can imagine this as the particle “dragging” a cloud of excitations of the

medium, all together forming a quasiparticle with its own velocity, energy, and a finite

lifetime τl f < +∞ due to the dynamical nature of the cloud. The real part of the self-energy

enters into the quasiparticle spectral weight, according to

1

Z(~k)
= 1− ∂ Re

�

Σ(~k,ω)
	

∂ω

�

�

�

�

�

ω=0

(1.23)

If we can neglect the momentum dependence Re
�

Σ(~k,ω)
	≡ Re {Σ(ω)}, then the spectral

weight represents the effective mass of the quasiparticle according to m∗
m =

1
Z(~k)

.

Similarly, the imaginary part of the self-energy gives a finite quasiparticle lifetime

Γ (~k,ω) = −2Z(~k)Im
�

Σ(~k,ω)
	

(1.24)

τl f (~k,ω) =
1

2Γ (~k,ω)
(1.25)

Let us consider the lifetime τc ≡ τl f acquired by quasiparticles in an electron liquid
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(~ k
,ω

)

0

ξ~k

ξ~k +Re
{
Σ

(
~k, ξ~k

)}

2Im
{
Σ

(
~k, ξ~k

)}

ω

A
(~ k
,ω

)

kx

ky
~k

t = 0

~k

t > 0

G (~k, ω) = 1
ω−ξ~k

a)

G (~k, ω) = 1

ω−ξ~k−Σ(~k,ω)

b)

a) b)

~k′

Figure 1.4: Top row: schematic representation of a quasielectron excitation with wave vector ~k
outside of the Fermi surface, at time t = 0. Middle row: evolution of the quasielectron excitation
at time t > 0. In the noninteracting case a), the free quasielectron does not have a self-energy,
and therefore it is a stable excitation. In the interacting case b), the quasielectron interacts
with the Fermi sea, creating other electron-hole excitations and thereby losing momentum and
energy: the quasielectron acquires a self-energy Σ(~k,ω), which implies a finite lifetime τl f and
an increased effective mass. Bottom row: spectral function ~A(~k,ω) = − 1

π Im
�G (~k,ω)

	

[1,9].
In the noninteracting case a), the spectral function is simply a Dirac delta function peaked
at the quasielectron energy ξ~k. In case b), interactions broaden the spectral function to a
lorentzian centered at the energy to ξ~k +Re

�

Σ(~k,ξ~k)
	

and having full width at half maximum
2Im

�

Σ(~k,ξ~k)
	

[1,2].
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1. ELECTRONIC CORRELATIONS IN METALS

that interacts with its surroundings (e.g with the crystalline lattice, impurities and so on)

through a momentum-dependent potential Vint(~q). This can describe the relaxation of

quasielectrons at the Fermi surface, i.e. ~k = ~kF . At low excitation energies and tempera-

tures, the dominant source of finite quasiparticle lifetime is impurity scattering [2], which

originates the residual resistivity of metals. Let the impurity concentration be ni, and the

correspondent potential be Vimp(~q). For many applications, this scattering can be modeled

in the first Born approximation (1BA), taking into account the second (two-scattering)

term in the self-energy expansion

ΣFBA(~k,ω) = + + + . . .

The first term in the series (not shown) gives a constant, which can be reabsorbed into

the definition of the chemical potential µ for all practical purposes [23]. The second (1BA)

term of the series yields a frequency- and momentum- dependent self-energy Σ1BA(~k,ω),
which reads

Σ1BA(~k,ω) =
ni

V
∑

~q

�

�Vimp(~q)
�

�

2

ω− ξ~k−~q
(1.26)

An analysis of 1BA for impurity scattering in metallic hosts near the Fermi level reveals

that, for ~k ≈ ~kF , the self-energy is almost constant with ω [2]. Hence, in many practical

applications (low energy and momentum close to kF), one can take into account the effect

of impurities by introducing a phenomenological self-energy that is purely imaginary

Σ1BA(~k,ω)≈ −iΓ , (1.27a)

Γ = 4πni(V0)
2N el

0 (0), k ≈ kF (1.27b)

where V0 ≡ limq→0 Vimp(~q) is the long-wavelength impurity scattering potential, and N el
0 (0)

is the electron density of states at the Fermi level. The scattering rate (1.27) gives a lifetime

τl f = τc =
1

2Γ . Hence, quasielectrons at the Fermi surface acquire a lifetime through

scattering off the long-wavelength impurity potential V0. Apart from impurities, the same

argument applies to a generic momentum-dependent potential with a well-defined long-

wavelength limit
�

�limq→0 Vint(~q)
�

�< +∞. Hence, we introduce a relaxation rate (1.27b) at

the poles of the quasiparticle propagator [23], as

G (~k,ω) =
1

ω+ iΓ si gn (ω)− ξ~k
(1.28)
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1.4 Nonlocal density and current responses

where 2Γ = 1
τc

.

1.4.2 Renormalized polarization bubble

Given the interacting propagator (1.28), we can calculate the renormalized electron-hole

bubble using the spectral representation of Green’s functions [1,2,23]. We have

χ I
n̂n̂(~q,ω)

= −ΠRPA
n̂n̂ (~q,ω) =

∑

~k,σ

∫

dε1dε2
Γ/π

(ε1 − ξ~k)2 + Γ 2

Γ/π

(ε2 − ξ~k+~q)2 + Γ 2

fF D(ε1)− fF D(ε2)
ω+ i0+ + ε1 − ε2

(1.29)

For long-wavelength excitations, we can expand the ~q-dependent portion of the denomi-

nator in eq. (1.29) according to ξ~k+~q = ξ~k +
1
ħh∇ħh~kξ~k · ~q+ o (q)2. Linearizing the parabolic

dispersion ξ~k =
ħh2k2

2m −µ for ~k ≈ ~kF , we have 1
ħh∇~kξ~k ≡ ~v~k = ħh

~k
m , therefore

χ I
n̂n̂(~q,ω) =

∑

~k,σ

∫

dε1dε2
Γ/π

(ε1 − ξ~k)2 + Γ 2

Γ/π

(ε2 − ξ~k − ~v~k · ~q)2 + Γ 2

fF D(ε1)− fF D(ε2)
ω+ ε1 − ε2

We transform the sum over momentum ~k and spin σ into an integral over energies ξ~k ≡ ξ,

using the total density of states N el
0 (ε) =

∑

~k,σ δ(ε − ξ~k). This way, the sum over ~k

becomes a double integration over the solid angle element dΩa
4π and on surfaces of constant

energy ξ. Having in mind electrons at the Fermi surface, we approximate the density

of states to the constant N el
0 (0) at the Fermi energy. This also fixes the value of the

velocity ~v~k to the Fermi velocity ~vF . Then, we use the property of Lorentian functions
1
π

∫

dξ Γ 2

[(ε1−ξ)2+Γ 2][(ε2−~vF ·~q−ξ)2+Γ 2] =
2Γ

(ε1−ε2+~vF ·~q)2+(2Γ )2 , to obtain

χ I
n̂n̂(~q,ω) =

2ΓN el
0 (0)

π

∫

dεdε2

­

1
(ε+ ~vF · ~q)2 + (2Γ )2

·

ang

fF D(ε2 + ε)− fF D(ε2)
ω+ ε+ i0+

(1.30)

where ε = ε1−ε2; the brackets 〈·〉ang denote the angular integration over the solid angle, i.e.

for a function F(~q,ω)we have 〈F(~q,ω)〉ang =
∫ dΩa

4π F(~q,ω) = 1
4π

∫ 2π

0
dφ

∫ π

0
sinθdθ F(~q,ω),

where θ and φ are the angles formed by ~q in a reference system where one cartesian axis

is along ~vF . We first evaluate the integral over ε in equation (1.30), which allows us to
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1. ELECTRONIC CORRELATIONS IN METALS

find the imaginary part

Im
�

χ I
n̂n̂(~q,ω)

	

= −2ΓN el
0 (0)

∫

dε2

­

1
(−ω+ ~vF · ~q)2 + (2Γ )2

·

ang
[ fF D(ε2 −ω)− fF D(ε2)]

(1.31)

Now we evaluate the integral over ε2, to obtain the imaginary part

Im
�

χ I
n̂n̂(~q,ω)

	

= −
�

2ΓN el
0 (0)ω

(ω− ~vF · ~q)2 + (2Γ )2
�

ang

(1.32)

The corresponding real part of the susceptibility can be calculated from eq. (1.32) using

Kramers-Kronig relations, which are valid for causal functions [4,5]. We have

Re
�

χ I
n̂n̂(~q,ω)

	

= − 1
π
P
∫

dε
1

ω− ε Im
�

χ I
n̂n̂(~q,ε)

	

= −N el
0 (0)

�

(2Γ )2 − (~vF · ~q)(ω− ~vF · ~q)
(ω− ~vF · ~q)2 + (2Γ )2

�

ang

(1.33)

where the symbol P ∫

denotes the Cauchy principal value. We add the real (1.33) and

imaginary (1.32) parts to find the complex polarization bubble

χ I
n̂n̂(~q,ω) = N el

0 (0)
­

~vF · ~q− 2iΓ
ω− ~vF · ~q+ 2iΓ

·

ang
(1.34)

Notice that the result (1.34) is consistent with Kramers-Kronig relations by construction. In

the long-wavelength, low-frequency limit we retrieve the standard result limω→0,q→0χ
I
n̂n̂(~q,ω) =

−N el
0 (0) [1,2]. Equation (1.34) shows that the presence of a long-wavelength impurity-like

potential modifies the density susceptibility with respect to the standard RPA case of section

1.2.

1.4.3 Dielectric properties with nonlocal correlations: density response

Equipped with the renormalized polarization bubble (1.34), we are ready to calculate the

RPA susceptibility (1.22) and the associated dielectric function. In RPA, the many-body

polarization is just ΠRPA
n̂n̂ (~q,ω) = −χ I

n̂n̂(~q,ω) [1,2,23]. Hence, we have

ΠRPA
n̂n̂ (~q,ω) = −χ I

n̂n̂(~q,ω) = −N el
0 (0)

­

~vF · ~q− 2iΓ
ω− ~vF · ~q+ 2iΓ

·

ang
(1.35)
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1.4 Nonlocal density and current responses

The polarization (1.35) still has to be integrated over the relative angle between the

excitation momentum ~q and the Fermi velocity ~vF . We obtain the average polarization by

integrating over the solid angle element dΩa
4π , which gives

ΠRPA
n̂n̂ (~q,ω) =

N el
0 (0)

2

∫ π

0

sinθdθ
vFq cosθ − 2iΓ

ω− vFq cosθ + 2iΓ
(1.36)

The angular integration (1.36) can be performed analytically, with the result

ΠRPA
n̂n̂ (~q,ω) = N el

0 (0)
§

1+
ω

2vFq
ln
�

ω+ 2iΓ − vFq
ω+ 2iΓ + vFq

�ª

(1.37)

We can compare the RPA susceptibility χRPA
n̂n̂ (q,ω) = −Pin̂n̂(~q,ω) obtained from the angle-

averaged polarization (1.37) with the full susceptibility for independent fermions, i.e.

equations (1.7) and (1.8). Equation (1.8) has the same logarithmic structure of equation

(1.37), however the latter is valid in the limit ξ~k+~q = ξ~k+
1
ħh∇ħh~kξ~k ·~q+o (q)2, and it includes

the scattering rate 2Γ . In the case of the nonlocal dielectric response, the interaction

potential is the Coulomb repulsion Vint(q) = VCoul(q) =
e2

ε0q2 . We work in the limit Γ �ω,

meaning that scattering occurs at a much lower rate than the excitation frequency. In this

limit, we can write the prefactor multiplying the square parenthesis in equation (1.37) as
ω

vF q ≈ ω+2iΓ
vF q . This makes the result a function of z = vF q

ω+2iΓ . Using the latter variable, we

have

ΠRPA
n̂n̂ (~q,ω) = N el

0 (0)
§

1+
1
2z

ln
�

1− z
1+ z

�ª

(1.38)

Equation (1.38) coincides with the result obtained from the Boltzmann equation approach

[5]. We expand this result at fifth order in z with 1
2z ln

�

1−z
1+z

�

= −1− z2

3 − z4

5 + o(z7). This

expansion is valid for z→ 0, which overall sets the validity conditions of our analysis to

vFq� 2Γ �ω. Employing aforementioned expansion in z, equation (1.38) becomes

ΠRPA
n̂n̂ (~q,ω) = −N el

0 (0)

3
z2
�

1+
3
5

z2
�

=
N el

0 (0)

3
(vF)2q2

(2Γ − iω)2

�

1− 3
5
(vF)2q2

(2Γ − iω)2

�

(1.39)

In the limit vFq� 2Γ �ω, we can rewrite the q-dependent term in equation (1.39) using

the series expansion 1+ 3
5z2 ≈ 1

1− 3
5 z2 : z→ 0, and we end up with

ΠRPA
n̂n̂ (~q,ω) = −N el

0 (0)

3
z2

1− 3
5z2
= −N el

0 (0)(vFq)2

3(ω+ 2iΓ )
1

ω+ 2iΓ − 3
5
(vF q)2
ω+2iΓ

(1.40)
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1. ELECTRONIC CORRELATIONS IN METALS

We notice that 1
3 N el

0 (0)(vFq)2 = n
mq2 for the 3D density of states N el

0 (0) =
mkF

π2ħh2 and the

Fermi wave vector kF = (3π2n)
1
3 . Hence, the first nonlocal contribution in equation (1.40)

depends on the product (vFq)2, which we can write in terms of a diffusion constant Dd in

d dimensions

Dd =
(vF)2τc

d
=

vF lM F P

d
(1.41)

where we have used equation (1.28) for the collision time τc. One can verify that the

quantity (1.41) has the dimensions of a diffusion coefficient, and that it corresponds to the

classical diffusion constant for electrons characterized by the mean free path lM F P = vFτc

[23]. Physically, this means that electrons are mutually coherent up to a distance r of the

order of lM F P due to nonlocal correlations, while electrons diffuse for distances r > lM F P:

consequently, at first order in momentum we can consider the dielectric response to be

spatially coherent, i.e. nonlocal, for q ≥ 1
lM F P

. We can directly distinguish two contributions

at the denominator of the many-body polarization (1.40): we have the standard pole

1− iωτc of the Drude model for conduction [3–5] and a nonlocal correction that depends

on (vFq)2. This is the fundamental result of this section: the first nonlocal correction to the

many-body polarization gives rise to electron diffusion, characterized by the coefficient

(1.41). On the other hand, we previously argued that density-redistributing nonlocal

correlations are dissipative, hence electron diffusion produces dissipation [12,23,24]. One

can interpret the nonlocal term D3q2τc
1−iωτc

as a frequency-dependent longitudinal viscoelastic

coefficient for the electron liquid, as we will see in section 1.5: the quantum Boltzmann

equation approach tells us that the long-wavelength momentum dependence of the density

response in a Fermi liquid depends on the compressibility and the shear modulus of

the liquid. This makes sense, since the concept of Fermi liquid applies to weak short-

ranged quasiparticle residual interactions, in the same spirit as the regime Vint(q)|q→0→ 0+

considered in this section. Our final task is to relate the many-body nonlocal polarization

(1.39) to the dielectric function ε(~q,ω). In general, this relation is expressed by [2,21]

[ε(~q,ω)]−1 = 1+ VCoul(q)χn̂n̂(~q,ω) (1.42)

For the RPA density susceptibility χRPA
n̂n̂ (~q,ω), equation (1.42) becomes

[ε(~q,ω)]−1 = 1+ VCoul(q)χ
RPA
n̂n̂ (~q,ω) (1.43)

The Coulomb interaction is spatially isotropic, therefore the dielectric function calculated

with equation (1.43) is longitudinal, ε(~q,ω)≡ εL(~q,ω) [5]. Using the result (1.5), equation
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1.4 Nonlocal density and current responses

(1.43) can be rewritten as

εL(~q,ω) = 1+ VCoul(q)Π
RPA
n̂n̂ (~q,ω) (1.44)

Inserting equation (1.40) into the expression (1.44), we obtain the dielectric function

εL(~q,ω). This yields

εL(~q,ω) = 1+ VCoul(~q)Π
RPA
n̂n̂ (~q,ω) = 1− e2

ε0q2

n
mq2

�

ω+ i
τc

�

1

ω+ i
τc
+ 3

5 i (vF )2τcq2

1−iωτc

(1.45)

Notice that the momentum dependence of the numerator in equation (1.45) is canceled,

so the only q-dependent term is the diffusive pole. We recognize the familiar expression

for the electron plasma frequency ωp =
Ç

ne2

mε0
[5]. In the high-frequency regime ω� 1

τc
,

the local limit q→ 0 gives the Drude model [2,4,5]. On the other hand, at finite q and for

ω� 1
τc

, such that vFq� 1
τc
�ω, we have

n
m q2

�

ω+ i
τc

� ≈ n
m q2

ω , so that equation (1.45) becomes

εL(~q,ω) = 1− (ωp)2

ω

1

ω+ i(τc)−1 + i 3
5
(vF )2τcq2

1−iωτc

. (1.46)

Equation (1.46) tells us that long-wavelength nonlocal quasiparticle correlations in the

limit ω � 1
τc

originate a q-dependent correction at the pole of the dielectric function,

with respect to the Drude result εD(ω) = 1− ωp

ω
1

ω+i(τc)−1 [4,5,12]. The dielectric function

(1.46) is longitudinal and stems from the density response of the electron liquid, while the

transverse dielectric function εT (~q,ω) stems from the current response of the system; for

instance, this models the propagation of electromagnetic radiation inside the material. To

analyze such phenomenon, we will dedicate the next section 1.4.4 to the calculation of the

current response. We close this section by deriving the longitudinal optical conductivity

σL(~q,ω) and the associated DC limit ω = 0, based on equation (1.46) [23]. For the optical

conductivity we have have [4,5]

σL(~q,ω) = −iωε0 [ε(~q,ω)− 1] = iωε0

(ωp)2

ω

1

ω+ i(τc)−1 + i 9
5

D3q2

1−iωτc

(1.47)
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Here we assume to be in the clean limit Γ → 0+, so that the condition ω� 1
τc

holds down

to ω≥ 0. The static limit σL(~q,ω)|ω→0+ = σ
DC
L (~q) separates two different regimes:

σDC
L (~q) = iε0(ωp)

2 1

i(τc)−1 + i 9
5 D3q2

=







ne2τc
m : 1

τc
� D3q2

ne2

m
1

9
5 D3q2 : 1

τc
� D3q2

(1.48)

The regime 1
τc
� D3q2 is the local one, giving the standard Drude conductivity ne2τc

m . On the

other hand, in the nonlocal regime 1
τc
� D3q2 transport is governed by diffusion. Equation

(1.48) is one representation of Einstein’s relation, by which dissipative transport equals

diffusivity [12].

We stress that the expression (1.45) for the longitudinal dielectric function is valid

in the limit vFq � 2Γ � ω, which translates as q � 1
lM F P
� ω

vF
, where lM F P = vFτc =

vF
2Γ

is the mean free path at kF . Physically, this means that we need a long mean free path

with respect to the inverse excitation wave vector, such that electrons, that are coherent

up to the length scale of lM F P , can react coherently to the excitation and give rise to a

nonlocal dielectric response. Furthermore, the condition q� ω
vF

tells us that the response

(1.45) is possible only if we are away from the electron-hole Lindhardt continuumω< vFq,

otherwise electron-hole excitations destroy the nonlocal response of electrons through

Landau damping - see also section 1.5.3.

1.4.4 Nonlocal electromagnetic properties: current response

The density response (1.35) to Coulomb interaction is longitudinal: it physically amounts

to moving electrons with an electric potential acting in the same direction. However,

experiments can also probe the transverse response of the electron liquid, whereby the liquid

reacts in the perpendicular direction ~k with respect to the excitation momentum ~q ⊥ ~k: this

is the case of electromagnetic radiation, as the electric ~E(~q,ω)⊥ ~q and magnetic ~B(~q,ω)⊥ ~q
fields of an electromagnetic wave are transversally polarized. The energy resulting from the

interaction of electrons with an electromagnetic field is Vt(t) =
∫

d~r(−e)J(~r)A(~r, t) [2,5],
therefore radiation couples to the current operator ~J(~r, t), thus putting electrons in motion

- see also section 1.3.2 on the photon propagator. The above arguments are reflected by

the fact that the optical conductivity tensor is related to the current-current correlation

function C~Jµ ~Jν(~r,~r ′,ω) [1,2]. This leads to the Kubo formula for the optical conductivity
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tensor

σT,µν(~r,~r ′,ω) =
ie2

ω

�

C~Jµ ~Jν(~r,~r ′, iΩn)
�

�

�

iΩn→ω+i0+
+δµνδ(~r − ~r ′)

〈n(~r)〉
m

�

(1.49)

where m is the electron mass, 〈n(~r)〉 is the local average value of the electron density at

coordinate ~r, and the indexes {µ,ν}= {x , y, z} run through spatial dimensions. The first

term in square brackets comes from the paramagnetic current density components ~Jν(~r),
while the second term is related to the diamagnetic current density [1,2]. If the system is

translationally invariant, the Kubo formula (1.49) assumes a simpler form in reciprocal

space of momenta. Formally, we have

σT,µν(~q,ω) =
ie2

ω

�

χ
µν

~J ~J
(~q, iΩn)

�

�

�

iΩn→ω+i0+
+δµν

n
m

�

(1.50)

with n as the average particle density. The object χµν
~J ~J
(~q, iΩn) appearing in equation (1.50)

is the current-current correlation function, or current susceptibility, in momentum space

χ
µν

~J ~J
(~q,τ) = − 
Tτ~Jµ(~q,τ)~Jν(−~q, 0)

�

, (1.51)

which reflects that the conductivity σT,µν(~r,~r ′,ω) results microscopically from current

correlations. The operator Tτ in equation (1.51) is the time-ordering operator [1]. The

current susceptibility (1.51) can be represented by the following diagram

χ
µν

~j~j
(~q,τ) = −

~kσ

~k+~qσ

~k′−~qσ′

~k′σ′

µ ν

where the two circles are the bare current vertices ħhm
�

kα +
qα
2

�

, α = {µ,ν}. The square
at the center is nothing other than the many-body polarization of the system, which is
Πn̂n̂(~q,ω) for the density response in section 1.4.3, while it is Π~J ~J(~q,ω) for the transverse
current response of section 1.3.1. In the longitudinal channel, the density χn̂n̂(~q,ω) and
current χµν

~J ~J
(~q,ω) susceptibilities are related, and one can derive one from the other

using the continuity equation for the conservation of particle number, that is a Ward
identity [1,2,21]: ∇ · ~JL(~r, t) = − ∂ en(~r,t)

∂ t . However, the transverse response is related to
transverse current densities ~JT and it does not couple to the density, since ∇ · ~JT = 0 in
this case. In the following, we calculate the current susceptibility using directly the Kubo
formula (1.50), in a similar way as we have done for the density susceptibility in section
1.4.3. We neglect renormalizations of the current vertices due to vertex corrections; this
is an approximation, as momentum-dependent interactions can lead to nontrivial vertex
corrections [1]. For the many-body polarization, we take again the impurity-renormalized
particle-hole bubble (1.29), and we sum particle-hole bubble contributions in RPA. Inserting
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the polarization into the Kubo formula (1.50) and employing the spectral representation
of Green’s functions, we have

χ
µν

~J ~J
(~q,ω) =

ħh2

m2

∑

~k,σ

�

kµ +
qµ
2

��

kν −
qν
2

�

∫

dε1dε2
Γ/π

(ε1 − ξ~k)2 + Γ 2

Γ/π

(ε2 − ξ~k+~q)2 + Γ 2

fF D(ε1)− fF D(ε2)
iω+ ε1 − ε2

(1.52)

We consider the diagonal part of the current susceptibility tensor (1.52), which contributes
to the optical conductivity in isotropic solids [1,2,5]. Therefore, we define χ I

~J ~J
(~q, iΩn) =

1
3

∑

α

�

χαα~J ~J (~q, iΩn)
�

, with α= {x , y, z} for isotropic solids in 3 dimensions. Also, knowing

that
∑

α

�

kα +
qα
2

� �

kα − qα
2

�

= k2 − q2

4 , we have

χ I
~J ~J
(~q,ω) =

ħh2

3m2

∑

~k,σ

�

k2 − q2

4

�∫

dε1dε2
Γ/π

(ε1 − ξ~k)2 + Γ 2

Γ/π

(ε2 − ξ~k+~q)2 + Γ 2

fF D(ε1)− fF D(ε2)
iω+ ε1 − ε2

(1.53)

For long-wavelength excitations, we can expand the ~q-dependent portion of the denomina-
tor in eq. (1.52) as in section 1.4.3, according to ξ~k+~q = ξ~k+

1
ħh∇ħh~kξ~k ·~q+o (q)2. Linearizing

the parabolic electron dispersion ξ~k =
ħh2k2

2m −µ close to kF , we have ∇ħh~kξ~k ≡ v~k =
ħh~k
m . Also,

as in section 1.4.3 we transform the sum over momentum ~k and spin σ into an integral
over energies ξ~k ≡ ξ, using the density of states N el

0 (ε) =
∑

~k,σ δ(ε− ξ~k). This way, the

sum over ~k becomes a double integration over the solid angle element dΩa
4π and on surfaces

of constant energy ξ. Then we approximate N el
0 (ξ) to the constant value N el

0 (0) at the
Fermi energy, and this fixes the value of the velocity ~v~k to the Fermi velocity ~vF . Then, using
1
π

∫

dξ Γ 2

[(ε1−ξ)2+Γ 2][(ε2−~vF ·~q−ξ)2+Γ 2] =
2Γ

(ε1−ε2+~vF ·~q)2+(2Γ )2 for Lorentian functions, we achieve

χ I
~J ~J
(~q,ω) =

ħh2

3m2
N el

0 (0)

∫

dξ

�

2m

ħh2 (ξ+µ)−
q2

4

�

·

·
∫

dε1dε2

�

(Γ/π)2

[(ε1 − ξ)2 + Γ 2] [(ε2 − ξ+ ~vF · ~q)2 + Γ 2]

�

ang

fF D(ε1)− fF D(ε2)
ω+ ε1 − ε2

(1.54)

where the angular average 〈·〉ang is defined as in section 1.4.3. We see that two separate

current vertex terms
�

2m
ħh2 (ξ+µ)− q2

4

�

contribute to the energy ξ integral in equation (1.54).

We now evaluate these terms separately. We write

χ I
~J ~J
(~q,ω) = χA~J ~J (~q,ω) +χB~J ~J (~q,ω) (1.55)

χA~J ~J (~q,ω) =
ħh2

3m2
N el

0 (0)

∫

dξ
2m(ξ+µ)
ħh2 ·

·
∫

dε1dε2

­

(Γ/π)2

[(ε1 − ξ)2 + Γ 2] [(ε2 − ξ+ ~vF · ~q)2 + Γ 2]

·

ang

fF D(ε1)− fF D(ε2)
ω+ ε1 − ε2

(1.56)
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1.4 Nonlocal density and current responses

χB~J ~J (~q,ω) = − ħh
2

3m2

q2

4
N el

0 (0)·
∫

dξ

∫

dε1dε2

­

(Γ/π)2

[(ε1 − ξ)2 + Γ 2] [(ε2 − ξ+ ~vF · ~q)2 + Γ 2]

·

ang

fF D(ε1)− fF D(ε2)
ω+ ε1 − ε2

(1.57)

The portion 2m(ξ+µ)
ħh2 in equation (1.56) is related to the k-dependent part of the current

vertex and is a function of energy ξ, which contributes to the optical transport function

Φ(ξ) [25]. With electrons at the Fermi surface in mind, we can approximate the contribution
2m(ξ+µ)
ħh2 ≈ 2mµ

ħh2 ≡ 2mEF

ħh2 , since the transport function has negligible energy dependence around

the Fermi level for common metals [25]; as our calculation is at zero temperature, the

chemical potential is equal to the Fermi energy µ≡ EF [3]. Now we have two terms (1.56)

and (1.57) that contribute to the current susceptibility, with similar mathematical form

apart from a prefactor - 2mEF

ħh2 and − q2

4 respectively. We evaluate these two terms separately

and then we add the result according to equation (1.55); from here, the derivation proceeds

in a similar way as for the longitudinal density susceptibility of section 1.4.3. First, we

write ε = ε1−ε2. Then, we can evaluate the integral over ε in equation (1.56). This yields

Im
�

χA~J ~J (~q,ω)
	

= −4EF

3m
N el

0 (0)
­

Γω

(−ω+ ~vF · ~q)2 + 4Γ 2

·

ang
(1.58)

We use Kramers-Kronig transformations [5] to calculate the correspondent real part, ac-

cording to

Re
¦

χA~J ~J (~q,ω)
©

= − 1
π
P
∫

dε
1

ω− ε Im
¦

χA~J ~J (~q,ε)
©

=
4EF

6m
N el

0 (0)

�−4Γ 2 + ~q · ~vF (ω− ~q · ~vF )
(−ω+ ~vF · ~q)2 + 4Γ 2

�

ang

(1.59)

Adding equations (1.58) and (1.59) gives

χA~J ~J (~q,ω) =
4EF

3m
N el

0 (0)
­

−1
2
+

ω

4iΓ + 2ω− 2~q · ~vF

·

ang
(1.60)

The calculation for the portion (1.57) of the current susceptibility proceeds in the exact

same manner as for the part (1.56), as the first has only the different prefactor q2

4 instead

of 2mEF

ħh2 . The final result is

χB~J ~J (~q,ω) =
ħh2

3m2
N el

0 (0)
q2

4

­

−1
2
+

ω

4iΓ + 2ω− 2~q · ~vF

·

ang
(1.61)

The total q-dependent RPA current susceptibility (1.55) is then

χ I
~J ~J
(~q,ω) =

�

4EF

3m
− ħh

2q2

6m2

�

N el
0 (0)

2

­

−1+
ω

2iΓ +ω− ~q · ~vF

·

ang
(1.62)
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1. ELECTRONIC CORRELATIONS IN METALS

Equation (1.62) is the first fundamental result of this section: it tells us how momentum-

dependent correlations affect the current susceptibility through the Kubo formula, at RPA

level. As for section 1.4.3, we now perform the angular average of the current susceptibility;

the resulting angular integrals are analytical and yield the result

χ I
~J ~J
(~q,ω) = N el

0 (0)

�

−2EF

3m
+
ħh2q2

12m2

�

§

1+
ω

2qvF
ln
�

ω+ 2iΓ − qvF

ω+ 2iΓ + qvF

�ª

(1.63)

Notice the characteristic RPA logarithmic term in equation (1.63), which appears similarly

to equation (1.37) for the density polarization. We are now ready to insert equation (1.63)

into the Kubo formula, to calculate the transverse optical conductivity as

σT (~q,ω) =
ie2

ω

h

χ I
~J ~J
(q,ω) +

n
m

i

(1.64)

We can also calculate the transverse angle-averaged dielectric function, using [4,5]

εT (~q,ω) = 1+
i
ε0ω

σT (~q,ω), (1.65)

in the same way as for the longitudinal conductivity (1.47). Using the expression for the

plasma frequency ωp =
Ç

ne2

mε0
, we obtain

εT (~q,ω) = 1− (ωp)2

ω2
+

e2

ε0ω2
N el

0 (0)

�

2EF

3m
− ħh

2q2

12m2

�

§

1+
ω

2qvF
ln
�

ω+ 2iΓ − qvF

ω+ 2iΓ + qvF

�ª

(1.66)

In the limit q→ 0, we can employ the series expansion 1+ ω
2qvF

ln
�

ω+2iΓ−qvF
ω+2iΓ+qvF

�

= 2iΓ
2iΓ+ω+o(q2);

this way, we retrieve the Drude dielectric function, as it should be:

εT (0,ω) = 1− (ωp)2

ω2
+

2e2

3mε0ω2
N el

0 (0)EF
2iΓ

2iΓ +ω
= 1− (ωp)2

ω2
+

ne2

mε0ω2

2iΓ
2iΓ +ω

=

1− (ωp)2

ω2

�

1− 2iΓ
2iΓ +ω

�

= 1− (ωp)2

ω (ω+ i/τc)
.

On the other hand, in the limit vFq � 2Γ � ω, we can expand the logarithmic term in

equation (1.66) in Taylor series up to second order for q→ 0, similarly to what we have

done in section 1.4.3. We have

εT (~q,ω) = 1− (ωp)2

ω2
+
(ωp)2

ω2

 

1−
ħh2q2

4m

2EF

!

�

2iΓ
2iΓ +ω

− ω(vFq)2

3(ω+ 2iΓ )3
+ o(q4)

�

(1.67)
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The vertex term
ħh2q2

4m
2EF

in equation (1.67) is negligible when ħh
2q2

4m � EF , which means q� kF :

in this case, the excitation wave vector is much smaller than the characteristic momentum

of the electron distribution, given by kF . In this regime, equation (1.67) leads to

εT (~q,ω) = 1− (ωp)2

ω2
+
(ωp)2

ω2

2iΓ
2iΓ +ω

�

1− ω(vFq)2

6iΓ (ω+ 2iΓ )2
+ o(q4)

�

(1.68)

If we resum the second-order term x = ω(vF q)2

3i2Γ (ω+2iΓ )2 in equation (1.67) using 1− x ≈ 1
1+x :

x → 0, we obtain

εT (~q,ω) = 1− (ωp)2

ω(ω+ i/τc)

�

1+
(vFq)2

3(i/τc +ω)2

�

= 1− (ωp)2

ω
�

1+ iωτc + i (vF q)2τc
3(1−iωτc)

� (1.69)

Equation (1.69) is the second main result of this section: we see that, in the long-wavelength

limit, the nonlocal correction to the Drude result for the transverse dielectric function

comes with a pole at the denominator, of the form i (vF q)2τc
1−iωτc

. For this result, the same

considerations as for the longitudinal channel (1.46) hold: the nonlocal term i(vFq)2τc

is dissipative, and therefore it is equivalent to a viscoelastic coefficient of the electron

liquid. Also, notice that the term crosses over from imaginary (dissipative) behaviour

for ωτc � 1, to real (elastic shear) behaviour for ωτc � 1: this precisely follows the

crossover from collisional to collisionless regime of collective modes, that we analyzed in

RPA in section 1.2. Also, the same dissipative correction (1.69) to the Drude result can be

derived through the semiclassical macroscopic phenomenology, by combining the Maxwell

equations of electromagnetism with the linearized Navier-Stokes equation of viscosity [12].
We remind ourselves that the above derivation of the viscoelastic dielectric function relies

on the assumptions vFq� 1
τc
�ω and q� kF - see also section 1.7.2 for the equivalent

semiclassical approach; this is an appropriate limit for optical experiments, as the latter

probe the electron response for q→ 0 [1,5]. Therefore, the results of the present section

provide a microscopic grounding to understand the concept of viscosity in electron liquids,

originated by nonlocal quasiparticle correlations in the long-wavelength limit.

Up to now, the numerical coefficient that we obtained for the viscosity is 1
3 according to

i (vF q)2τc
3(1−iωτc)

in equation (1.69). This contrasts with the Boltzmann equation result (1.109)

for 3-dimensional Fermi liquids, in section 1.5, for which the numerical factor is 1
5 . Such

discrepancy has a physical reason: as pointed out in reference [6], when dealing with

collective modes one has to consider shear deformations of the Fermi surface with shape

changes - see figure 1.7 - and not only compressions and dilations of the Fermi sphere

with volume changes - see figure 1.6. The calculation of the plasmon dispersion is also
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1. ELECTRONIC CORRELATIONS IN METALS

affected, as observed in reference [26]. In other words, the value of kF can vary in different

directions of the Fermi surface under shape changes. On the other hand, in equation

(1.54) we fixed the excitation momentum at ~kF and hence we assumed a single value vF

for the velocity of all reacting electrons, which does not hold under shear deformations

of the Fermi surface. We rather have to consider a distribution of velocities 0 < v~k < vF

for electrons that react to the transverse perturbation, and are still on the Fermi surface,

as done in section 5.4 of reference [5] in the Boltzmann equation approach. This reflects

fact that the current susceptibility problem intrinsically depends on the value of the Fermi

velocity vF . In our case, these arguments lead to the susceptibility

χ I
~J ~J
(~q,~k,ω) =

�

4EF

3m
− ħh

2q2

6m2

�

N el
0 (0)

2

�

−1+
ω

2iΓ +ω− ~q · ~v~k

�

ang

(1.70)

where v~k ≤ vF . We can average this susceptibility along constant energy surfaces [5]: one

has to average over the solid angle as done for equation (1.63), and also to average with

respect to the radial coordinate from 0 to vF , using 3
(vF )3

∫ vF

0
(v~k)

2dv~k χ
I
~J ~J
(q, k,ω), where the

factor 3 comes from the three spatial dimensions. Then, expanding the result in momentum

to order q2, one obtains

εT (~q,ω) = 1− (ωp)2

ω(ω+ i/τc)

�

1+
(vFq)2

5(i/τc +ω)2

�

= 1− (ωp)2

ω
�

ω+ i
τc
+ i (vF q)2τc

5(1−iωτc)

� (1.71)

Equation (1.71) now has the numerical prefactor 1
5 for the nonlocal term, in accordance

with the Fermi liquid 3-dimensional result for the shear viscoelastic coefficent (1.109); the

latter reduces to i (vF q)2τc
5(1−iωτc)

for null Landau parameter F1. Aforementioned observations

highlight the importance of considering correctly shear deformations of the Fermi surface,

in response to transverse currents such as the ones generated by an electromagnetic

wave inside the material. The Boltzmann equation approach for Fermi liquids naturally

distinguishes different kinds of collective modes, of longitudinal and shear character, in

terms of microscopic Landau parameters; the latter are used to decompose the angular

pattern of the Fermi surface deformation in normal modes, as we will see in the following

section. The results will highlight the correspondence with the dielectric and current

response derived for the RPA electron liquid, in sections 1.4.3 and 1.4.4.
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1.5 Microscopic theory of sound excitations in Fermi liquids

1.5 Microscopic theory of sound excitations in Fermi liq-

uids

The phenomenology of Fermi liquids was developed by L. D. Landau in 1957-59, refined

by successive works, and then widely applied to the physics of metals. The essence of this

phenomenology is that a gas of electrically charged interacting particles, like conduction

electrons in a solid, can be described by a system of nearly independent entities, named

quasiparticles. These quasiparticles are approximate excitations of the system at energies

ħhω much smaller than the characteristic kinetic energy of the original particles, i.e. the

Fermi energy EF for electrons. This condition, together with the scattering lifetime and the

strength of mutual interactions between quasiparticles, ultimately set the limits of applica-

bility of this theoretical framework. The Fermi liquid theory is conceptually fundamental,

because it explains why the complicated system of mutually interacting electric charges, like

interacting electrons in a metal, can be regarded as a gas of non-interacting quasiparticles.

For metals, this can appear counterintuitive, because Coulomb interactions are relatively

strong in metallic systems; nevertheless, dielectric screening and generally weak correla-

tions allow to employ a nearly non-interacting gas picture. This simplification provides

the theoretical explanation of why all the results that one obtains from the widely used

free electron model work so well in modeling transport, optics, photoemission, and other

classes of experiments [2]. Furthermore, the quasiparticle concept gives the theoretical

foundation of the semiclassical description. The quasiparticle distribution function satisfies

a kinetic equation, which may include scattering from one state to another, for example

due to impurity scattering. This equation is known as the Landau transport equation, and

it is equivalent to the well-known Boltzmann equation from kinetic gas theory. In this

description, the interaction potential is allowed to vary in space due to some external

perturbation or due to inhomogeneities in the quasiparticle density.

We consider an electronic Fermi sea: electrons occupy states at progressively higher

energies, according to their quantum numbers like momentum ħh~k and spin σ = {|↑〉 , |↓〉}.
In second quantization, we write these eigenstates with the electronic annihilation and

creation operators
�

ĉ~k,σ, ĉ†
~k,σ

�

, so that the ground state of this electronic ensemble is the

product

|OFS〉=
k<kF
∏

~k,σ

ĉ†
~k,σ
|O 〉 (1.72)

where |O 〉 is the vacuum and kF is the Fermi wave vector, defining the Fermi surface; this is
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1. ELECTRONIC CORRELATIONS IN METALS

Figure 1.5: A spherical Fermi surface in 3 dimensions for the Fermi sea (1.72). The Fermi
wave vector is labeled by ~kF . An example of single-particle excitation for this system is depicted
by a little blue sphere, representing a quasielectron promoted above the Fermi level through an
excitation of momentum ~q; the excitation leaves a quasihole in the Fermi sea, shown by the
little white sphere.

fixed by the electron density n and it represents the maximum occupied momentum state in

the non-interacting system at temperature T = 0 [3]. At low excitation energies ħhω� EF ,

the Pauli exclusion principle and the Coulomb potential essentially prevent all but the

electrons in a small momentum shell kF −δk < k < kF , δk→ 0+ around the Fermi surface

to respond to the excitation. Then, a single electron can be promoted in empty states above

the Fermi level, leaving behind a hole in the Fermi sea; however, since all electrons in the

system are correlated, properties like the mass and the lifetime of the excited particle are

influenced by the presence of all other particles, and therefore they will be different from

the ones of independent free electrons. It is customary to say that electrons are dressed

by many-body correlations with all other charges into quasielectrons, which are still single

particle excitations resembling free electrons, but with renormalized properties. These

single excited entities are the Landau quasiparticles, named quasielectrons and quasiholes.

The system (1.72) can be excited by external perturbations through an interaction potential

Vint = Vint(~q), responding to inhomogeneities in particle density n and spin σ excitations:

hence, self-sustained periodic motions of the Fermi surface can spontaneously develop, and

they constitute the collective modes of the Fermi liquid.
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1.5 Microscopic theory of sound excitations in Fermi liquids

1.5.1 Undamped sound collective modes in Fermi liquids

In order to insert the results of later sections into the theoretical framework of Fermi liquids,

we present a detailed derivation of collective excitations for a Fermi liquid, starting from the

results of Abrikosov and Khalatnikov of reference [7]. Following Nozières and Pines [22],
we first write the microscopic hamiltonian for an electrically charged quasiparticle in the

Fermi liquid

Ĥqp(~r, ~p,σ) = En

�

~p+ e~A(~r, t),σ
�

+
∑

~p,σ,~p′ ,σ′
f~p,σ,~p′ ,σ′δN~p′ ,σ′ (~r, t)− eφσ(~r, t) (1.73)

In equation (1.73), we have defined the quasiparticle energy eigenvalues En

�

~p+ e~A(~r, t),σ
�

,

modified by the presence of the vector potential ~A(~r, t), as well as the short-range interaction

matrix elements f~p,σ,~p′ ,σ′ between quasiparticles of momenta
�

~p, ~p
′	

and spin
�

σ,σ
′	

. The

quasiparticle velocities are defined from the crystalline momentum ~vp =∇pEn(~p) =
~p

m∗ . The

nonequilibrium distribution function N~p(~r, t) = δN~p′ ,σ′ (~r, t) +N0

�

En

�

~p+ e~A(~r, t),σ
��

con-

tains the departure of the quasiparticle statistics from local equilibrium N0

�

En

�

~p+ e~A(~r, t),σ
��

,

and can be calculated from particle number conservation and gauge invariance [7,19]. We

also include a scalar potential φσ(~r, t).

Equation (1.73) is valid in the regime kB T � EF and ħhω � EF , with EF =
ħh2(kF )2

2m∗

Fermi energy, with quasiparticles of large lifetime τ~k � 1
EF

and a well-defined Fermi

surface and relative excitation spectrum. Physically, these conditions signify that thermal

agitation and the external perturbation are not so strong to drive quasielectrons completely

out of equilibrium, exciting quasiparticles away from the Fermi level and destroying the

Fermi surface. From the hamiltonian (1.73), one derives a linearized kinetic equation for

quasiparticles of velocity v~k,σ on the Fermi surface, which participate to the collective mode

thus changing the Fermi-surface distribution. The response to the perturbation depends

on the interactions among quasiparticles, which are parameterized by Landau parameters

FS,A
l - see equation (A.10) - and on the angle θ between the excitation wave vector ~q and

the quasiparticle wave vector ~k. We report the entire derivation of the kinetic equation in

appendix A, while here we only quote the final result. It is

�

qv~k,σ cosθ −ω�ε~k(~q,ω) + qv~k,σ cosθ

∫

dΩ
′

4π

+∞
∑

l=0

FS,A
l ℘l(cosθ

′
)ε~k′ (~q,ω) = 0 (1.74)

Given an excitation wave vector ~q and frequency ω, the only unknown parameter left in

equation (1.74) is the first-order Fermi-surface distribution change ε~k(~q,ω), in response

to the perturbation. This distribution change depends on the angular orientation of the
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wave vector ~k with respect to the excitation momentum ~q. Since we expanded the Landau

interaction matrix elements in spherical harmonics, it is convenient to do the same for

ε~k(~q,ω) as well. Hence, we write [7,10]

ε~k(~q,ω) =
+∞
∑

l=0

l
∑

m=0

αm
l (k)εθ ,φ (1.75)

εθ ,φ = Pm
l (cosθ ) cos(mφ)

In the polar coordinates expansion (1.75), Pm
l (z) are the associated Legendre polynomials of

℘l(z) for a given angular index l ∈ N - see appendix A. A displacement of the Fermi surface

as a whole, that corresponds to ordinary sound, is described simply by εθ ,φ∝ cosθ [7],
thus having m = 0; on the other hand, for m = 0 we can also have an anisotropic distortion

of the Fermi surface εθ ,φ, with the Fermi surface being extended in the direction of motion

as we shall see shortly: this corresponds to zero sound, which propagates at sufficiently

high velocities v > vF . A. A. Abrikosov and I. M. Khalatnikov [7] showed that the different

values of m define independent motions. For m = 0, the solution of equation (1.74) is

always a longitudinal wave, passing from collisional ordinary sound to collisionless zero

sound, consistently with the discussion in section 1.2 following equation (1.9). The case

m= 1 implies a transverse oscillation with εθ ,φ∝ cosφ, and we shall derive the explicit

dispersion relations shortly. We notice that the magnitude factor αm
l (k) drops identically

from equation (1.74) because k = k
′
, as only quasiparticles at the chemical potential µ are

involved.

Dealing with density-density excitations, we select the symmetric Landau parameters

FS
l .

We start by considering the first harmonic FS
0 only, with l = m = 0, so that the distribution

function change is εθ ,φ = P0
0 (cosθ ) = 1, and the interaction matrix element is

f~k,σ,~k′ ,σ′ ≡
2

N ∗0 (0)
FS

0 (1.76)

where N ∗0 (0) is the renormalized electronic density of states at the Fermi level, obtained by

using the effective mass m∗. Inserting equations (1.76) and (1.75) into equation (1.74),

we can explicitly find the deviation of the distribution function with respect to global

equilibrium

εθ ,φ(~q,ω) =
qv~k,σ cosθ FS

0

∫

dΩ
′

4π εθ ′φ′ (~q,ω)

ω− qv~k,σ cosθ
=

qv~k,σ cosθ FS
0

ω− qv~k,σ cosθ
(1.77)
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Equation (1.77) demonstrates the earlier statement that, at zero order l = m= 0, εθ ,φ∝
cosθ , with a denominator ω− qv~k,σ cosθ that makes the perturbation anisotropic when

ω> qv~k,σ cosθ .

Inserting back the result (1.77) into equation (1.74) with l = m= 0 and integrating

the angular part
∫

dΩ
′

4π εθ ′ ,φ′ (~q,ω) =
∫ 2π

0
dφ

′ ∫ π
0

dθ
′ sinθ

′

4π

qv~k′ ,σ′ cosθ
′
FS

0

ω−qv~k′ ,σ′ cosθ ′ =
FS

0
2

§

−2+
ω ln|ω+qv~k,σ|

qv~k,σ
− ω ln|ω−qv~k,σ|

qv~k,σ

ª

,

we finally arrive at the dispersion relation [7]

−1+
1
2
ω

qv~k,σ

ln

�

�

�

�

�

1+ ω
qv~k,σ

1− ω
qv~k,σ

�

�

�

�

�

=
1
FS

0

(1.78)

We can solve for the longitudinal sound velocity vS,F L =
ω
q , recalling that the moving

quasiparticles are at the Fermi surface and move at the renormalized Fermi velocity v~k,σ ≈ v∗F .

We obtain

−1+
ζ

2
ln

�

�

�

�

1+ ζ
1− ζ

�

�

�

�

=
1
FS

0

(1.79)

where ζ = vS,F L

v∗F
= ω

qv∗F
. Equation (1.79), obtained from the statistical theory of Fermi liquids,

has the same form as equation (1.10) in RPA, with the - there unspecified - interaction

potential Vint(0)N el
0 (0) substituted by the appropriate interaction Landau parameter FS

0 for

a Fermi liquid. This equivalence stems from the fact that both equations (1.79) and (1.9)

are derived for single electron-hole quasiparticle excitations at the Fermi level, which is

the cornerstone hypothesis of RPA as well as the foundational assumption of Fermi liquid

theory. Also, by retaining only the zero-order interaction matrix elements l = m = 0 in

(A.10) and (1.75), we pose ourselves in the local limit, where there is no dependence of

the interaction matrix elements on the magnitude or the direction of the wave vector ~q: the

only excitation character that can be developed in this limit is longitudinal, in accordance

with the discussion in section 1.2.

Propagating solutions of equation (1.79) exist provided that ζ > 1, while solutions are

damped for ζ < 1, in accordance with the discussion after equation (1.9) of RPA. Therefore,

collective excitations of the form (1.79) are damped longitudinal ordinary sound in a Fermi

liquid when v < v∗F , and are propagating zero sound when v > v∗F : such excitations have

the same properties as in standard RPA, apart from the quasiparticle renormalizations at

the basis of Landau theory. However, if the only Landau parameter is F0, the quasiparticle

mass and velocities are the same as for free particles, because the mass renormalization

m∗ =
�

1+ FS
1
3

�

m depends on the first Landau parameter FS
1 . [6,7] The sound velocity from
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1. ELECTRONIC CORRELATIONS IN METALS

Figure 1.6: Schematic representation of the Fermi surface change due to the isotropic pertur-
bation (1.79) for vS,L < vF : the excitation, associated to the zero-order Landau parameter F0,
is a longitudinal sound, associated to the displacement as a whole of the Fermi surface along
the direction ~k. The Fermi wave vector is labeled by ~kF .

equation (1.79) results [7]

vS,F L =

√

√ FS
0

3
vF (1.80)

Now we go one step further and retain also the first Landau parameter FS
1 : the consequence

will be that there is a distinction between the longitudinal and transverse channels for sound

waves, which is absent if we only consider the zero-order parameter FS
0 . This further step

relaxes the hypothesis of an isotropic local interaction: while still in the long-wavelength

limit q→ 0, FS
1 takes into account the angle θ between the quasiparticle velocity ~v~k,σ and

the excitation wave vector ~q, as well as the angles θ
′
and φ

′
in 3 dimensions between ~k

and ~k
′
. Hence, effects due to the direction ~q are included at first order of interaction. From

equation (A.10) at l = 1, the interaction matrix elements for the Fermi liquid become

f~k,σ,~k′ ,σ′ ≡
2

N ∗0 (0)

�

FS
0 + FS

1℘1(cosθ )
�

(1.81)

On the other hand, the quasiparticle distribution change contains the first two harmonics

l = {0,1} and m = {0,1}, so that the angular portion is εθ ,φ = P0
0 (cosθ) + P0

1 (cosθ) +
P1

1 (cosθ) cos(φ) = 1 + cosθ − sinθ cosφ. To find the dispersion relations in the two

independent channels m = 0 and m = 1, we need to employ the relation between the

Legendre polynomials ℘l(z) and their associated polynomials Pm
l , writing everything in

terms of the latter. Then, using equation (1.81) into equation (1.74), we perform similar
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1.5 Microscopic theory of sound excitations in Fermi liquids

calculations as in (1.77) - (1.79), separating the problem into the independent motions

m= 0 and m= 1. The procedure is analogous to the general solution for any order of l,

which is sketched in appendix B. The final result is the dispersion relations with FS
0 and

FS
1 [7]. In the longitudinal channel m= 0, we have

−1+
ζ

2
ln

�

�

�

�

1+ ζ
1− ζ

�

�

�

�

=
1+ FS

1
3

FS
0 + FS

0
FS

1
3 + FS

1ζ
2

(1.82)

where ζ = vS,F L

v∗F
= ω

qv∗F
again. Notice that equation (1.82) reduces to (1.79) in the limit

FS
1 → 0, consistently; also, notice the normalization factor 1+ FS

1
3 at the numerator, which

enters into the mass renormalization of Fermi liquid quasiparticles [7]. In the transverse

channel m= 1, we obtain

−1+
ζ

2
ln

�

�

�

�

1+ ζ
1− ζ

�

�

�

�

=
FS

1 − 6

3FS
1 (ζ2 − 1)

(1.83)

The collective excitations described by equation (1.83) are transverse sound waves, and

they depend on the first Landau parameter FS
1 : as generally mentioned in section 1.1, this

kind of excitation corresponds to Landau-damped transverse sound when the dispersion

is complex-valued, and it corresponds to propagating transverse zero sound when there

are solutions with real wave vector q and frequency ω; therefore, damped transverse zero

sound occurs for FS
1 < 6, while the transverse sound becomes propagating for FS

1 > 6.

Comparing equation (1.79) to the relations (1.82) and (1.83), we realize that the

inclusion of FS
1 into the Fermi liquid matrix elements enables us to catch new details

of the physics of sound waves: we have two different dispersions for longitudinal and

transverse sound-like excitations in the Fermi liquid. Also, the longitudinal sound (1.82)

exists independently from FS
1 , but its dispersion is modified if FS

1 6= 0: in the language

of hydrodynamics, this means that a pure compressibility stemming from FS
0 does not

reproduce the entire sound dispersion if the shear stresses due to FS
1 become important [6].

On the other hand, the transverse sound (1.83) depends entirely on FS
1 , which determines

the shear modulus and the shear viscosity of a Fermi liquid: shear stresses are fundamental

to describe transverse sound, and we will elaborate more on this point in section 1.7.2.
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1. ELECTRONIC CORRELATIONS IN METALS

Figure 1.7: Schematic diagram to illustrate the distortion of the Fermi surface during the
transition of a transverse zero sound wave, stemming from first Landau paramter FS

1 6= 0,
traveling along the direction ~k: the Fermi surface is elongated in the direction of motion. The
Fermi wave vector is labeled by ~kF .

1.5.2 Collisions in a neutral Fermi liquid: dispersion from liquid he-

lium

The excitation spectrum of an electrically neutral Fermi liquid has been further investigated

by M. J. Lea et al. [10], and later by P. R. Roach and J. B. Ketterson [11], with reference

to transverse zero sound in liquid helium 3He. The work of Lea et al. focused on the

inclusion of the quasiparticle collision time τc: in practice, quasiparticles do not exist

indefinitely in time but collide with each other and decay, transferring momentum and

energy - see the general discussion after equation (A.1). The product between τc and

excitation frequency ω determines the thermodynamic regime in which the perturbation

takes place: for ωτc � 1, within one excitation period ω−1 many collisions can occur

and the quasiparticles are able to redistribute momentum and energy among themselves,

reaching a semiclassical condition of local thermodynamic equilibrium; for ωτc � 1, a

collisionless regime realizes whereby collisions occur on a timescale much larger than ω−1

and quasiparticles respond out of equilibrium. As we already discussed in section 1.2, the

collisional regime ωτc � 1 is the one for acoustic damped sound, while the collisionless

condition ωτc � 1 favors propagating zero sound - see discussion after equation (1.10).

One is able to write the dispersion relation of sound-like excitations for all ωτc. In order

to do so, we have to perform similar calculations as in section 1.5, with the addition of a

collisional term in the Boltzmann-like kinetic equation, as included at the right-hand side

of equation (A.1). The equation for the collective excitations in the presence of collisions
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1.5 Microscopic theory of sound excitations in Fermi liquids

becomes

�

~q · ~v~k,σ −ω
�

ε~k(~q,ω) + ~q · ~v~k,σ

(

∑

~k′ ,σ′
f~k,σ,~k′ ,σ′ε~k′ (~q,ω)δ

�

En(~k
′
,σ

′
)−µ�

)

= I �ε~k(~q,ω)
�

(1.84)

where I �ε~k(~q,ω)
�

= F
¦�

∂ ε~k(~r,t)
∂ t

�

col l

©

is the collision integral, equal to the Fourier trans-

form F { f (x)} of the right-hand side of equation (A.3); it is I �ε~k(~q,ω)
� ∝ 1

τc
in the

relaxation time approximation. This integral is further constrained by particle number,

energy and momentum conservation, as it happens in collisions [7,10]. From this point,

proceeding similarly to the calculations of section 1.5, one can extend the dispersion

relations to finite collision time.

The work by P. R. Roach and J. B. Ketterson [11] extends the previous results by Lea et

al. [10], considering the dispersion relation of the Fermi liquid as a function of the two

symmetric Landau parameters FS
1 and FS

2 . This, together with the inclusion of quasiparticle

relaxation, generalizes the results with respect to the ones of Abrikosov and Khalatnikov [7],
represented by equation (1.83). In the presence of FS

1 , the renormalized Fermi velocity

is v∗F =
vF

1+ F1
3

. The relation for FS
2 = 0 in the transverse channel m= 1 is equivalent to the

result by Lea et al., and reads

(ξ2 − 1)w=
FS

1 − 6− 9/(−1+ iωτc)

3FS
1 − 9/(−1+ iωτc)

where ξ=
iωτc − 1
iτcqv∗F

and w=
1
2
ξ ln

�

ξ+ 1
ξ− 1

�

− 1
(1.85)

The dispersion relation (1.85) describes collective excitations that are linear in q, and

therefore they are a kind of sound according to the definition in the introduction 1.1.

Defining the complex sound velocity ṽS,L =
ω
q , we can calculate the real and imaginary

parts of the ratio
ṽS,L

v∗F
, where v∗F =

vF

1+
FS
1
3

is the Fermi velocity renormalized by FS
1 -related

quasiparticle interactions. The results for the real and imaginary parts are displayed in

figure 1.8 as solid curves, in panels (a) and (b) respectively.

We analyze the collisional regime ωτc � 1, where the quasiparticles have time to

equilibrate by relaxation between successive oscillations at frequency ω: in this case, we

retrieve local thermodynamic equilibrium. The latter implies that quasielectrons respond

like semiclassical particles in local equilibrium, in analogy with hydrodynamical flow in a

classical fluid; therefore we expect to be able to apply hydrodynamics to the Fermi liquid,

characterizing the response with viscoelastic constants obtained from general elasticity
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Figure 1.8: The real and imaginary parts of the complex wave velocity
ṽS,L
v∗F
= ω

kv∗F
as functions

of ωτc for transverse sound in a Fermi liquid, with first Landau parameter FS
1 = 7. Panel

(a) shows the real part of the sound velocity Re
¦ ṽS,L

v∗F

©

, while panel (b) shows the imaginary

part Im
¦ ṽS,L

v∗F

©

. The solid curves stem from equation (1.85). The dashed-dotted curves result
from a series expansion of equation (1.85) to first order in ωτc, and correspond to equation
(1.87). The dotted curves stem from a second-order series expansion of equation (1.85) in
ωτc , according to equation (1.88). The dashed curves correspond to equation (1.91), which
results from a series expansion of equation (1.85) in 1

ωτc
at first order.

theory. We will investigate this approach in detail in sections 1.7.2 and 1.7.2.2, while

now we concentrate on the explicit form of the sound-like dispersion relations. From the

definition (1.85), we can define the sound velocity as ṽS,L =
ω
q as

ξ2 =
i

5ωτc

�

1+
FS

1

3

�

=
1
(v∗F)2

�

ṽS,L +
i
τcq

�2

(1.86)

In the collisional regime, we have ξ2 = i
5ωτc

�

1+ FS
1
3

�

→ +∞ : ωτc → 0 from the

definition (1.85), hence we can expand in Taylor series 1
2ξ ln

�

ξ+1
ξ−1

�

− 1= 1
3(ξ)

2 + 1
5(ξ)

4 +
o
�

ξ6
	

. This way, we can solve for the complex sound velocity ṽS,L at first order in ωτc,

with the result

ṽS,L =

√

√

√
i(v∗F)2

5ωτc

�

1+
FS

1

3

�

ωτc

i +ωτc
=
Æ

iων(0)
1

i +ωτc
(1.87)

Equation (1.87) demonstrates that the transverse collective excitations in the collisional

regime for a Fermi liquid are damped sound waves, since the sound velocity has always an

imaginary part; the modes, depending on the first Landau parameter FS
1 , have transverse

40



1.5 Microscopic theory of sound excitations in Fermi liquids

character [7]. Remarkably, the properties of these excitations can be described in terms of a

single parameter ν(0) = 1
5(vF)2τc

1

1+
FS
1
3

: this turns out to be the shear viscoelastic coefficient

for the Fermi liquid in 3 dimensions at zero frequency, for FS
1 6=, 0 FS

2 = 0, consistently

with equation (1.114) [6, 12]. The imaginary part of the term
p

iων(0)
i+ωτc

is dissipative, as

it gives an imaginary part in the dispersion relation, while the real part is equivalent to

an elastic shear term: for ωτc � 1, the imaginary part is much bigger than the real part,

while increasing the product ωτc makes the real elastic part increase with a corresponding

decrease in the imaginary dissipative part. Therefore, the properties of damped transverse

sound excitations in the collisional regime for a Fermi liquid can be described by a shear

viscoelastic coefficient: the ensemble of quasiparticles behaves like a nonrelaxing fluid

in local thermodynamic equilibrium, for ωτc � 1. Augmenting ωτc makes the viscosity

diminish, until we pass to the different collisionless regime ωτ� 1 with propagating zero

sound. The real and imaginary parts of the sound velocity (1.87) are shown by dash-dotted

curves in panels (a) and (b) of figure 1.8, respectively, for first Landau parameter FS
1 = 7.

Equation (1.87) is asymptotically exact in the limit ωτc → 0, but it fails qualitatively to

reproduce the full transverse sound dispersion (1.85) when ωτc ≈ 1. To improve the

agreement, we go to second order in the ωτc expansion of equation (1.85). The result is

ṽS,L =

√

√

√

√

√

45+ 2FS
1 + 6i 1+

FS
1
3

ωτc

30 (i+ωτc)
2

(ωτc)
2

(1.88)

The real and imaginary parts of equation (1.88) are shown as dotted curves in panels (a)

and (b) of figure 1.8, respectively, for FS
1 = 7. We see that this second order expansion

in ωτc follows the full numerical solution (1.85) qualitatively, although equation (1.88)

becomes inaccurate in the collisionless regime ωτc � 1. Physically, this means that for

ωτc � 1 we cannot describe the Fermi-liquid sound-like excitations as classical waves in a

viscoelastic fluid: as mentioned before, the quasiparticles cannot relax and restore local

equilibrium in the collisionless regime, thus preventing a hydrodynamic description of their

excitations.

Hence, in the opposite collisionless regime, local thermodynamic equilibrium among

quasiparticles is destroyed and the hydrodynamic description ceases to be valid. In such

conditions, we simply retrieve the transverse zero sound mode without collisions, described

by Abrikosov and Khalatnikov in reference [7], and reproduced by equation (1.83). Formally,

in the limit ωτc → +∞, we have ξ = iωτc−1
iτcqv∗F

→ vS,∞ =
ω
q : the velocity of sound becomes a

real number, meaning that the excitations are indeed undamped. In this case, the equation
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for vS,∞ is [7]

−1+
vS,∞

2
ln

�

�

�

�

1+ vS,∞
1− vS,∞

�

�

�

�

=
FS

1 − 6

3FS
1

�

(vS,∞)2 − 1
� (1.89)

Equation (1.89) gives the undamped asymptotic limit of the sound velocity vS,∞; it is a

trascendental equation, the closed solution of which is not known. However, by noting

that vS,∞ increases for growing FS
1 , in the limit vS,∞� 1 and FS

1 � 1 we retrieve

vS,∞ =

√

√

√1
5
(v∗F)2

�

1+
FS

1

3

�

=
p

µs : FS
1 � 1 (1.90)

where µs =
1
5
(vF )2

1+FS
1 /3

is the shear modulus of the Fermi liquid, in the presence of first Landau

parameter FS
1 [7, 19] - see equation (1.109). Therefore, we can describe the velocity of

undamped zero transverse sound for FS
1 � 1 in terms of a single parameter, corresponding to

the shear modulus of the system: from elasticity, this means that physically the Fermi liquid

responds like an elastic solid. This contrasts the situation in the collisional regime, where the

system responded like a viscous fluid as found in equation (1.87). Notice that the relation

between the static viscosity and the shear modulus of a Fermi liquid [7,10,19], namely

ν(0) = µsτc, is obeyed by equations (1.87) and (1.90). For FS
1 > 6, the transverse zero

sound is propagating outside of the continuum of electron-hole quasiparticle excitations,

which provide an additional damping source for FS
1 < 6. For FS

1 → 6+, the sound velocity

vS,∞ → v∗F =
vF

1+
FS
1
3

- see also the RPA solution in figure 1.2. When FS
1 → 6+, the effect

of electron-hole pair excitations starts to influence the propagating sound velocity vS,∞,

which tends to the renormalized Fermi velocity v∗F and deviates from the shear modulus

result
p
µs. This signals that we can treat propagating zero sound with elasticity theory

only for sufficiently high FS
1 � 1, or equivalently vs,∞� v∗F : such condition is consistent

with the general conditions to consider the linear response of a Fermi liquid with elasticity,

see equations (1.95). The numerical solution of the sound velocity for ωτc → +∞ is

reported in figure 1.9, together with the asymptotic large-FS
1 limit (1.90). When we start

decreasing ωτc from infinity, collisions will produce damping of transverse zero sound,

with a nonvanishing imaginary part, even in the propagating condition For FS
1 > 6. We can

42



1.5 Microscopic theory of sound excitations in Fermi liquids

6

vs,∞
v∗F

√
1
5

1+FS
1

3

101 102 103 104

F S
1

100

101

vS,L
v∗F

Figure 1.9: Propagating zero sound velocity
ṽS,L
v∗F
= ω

kv∗F
in the collisionless regime ωτc → +∞

for a Fermi liquid, as a function of first Landau parameter FS
1 > 6. The full curve is the numerical

solution of equation (1.89) and the dashed line is the shear modulus expression (1.90). The
results show that the Fermi liquid in the collisionless limit responds to sound-like excitations as
an elastic solid, for strong quasiparticle interactions FS

1 � 1.

analyze how this occurs by expanding equation (1.85) at first order in 1
ωτc

. We obtain

ṽS,L =
ωτc

i +ωτc p2

i−2ωτc+
FS
1
3 (i+ωτc)

3i+FS
1 (i+ωτc)

− p1 + p2 ṽS,∞

(i +ωτc)p2
(1.91)

p1 = 1− (ṽS,∞)
2 − ṽS,∞

2
ln

�

1+ ṽS,∞
−1+ ṽS,∞

�

+
(ṽS,∞)3

2
ln

�

1+ ṽS,∞
−1+ ṽS,∞

�

p2 =
3
2

�

(ṽS,∞)
2 ln

�

1+ ṽS,∞
−1+ ṽS,∞

�

− 2ṽS,∞ − ln

�

1+ ṽS,∞
−1+ ṽS,∞

��

where ṽS,∞ =
vS,∞

v∗F
. The real and imaginary parts of equation (1.91) are shown as dashed

curves in panels (a) and (b) of figure 1.8, respectively, for FS
1 = 7. Due to collisions,

the zero sound velocity (1.91) has a small imaginary part even for FS
1 > 6 when zero

sound becomes propagating, unlike the ωτc → +∞ limit (1.89). The real part is always

Re
�

ṽS,L

	

> v∗F , demonstrating that zero sound exists above the quasiparticle Fermi velocity

v∗F , consistently with the RPA solution in figure 1.2. For FS
1 < 6, transverse zero sound is

not propagating but damped: the dispersion acquires an imaginary part from
È

FS
1−6

3FS
1

for

FS
1 < 6. This physically results from the Lindhardt continuum of electron-hole incoherent

quasiparticle excitations, which destroy the coherent propagation of collective modes - see
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figure 1.1 and section 1.5.3.

Apart from equation (1.86), slightly different descriptions have been proposed in the

literature. Another derivation of the dispersion for transverse sound has been performed

by Litovitz and Davis [10,27], using a single relaxation time approximation for a classical

viscoelastic fluid. We also mention an analogous result that was given by Bolton [10,28]
for the dispersion of transverse zero sound in Fermi liquids

q2(vFτc)
2 =
−ωτc(1− iωτc)2

i
5

�

1+
FS

1
3

�

+ωτc

(1.92)

Equation (1.92) reproduces qualitatively the transverse sound dispersion throughout the

crossover from collisional to collisionless regime, for FS
1 ≈ 6, and with an overall better

accuracy with respect to the asymptotic limits (1.88) and (1.91). However, for smaller

FS
1 � 6 or larger F1 � 6, the relation (1.92) loses accuracy, even qualitatively for large

FS
1 � 6.

Another example of parameterization of the Fermi liquid transverse sound dispersion

(1.85) is the one of reference [12], the purpose of which is similar to the solution (1.92):

obtaining a parametrization by which we can calculate q(ω) directly with reasonable

accuracy, in the entire crossover from collisional to collisionless regime. By considering a

dispersion of the form q2∝ iωτc

1+
FS
1
3

(1− iαωτc) , α ∈ R with appropriate numerical factors

to approximate equation (1.85), one obtains the following expression [12] which can be

used in the full frequency range:

(qlM F P)
2 =

iωτ~k
5(1+ FS

1 /3)

�

1− i
7
p

F1

32
ωτ~k

�

(1.93)

where vFτ~k = lM F P is the mean-free path. From equation (1.93), we obtain

ṽS,L =

√

√

√

√

−iωτ~k

5
�

1+
FS

1
3

�

�

1− i
7
p

F1

32 ωτ~k

� (1.94)

The parameterization (1.94) is most accurate with respect to the numerical dispersion

(1.85) for first Landau parameter FS
1 ≈ (5÷ 10). The comparison between the ratios

ṽS,L

v∗F
calculated through the full numerical solution (1.85) and the parameterization (1.94) is

shown in figure 1.10 for FS
1 = 7.
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Figure 1.10: The real and imaginary parts of the complex wave velocity
ṽS,L
v∗F
= ω

kv∗F
as functions

of ωτc for transverse sound in a Fermi liquid, with first Landau parameter FS
1 = 7. Panel (a)

shows the real part of the sound velocity Re
¦ ṽS,L

v∗F

©

, while panel (b) shows the imaginary part

Im
¦ ṽS,L

v∗F

©

. The solid curves result from equation (1.85), while the dashed curves are calculated
from the parameterization (1.94).

1.5.3 Landau damping

Apart from quasiparticle relaxation in time τc, collective modes in the system are damped

also by single quasiparticle excitations: when the energy ħhω and the momentum ~q of an

excitation, acting on the state
�

~k,σ
	

, correspond to an available state
�

~k′ ,σ
′	

, the involved

quasielectron makes the transition to the empty level by leaving a quasihole in the initial

state. Given the equivalence of the low-energy single-particle excitations in a Fermi liquid

with the RPA solution, these single-particle excitations are nearly-independent electron-

hole pairs [6]. Such electron-hole pairs are detrimental to the propagation of collective

modes, since they damp and ultimately destroy the coordinated motion of the quasiparticles

participating in the collective excitations, by randomly exciting quasielectrons out of the

oscillation pattern of the given collective mode. With reference to the RPA excitation

spectrum in figure 1.1, we can describe the region affected by Landau damping using

the variables x = q
2kF

and y = ħhω4EF
. The region of the (x , y) plane where particle-hole

excitations do exist corresponds to the region where the susceptibility is damped by an

imaginary part, that is Im
�

χ0
n̂n̂(~q,ω)

	

in RPA. From equation (1.7), one can deduce the

presence of Landau damping when y < x − x2, as well as in he region x2 − x < y <

x2 + x: the latter boundaries represent the minimal electron-hole excitation energy with

a momentum larger than 2kF , and the maximum energy attainable with a momentum x ,

respectively [2]. At low frequency, one can approximate the region of Landau damping with

ω≈ vFq ω→ 0+, q→ 0+. In a Fermi liquid, the dispersion relation {~q,ω} of the sound-like
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mode depends on the magnitude of the residual quasiparticle interactions, characterized

by the Landau parameters (A.8); therefore, the Landau parameters determine whether the

collective mode dispersion falls into a region {~q,ω} where the excitations are damped by

particle-hole pairs, inside the particle-hole continuum. In principle, the dispersion relation

calculated from equation (1.85) has been verified in the context of liquid helium, which is

an archetype Fermi liquid; therefore, one tends to assume that such dispersion is still valid

for electrically neutral fermions in solids, whenever the Landau phenomenology of Fermi

liquids applies. For other types of condensed matter, like in the quantum critical case, the

dispersion relations are drastically different even in the absence of electric charge.

1.6 Quantum critical state

Although the Fermi liquid state is ubiquitous in conventional metals, there are multiple

examples of unconventional metallicity in condensed matter, that one cannot describe

with Landau’s phenomenology. Does this mean that the hydrodynamic perspective, that

we adopted for long-wavelength electron-hole excitations, ceases to be valid? Indeed,

very recently it has been questioned whether the notions of hydrodynamics and viscosity

apply to non-Fermi liquids, which might be realized in the form of strange metals as in

high-Tc superconductors, heavy fermion systems and so forth. It is believed that these

are governed by quantum criticality, meaning that the system undergoes phase transitions

even at zero temperature [29]. At T = 0, the quantum dynamics of such systems would be

scale-invariant, while for T > 0 these are characterized by extremely short "Planckian" [30]
relaxation times τc ≈ τħh ∼ ħh/kB T [29, 31]. In other words, the intrinsic timescale - the

absolutely minimum one - associated with scattering is the one given by the Heisenberg

uncertainty principle: collisions are fundamentally governed by quantum mechanics, and

this imposes a lower bound on all collision-dependent quantities like viscosity. In fact,

we can already see that, inserting τħh ≡ τc into the static viscosity formula ν(0)∝ τc -

see section 1.7.2.2 and paper 1 - the resulting viscoelastic coefficient is very small with

respect to Fermi liquids, due to the smallness of the equivalent mean free path τħh and

the lack of intrinsic microscopic scales like ħh/EF . For these reasons, it has been argued

that quantum critical systems may display the highest possible degree of fluidity, i.e. the

lowest possible viscosity. This got further impetus by the discovery of the "minimal viscosity-

entropy" ratio using the AdS/CFT correspondence [32], which seems confirmed both in

the quark gluon plasma created at the heavy ion colliders [33] as well as the cold atom

unitary Fermi gas [34] . Resting on these ideas, several proposals have been put forward

for applications of quantum critical viscosity to condensed matter, for instance to the

46



1.7 Charged Fermi liquid

temperature-dependent resistivity of the normal state in high Tc superconductors [35–37],
although consensus has not been reached yet. The above arguments suggest that observing

viscoelastic modes in quantum critical matter is much more difficult than in Fermi liquids,

due to the high degree of fluidity of the former. More comments on these matters are

included in paper 1, while in the following we concentrate on charged Fermi liquids as the

archetype application of viscoelasticity.

1.7 Charged Fermi liquid

When electric charge is introduced as a degree of freedom of the Fermi liquid, the excitation

spectrum of the system is modified: the development of electrical conductivity, dielectric

polarization and screening are among the most prominent consequences of long-ranged

Coulomb interactions between quasiparticles. Furthermore, the charge degree of freedom

allows coupling of the system with electromagnetic radiation, usually treated in dipole

approximation [4, 5]; therefore, we can study how the radiation propagates inside the

material, by considering the transverse dielectric response. This analysis is necessary to

perform optical spectroscopy; the latter allows to excite quasiparticle currents in response

to the incident radiation, to observe optical reflection, absorption and transmission, thereby

probing quasiparticle properties and their relative correlations. In metals with weak cor-

relations, the dielectric properties are known [5, 7] and the optical conductivity can be

calculated from RPA in all relevant regimes of momentum and frequency. However, when

correlations come into play, and nonlocal effects start to arise, the picture becomes more

involved, and novel approaches are needed to explore the dielectric response. In this

respect, Fermi liquids provide an optimal playground for the analysis of correlations, given

their much larger sensitivity to nonlocal effects with respect to quantum critical matter [12].

1.7.1 Separation of long-ranged Coulomb interactions

The elementary single-particle electronic excitations in common metals are interacting

quasiparticles: therefore, electrons in solid-state metallic systems commonly form a Fermi

liquid, with the additional challenge of incorporating the presence of electric charge.

In the quantum Boltzmann equation approach of section 1.5, the inclusion of charge

means that electron-hole excitations perceive finite electromagnetic potentials φσ(~r, t)
and ~A(~r, t), which enter into the quasiclassical force (A.4) even in the absence of external

perturbations [23]. Therefore, the interactions among Landau quasiparticles are modified
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by the long-ranged Coulomb interaction VCoul =
e2

ε0q2 . In principle, this poses a problem

since VCoul(q) is divergent for q → 0, while in neutral systems Landau theory assumes

short-ranged quasiparticle interactions with a well-defined long-wavelength limit. The

solution was first found by Silin [38, 39]: effects due to Coulomb interactions can be

separated into a long-ranged part, representing the classical polarization field that provides

dielectric screening, and a short-ranged additional quantum component, driven by the

virtual creation of electron hole pairs around a charged particle. The polarization field

cuts the range of Coulomb interactions to a finite range by dielectric screening, while

electron-hole quantum fluctuations modify the short-ranged quasiparticle interactions of

neutral systems. Once the quasiparticle interactions are expanded in terms of Landau

parameters, the consequence is that the long-ranged spherically symmetric polarization

screens quasiparticle interactions in the isotropic l = 0 channel, thereby modifying the

value of FS
0 only. Hence, Landau parameters are modified by electric charge according to

F̃S
l (~q) =

e2N∗el (0)
ε0q2 δl0 + FS

l [23]. In particular, for transverse excitations in the l = 1 channel,

electric charge does not introduce any momentum dependence of FS
1 . In the charged case,

the only consequence of Coulomb interaction is that FS
1 differs from the correspondent value

in the neutral system, due to the electron-hole short-ranged quantum component. Apart

from the values of Landau parameters, one can expect that collective modes are modified

by the presence of electric charge. The transverse l = 1 channel is particularly intriguing:

such transverse excitations can couple to photons, which allows one to probe Fermi liquid

collective modes in solids through optical experiments. In the following, we analyze the

dielectric response of charged Fermi liquids, and we calculate optical observables which

can reveal the characteristic signature of collective modes.

1.7.2 Viscoelastic dielectric response of a Fermi liquid

Now we are familiar with some basic methods to analyze the dielectric response of materials

from section 1.3, and we understand that long-wavelength correlations in Fermi liquids

as viscoelastic properties of the Fermi surface. Hence, we can ask ourselves what is the

dielectric function of a viscoelastic electron liquid. Elasticity theory of continuous media

provides the answer. This picture provides analytical results for nonlocal correlations, when

the hypothesis for the application to Fermi liquids are satisfied: [6,19]

ω� vFq, (1.95)

q� kF ,
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meaning that elasticity is valid for momentum and frequency away from the particle-hole

continuum, as electron-hole excitations destroy hydrodynamic equilibrium in the Fermi

liquid by Landau damping. These conditions provide the limit in which we derived the

viscoelastic dielectric function from many-body theory in section 1.4.4. In this case, the

Fermi sphere can be effectively treated as a viscoelastic medium, i.e. a viscous fluid in

collisional regime and an elastic solid in collisionless regime; elastic moduli like the bulk

modulus KB or the shear modulus µs, as well as dissipation coefficients like bulk viscosity

ζ and shear viscosity η, correctly describe the response of the material [6]. As described

in section 1.5, in the regime where elastic quantities are well defined, one distinguishes

between two conditions, separated in relation with the momentum relaxation time τc for

quasiparticles: for ωτc � 1, quasiparticles can reach thermodynamic local equilibrium

before their momentum is relaxed, allowing for a hydrodynamic description of the system;

at higher frequencies ωτc � 1, the momentum is destroyed before local equilibrium can

be achieved among the quasiparticles, and the elastic description leaves its place to a

collisionless regime, characterized by vanishing viscosity η(ω)→ 0. Such dichotomy based

on the collision time τc reprises what we discussed for the RPA sound dispersion in section

1.2.

1.7.2.1 Viscoelastic dielectric function

Nonlocal correlations in the regime ω � vFq and q � kF have been analyzed by C.

Conti and G. Vignale applying elasticity theory to an interacting electron liquid [6,19]; in

the following, we derive the longitudinal and transverse dielectric susceptibilities in the

viscoelastic approach, and the respective dielectric functions. Consider the macroscopic

response of a translationally invariant system composed of n particles per unit volume in d

spatial dimensions, with mass m and electric charge e, with respect to an applied electric

field ~E(~r, t): the total electric force acting on the particles will be ~Fel(~r, t) = −ne ∂
~A(~r,t)
∂ t

where we have written the electric field in terms of a vector potential ~A(~r, t), while the

linear response will be given by a particle current density ~J(~r, t) = n ∂ ~u(~r,t)
∂ t , where ~u(~r, t) is

the particle displacement.
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The kinetic equation is given by [6,19,40]

mn

�

∂ 2~u(~r, t)
∂ t2

+
1
τ~k

∂ ~u(~r, t)
∂ t

�

=
∫

d t ′
�

K̃(t − t ′) +
�

1− 2
d

�

µ̃(t − t ′)
�

∇ �∇ · ~u(~r, t ′)
�

+

∫

d t ′µ̃(t − t ′)∇2~u(~r, t ′) + ~Fel(~r, t) (1.96)

In equation (1.96), we have defined the generalized elastic constants of the charged

fluid [6,19]

K̃(t − t ′) = KB(t − t ′) +
d

d(t − t ′)
ζ(t − t ′)

µ̃(t − t ′) = µS(t − t ′) +
d

d(t − t ′)
η(t − t ′) (1.97)

Equation (1.97) contains the bulk modulus KB(t − t ′), the shear modulus µS(t − t ′), the

bulk viscosity ζ(t − t ′) and the shear viscosity η(t − t ′); these four quantities are causal

memory functions depending on the time difference between stimulus and response. Also,

notice that there is no generalized shear modulus in one dimension d = 1, as there can

only be longitudinal stresses along one axis, in the absence of another orthogonal space

coordinate, logically. By Fourier transformation of equation (1.96) to reciprocal space of

wave vectors ~q and frequency ω, we obtain

�

m
τ~k
− iωm

�

~J(~q,ω) =

�

K̃(ω)
n
+
�

1− 2
d

�

µ̃(ω)
n

�

~q · �~q · ~J(~q,ω)
�

iω
+
µ̃(ω)

n
q2

iω
~J(~q,ω) + iωne~A(~q,ω) (1.98)

The elastic constants (1.97), in terms of wave vector ~q and frequency ω, become

K̃(ω) = KB(ω)− iωζ(ω)

µ̃(ω) = µS(ω)− iωη(ω) (1.99)

For a given frequency dependence, the causal memory functions in equation (1.99) are

subjected to Kramers-Kronig relations. For a fluid, the static shear modulus is null µS(0) = 0,

in accordance with the intuitive notion that a liquid has no resistance to shear. On the other

hand, a solid has a finite shear modulus µS(ω). This suggests that equation (1.98) is capable
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of describing both solid and fluid configurations, in the same elasticity formalism [6]. By

decomposition of the vector potential ~A= AL~un + AT ~uΣ into the longitudinal component
~AL = AL~un and the transverse component ~AT = AT ~uΣ, we can similarly decompose the total

current density ~J(~q,ω) = ~JL(~q,ω)~un + ~JT (~q,ω)~uΣ. After some algebra, we arrive at the

expression for the longitudinal current density ~JL = JL~un [6]

JL(~q,ω) = −
n
m e~AL(~q,ω)

1+ i
ωτ~k
−
�

K̃(ω)
n2 + 2

�

1− 1
d

�

µ̃(ω)
n2

�

nq2

mω2

(1.100)

Similarly, the transverse current density ~JT = JT ~uΣ reads

JT (~q,ω) = −
n
m e~AT (~q,ω)

1+ i
ωτ~k
− µ̃(ω)

n2
nq2

mω2

(1.101)

Now, we use the continuity equation ∇ · ~JL(~r, t) = − ∂ [∆n(~r,t)]
∂ t ; after Fourier transformation

to momentum and frequency space, this becomes JL(~q,ω) = −ωq∆n(~q,ω), where ∆n(~q,ω)
is the perturbation in the particle density due to the electric field ~EL(~q,ω). We also need

Gauss law ∇ · ~EL(~r, t) = − en(~r,t)
ε0[εL(~r,t)+1] , where we have defined the relative longitudinal

dielectric function εL(~r, t) [5]. In reciprocal space, the latter dielectric function reads

εL(~q,ω) = 1− (ωp)2

ω2 + iω
τ~k
−
�

K̃(ω)
nm + 2

�

1− 1
d

�

µ̃(ω)
nm

�

q2
(1.102)

In equation (1.102), we have defined the plasma frequency ωp =
Ç

ne2

mε0
. We notice that

the viscoelastic longitudinal dielectric function is nonlocal [6], since it depends quadrati-

cally on wave vector ~q; the nonlocality coefficient is proportional to the generalized bulk

modulus K̃(ω) and the generalized shear modulus µ̃(ω), as defined by equations (1.99).

Furthermore, for vanishing viscoelastic constants (1.99), that is in the local limit K̃(ω)→ 0

and µ̃(ω)→ 0, equation (1.100) reduces to the Drude dielectric function.

We can derive the transverse dielectric function εT (~r, t) [5] analogously, in terms

of momentum ~q and frequency ω, from Maxwell’s equations: from the wave equation

with current density forcing term ∇2 ~E(~r, t)− 1
c2
∂ 2 ~E(~r,t)
∂ t2 = −∇ �∇ · ~E(~r, t)

�−µ0
∂ ~JT (~r,t)
∂ t , and

equation (1.101), we have

εT (~q,ω) = 1− (ωp)2

ω2 + iω
τ~k
− µ̃(ω)

nm q2
(1.103)
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As for the longitudinal channel (1.102), the transverse dielectric function (1.103) shows a

quadratic dependence on momentum ~q, due to nonlocality associated with the generalized

shear modulus µ̃(ω). Also, for µ̃(ω)→ 0 we retrieve the Drude local dielectric function

[4,5]. Notice that the transverse channel εT (~q,ω) gives the transverse dielectric function

of a viscoelastic charged fluid [6]: defining the frequency-dependent cinematic viscosity

coefficient as ν(ω) = i µ(ω)nmω [41], and inserting this relation into equation (1.103), we

obtain equation (3) in reference [12]. We will analyze the transverse collective modes for

a viscoelastic charged fluid in detail, in the following section 1.7.4.

The solutions of the longitudinal dielectric function (1.102) for density-density collective

modes of the types mentioned in section 1.1, correspond to the poles of the density

susceptibility; according to equation (1.43), this also means εL(~q,ω) = 0 [5]. Remarkably,

in the transverse channel (1.103), we immediately recognize a transverse collective mode

whereby εT (~q,ω) = 0 [5]: its dispersion is given by

ω2 + i
ω

τ~k
− µ̃(ω)

nm
q2 = 0 (1.104)

The existence of such a transverse collective mode was pointed out in reference [19], where

this dispersion was described as transverse sound. Indeed, in the collisionless regime

ωτ~k� 1, the transverse sound can freely propagate, as described in section 1.5.2. From

equation (1.104), we find the viscoelastic dispersion

1− µS(ω)− iωη(ω)
nm

� q
ω

�2
= 0 (1.105)

Equation (1.105) allows us to find the transverse sound velocity in a viscoelastic medium,

valid at any dimensionality

ṽS,V E =
ω

q
=

√

√µS(ω)
nm

− iω
η(ω)
nm

(1.106)

The sound velocity ṽS,V E is a complex number in general, meaning that viscosity ν(ω)
damps the sound propagation. Also, knowing that viscosity diminishes [6,12] for ωτc � 1,

the transverse sound will propagate with less and less damping, and the sound velocity

ṽS,V E will essentially be a measure of the shear modulus µS(ω),

ṽS,V E ≈ vS,V E =

√

√µS(ω)
nm

(1.107)

This introduces the shear modulus into play, consistently with equation (1.90) in section
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1.5.2 [10].

1.7.2.2 Elastic constants of a Fermi liquid

For a Fermi liquid, the elastic constants in the static limit ω= 0 are known [7,19]: they

directly stem from the microscopic hamiltonian (1.73) for electrically charged quasiparti-

cles. The derivation closely follows the arguments of section 1.5: we write the linearized

kinetic equation (A.3) for the quasiparticle distribution function f~p,σ,~p′ ,σ′ in terms of Leg-

endre polynomials and Landau parameters Fαn , α= {S, A} [7,8]; this time we retain the

vector potential ~A(~r, t), as we want to calculate the microscopic dielectric response (in

section 1.5 we chose ~A(~r, t) = 0 because we calculated collective modes without fields

and perturbations). Such steps lead to a microscopic expression for the longitudinal and

transversal current densities, ~JL(~q,ω) and ~JT (~q,ω), which are proportional to the vector

potential components ~AL(~q,ω) and ~AT (~q,ω), and therefore can be directly compared with

the macroscopic expression (1.100) from macroscopic viscoelasticity [6,19]. This way, we

obtain explicit expressions for the static limit of the bulk modulus KB(0) = limω→0 KB(ω)
and of the shear modulus µS(0) = limω→0µS(ω) for a Fermi liquid. In d = 3 dimensions

we have

KB(0) =
2nEF

3

1+ FS
0

1+ 1
3 FS

1

(1.108)

µS(0) =
2
5

nEF

1+ FS
2
5

1+ 1
3 FS

1

(1.109)

Likewise, in d = 2 dimensions we obtain

KB(0) = nEF

1+ FS
0

1+ 1
2 FS

1

(1.110)

µS(0) =
1
2

nEF

1+ FS
2
2

1+ 1
2 FS

1

(1.111)

In equations (1.108) - (1.111), we have utilized the symmetric Landau parameters FS
n n=

{0, 1,2}. We notice that the bulk moduli (1.108) and (1.110) employ the zero-order and

first order Landau parameters, while for the shear moduli (1.109) and (1.109) to be

nonzero, one has to include the contribution of FS
1 . This Fermi liquid result is consistent

with section 1.5, where we have shown that we need to include FS
1 to reproduce transverse

zero sound, which depends on a generalized viscoelastic coefficient ν(ω) in the limit q→ 0.

The same holds true for the transverse dielectric response (1.103). In the presence of
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quasiparticle damping τc, we can repeat the analysis on the microscopic hamiltonian

(1.73), now including a damping term in the relaxation time approximation, using the

relaxation time τc [13, 19]. In the long-wavelength limit q→ 0+, we find that the bulk

modulus KB(ω) is not affected by collisions, and is essentially independent of frequency,

KB(ω)≈ KB(0) ∀ω. Then, the generalized bulk modulus in (1.99) becomes

K̃(ω) = KB(0)− iωζ(ω) (1.112)

The complex shear modulus ν̃(ω), on the other hand, is affected by collisions with a

first-order pole in the response

ν̃(ω) =
[µS(ω)− iωη(ω)]

1+ i
ωτc

(1.113)

If we consider a liquid with no shear modulus µS(ω)≈ 0 ∀ω, then equation (1.113) implies

that the shear viscosity η(ω) is damped by a pole due to the collision time τc; this is what

is assumed in paper 1, on the basis of a memory function for the generalized kinematic

viscosity ν(ω). We notice that, in the static limit ω→ 0, we have in d = 3 dimensions

η(0) = µS(0)τc =
2
5

nEF

1+ FS
2
5

1+ 1
3 FS

1

τc =
1
5

nm(vF)
2τc

1+ FS
2
5

1+ 1
3 FS

1

; (1.114)

similarly, in d = 2 dimensions,

η(0) = µS(0)τc =
1
2

nEF

1+ FS
2
2

1+ 1
2 FS

1

τc =
1
4

nm(vF)
2τc

1+ FS
2
2

1+ 1
2 FS

1

. (1.115)

This is consistent with the viscosity parameterization of paper 1, for the frequency depen-

dence of the kinematic viscosity ν(ω) = η(ω)
nm , based on the dispersion relations (1.85) for

liquid helium [10,11]. Furthermore, from section 1.4.3 we understand that this stems from

the nonlocal term at the pole of the RPA dielectric function - see sections 1.4.3 and 1.4.4.

1.7.3 Transverse collective modes in the Drude model

In the absence of nonlocal correlations for Landau quasiparticles, the dielectric response

reduces to the local limit of independent quasielectrons: this is described by the Drude

model for metals in textbooks [4,5]. For future reference and comparison with the corre-

lated charged Fermi liquid, it is instructive to briefly review the collective modes in the
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Drude model. The scattering time τ~k < +∞ models the presence of impurities which

scatter independent quasiparticles. The self-consistent relations stemming from the Drude

dielectric function are
q2c2

ω2
= 1− (ωp)2

ω2 + i ωτ~k
(1.116)

Solving equation (1.116) for q, we have the Drude dispersion relations

q = ± i
p
ω
Æ−iω−ω2τ~k + (ωp)2τ~k

c
p

i +ωτ~k
(1.117)

At first order in ω→ 0, the dispersion relations (1.117) are quadratic in momentum:

q =
ωp

c

Æ

iωτ~k +O(ω
3
2 ) (1.118)

According to equation (1.118), the Drude model has a long-wavelength imaginary part of

the spectrum below the plasma frequency ωp, which appears due to dissipation induced

by a finite scattering time τ~k. The solutions (1.117) are the electromagnetic collective

modes stemming from the coupling of photons to electrons inside the material. Physically,

radiation propagates inside the metal, shaking electrons in response; this response is

affected by any collective mode, characteristic of the electronic ensemble, that resonates

with the exciting radiation: therefore, such photon-electron coupling allows to see the

traces of existing electronic collective modes by analyzing the propagation of radiation.

These light modes coupled to matter are called polaritons [1, 5, 14].1 Equation (1.117)

becomes the propagating transverse plasmon-polariton for ω>ωp, meaning that photons

couple to a propagating transverse plasmon. On the other hand, the dispersion is quadratic

in momentum for ω−ωp→ 0+. In the limit τ~k→ +∞ we have [4,5]

q =
1
c

q

ω2 − (ωp)2 (1.119)

We calculate the full Drude response for any momentum and frequency through the photon

propagator (1.18). Employing the relation betweenAT (~q,ω) and the dielectric function

1In optics literature, it is common practice to refer to polariton modes with the name of the collective
excitation to which photons are coupled: for example, polaritons resulting from coupling to phonons can
directly be called phonon modes; polaritons stemming from coupling to an electron plasmon are simply
named plasmons, and so on.
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Figure 1.11: Imaginary part of the photon propagator ε0(ωp)2 Im {AT (~q,ω)} for the Drude
model (1.120), as a function of adimensional momentum qc

ωp
and adimensional frequency ω

ωp
,

for scattering time τ~kωp = 1000.

(1.21), we obtain

AT (~q,ω) =
1

ε0(ωp)2





�

ω

ωp

�2

−
�

qc
ωp

�2

−
�

ω

ωp

�2
1

�

ω
ωp

�2
+ i ωωp

1
τ~kωp





−1

(1.120)

The correspondent transverse many-body polarization is

Π~J ~J(ω) = ε0ω
2 (εT (~q,ω)− 1)≡ ε0ω

2

�

(ωp)2

ω2 + i ωτ~k

�

(1.121)

We observe that the polarization (1.121) does not depend on wave vector ~q in the Drude

model; this makes the dielectric response (1.120) local in real space of positions ~r. The

imaginary part of the photon propagator (1.120) is due to the presence of scattering. Figure

1.11 shows the imaginary part of the photon propagator ε0Im {AT (~q,ω)}, for a scattering

time τ~kωp = 1000.
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1.7.4 Viscoelastic modes in a Fermi liquid

In section 1.7.2 we have derived the longitudinal and transverse dielectric functions for a

Fermi liquid in the presence of correlations using elasticity theory, in the regime (1.95).

The elastic moduli (1.99) encode residual interactions among Landau quasiparticles and

determine the dispersion and the velocity of the collective modes that propagate inside the

Fermi liquid; microscopically, these elastic constants depend on Landau parameters and

the Fermi velocity. Such collective modes are influenced by electromagnetic radiation due

to the electric charge of quasiparticles. Maxwell’s equations describe macroscopically the

polarization and screening effects due to electromagnetic fields, acting on the interacting

system characterized by the elastic moduli (1.99). Comparing these elastic constants (1.99)

with the results (1.86) and (1.90) for the transverse sound velocity ṽS,L in collisional and

collisionless regime, we see that ṽS,L can be simply regarded as the square root of the

generalized shear modulus µ̃(ω). It is easy to understand this physically: the d’Alembert

equation for an elastic quantity α(x , t) with mass mo is ∂ 2α(x ,t)
∂ t2 − (vw)2

∂ 2α(x ,t)
∂ x2 = 0 with

wave velocity vw =
Ç

KL
mo

, where KL is the elastic constant of the medium. This is also true

for transverse shear modes in a Fermi liquid, to which we can formally assign a generalized

shear modulus

ν̃(ω)≡ i
(ṽS,L)2

ω
(1.122)

in a viscoelastic description. The frequency evolution of the shear modulus µS(ω) and

shear viscosity η(ω) components in equations (1.99), with µS(ω) increasing and η(ω)
decreasing with ω, mimics macroscopically the frequency evolution of the complex sound

velocity ṽS,L in passing from the collisional ωτc � 1 to the collisionless ωτc � 1 regimes.

Therefore, equation (1.122) provides a microscopic interpretation of the generalized shear

modulus in terms of the transverse dispersion relation (1.85), which is valid at RPA level

and at first order in Landau parameters FS
l . Such microscopic interpretation allows us to

directly write the microscopic equivalent of the viscoelastic transverse dielectric function

(1.103) for a Fermi liquid, as

εT (~q,ω) =
(ωp)2

ω2 − �ṽS,Lq
�2
+ i ωτ~k

(1.123)

The form (1.123) allows to directly recognize the dispersion of the transverse collective

modes at the denominator of the dielectric function, to which a scattering term i ωτ~k is added

like in the Drude model for metals [4,5]. Equation (1.123) is the main result of this section.

Writing the relation between the dielectric function and wave vector εT (~q,ω) ≡ q2c2

ω2 for

57



1. ELECTRONIC CORRELATIONS IN METALS

electromagnetic waves, we can find the dispersion of polariton modes, coupled to electronic

collective modes, from the self-consistent relation

q2c2

ω2
= 1− (ωp)2

ω2 − �ṽS,Lq
�2
+ i ωτ~k

(1.124)

Equation (1.124) describes the optical modes that propagate inside the material, in the

presence of nonlocal correlations that are encoded into the complex sound velocity ṽS,L.

As seen in section 1.5.2, ṽS,L depend solely on the viscosity for ωτc � 1, while it depends

only on the shear modulus in the limit ωτc → +∞. In chapter 2, we will focus on the

consequences of these nonlocal self-consistent relations on the surface impedance, on the

electric field spatial profiles, and on the plasmon dispersion, while here we concentrate on

the details of dispersion relations. Hence, solving expression (1.124) for a real frequency

we can obtain the dispersion of the optical modes inside the viscous medium, with a

complex wave vector q ∈ C. We report the details of this analysis in the next sections.

1.7.4.1 The collisionless limit: effective charge solid

In the collisionless limit ωτc → +∞, the transverse mode velocity tends to the real result

vS,∞ according to equation (1.89) [7]. We assume a nonmagnetic medium, with the vacuum

magnetic permeability µ0, and the scattering time τ~k ∝ τc → +∞. The polarization is

affected by the collective mode as [17]

Π~J ~J(~q,ω) = ε0ω
2





(ωp)2

ω2 − �vS,∞q
�2



 (1.125)

Notice that the self-energy (1.125) is nonlocal due to the momentum dependence of the

termω2−�vS,∞q
�2
[5,12,16]. This contrasts with the local Fermi liquid model, in which the

dependence of the self-energy on momentum is neglected [25]. Inserting equation (1.125)

into the dielectric function (1.20) and using the relation εT (~q,ω) = q2c2

ω2 for electromagnetic

radiation traveling inside the medium [5], we arrive at the self-consistent relations for the

collective modes
q2c2

ω2
= 1− (ωp)2

ω2 − �vS,∞
�2

q2
(1.126)
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Figure 1.12: Normalized real part of the dispersion relation Re{q}c
ωp

, as a function of normalized

real frequency o = ω
ωp

, in collisionless regime ωτc → +∞ according to equation (1.127).
Panel (a) shows the massless polariton mode, with quadratic dispersion (1.128) for q → 0.
Panel (b) shows the plasmon-polariton, which propagates above the plasma frequency ωp [17].

The shaded area represents the Lindhardt electron-hole continuum Re{q}c
ωp
≥ c

vF

ω
ωp

. The Fermi

velocity is vF
c = 0.0032. Curves of different colors correspond to first Landau parameter

FS
1 = {1,7, 15}, respectively.

Solving equation (1.126) for qc
ω , we have the two-fold dispersion relation

�

qc
ωp

�2

=

�

ω
ωp

�2 �
1+ ( vs,∞

c )
2
�±

È

(4 ω
ωp

vs,∞
c )2 +

�

ω
ωp

�2�−1+ ( vs,∞
c )2

�2

2( vs,∞
c )2

(1.127)

The real parts of the dimensionless wave vector qc
ωp

for the dispersion relations (1.127) are

shown as a function of dimensionless frequency ω
ωp

in figure 1.12.

From figure 1.12, we see that the polariton in panel (a) is Landau-damped: the dis-

persion is real for all frequencies, according to equation (1.128), but it lies inside the

electron-hole continuum. On the other hand, the plasma-polariton dispersion is intrinsi-

cally damped by a nonzero imaginary part below the plasma frequency ωp, in accordance

with equation (1.129), while it is entirely real above ωp; in the latter case, the mode

propagates undamped outside the Lindhardt continuum. Expanding at first order in ω,

we find that the polariton dispersion from equation (1.127) is quadratic in wave vector,

according to

qc
ωp
=

√

√

√
1

vS,∞

ω

ωp
+O





�

ω

ωp

�
3
2



 (1.128)
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1. ELECTRONIC CORRELATIONS IN METALS

The charged system result (1.128) of photons coupled to electrons contrasts with the

electrically neutral case (1.89), where we have seen that the density collective excitations

have a linear dispersion characteristic of sound-like excitation. This result is consistent

with equation (353) in section XI.c of reference [17], where electromagnetism of the

"‘isotropic Wigner crystal"’ is analyzed: in the collisionless limit, the Fermi sea behaves

like an electrically charged elastic solid, responding with a shear modulus. Our results of

section 1.5.2 allow one to assign a microscopic meaning to the mode velocity vS,∞, (cT in

reference [17]) in the case of Fermi liquids: the collective mode velocity depends on the

residual interactions between Landau quasiparticles. In particular, the result (1.89) is valid

at RPA level and first interaction order l = 1. The Drude model [5,25] shows quadratic

momentum dispersion for q→ 0 only with a finite scattering time τ~k, while the dispersion

is linear for τ~k → +∞. On the other hand, the long-wavelength dispersion (1.128) is

quadratic because of nonlocal correlations, even in the absence of collisions and scattering.

The plasmon propagation can be analyzed by expanding equation (1.126) in Taylor series

around ω
ωp
= 1: at second order in momentum, we have

ω=ωp +
c2 + (vS,∞)2

2ωp
q2 +O

�

q3
�

. (1.129)

Equation (1.129) confirms that the propagating plasmon has quadratic momentum dis-

persion at long wavelengths, with a coefficient that depends on the collisionless sound

velocity vS,∞. For FS
1 � 1, the sound velocity tends to the square root of the shear modulus

according to equation (1.90): therefore, in the presence of strong quasiparticle residual

interactions, the coefficient of the collisionless plasmon dispersion is a measure of the Fermi

liquid shear modulus. However, given that c� vS,∞ in standard metals, the corrections

to the plasmon dispersion (1.129) due to the transverse zero sound velocity are generally

very small, making it difficult to see such corrections experimentally. In order to analyze

the dielectric response at arbitrary wave vector and frequency, we consider the photon

propagator (1.18). For ωτc → +∞, the photon propagator is entirely real, as is the

self-energy (1.125), since vS,∞ ∈ R. Therefore, the response is undamped for all momenta

and frequency, and the collective modes satisfy simplyAT (~q,ω)→∞. The absolute value

of the photon propagator ε0 |AT (~q,ω)| from equation (1.18) is displayed in figure 1.13,

for FS
1 = 7 and vF

c = 10−3.

In the left panel of figure 1.13, we recognize the massless polariton collective mode

which develops at low frequencies consistently with equation (1.127), and which possesses

quadratic momentum dispersion at small momenta as described by equation (1.128). The
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Figure 1.13: Contour plot of the absolute value of the photon propagator ε0(ωp)2 |AT (~q,ω)|
from equation (1.18), as a function of adimensional momentum qc

ωp
and adimensional frequency

ω
ωp

. Panel (a) shows the massless polariton collective mode from equation (1.128); panel (b)
focuses on the high-frequency region with the plasmon-polariton solution (1.129).

right panel of figure 1.13 shows the high-frequency plasmon-polariton solution (1.127). As

seen in figure 1.12, the massless polariton is always Landau-damped, while the plasmon-

polariton propagates outside the Lindhardt continuum. Such features suggest that observing

the quadratic dispersion (1.128) in optical experiments is difficult, even in collisionless

regime. The elastic charge solid that we considered in this section is physically different from

the Wigner crystal [17]: the former is realized in the collisionless limit of non-scattering

Landau quasiparticles, while the latter develops for sufficiently strong interactions in

electron liquids [1]. Our results demonstrate that the charged Fermi liquid responds to

electromagnetic radiation like an elastic solid, with a real shear modulus, in the absence of

scattering.

1.7.4.2 Viscoelastic modes with frequency-independent scattering

When we include scattering and collisions through τ~k ∝ τc < +∞, the self-consistent

relation to solve for polariton modes becomes (1.124). In principle, in a Fermi liquid

τ~k ∝ 1
ω2 - see section 2.5.2.1 - so we should consider frequency-dependent scattering

of collective modes. However, a frequency-independent τ~k is sufficient to qualitatively

illustrate the differences with respect to the collisionless limit; in this section we describe

such qualitative differences, deferring the analysis of the frequency-dependent τ~k to section

2.5.2.1. Here we also set the collision time τc = τ~k for simplicity. The solution for qc
ωp

is

again analytical: when translated in terms of the refractive index n(ω) = qc
ω [4, 5], this
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Figure 1.14: Normalized real part of the dispersion relation Re{q}c
ωp

, as a function of normalized

real frequency ω
ωp

, in collisional regime ωτc < +∞. The Fermi velocity is vF
c = 0.0032 and

the scattering time is fixed to τ~kωp = τcωp = 1000. Curves of different colors correspond
to first Landau parameter FS

1 = {1,7, 15}, respectively. Panel (a) shows the Drude-like mode
(1.118) and the viscoelastic mode (1.130) for q→ 0. Panel (b) shows the plasmon-polariton,
which is the high-frequency continuation of the Drude-like mode (1.118) propagating above the
plasma frequency ωp [17]. The shaded area represents the Lindhardt electron-hole continuum
Re{q}c
ωp
≥ c

vF

ω
ωp

.

solution is equation 4 of paper 1. There, we see that the collective modes dispersion splits

in two different branches, which are frequency-degenerate: for each ω, there exist two

electromagnetic modes inside the viscoelastic Fermi liquid. Expanding the solution for qc
ωp

for ω→ 0, we find a quadratic branch, which coincides with the Drude result (1.118) and

is governed by the scattering time τ~k. However, we also find an additional branch which is

linear in frequency and reads

qc
ωp
=

√

√

√
i +
Æ−1+ 4ν(ω)(τ~kωp)2

2ν(ω)τ~kωp

ω

ωp
+O





�

ω

ωp

�
3
2



 (1.130)

where ν(ω) = ν(0)
i+ωτc

is the viscoelastic coefficient according to equations (1.87) and (1.114)

in collisional regime. The linear dependence q∝ω of equation (1.130) becomes apparent

when we insert the expression for ν(ω). This second mode is governed by the viscoelastic

coefficient of the Fermi liquid. We show the long-wavelength twofold solution (1.118) and

(1.130) in panel (a) of figure 1.14, with continuous and dashed curves respectively. The

parameters are vF
c = 0.0032 and τ~kωp = τcωp = 1000. Different colors correspond to the

calculations for first Landau parameter FS
1 = {1, 7,15}.
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Figure 1.15: Contour plot of the imaginary part of the viscoelastic photon propagator
ε0(ωp)2 Im {AT (~q,ω)} from equation (1.18), as a function of adimensional momentum qc

ωp

and adimensional frequency ω
ωp

. Panel (a) shows the Drude-like collective mode (1.118), while
the viscoelastic mode (1.130) is not visible; panel (b) focuses on the high-frequency region
with the propagating plasmon-polariton.

The viscoelastic mode (1.130) is much more sensitive to FS
1 , since it directly depends

on the viscoelastic coefficient ν(ω). This mode is Landau-damped at all frequencies, as it is

inside the electron-hole continuum as indicated by the shaded area. On the other hand, the

Drude-like mode (1.118) emerges from the electron-hole continuum at sufficiently high

frequency, however it is still intrinsically damped by a finite imaginary part for ω<ωp;

above ωp, this mode becomes entirely real: it is the propagating plasmon shown in panel

(b), which possesses quadratic frequency dispersion for ω≈ω+p . In figure 1.15, we plot

the imaginary part of the photon propagator (1.18) for the parameters vF
c = 0.001, FS

1 = 7

and τ~kωp = τcωp = 1000, employing the transverse viscoelastic polarization [17]

Π~J ~J(~q,ω) = ε0ω
2





(ωp)2

ω2 − �ṽS,Lq
�2
+ i ωτ~k



 . (1.131)

Panel (a) of figure 1.15 shows the Drude-like mode (1.118), while the viscoelastic mode

(1.130) is not visible due to its smaller pole strength: radiation couples much more with

the Drude-like mode than with the viscoelastic one. Panel (b) shows the propagation of

the plasmon-polariton, similarly to the Drude model.
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1.8 Conclusions and perspectives

Conduction electrons form an electrically charged Fermi liquid in many solid-state sys-

tems: the inclusion of electric charge modifies the dispersion relation of collective modes.

Long-ranged Coulomb interactions are screened and form weakly-interacting FS
l charged

quasielectrons, which are spatially coherent up to their mean free path. Such correlations

allow the Fermi liquid to respond to external perturbation with longitudinal (density)

and transverse (current) collective modes. The collective modes influence the many-body

polarization in the material, forming resonant charge responses in correspondence with

the mode dispersion relation ω(~q): this can be described by a nonlocal dielectric function

εα(~q,ω) in the longitudinal α = L and transverse α = T channels, respectively. The

coefficient of the nonlocal momentum dependence is related to the squared phase velocity

ṽS,L of the resonant modes. In the limit q→ 0 according to equation (1.95), away from the

particle-hole continuum, we can treat the collective modes due to quasiparticle correlations

within the viscoelastic model, developed for the electrically neutral case in section 1.5.2:

the Fermi surface resonates with viscoelastic waves, the velocity of which can be described

by generalized elastic moduli as in section 1.7.2. In the transverse channel, the phase

velocity ṽS,L is equivalent to a generalized viscoelastic coefficient ν(ω). In the collisionless

limit τc = τ~k→ +∞, we find a plasmon-polariton, that becomes propagating above ωp,

and a propagating massless phonon polariton. Both branches depend on the velocity vS,L,

equivalent to the collisionless shear modulus of the Fermi liquid. The propagating plasmon

has also quadratic dispersion, with a slope that is controlled by the shear modulus. These

findings are different from the Drude case: for the latter we also have quadratic dispersion

at long wavelengths for the plasmon-polariton and phonon-polariton, but this is due to a

finite scattering time τ~k < +∞, which causes damping of the collective modes for q→ 0.

When we include scattering and collisions, the long-wavelength dispersion splits in two

qualitatively different branches: we have a quadratic tail of the plasmon-polariton governed

by scattering as in the Drude model, and an additional linear momentum dispersion for a

massless phonon-polariton, depending on the viscoelastic coefficient ν(ω): this is due to

the Fermi liquid responding like a viscous relaxing fluid forωτc � 1. The long-wavelength,

low-frequency region q→ 0+, ω→ 0+ of the excitation spectrum is the most affected by

viscoelastic correlations, and is governed by viscosity in the collisional regime, and by the

shear modulus in the collisionless limit. Therefore, an experimental determination of the

long-wavelength dielectric response for clean samples with τc → +∞, or for dirty samples

with ωτc � 1, can provide information on the viscoelastic correlations, through a shear

modulus or a shear viscosity respectively. However, most of the spectrum is dominated
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by the collisionless regime, characteristic of transverse zero sound in electrically neutral

systems. In this case, the dielectric response is qualitatively similar to the Drude results,

and differences due to elastic shear properties emerge only quantitatively.

The analysis of correlations in Fermi liquids through generalized elasticity calls for

possible experimental techniques that are able to probe such effects in condensed matter

systems. One is transport, which could reveal velocity gradients in the longitudinal channel

due to viscoelasticity when we accelerate charged carriers with a voltage [42,43]: this could

distinguish the coherent and diffusive regimes of electron transport, as sketched in section

1.4.3. Moreover, transverse charged collective modes couple to electromagnetic radiation,

which is also transverse and interacts with electric charges: therefore, optical spectroscopy

is able to detect transverse charged collective excitations formed by conduction electrons

in solids. Furthermore, optics probes the long-wavelength region q→ 0 [4,5], which is

also the regime where the viscoelastic model for correlations applies [6,19]: hence, optical

experiments are suitable to investigate effects due to viscoelasticity in the Fermi sea. Based

on the former motivations, we dedicate the next chapter to the calculation of some possible

optical observables in the presence of viscoelastic correlations, such as transmission and

reflection spectra, surface impedance, and real space profiles of the electric field inside the

material.
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Chapter 2
Viscoelastic metals: optical properties

2.1 Introduction

The electron liquid in a metal is able to resonate with collective modes of electron density:

in chapter 1, we have analyzed how these collective excitations emerge in the Fermi liquid

model (1.72), using the diagrammatic as well as the Boltzmann equation approach. In

the long-wavelength limit q→ 0, such modes can be described with viscoelasticity: the

Fermi surface responds to an external excitation by oscillating in space and time, changing

its volume and its shape with an elastic and a dissipative component. The dispersion of

the collective modes changes qualitatively when the electric charge degree of freedom is

considered. This situation applies to metallic solids, where quasielectrons and quasiholes

are electrically charged. We noticed that this polar feature allows for direct coupling of

the viscoelastic collective excitations to electromagnetic radiation, in the limit q → 0:

hence, optical spectroscopy is an ideal way to probe the viscoelasticity of the Fermi liquid.

In this chapter, we calculate various optical observables which can exhibit signatures of

viscoelastic modes. Among these, the optical transmission and reflection of thin metallic

films, the surface impedance, and the plasmon dispersion can directly show the presence

of viscoelastic correlations with available experimental techniques. Moreover, the spatial

profile of the decaying electric field inside the material shows oscillations as a function of

depth from the sample surface, due to nonlocal correlations. The viscoelastic effects are

seen in metals at low temperatures, since in this case the mean free path lM F P becomes

some orders of magnitude longer than at room temperature: this makes the dielectric

response nonlocal, as we have seen in section 1.4.

In the next section, we begin by considering the effects of viscoelastic modes at the

conceptual level, before proceeding with some examples of practical implementations using
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2. VISCOELASTIC METALS: OPTICAL PROPERTIES

realistic material parameters. Among all possible applications, Terahertz transmission

spectroscopy is a suitable method to probe viscoelasticity in metallic slabs, as we will see

by comparing our calculations with experimental data on epitaxial aluminium thin films

grown on sapphire substrates.

In order to provide qualitative predictions of optical observables in the entire frequency

range available in experiments, we have to specify the different scattering mechanisms that

occur in metallic solids, and their respective temperature and frequency dependences. As

we have seen in chapter 1, Fermi liquid theory provides a solid foundation to understand

scattering in metals. The results obtained for a temperature-dependent but frequency-

independent scattering time from Fermi liquid theory are summarized in paper 1, at the end

of this chapter. However, when dealing with real systems, additional scattering and collision

mechanisms play an important role, with respect to pure Fermi liquid phenomenology,: the

phonon contribution at room temperature, and the residual impurity scattering at T → 0 -

see section 1.4.1 - can overcome the Fermi liquid component, effectively destroying the

signatures of viscoelasticity. We consider qualitatively such effects in the calculations of

the finite-temperature results, through the Bloch-Gruneisen formula for phonons and a

low-T impurity contribution. These arguments will allow us to consider the transmission

spectrum of Fermi-liquid thin films, and the occurrence of negative refraction.

2.2 Optics of viscoelastic charged fluids

2.2.1 Viscoelastic refractive indexes

Nonlocal correlations modify the dielectric function, which is the cornerstone of optical

observables calculations. Nonlocality can be treated diagrammatically in self-consistent RPA,

as we have seen in section 1.4.3, or equivalently with hydrodynamics [6,12], considering

the transverse linear response of the electrons as a viscoelastic liquid [12] - see section

1.7.2. The refractive index, describing the dispersion and absorption of electromagnetic

radiation inside matter [5], is defined as

n(ω) =
Æ

εT (~q,ω) =
s

εT

hω

c
n(ω),ω

i

(2.1)

where we have used the dispersion relation q = ω
c n(q,ω) for plane electromagnetic waves

inside a medium [5]. When we insert the viscoelastic transverse dielectric function (1.103)

into the relation (2.1), we realize that the equation for n(ω) is of second order, therefore

there are two solutions {n1(ω), n2(ω)} for each frequency. We can interpret this physically
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2.2 Optics of viscoelastic charged fluids

as follows: for each incident electromagnetic wave of a given frequency, there exist two

frequency-degenerate and mutually coherent polariton modes, that can propagate through

the material: this phenomenon depends on the nonlocal dielectric response at finite q, due

to the presence of viscoelastic correlations. The fourfold solution for the refractive indexes

reads

2[n j(ω)]
2 = 1− 1− iωτ~k

ω2νcτ~k
±
√

√

√

�

1+
1− iωτ~k
ω2νcτ~k

�2

+ i
4(ωp)2

ω3νc
(2.2)

where j = {1,2} for plus or minus sign respectively, and νc =
ν
c2 is the viscoelastic coefficient,

with c velocity of light in vacuum. For long-wavelength collective modes in a Fermi liquid,

ν is connected to the mode velocity and corresponds to equation (1.122). Out of the four

mathematically possible solutions (2.2), two of them are excluded on the basis of the

physical argument that electromagnetic waves are damped in space and time throughout

their propagation inside the medium, due to absorption [4,5]: this requires Im
�

n j(ω)
	

> 0,

so that only the two solutions (2.2) that satisfy this criterion are physical.

An intriguing aspect of this phenomenon is that n2(ω) can develop negative refraction

in a specific low-frequency regime, which depends on the collision time τc and on the

Fermi velocity vF . Negative refraction means Re {n2(ω)} < 0 [44], which implies that

radiation propagating inside the material disperses in an opposite way with respect to the

standard case Re {n(ω)}> 0. This generates a variety of new physical properties, which

impact the space-time evolution of electric ~E and magnetic ~H fields, and are potentially

useful for applications [45]. Some examples are: self-focusing of radiation, which allows

to make a perfect lens that goes beyond the diffraction limit; amplification of evanescent

electromagnetic waves in the near field; opposite energy flux, given by the Poynting vector
~S = cε0

~E × ~H, with respect to the phase velocity vp =
ω
q ; tuning of the spatial profile

of ~E and ~H inside a material. Such physical properties have already been tested using

artificial optical nanostructures, i.e. metamaterials, which are specifically designed to

show negative refraction [45]. However, there are chances to find negative-refracting

systems even in natural materials: the results of chapter 1 tell us that it is possible to probe

finite-momentum physics with light in a Fermi liquid, and in such conditions negative

refraction can occur according to eq. (2.1). This aspect is further investigated in paper 1.

2.2.2 Reflection and transmission of layers on a substrate

The mode bifurcation, caused by the presence of two refractive indexes (2.1), directly

impacts the absorption and dispersion of radiation, which leaves specific signatures in the

spectrum of transmission t(ω) and reflection r(ω) as a function of frequency, for semi-
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infinite interfaces as well as for thin films. The physical reason for this is that the modes

{n1(ω), n2(ω)} are frequency-degenerate mutually coherent, therefore they can interfere

constructively or destructively for different ω, giving rise to standing-wave oscillating

patterns in the optical spectra. In general, the expressions for transmission and reflection

depend on the constitutive relations at the boundaries of the system, with vacuum or

with another material: this tells us how intensity and phase of radiation are modified in

traversing an interface between different media; such material-dependent information

complements the Maxwell equations of electromagnetism, giving a well-defined problem

which often admits solutions in closed form. In the following, we consider radiation at

normal incidence with respect to the viscoelastic sample surface, with z as the propagation

direction. This way, the problem for the electric field ~E = ~E(z) becomes one-dimensional.

The Maxwell equations provide the conditions that E(z) and its space derivative ∂ E(z)
∂ z

are continuous at the interface. Since we are dealing with a viscoelastic fluid, additional

constitutive relations can be retrieved from hydrodynamics, specifically from the properties

of Newtonian fluids: while they react to an electric field, the fluid particles also interact with

the sample boundaries, which affects the spatial velocity profile in the fluid. In particular,

the tangential friction per unit area κ exerted by the moving fluid on the boundary of the

solid is, in leading order, proportional to the velocity at the interface z = 0,i.e. κv(0). In

equilibrium, this has to be balanced by the force exerted by the velocity gradient of the

viscous fluid, η ∂ v(z)
∂ z , where η = nmν is the dynamic viscosity - see section 1.7.2. This leads

to the Navier constitutive relation [46]. To be specific, we consider an electromagnetic

wave of frequencyω propagating along z from −∞ to the sample, which has one boundary

defined by the plane z = 0 and the other by z = d. Part of the wave is reflected back, with

an amplitude characterized by the reflection coefficient r, the amplitude transmitted to

z > d is characterized by the transmission coefficient t. This way, we arrive at the following

three constitutive relations at the two interfaces:

E(0−δ) = E(0+δ) E(d −δ) = E(d +δ) (2.3a)

∂ E
∂ z

�

�

�

�

0−δ
=
∂ E
∂ z

�

�

�

�

0+δ

∂ E
∂ z

�

�

�

�

d−δ
=
∂ E
∂ z

�

�

�

�

d+δ

(2.3b)

1
λs
=
∂ lnυ
∂ z

�

�

�

�

0+δ

∂ lnυ
∂ z

�

�

�

�

d−δ
=
−1
λs

(2.3c)

The constant λs = η/κ is the slip length, where λs = 0 (λs =∞) corresponds to the

interface being maximally rough (smooth).

Since the refractive index solution (2.1) is twofold, inside the slab the wave-amplitude

is a superposition of 4 modes, corresponding to counter-propagating waves for each
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mode [5,12]:

E(z)/E(0) =















eikz + re−ikz (z < 0)

t1ein1kz + θ1e−in1kz + t2ein2kz + θ2e−in2kz (0< z < d)

teikz (z > d)

(2.4)

Since Im
�

n j

	

> 0, the two terms e−in j kz diverge exponentially for z→∞. Hence, in the

limit of a half infinite sample θ1 and θ2 converge to zero, and only t1 and t2 contribute to

the transport of electromagnetic radiation into the material.

The case of a single vacuum-viscoelastic matter interface and of a free-standing vis-

coelastic slab in vacuum are fully treated in paper 1. However, many slab samples of interest

for our studies are epitaxially grown on top of a substrate. For this reason, it is convenient

to generalize the problem to the one of a viscoelastic film attached to a non-viscoelastic sub-

strate. This will allow us to directly compare our calculations with Terahertz transmission

measurements of Al/sapphire structures. Assume a substrate having refractive index nS(ω)
and thickness dS, obeying the standard Fresnel equations of reflection and refraction [4,5].
Moreover, let us assume radiation impinging first on the substrate. Reflection/transmission

at the substrate/sample interface of a half-infinite sample requires to combine Eqs. 2.4

with aforementioned constitutive relations at the substrate-matter interface at z = 0. It is

worth mentioning that the Navier condition (2.3c) is applied to current density ~J = nm~v,

which is proportional to the time-derivative of the electric field:

~J j(z,ω) = −iε0ω
¦

�

n j(ω)
�2 − 1

©

t1E(z), j = {1, 2} (2.5)

Notice the presence of two additive components J(z,ω) = J1(z,ω)+J2(z,ω) for the current

density, due to the two mutually coherent viscoelastic optical modes. Some algebra leads

to the transmission coefficients at the substrate-film interface

t1 =
2nS

n2 + nS

¨

n1 + nS

n2 + nS
−
�

λs
ω
c n1 + i

� �

(n1)2 − 1
�

�

λs
ω
c n2 + i

�

[(n2)2 − 1]

«−1

(2.6a)

t2 =
2nS

n1 + nS

¨

n2 + nS

n1 + nS
−
�

λs
ω
c n2 + i

� �

(n2)2 − 1
�

�

λs
ω
c n1 + i

�

[(n1)2 − 1]

«−1

(2.6b)

where the frequency dependence of the refractive indexes is implicit for compactness. The

reflection coefficient stems from

r f s = 1− t1 − t2 (2.7)

71



2. VISCOELASTIC METALS: OPTICAL PROPERTIES

Equation (2.7) is also useful when we have to consider internal reflections in a substrate of

thickness dS: at the substrate-film interface, the viscoelastic properties of the slab influence

the reflected waves inside the substrate. On the other hand, at the vacuum-substrate

interface we can apply the standard Fresnel equations [5], which give a transmission

coefficient

tvS =
2

1+ nS
(2.8)

and a reflection coefficient

rSv =
1− nS

1+ nS
(2.9)

Notice that equations (2.6a) and (2.7) consistently reduce to equation (7) of paper 1 if the

substrate is substituted with vacuum, i.e. nS ≡ 1.

In the case of transmission through a viscoelastic slab of thickness d, with substrate on
the left side and vacuum on the right one, the field inside the film is a superposition of
all 4 solutions of Eq. 2.4 for 0 < z < d. This approach automatically takes into account
Fabry-Perot interference of the electromagnetic modes inside the slab [4]. Taken together
with the reflection amplitude r f ilm for z < 0 and the transmission amplitude t f ilm for z > d,
the problem corresponds to a system of 6 linear equations with 6 unknown parameters.
We take four of these combinations, and we employ the constitutive relations 2.3a, leading
to the matrix expression











1+ n1
nS

1− n1
nS

1+ n2
nS

1− n2
nS

(1− n1) f1 (1+ n1)/ f1 (1− n2) f2 (1+ n2)/ f2

(1− n2
1)(1− n1ξ) (1− n2

1)(1+ n1ξ) (1− n2
2)(1− n2ξ) (1− n2

2)(1+ n2ξ)
(1− n2

1)(1+ n1ξ) f1 (1− n2
1)(1− n1ξ)/ f1 (1− n2

2)(1+ n2ξ) f2 (1− n2
2)(1− n2ξ)/ f2





















t1

θ1

t2

θ2











=











2

0

0

0











(2.10)

where we use the compact notations f1 = ein1kd , f2 = ein2kd and ξ = iλk. The matrix (2.10)

corresponds to equation (9) of paper 1, for nS ≡ 1: only the first row is different for nS 6= 1,

due to the condition ∂ E
∂ z

�

�

0−δ =
∂ E
∂ z

�

�

0+δ being modified by the presence of a substrate. Matrix

inversion provides t1, θ1, t2 and θ2, from which the reflection and transmission coefficients

of the film are obtained using the remaining two constitutive relations

rS f = t1 + θ1 + t2 + θ2 − 1

t f =
t f ilm

tvac
= e−ikd

�

t1ein1kd + θ1e−in1kd + t2ein2kd + θ2e−in2kd
	 (2.11)

where, as in experimental practice, the transmission is calibrated against the transmission

through a slice of vacuum with the same thickness, d, as the film.
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Being equipped with the results (2.6a)-(2.11), we are ready to solve the entire problem

of transmission through the substrate-sample structure. If we neglect internal reflections

inside the substrate, the first-echo transmission is simply

t(1) = tvSeiknS dS t f (2.12)

since the radiation enters the substrate, travels for a thickness dS, then it enters the

film and exits in vacuum after internal reflections in the viscoelastic slab. Additional

internal reflections in the substrate can be taken into account using the thin-film geometric

series [47]

tF P,S = tvSeiknS dS

�

1+ rS f rSve2iknS dS +
�

rS f rSve2iknS dS
�2
+ · · ·

�

(2.13)

For infinite reflections, the total contribution is then

tF P,S =
tvSeiknS dS

1− rS f rSve2iknS dS
(2.14)

and the total transmission through substrate and layer becomes

t(∞) = tF P,S t f (2.15)

The expressions (2.12) and (2.15) find an immediate application in the analysis of Terahertz

time-domain transmission spectroscopy [48,49]: indeed, subsequent pulses in the time-

domain interferogram correspond to an increasing number of internal reflections (2.13)

inside the substrate, provided that dS � d; the first pulse only contains internal reflections

inside the slab, which is described by equation (2.12). In section 2.3, we will apply

the formalism developed so far to a structure composed of an aluminium thin film on a

sapphire substrate, in order to demonstrate the presence of nonlocal correlations at low

temperatures.

2.2.3 Surface impedance

Another optical observables which is affected by a nonlocal dielectric response, and that

one can measure with state of the art equipment, is the surface impedance Z = Z(ω, T)
of a metal. Here below, we calculate those effects for a viscous charged fluid, and later

we specialize to the Fermi liquid case, which gives a higher chance of observing viscous

phenomena with respect to the quantum critical case 1.6, the latter possessing a very high
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degree of fluidity [35]. Our result will allow us to compare the viscoelastic model for a

Fermi liquid to the full nonlocal theory of anomalous skin effect by G. E. H. Reuter and E.

H. Sondheimer [50,51].

In general, the complex surface impedance Z = Z(ω, T ) is defined as the ratio of the

electric field ~E normal to the surface of a metal to the total current density ~J induced in

the material [4,5]

Z(ω) =
E(z,ω)z=0+

∫ +∞
0

J(z,ω)dz
(2.16)

Here, we defined the orthogonal coordinate z with respect to the metallic surface z = 0.

J(z,ω) is the spatially dependent current density per unit area, which decays with increasing

distance z from the surface. We begin by recalling the standard Fresnel expression for the

reflection coefficient

rD(ω) =
1− n(ω)
1+ n(ω)

(2.17)

From there, the surface impedance is easily obtained through the general relation valid for

specular reflection at normal incidence, at the boundary between vacuum and a dielectric

medium [5]

r(ω) =
ZD(ω)− Z0

ZD(ω) + Z0
(2.18)

with Z0 vacuum surface impedance, which we set to 1. The Drude surface impedance

becomes ZD(ω) =
1+r(ω)
1−r(ω) ; considering equation (2.17), this gives simply

ZD(ω) =
1

n(ω)
(2.19)

The graphs of the real and imaginary parts of the Drude surface impedance are well

analyzed in multiple references; see for example [4] and [5].
Now, we derive an explicit expression for the surface impedance in the viscoelastic model

[12], for a vacuum-viscoelastic layer interface. In this case, the refractive indexes of the

two degenerate electromagnetic modes are given by equation (2.2), and the transmission

and reflection coefficients at such an interface are given by equation (7) of paper 1, or

equivalently by equations (2.6a) and (2.7) with nS ≡ 1.

We can again employ the general relation (2.18) for the surface impedance, which

gives Z(ω) = 1+r(ω)
1−r(ω) ; inserting the expression for the viscoelastic reflection coefficient r,

we obtain

Z(ω) =
n1 + n2 + i λs

c ω
�

1− (n1)2 − (n2)2 − n1n2

�

1+ n1n2

�

1− i λs
c ω(n1 + n2)

� (2.20)
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One can verify that the surface impedance (2.20) reduces to the Drude expression (2.19)

consistently, whenever only one optical mode is propagating in the metal, that is n1→ +∞
or n2→ +∞: this is the standard, non-viscous limit. Notice that, given that the dielectric

function ε = ε(~q,ω)which generates the refractive indexes (2.2) is nonlocal, the expression

(2.20) describes nonlocal electrodynamics: the material reacts to the incident electric field

not only locally at z = 0, but quasiparticles respond collectively also at other coordinates

z > 0 inside the medium, up to a distance of the order of the mean free path lM F P; this is

reminiscent of the phenomenon of electron diffusion, which we studied diagrammatically

in section 1.4. In the context of optics, the nonlocal response modifies the usual exponential

damping of electromagnetic waves inside a metal due to screening, i.e. skin effect, so

that radiation can penetrate more inside the material than in standard conditions: this is

called anomalous skin effect. Indeed, we will see that the surface impedance derived in the

context of viscosity reproduces the anomalous skin effect of metals, whereby a nonlocal

dielectric response arises at low temperatures [12] - see also paper 1. On the other hand

general theory of nonlocal response for anomalous skin effect [50,51] requires numerical

integration of the nonlocal kernel, in order to calculate the surface impedance Z(ω) from

the spatial distribution of the current response. The viscoelastic approach, while showing

slight quantitative differences with respect to the full numerical output, has the advantage

of giving a simpler solution in closed form, which still reproduces the same physics - see

figure 2 of paper 1, and figure 2.1.

After the work by Pippard [52–54], who developed an effective model to interpret

experimental results on the dielectric response at cryogenic temperatures, it is customary

to plot the surface impedance as 1
Re{Z(ω)} as a function of the square root of the Drude

conductivity
p
σD; the latter is defined as [3]

σD =
ne2τ~k

m
(2.21)

In passing, we notice that equation (2.21) corresponds to the local regime of the DC

conductivity (1.48).

Given the proportionality between the Drude conductivity σD and the scattering time

τ~k in equation (2.21), it is sufficient for us to make the graph of 1
Re{Z(ω)} as a function

of pτ~k. The result is shown in figure 2.1: the cases of slip lengths
λsωp

c = {0, +∞}
are shown as the red and gold line, respectively; the dashed gray line shows Drude

result (2.19)for comparison. The frequency is ω = 0.001ωp, and we have utilized the

viscosity parameterization (1.94) of paper 1 with vF
c = 0.001, τc = τ~k meaning umklapp
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vF
c
= 0.001

αU = 1, F1 = 6

Drude

λSωp

c
= 0

λSωp

c
→ +∞

Figure 2.1: Inverse real part of the surface impedance 1
Re{Z(ω)} , given by equation (2.20), as a

function of the square root of the scattering time
p

τ~k, for τ~k = τc and
λsωp

c = {0, +∞} (red
and gold curves, respectively); the Drude result (gray dashed curve) from (2.19) is also shown
for comparison. The frequency is fixed to ω= 0.001ωp, and the viscosity is calculated from
the parameterization (1.94) with vF

c = 0.001, τc = τ~k meaning umklapp efficiency αU = 1, and
F1 = 6.

efficiency αU = 1, and F1 = 6. From figure 2.1, we see that the viscous response shows

the same saturation of 1
Re{Z(ω)} with scattering time τ~k, which is typical of anomalous

skin effect, consistently with the phenomenological model by Pippard [52–54] and with

the nonlocal theory by Reuter and Sondheimer [50]; this kind of saturation has been

observed experimentally for metals at low temperatures [52,55]. On the other hand, the

classical Drude response (2.19) keeps increasing with scattering time, without saturating.

Hence, the viscoelastic approach reproduces anomalous skin effect - see also figure 2 of

paper 1: this makes sense, as anomalous skin effect is another manifestation of nonlocal

electromagnetic response of the material, which can be interpreted as the transverse

response of a viscoelastic fluid - see section 1.4.4.
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2.2.4 Electric field profiles

The effect of viscoelastic modes can be seen in the spatial damping of an electromagnetic

wave, with electric field E(z,ω), penetrating inside the medium: the dielectric screening,

which causes the damping of the field intensity as the wave propagates through, is influenced

by nonlocal correlations, so that the standard exponential attenuation predicted by the

classical skin effect [4,5] is modified [12]. Hence, as for the thin film transmission, we

expect the interference of the optical modes (2.2) to cause a standing wave pattern in

the electric field profile |E(z,ω)|
|E(0,ω)| as a function of spatial coordinate z, superimposed to

the exponential damping of each mode. When the transmission coefficient {t1, t2} at

the vacuum-medium interface z = 0 has comparable modulus for the two modes, the

aforementioned standing wave oscillations can be observed. In principle, one could also

think to find a region of parameter space where only n2(ω) is transmitted through a

vacuum-viscous medium interface, while n1(ω) is totally reflected, in order to isolate the

negative-refracting mode. However, as demonstrated in appendix C, it is impossible to

transmit only one degenerate mode through an interface, so both modes always contribute

to the transmission inside a viscous medium.

If the two modes {n1(ω), n2(ω)} always appear in pair through an interface, we can

still see if it is possible to modulate their intensity as they propagate inside the material,

along the normal coordinate z to the surface. From equations (2.2) and (C.1), we are able

to calculate the electric field intensity at a distance z > 0 through

|E1(z) + E2(z)|2
|E(0)|2 =

�

�t1ei ωc n1(ω)z + t2ei ωc n2(ω)z
�

�

2
(2.22)

with {E1(z), E2(z)} electric field at distance z > 0 for modes 1 and 2, respectively. This

equation can be separated into an incoherent part, giving the two exponential dampings of

the modes inside the material, and a coherent part, stemming from the interference of the

two modes [56]; the expression, valid for any pair of complex-valued fields, is

�

�t1ei ωc n1(ω)z + t2ei ωc n2(ω)z
�

�

2
=
�

�t1ei ωc n1(ω)z
�

�

2
+
�

�t2ei ωc n2(ω)z
�

�

2

+ 2Re
�

t1ei ωc n1(ω)z
�

t2ei ωc n2(ω)z
�∗	

(2.23)

Separating real and imaginary parts for the refractive indexes n1(ω) and n2(ω), we can

recognize the two attenuations of the fields
�

~E1(z), ~E2(z)
	

, which follow the standard
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exponential evolution individually

�

�~E1(z) + ~E2(z)
�

�

2

�

�~E(0)
�

�

2 =
�

�t1ei ωc Re{n1(ω)}z
�

�

2
e−2ωc Im{n1(ω)}z

+
�

�t2ei ωc Re{n2(ω)}z
�

�

2
e−2ωc Im{n2(ω)}z

+ 2Re
�

t1ei ωc n1(ω)z
�

t2ei ωc n2(ω)z
�∗	

(2.24)

The third term in equation (2.24) tells us that a possibility to observe the effects of viscosity

is to analyze the coherent interference between the two degenerate modes. We cannot go

much further than equation (2.24) analytically, without making assumptions. However,

we know that the condition for the standing wave patterns, between the two electric fields
�

~E1(z), ~E2(z)
	

, to be visible is that the intensity of the two modes is comparable [12], in

other words |t1| ≈ |t2|. Therefore, in this condition equation (2.24) is simplified, and the

interference term Iint = 2Re
�

t1ei ωc n1(ω)z
�

t2ei ωc n2(ω)z
�∗	

becomes simply

Iint = 2 |t1| |t2| e−
ω
c (Im{n1(ω)}+Im{n2(ω)})z cos

h

φ1 −φ2 +
ω

c
(Re {n1(ω)} − Re {n2(ω)})z

i

≈ 2 |t1|2 e−
ω
c (Im{n1(ω)}+Im{n2(ω)})z cos

h

φ1 −φ2 +
ω

c
(Re {n1(ω)} − Re {n2(ω)})z

i

(2.25)

where φ j = Ar g
�

t j

	

, j = {1, 2}. Equation (2.25) tells us that the coherent interference

part Iint is exponentially attenuated, depending on the sum of the imaginary parts of

the refractive indexes of the two modes, and has an oscillatory pattern, depending on

the difference between the phases of the transmission coefficients t1 and t2, and on the

difference between the real parts of the two refractive indexes n1(ω) and n2(ω). For

compactness, we rewrite the total field profile as

Itot =

�

�~E1(z) + ~E2(z)
�

�

2

�

�~E(0)
�

�

2 = I1 + I2 + Iint (2.26)

where we have defined the individual exponential attenuations of the mode fields
�

~E1(z), ~E2(z)
	

Iα = |tα|2e−2ωc Im{nα(ω)}z, α= {1, 2} (2.27)

We show the full electric field profile given by equation (2.22), together with the coherent

interference pattern of equation (2.25), and the exponential attenuations in (2.27), in

figure 2.2.

These calculations are made for τ~kωp = 1000, with τ~k = τc = τ̄, τc collisional
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I1 I2 ItotIint
ω/ωp = 0.01
νcωp = 0.005

τ~kωp = τcωp = 1000
λs → +∞

0 2 4 6 8 10 12
z ωp/c

10−16

10−11

10−6

10−1

Figure 2.2: Electric field profile as a function of propagation distance
zωp

c , given by equation
(2.22), together with the coherent interference pattern of equation (2.25), and the exponential
attenuations in (2.27). The parameters are: τ~kωp = 1000, with τ~k = τc = τ̄, τc collisional
lifetime, and ν(ω) = νc

1−iωτ̄ [12]; νcωp = 0.005; ω = 0.01ωp. We assume a perfectly clean
surface of infinite slip length, λs→ +∞.

lifetime, and ν(ω) = νc
1−iωτ̄ [12]. The viscoelastic coefficient is set to νcωp = 0.005, and the

frequency isω = 0.01ωp. In principle, both the scattering time and νc depend on frequency,

as we will know for Fermi liquids; however, having fixed ω = 0.01ωp, we can think of

figure 2.2 as an example of results at fixed radiation frequency. We assume a perfectly

clean surface of infinite slip length, λs → +∞. Being νcτ~k(ωp)2 > 1, and τ~kω > 1, the

character of the modes n1(ω) and n2(ω) is swapped, that is n2(ω) goes to the standard

Drude result for zero viscosity, while n1(ω) is the additional mode due to viscosity, which

disappears for νc = 0 [12]. Here, we see that the total field profile Itot follows the damping

constant of mode n2(ω) close to the interface z = 0: this happens because n2(ω) has a

higher intensity I2 close to the interface, with respect to I1, for low enough frequency.

Being the mode n2(ω) associated to the standard Drude result in this case, we conclude

that the transmission close to z = 0 still follows a conventional exponential attenuation

according to the classical skin effect [5]. On the other hand, after zωp/c ≈ 6, the profile

Itot undergoes a slope change, and follows the damping constant of the other mode n1(ω),
which is the additional mode associated to viscosity effects. The argument shows that,

even when we do not see the coherent oscillating pattern Iint between the two viscous

modes, we can in principle detect the presence of viscosity by looking at the exponential

attenuation constant of the field profile, far from the interface z� 0: for a viscous system
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in the regime τ~kω> 1, the damping will be governed by the viscous mode n1(ω), and not

by the standard mode n2(ω) that is present also in the Drude case; in other words, this is

another demonstration that viscoelasticity alters the damping constant of the exponential

attenuation of the electric field, with respect to the standard classical skin depth [4, 5].
Figure 2.2 also shows that the oscillation patterns of the profile (2.22) are seen when the

intensities I1 and I2 of the two modes have comparable magnitude, consistently with the

discussion preceding equation (2.25); indeed, the periodicity of the coherent oscillations

Iint follows the approximation Iint ∝ cos
�

ω
c (Re {n1(ω)} − Re {n2(ω)})z

�

, consistently with

(2.25).

A finite slip length λs < +∞ can modify the results of figure 2.2: in general, lower slip

lengths enhance viscoelastic effects due to additional friction of the fluid at the boundary of

the sample, however the interference pattern in figure 2.2 results from bulk propagation of

the modes and should not be influenced significantly. On the other hand, the ratio between

I1(z) and I2(z) may be more influenced by λs < +∞ near the boundary z = 0. The results

in figure 2.2 cannot easily be tested experimentally, as ideally one should insert local probes

of the electromagnetic field along its propagation inside the material; also, realistic samples

have a finite thickness d and hence have two boundaries: the two modes mix together

once again when transmitted on the other side of the sample. However, viscoelastic effects

can leave visible traces in metallic slabs at low temperature: the next section is dedicated

to the problem of THz transmission of such thin films.

2.3 Low-frequency application: Terahertz transmission

Having highlighted some of the most prominent consequences of viscoelastic correlations

for optics, the natural follow-up question is whether such signatures can be identified in

experiments using current technology. In section 2.2, we have seen that possible probes

of viscoelasticity involve the interference between the modes (2.2) inside the medium,

which recombine coherently at the sample boundaries and affect the laws of transmission.

However, metallic samples are highly reflecting below the plasma frequency ωp, and they

effectively screen any electric field within a distance of the order of the skin depth [5]:
bulky samples can be excluded for such reason, and this suggests the utilization of thin

metallic films, to obtain a sufficiently high intensity in transmission mode. Furthermore,

since the results of section 2.2.2 affect both the modulus and the phase of the transmission

coefficient t(ω), it is convenient to employ an experimental technique that is able to record

both the intensity and the phase information, like time-domain Terahertz spectroscopy.

In this case, one propagates a pulse in the THz frequency range through a sample, and
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measures the transmitted electric field ~E(z, t) as function of time t. This is made possible

by the simultaneous presence of two optical lines for pulses, one passing through the

sample and the other through vacuum; the detector measures the time delay between the

two recombined lines, giving a time-domain interferogram that encodes the interaction of

radiation with the sample. The transmission spectrum is obtained by Fourier transform of

the collected interferogram and calibration against the transmission in vacuum (without

sample but with the sample holder, in practice). Further details on Terahertz spectroscopy

can be retrieved in multiple reviews [5,48,49].

We now employ the formalism developed in section 2.2.2 to a structure composed of

an aluminium layer on a sapphire substrate (Al/sapphire). In this case, we can benefit

from a simplification of the formalism, as the scattering time τ~k and the collision time τc

have negligible frequency dependence in the THz regime, and they roughly correspond to

their DC (ω= 0) value. Then, the only relevant parameter for scattering is temperature.

In this section, we take the empirical approach of extracting the scattering time from

the T -dependent electrical resistivity, given by the Drude expression (2.21) [3]. In the

following, we set the collision time to τc = τk for maximum umklapp efficiency [12].
Knowing the experimental resistivity ρel := 1

σD
, for the given material such as aluminium

Al, we can therefore calculate the scattering time τk from (2.21).

From the experimental resistivity ρel(T) values, we checked the consistency of the cal-

culated scattering times τk for each temperature T ; for example, for aluminium Al at

room temperature T = 300 K , the resistivity is ρel = 4 10−8 Ωm, and knowing the plasma

frequency ωp = 15.7924 eV , the resulting scattering time is τk = 0.492 10−14 s, which is

about half the value τk = 0.8 10−14 s quoted by Ashcroft and Mermin [3] at page 10, for a

slightly lower resistivity of ρel = 2.45 10−8 Ωm.

The calculation of the transmission t(ω, T ), for different temperatures T , follows from

section 2.2.2. For aluminium, we employ the plasma frequency ωp = 15.7924 eV [3],
obtained from a free electron density of n = 18.1 1022cm−3 [3]. The slab thickness

is chosen to be d = 100 nm. Table 2.1 reports the given value of resistivity ρel(T) at

temperatures T = 300 K and T = 5 K; the latter has been calculated from the RRR ratio of

100, as RRR= ρel (300)
ρel (0)

, assuming a linear temperature dependence of ρel(T ) in the entire

temperature range.

Employing equation (2.21) on the T = 5 K case of table 2.1, we find a mean free path

λM F P = 864.3 nm, which is longer than the film thickness d = 100 nm. We assume the

first Landau parameter F1 = 6; the viscosity at zero frequency is set by
� vF

c

�2
= 4.556 10−5.
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T [K] ρel(T ) [µΩ cm] τk [10−14 s] ν(0)
�

m2

s

�

300 4 0.492 1.34310−3

5 0.046 42.783 0.117

Table 2.1: First column: temperature; second column: experimental values of the electrical
resistivity ρel(T) for aluminium, with a RRR ratio of 10; third column: scattering time for
the aluminium plasma frequency ωp = 15.7924 eV ; fourth column: zero-frequency cinematic

viscosity coefficient ν(0) = η(0)
nm according to equation (1.114).

The clean limit of a smooth surface, with infinite slip length λs → +∞, and the dirty

limit of a maximally rough boundary λs = 0, are both considered for each temperature.

For the substrate, we assume an oxide with frequency-independent dielectric function

εs = 10+ i0.01∀ω, giving a refractive index ns =
p
εs. The substrate thickness is set to

ds = 0.5 mm.

With aforementioned parameters, we can compare the viscoelastic results from equation

2.13 with the standard Drude case. For the latter, the transmission coefficient from film to

substrate t f s, and the reflection coefficients from film to substrate r f s and from substrate to

film rs f , comprising Fabry-Perot reflections, [4,5,47] give equivalent results with respect

to the limit ν→ 0.

We focus on the first transmission echo: this corresponds to radiation first traversing

the substrate with no Fabry-Perot internal reflections, then traversing the viscoelastic film

with internal reflections, and finally being transmitted to vacuum. Subsequent echoes

correspond to an increasing number of Fabry-Perot round trips into the substrate, as

mentioned in section 2.2.2, and therefore they carry no additional information on the

metallic layer. Notice that we must take into account reflections inside the layer because

d � dS: radiation can bounce back and forth inside the thin slab many times during a

single substrate transmission, while it would take much more time to produce internal

substrate reflections.

Figure 2.3 shows the viscoelastic transmission modulus
�

�t(1)(ω)
�

� for the first echo as a

function of frequencyω in the THz regime. Panel (a) shows the results at T = 300 K , while

panel (b) shows the computations for T = 5 K , according to the scattering time in table 2.1.

Solid curves stem from the viscoelastic expression (2.12), for slip length λs = {0, 1,+∞}.
The Drude case is reported as a dashed gray line for comparison.

Panel (a) of figure 2.3 demonstrates that the effects of viscoelastic correlations at room

temperature are negligible with respect to the low-temperature case, as all solid curves are

in the range
�

�t(1)(ω)
�

�= {1÷ 3} 10−3 in the shown frequency interval. Nevertheless, the
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Figure 2.3: Absolute value of the transmission coefficient
�

�t(1)(ω)
�

� for the first THz transmis-
sion echo of an Al slab of thickness d = 100 nm on a sapphire substrate of thickness dS = 0.5 mm.

The blue, red and gold curves correspond to the results for a slip length
λSωp

c = {0, 1,∞}
respectively. The Fermi velocity is

� vF
c

�2
= 4.556 10−5, and the first Landau parameter is FS

1 = 6.
The dashed gray curve is the Drude result, for the same parameters.

T = 5 K situation of panel (b) shows a qualitatively different evolution with frequency for

the viscoelastic model:
�

�t(1)(ω)
�

� increases with frequency in the THz regime, while in the

Drude case the transmission decreases up to ω≈ 25 cm−1 and then it stays in the range
�

�t(1)(ω)
�

�= {1÷ 4} 10−7 in the shown frequency interval.

Figure 2.4 shows the phase of the viscoelastic transmission coefficient Ar g
�

t(1)(ω)
	

in

radians for the first echo, divided by frequency ω in cm−1, as a function of ω. Panel (a)

reports the results at T = 300 K , while panel (b) shows the output for T = 5 K . The color

code of all curves is the same as for figure 2.3.

The room-temperature normalized phase in panel (a) of figure 2.3 shows the same

behaviour as the correspondent modulus in figure 2.3, in that differences with respect to

the Drude model only appear at the third decimal digit. However, the T = 5 K situation of

panel (b) highlights non-neglibile effects due to correlations: the decrease with frequency

is less pronounced for the viscoelastic case with respect to the Drude result, particularly

for a small slip length λs→ 0.

2.4 Fermi liquid quasiparticle scattering time

Increasing frequency from the THz regime, scattering starts to exhibit a non-negligible fre-

quency dependence, which must be considered in calculations. In order to model this effect

83



2. VISCOELASTIC METALS: OPTICAL PROPERTIES

50 100 150 200
ω [cm−1]

0.14

0.15

0.16

0.17

0.18

0.19

0.2

A
r
g
{t (

1
)
(ω

) }
ω

[
r
a
d

cm
−
1

]

(a) T = 300 K

Drude

λSωp

c
= 0

λSωp

c
= 1

λSωp

c
→ +∞

50 100 150 200
ω [cm−1]

0.15

0.2

0.25

A
r
g
{t (

1
)
(ω

) }
ω

[
r
a
d

cm
−
1

]

(b)T = 5 K

Figure 2.4: Phase of the transmission coefficient Ar g
�

t(1)(ω)
	

, normalized to frequency
ω [cm−1], for the first THz transmission echo of an Al slab of thickness d = 100 nm on a
sapphire substrate of thickness dS = 0.5 mm. The blue, red and gold curves correspond to the

results for a slip length
λSωp

c = {0,1,∞} respectively. The Fermi velocity is
� vF

c

�2
= 4.556 10−5,

and the first Landau parameter is FS
1 = 6. The dashed gray curve is the Drude result, for the

same parameters.

for metallic solids, we can refer to the Landau phenomenology of Fermi liquids, which we

considered in section 1.5. In solids at nonzero temperature, Landau quasiparticles acquire

a finite lifetime due to multiple scattering channels. The inelastic quasiparticle scattering

rate in a Fermi liquid is 1
τqp
∝ �

(ħhω)2 + (πkB T )2
�

, due to the phase space limitation for

scattering events imposed by the Pauli exclusion principle [7, 23]. The ω2 dependence

is intimately related to the linear frequency dependence of the imaginary part of the sus-

ceptibility Im {χ(ω)}∝ω, which itself is a consequence of Fermi-liquid behaviour [25].
Additional scattering mechanisms to consider for realistic solids are momentum relaxation

due to phonons, and also to impurities, which can become the dominating channel at room

temperature and at low temperature for dirty samples, respectively. Hence, one may pose

into question whether a pure Fermi liquid scattering time τqp can be observed in practice.

However, in many instances Fermi liquid behaviour has been identified at low temperatures:

Sr2RuO4 [57,58] shows a (ħhω)2+(2πkB T )2 dependence of the optical conductivity, includ-

ing the factor of 2π [59]. Low-temperature transport experiments confirmed the relation

τqp ∝ T 2 in doped SrTiO3 [60], TiS2 [61], and heavy fermions [62]. In underdoped

cuprates, optical measurements report an energy- and temperature-dependent scattering

time τ∝ (ħhω)2 + (pπkB T)2, with p ≈ 1.5 [63]. Experimental resistivities ρel ∝ T 2 are

unexpected on the basis of standard Fermi liquid theory [7, 64], as resistivity requires

momentum relaxation, while in a translationally invariant system of interacting electrons
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2.5 Optical transmission of Fermi liquid thin films

the current operator commutes with the Hamiltonian and hence the Coulomb interaction

conserves the current [13]. However, the presence of a crystalline lattice in solids breaks

galileian invariance, and can relax momentum through umklapp processes [65], Baber

scattering [66], or other processes involving phonons [60]. Breaking of translational

invariance also allows to relax momentum through electron-impurity scattering [67]. The

precise contribution of the different proposed relaxation mechanisms in experimental Fermi

liquids has yet to be assessed, although the quadratic energy and temperature dependence

of the scattering time is regarded as a confirmation of Fermi liquid physics.

As for the electrically neutral case of section 1.5.2, the quasiparticle relaxation rate deter-

mines the quality of dielectric response for charged electrons in solids: we expect viscous

hydrodynamic behaviour for ωτc � 1, and solid-like shear stress for ωτc � 1. Andreev,

Kivelson and Spivak recently pointed out that hydrodynamics is at work when the elec-

tron liquid attains local equilibrium on the scale of the electron-electron mean-free path

lmf p [42]. For this to happen, lmf p must become shorter than the electron-phonon mean

free path, a condition only met at temperatures of a few Kelvin in most metals. However,

strongly correlated materials typically show Fermi-liquid-like characteristics at much higher

temperatures, thereby extending the regime of fluid-like response. Hydrodynamic vorticity

has been theoretically predicted in high-mobility graphene as a diagnostics for viscous

transport [43]. Hydrodynamic electron flow was experimentally observed in the differ-

ential resistance of electrostatically defined wires, in the two-dimensional electron gas at

(Al,Ga)As heterostructures [68]. On the other hand, elastic shear stresses are predicted

in collisionless regime [17] - see section 1.7.4.1. A suitable experimental test is offered

by optics, that can probe long-wavelength transverse excitations of correlated Fermi liq-

uids [12]. For this reason, the following sections collect optical transmission calculations

for thin films of Fermi liquids, which can show signatures of viscoelastic correlations.

2.5 Optical transmission of Fermi liquid thin films

We calculate the optical transmission spectra of Fermi liquid thin films, in the presence

of the viscoelastic transverse collective modes analyzed in sections 1.7.4.1 - 2.4. Using

the dispersion relations (1.85) of the neutral case, we extend the formalism developed

for viscous charged fluids in reference [12] (paper 1) to the whole crossover from vis-

cous/collisional to shear/collisionless regime. We begin by the latter regime, modeling

the metallic zero-temperature case, where the free propagation of transverse shear modes

allows for qualitative changes in the Fermi liquid transmission spectrum.
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Figure 2.5: Absolute value of the transmission coefficient |t(ω)| for a Fermi liquid thin film

of thickness
dωp

c = 10, in the collisionless regime τc = τ~k → +∞. The orange, green and

red curves correspond to the results for a slip length
λSωp

c = {0,1,∞} respectively. The Fermi
velocity is vF

c = 0.0032, and the first Landau parameter is FS
1 = 6. The dashed gray curve is the

Drude result, for the same parameters.

2.5.1 Collisionless limit and shear mode

Using the dielectric function (1.20) and the real sound velocity (1.89) for propagating shear

modes, we derive the refractive indexes for electromagnetic modes inside the medium

through the definition ni(ω) =
p

εT (~q,ω), where one substitutes q = ω
c ni(ω) for propagat-

ing electromagnetic waves [5]. One finds two refractive indexes i = {1, 2} for degenerate

optical modes, consistently with the two-fold dispersion (1.127) and with the viscous

charged fluid calculation [12]. However, the collisionless limit lacking dissipation [24],
there is no negative refraction: the two refractive indexes have positive real part at all

frequencies. The calculation of the thin film transmission proceeds as in section IV.E of

reference [12], utilizing the refractive indexes ni(ω). Figure 2.5 shows the collisionless

transmission coefficient modulus |t(ω)| as a function of ω
ωp

, for a Fermi liquid thin film of

thickness
dωp

c = 10. Different solid curves are obtained for slip lengths
λSωp

c = {0,1,∞},
which are determined by the ratio between the boundary tangential friction and the Fermi

liquid velocity gradient [46]. The Fermi velocity is vF
c = 0.0032, and the first Landau pa-

rameter is FS
1 = 6. The dashed curve shows the Drude result, for the same parameters [5].

The oscillation patterns in the elastic shear cases of figure 2.5 are due to the quantum
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2.5 Optical transmission of Fermi liquid thin films

interference between the two propagating optical modes ni(ω) inside the Fermi liquid:

therefore, this is a signature of shear mode propagation. At lower frequencies, the clean

boundary limit
λSωp

c → +∞ has the same slope as the Drude result, but higher transmission

due to the presence of the shear mode, which helps radiation propagation inside the medium.

Higher roughness towards the limit
λSωp

c = 0 further amplifies |t(ω)|, by slowing down

and eventually pinning quasiparticles at the boundaries and increasing velocity gradients

over the slab thickness. At the lowest frequencies, the transmission becomes unitary as all

shear stresses are transmitted without dissipation: this is the response of an elastic solid,

as emphasized in section 1.7.4.1. This represents the zero-temperature limit for a Fermi

liquid, where the system responds according to the electrodynamics of the isotropic Wigner

crystal [17].

2.5.2 Scattering in the viscoelastic Fermi liquid

In practice, multiple scattering sources can diminish correlation effects in Fermi liquids at

finite temperature, as mentioned in section 2.4. In order to evaluate qualitatively the effect

of scattering on the optical transmission of section 2.5.1, we include the contributions due

to Landau quasiparticle relaxation, phonons and impurities. We sum these contributions

using Matthiessen’s rule

1
τtot

=
Np
∑

i=1

1
τi

(2.28)

which simply adds the rates 1
τi

for the different processes i =
�

1, · · ·Np

	

, to obtain the total

rate 1
τtot

.

One must be careful in checking that the dielectric function calculated with the total

scattering time (2.28) still obeys Kramers-Kronig relations [1,5]. For the Fermi liquid scat-

tering time (2.29) Kramers-Kronig relations are preserved, but other frequency-dependent

contributions to τtot , e.g. phonons, do not automatically satisfy such relations. In the

following, we take a frequency-independent but temperature-dependent acoustic phonon

contribution according to the Bloch-Gruneisen formula, to show the qualitative effect

of phonons. More realistic frequency-dependent phonon contributions are expected to

produce quantitative changes on the transmission spectra.

2.5.2.1 Quasiparticle scattering time from phase space limitation

In Fermi liquids, Landau quasiparticles acquire a finite lifetime τqp due to the Pauli exclusion

principle, which limits the available phase space for scattering [1,13,23]. As previously
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Figure 2.6: Contributions to the total scattering time τtot in a Fermi liquid coupled to phonons,
as a function of temperature T : the dash-dotted curve is the Fermi liquid component τee,
according to equation (2.31); the dashed curve is the phonon contribution τe−ph, stemming from
equation (2.34); the full curve is the total lifetime τtot stemming from Mathiessen’s rule (2.28).
The parameters of the calculations are: frequency ω= 0.01; plasma frequency ωp = 10 eV ;
Fermi velocity vF

c = 3.2 · 10−3; umklapp efficiency ∆u = 1; Landau parameters FA
0 = FA

1 = 0,

FS
0 = 1, FS

1 = 6; Debye temperature kBΘD
ħhωp

= 2.6 10−3; Debye constant CD = 0.1ωp s−1. For the
explanation of the parameter values, see the main text.
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2.5 Optical transmission of Fermi liquid thin films

mentioned, this mechanism alone redistributes energy among quasiparticles, but cannot

relax momentum unless translational invariance is broken, for instance by the underlying

crystalline lattice in solids. In the latter case, at each collision a portion of the quasielectrons

momentum can be damped into the lattice through phonons, thus allowing for quasiparticle

relaxation [60,65,66] in a time τee. We model this by an umklapp efficiency ∆u =
τee
τqp
< 1,

which represents the efficiency of the system in converting electronic scattering into lattice

relaxation through umklapp processes [12]. From Fermi liquid theory, the collision time

has the quadratic energy-temperature dependence [13,25]

ħh
τr
=
π

E∗F
(λt)

2∆u

�

(ħhω)2 + (πkB T )2
�

(2.29)

where ħhω is the excitation frequency, kB T is the thermal energy at temperature T , EF∗=
ħh2k2

F
2m∗ is the renormalized Fermi level, and (λt)2 stems from the angular integration of

the scattering probability and depends on the Landau parameters
�

FS
l , FA

l

	

. The exact

expression for (λt)2 and its derivation in the case of s-p scattering [1,13] is reported in

appendix D. Equation (2.29) implies τr ∝ 1
ω2+(πkB T )2 , which is a signature of Fermi liquid

behaviour. However, the growth of τr in the limit T → 0 is limited by a fundamental

physical constraint: electrons cannot interact on lengths that are shorter than the average

interparticle distance [23]. This gives the upper limit for the relaxation time

τr ≥ τF =
ħh
EF

(2.30)

We implement the condition (2.30) into the relaxation time through

τr = τee +τF (2.31)

Using the plasma frequencyωp =
Ç

ne2

mε0
and the renormalized Fermi energy E∗F =

1
2 m∗(v∗F)

2,

with m∗ = m
�

1+ FS
1
3

�

, we obtain in dimensionless form

1
ωpτr

=
2π
�

1+ FS
1
3

�

� vF
c

�2 mc2

ħhωp

(λt)
2∆u

�

�

ω

ωp

�2

+π2

�

kB T
ħhωp

�2�

(2.32)

and
1

ωpτF
=
ħhωpmc2

� vF
c

�2 (2.33)
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The scattering time (2.31) is depicted in figure 2.6 as a function of temperature, for

frequency ω = 0.01ωp and using the following typical parameters of simple metals:

ωp = 10 eV ; vF
c = 3.2 · 10−3. To fix ideas, we set maximum umklapp efficiency ∆u = 1,

Landau parameters FA
0 = FA

1 = 0, FS
0 = 1, FS

1 = 6, and room temperature for which

kB T ≈ 26 meV . Comparing τee in figure 2.6 with the Drude scattering time of simple

metals at room temperature [3], we see that τee is about one order of magnitude larger than

in experiments. Indeed, for T � 0 the scattering time is mainly limited by phonons [3],
while electronic correlations given by Fermi liquid theory become dominant for clean metals

at low temperatures.

2.5.2.2 Phonon scattering time

The phonon contribution to the total scattering rate (2.28) becomes dominant at room

temperature with respect to Fermi liquid correlations. To evaluate this effect qualitatively,

we consider normal processes for acoustic phonons [69]: in this case, the electron-phonon

scattering time can be described by the Bloch-Grüneisen model

1
τe−ph

=CD

�

ΘD

T

�5
∫

T
ΘD

0

d x
x5

(ex − 1)(1− e−x)
(2.34)

whereCD is a material-dependent constant [69], andΘD is the Debye temperature. For T �
ΘD, equation (2.34) gives a linear term 1

τe−ph
∝ T , while for T � ΘD we have 1

τe−ph
∝ T 5:

comparing these behaviours with 1
τee
∝ T 2 from equation (2.31), we immediately see that

the phonon term is bigger at room temperature, while Fermi liquid processes prevail in the

limit T → 0. This suggests that phonons will mainly impact room-temperature calculations

of the transmission spectra, while lattice terms will freeze out at low temperatures unveiling

the Fermi liquid evolution (2.31). The electron-phonon rate (2.34) is shown in figure 2.6

as a function of temperature, for kBΘD
ħhωp
= 2.6 10−3, that corresponds to ΘD ≈ 300 K for

ωp = 10 eV . The constant CD is fixed by the requirement that the expression (2.34) gives

the same order of magnitude of the experimental Drude scattering time τD ≈ 10−15 s of

simple metals [3]: consistently with this, we set CD = 0.1ωp s−1.

2.5.2.3 Impurity scattering time

At first approximation, we can model the presence of impurities in the system with a constant

scattering time τimp ∈ R+, independent of frequency and temperature. Microscopically,

this lifetime is inversely proportional to the density of impurities. Macroscopically, this

contribution is responsible for the nonzero residual resistivity of metals down to zero
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Figure 2.7: Absolute value of the transmission coefficient |t(ω)| for a Fermi liquid thin film of

thickness
dωp

c = 10, coupled to acoustic phonons. The orange, green and red curves correspond

to the results for a slip length
λSωp

c = {0, 1,∞} respectively. Panel (a) shows the calculation
at room temperature, kB T = 26 meV , while panel (b) illustrates the low-temperature results
kB T = 0.26 meV , for the same parameters. The parameters common to all calculations are:
plasma frequency ωp = 10 eV ; Fermi velocity vF

c = 3.2 · 10−3; umklapp efficiency ∆u = 1;

Landau parameters FA
0 = FA

1 = 0, FS
0 = 1, FS

1 = 6; Debye temperature kBΘD
ħhωp

= 2.6 10−3; Debye

constant CD = 0.1ωp s−1. The dashed gray curve is the Drude result, for the same parameters.

temperature [3], if the material is not a superconductor. Since τimp imposes an upper limit

on the zero-temperature total scattering time (2.28), we can already see that impurities

will limit the low-T growth of the Fermi liquid lifetime τee ∝ 1
(ħhω)2+(πkB T )2 : this means

that increasing the impurity concentration diminishes nonlocal effects due to a smaller

scattering time, and therefore it decreases the difference of the optical spectra with respect

to the Drude model at low temperatures.

2.5.3 Clean Fermi liquid with acoustic phonons

Modeling the quasiparticle and phonon contributions to the scattering time as in sections

2.5.2.1 and 2.5.2.2, we have now obtained a qualitative picture of the total scattering

time (2.28) for a Fermi liquid coupled to acoustic phonons. This allows us to analyze

the differences of the optical transmission with respect to the collisionless regime 2.5.1,

once we include scattering and relaxation effects. We calculate the thin film transmission

in accordance with IV.E of reference [12], as for section 2.5.1, but now we include the

frequency- and temperature-dependent scattering time (2.28), summing the contributions

(2.31) and (2.34). In all subsequent calculations, we set ∆u = 1, meaning τc = τ~k: this
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is an upper limit for the umklapp efficiency. First, we calculate the dielectric function

(1.20) using the full solution (1.85) for the complex sound velocity ṽS,L and the lifetime

τc = τ~k = τtot(ω, T ). This way, we derive the refractive indexes for electromagnetic modes

ni(ω) =
p

εT (~q,ω) as in section 2.5.1. Due to scattering and relaxation, one of the two

complex refractive indexes i = {1, 2} exhibits negative refraction, meaning Re {n2(ω)}< 0;

this happens in a low-frequency range, the extension of which depends on the scattering

time τ~k [12]. In section 2.6, we will analyze negative refraction in the context of our model,

while here we highlight the different physics in comparison with the collisionless regime

2.5.1: quasiparticle collisions cause dissipation of collective modes, which is reflected

in Im
�

ṽS,L

	 6= 0. This qualitatively changes the nonlocal dielectric response, similarly

to the neutral case 1.5.2: for ωτc � 1, the system responds like a viscous charged fluid,

and the sound velocity (1.87) is determined by a single viscosity coefficient. Therefore,

while in the collisionless limit the Fermi sea reacts like a solid object with a shear modulus,

in the collisional regime the Fermi liquid really responds like a viscous fluid [12]. Such

viscous behaviour deeply affects optical observables like refractive indexes and thin film

transmission. In particular, the concomitant presence of spatial nonlocality and dissipation

allows for negative refraction, in accordance with general principles based on the dielectric

function approach [24].

Figure 2.7 shows the transmission coefficient modulus |t(ω)| as a function of ω
ωp

, for

a Fermi liquid thin film of thickness
dωp

c = 10, coupled to acoustic phonons. Different

solid curves are obtained for slip lengths
λSωp

c = {0,1,∞}. The material parameters are

chosen to agree with typical values for simple metals [3]: plasma frequency ωp = 10 eV ,

and Fermi velocity vF
c = 3.2 · 10−3. The Landau parameters are FA

0 = FA
1 = 0, FS

0 = 1, and

FS
1 = 6. The acoustic phonon contribution is taken to follow a Debye spectrum with Debye

temperature kBΘD
ħhωp
= 2.6 10−3; the Debye constant CD = 0.1ωp s−1 in equation (2.34) is

set to match the order of magnitude of the experimental Drude scattering time in simple

metals [3], as described in section 2.5.2.2. The film thickness is set by
dωp

c = 10. Dashed

gray curves in figure 2.7 show the Drude result, for the same material parameters [5].
Panel (a) of figure 2.7 illustrates the room-temperature case, i.e. kB T = 26 meV . In this

situation, the scattering time (2.28) is dominated by the phonon contribution, as seen in

figure 2.6. Fermi liquid features are overwhelmed by thermal effects [25, 60], and the

mean free path lM F P = vFτtot is much smaller than at low temperatures, so nonlocality

plays a relatively marginal role in the dielectric response. For this reason, the nonlocal

dielectric function with the sound velocity (1.85) falls on top of the standard Drude result

for all slip lengths. This suggests that signatures of Fermi liquid collective modes can hardly
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be found at room temperature, due to phonons suppressing nonlocal effects.

The situation is different at low temperatures: panel (b) of figure 2.7 shows the

calculations for kB T = 0.26 meV . As seen in figure 2.6, the scattering time (2.28) is

governed by Fermi liquid correlations in this case. The mean free path lM F P = vFτtot

is two orders of magnitude longer than at room temperature, which enhances nonlocal

effects [12,24]. Consequently, we retrieve the oscillatory patterns of |t(ω)| characteristic of

the two degenerate refractive indexes, governed by the collective mode dispersion (1.85);

this is qualitatively similar to the collisionless case of figure 2.5. However, the nonlocal

theory merges with the Drude result above ω ≈ 10−2ωp: this is an effect of the Fermi

cutoff (2.30) acting on the quasiparticle scattering time (2.31) and making the latter

saturate to a frequency- and temperature- independent value. Physically, the constraint

that quasiparticles cannot interact on lengths shorter than the average interparticle distance

suppresses quasiparticle correlations and associated nonlocal effects, at high frequency. The

low-frequency behaviour of the collisional regime is mainly determined by the slip length λS,

similarly to figure 2.5 in the collisionless limit: the limiting velocity at the slab boundaries

λS governs the low-frequency limit of the optical transmission [12], regardless of the

presence or absence of collisions. In summary, the calculations of figure 2.7 suggest that

signatures of Fermi liquid collective modes could be observed in the optical transmission

of simple metals at low temperatures, for sufficiently low frequency ω� ωp. However,

care must be taken in evaluating the generality of these results: here we consider a clean

Fermi liquid coupled to an acoustic phonon branch. Additional contributions of optical

phonons and other scattering mechanisms can suppress nonlocal effects even at cryogenic

temperatures, as we illustrate in the following section 2.5.4. Furthermore, the exact values

of material-dependent parameters can quantitatively change the results here presented.

In particular, as we discussed at the beginning of section 1.7, short-ranged quasiparticle

residual interactions, and the associated Landau parameters, are modified by Coulomb

repulsion with respect to their electrically neutral counterpart. Therefore, different values

of FS
0 , FS

1 and the presence of nonzero asymmetric contributions FA
0 , FA

1 would affect the

results of this section. Similarly, a non-unitary umklapp efficiency ∆u < 1 modifies the

frequency evolution of the sound velocity ṽS,L and the associated thin film transmission.

Nevertheless, the qualitative picture of Fermi liquid collective modes being potentially

observable at low temperatures is independent from the exact values of material parameters:

we believe that this conclusion applies in general to simple metallic solids.
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Figure 2.8: Absolute value of the transmission coefficient |t(ω)| for a Fermi liquid thin film

of thickness
dωp

c = 10 coupled to acoustic phonons, in the presence of impurity scattering.
The green, red and blue curves are the results for an impurity scattering time τimpωp =
�

104, 1000, 100
	

respectively. The slip length is λS → +∞ for all calculations. All other
parameters are the same as in panel (b) of figure 2.7: plasma frequency ωp = 10 eV ; Fermi
velocity vF

c = 3.2 · 10−3; umklapp efficiency ∆u = 1; temperature kB T = 0.26 meV ; Landau

parameters FA
0 = FA

1 = 0, FS
0 = 1, FS

1 = 6; Debye temperature kBΘD
ħhωp

= 2.6 10−3; Debye constant

CD = 0.1ωp s−1. The three dashed curves are the Drude result, using the same parameters as
the full curves of the nonlocal theory.

2.5.4 Effect of impurity scattering at low temperatures

Impurity scattering in metals is a fundamental issue at low temperatures [3], and it is

a crucial parameter for epitaxial growth of thin films. For these reasons, it is important

to consider the extent to which the results of section 2.5.3 are modified by the presence

of impurities. In order to model these effects, we employ the simple frequency- and

temperature-independent model of section 2.5.2.3, and we add this contribution to the total

lifetime τtot of section 2.5.3 according to Mathiessen’s rule (2.28). Then, we recalculate

the thin film transmission modulus as in section 2.5.3, keeping the same values of all other

parameters. Since the high-temperature case in panel (a) of figure 2.7 already reduces to

the standard Drude result, no qualitative changes due to additional scattering contributions

occur. Hence, in figure 2.8 we only show the low-temperature case kB T = 0.26 meV . Also,

since impurities act similarly on the calculations for all slip lengths λS, we only focus on

the clean-boundary limit λS → +∞.
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Figure 2.8 shows the calculations of the frequency-dependent transmission modulus

|t(ω)| for different impurity scattering times τimpωp =
�

104, 1000, 100
	

. Increasing the

impurity contribution of section 2.5.2.3, the lifetime τimp diminishes until it is smaller

than the Fermi liquid value (2.31), eventually limiting the low-temperature value of the

total lifetime τtot . Therefore, the higher the impurity scattering rate is, the lower the

mean free path lM F P = vFτtot is, and the smaller nonlocal collective mode effects are. In

figure 2.8, the local Drude result is essentially recovered for τimpωp = 100. Hence, in

order to experimentally observe Fermi liquid collective modes in metallic thin films, a

sufficiently high epitaxial quality and low impurity concentration is required. However,

experimental values of the mean free path of thin films at low temperatures can give

τtotωp ≥ 1000 [3, 13, 70]. This suggests that the conditions to optically observe Fermi

liquid collective modes may be reached with the current thin film growth technology.

2.6 Negative refraction in Fermi liquids

The low-temperature oscillations of the optical transmission spectra in sections 2.5.2.1

- 2.5.4 are direct consequences of spatial nonlocality: the mean free path lM F P ∝ τtot

increases for decreasing temperature, until electronic correlations become the dominant

source of scattering in the system. This phenomenon is even enhanced in a Fermi liquid near

a resonance with a collective mode (1.85): in this case, correlated quasiparticles move in a

coordinated way in accordance with the collective excitation, thus affecting the ~q-dependent

dielectric function (1.20). The oscillations of |t(ω)| are only one possible manifestation

of nonlocal effects, that reveals the underlying physics of nonlocality: as mentioned in

sections 2.5.1 and 2.5.3, the solution for the refractive indexes ni(ω) =
p

εT (~q,ω) is

twofold, meaning that there are two frequency-degenerate optical modes that propagate in

the system [12]. These coherent modes interfere with each other, originating the oscillating

pattern in the thin film transmission of figures 2.5, 2.7, 2.8.

In the absence of scattering, i.e. in the collisionless limit of section 2.5.1, there is no

dissipation and zero sound propagates like in a charged solid with a shear modulus. In this

case, both refractive indexes n1(ω) and n2(ω) have positive real part for all frequencies,

analogously to the standard Drude result. However, when we allow for a finite collision

time τc = τtot as in section 2.5.3, such momentum relaxation causes dissipation, in analogy

with a viscous charged fluid. Specifically, in the low-T regime where the total lifetime τtot

is dominated by the Fermi liquid component τee, the dielectric response is characterized by

the simultaneous presence of both dissipation and spatial nonlocality. These are necessary

conditions for the occurrence of negative refraction for the nonlocal dielectric function

95



2. VISCOELASTIC METALS: OPTICAL PROPERTIES

Re {n1}
Re {n2}

vF
c
= 0.0032

h̄ωp = 10 eV

kBT = 26 meV

kBΘD = 26 meV

F S
0 = 1, F S

1 = 6
CD = 0.1

10−5 10−3 10−1

ω
ωp

0

50

100

150

200

250

300

350

400

R
e
{n

}

(a)

kBT = 0.26 meV

10−5 10−3 10−1

ω
ωp

0

50

100

150

200

250

300

350

400

(b)

10−5 10−3 10−1

ω
ωp

−10

−5

0

5

10

Figure 2.9: Real part of the refractive indexes Re {ni} i = {1, 2} for the degenerate optical
modes as a function of normalized frequency ω

ωp
, for a Fermi liquid coupled to acoustic phonons.

All parameters are the same as in figure 2.7: plasma frequency ωp = 10 eV ; Fermi velocity
vF
c = 3.2 · 10−3; umklapp efficiency ∆u = 1; Landau parameters FA

0 = FA
1 = 0, FS

0 = 1,

FS
1 = 6; Debye temperature kBΘD

ħhωp
= 2.6 10−3; Debye constant CD = 0.1ωp s−1. Panel (a)

shows the high-temperature case kB T = 26 meV , while panel (b) shows the calculations at
low-temperature kB T = 0.26 meV . The orange curve for Re {n2} = 0 becomes negative for

τtot
iRe{ṽS,L}

ω (ωp)2 > 1 [12]; the condition Re {n}= 0 is highlighted by an orange circle in the
inset of panel (b).
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(1.20) [24], which implies that the real part of the refractive index becomes negative [44,45].
Hence, when the Fermi liquid responds like a viscous fluid, one of the two degenerate

optical modes ni(ω) can experience negative refraction [12, 16], that is Re {n2(ω)} < 0.

The region of parameter space when this occurs is τtot
iRe{ṽS,L}

ω (ωp)2 > 1, in accordance

with reference [12]. We can see this phenomenon by plotting the real parts of the refractive

indexes n1(ω) and n2(ω) for the same parameters of figure 2.7, as shown in figure 2.9. Panel

(a) shows the high-temperature case kB T = 26 meV : the phonon-dominated collisions

suppress nonlocal effects, as described in section 2.5.3, therefore no negative refraction is

observed. It is only in the low-temperature situation kB T = 0.26 meV of panel (b) that

nonlocal correlations dominate momentum relaxation, and the concomitant presence of

nonlocality and dissipation allows for negative refraction in the Fermi liquid. The threshold

τtot
iRe{ṽS,L}

ω (ωp)2 = 1 marks the point where Re {n2(ω)} = 0: this is indicated by an orange

circle in the inset of of fig. 2.9 (b). However, the negative-refracting mode is always

significantly damped, i.e. it is an evanescent wave, which makes a direct experimental

detection of negative refraction unlikely. Another feature of the degenerate optical modes

is that at any occurrence of ωτtot = 1 we have a bifurcation point, where the values of

Re {n1(ω)} and Re {n2(ω)} swap [12]: this happens three times for the case kB T = 26 meV

of panel (a) (one instance being at ω
ωp
≈ 1.5 outside the plotting range), and once for the

case kB T = 0.26 meV of panel (b).

2.7 Conclusions and perspectives

The nonlocal response of Fermi liquids at low temperatures leaves observable traces in

the optical spectra, which can be analyzed in the context of viscoelasticity. The coherent

interference of the two frequency-degenerate optical modes that develop in charged Fermi

liquids generates oscillatory patterns that can be retrieved in the bulk optical transmission

as a function of depth inside the material, as well as in the transmission of thin films. The

effects of viscoelastic correlations are particularly prominent at low temperatures and low

frequencies, in clean samples. The model also reproduces anomalous skin effect in the

surface impedance, which is another manifestation of nonlocal electromagnetic response.

The contributions of phonons and impurities to scattering in a Fermi liquid diminish the

effect of viscoelastic correlations. Possible further generalizations of the model include the

analysis of light-matter interaction with radiation incident at an arbitrary angle, including

both longitudinal and transverse components of the electric field, which would allow to

describe ellipsometry experiments. The zero-frequency limit of the response functions can

also be compared with transport experiments, that can also detect nonlocal behaviour of
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the electron liquid as spatial gradients of the current density.
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We provide a general theoretical framework to describe the electromagnetic properties of viscous charged
fluids, consisting, for example, of electrons in certain solids or plasmas. We confirm that finite viscosity leads
to multiple modes of evanescent electromagnetic waves at a given frequency, one of which is characterized by a
negative index of refraction, as previously discussed in a simplified model by one of the authors. In particular,
we explain how optical spectroscopy can be used to probe the viscosity. We concentrate on the impact of this on
the coefficients of refraction and reflection at the sample-vacuum interface. Analytical expressions are obtained
relating the viscosity parameter to the reflection and transmission coefficients of light. We demonstrate that finite
viscosity has the effect to decrease the reflectivity of a metallic surface, while the electromagnetic field penetrates
more deeply. While on a phenomenological level there are similarities to the anomalous skin effect, the model
presented here requires no particular assumptions regarding the corpuscular nature of the charge liquid. A striking
consequence of the branching phenomenon into two degenerate modes is the occurrence in a half-infinite sample
of oscillations of the electromagnetic field intensity as a function of distance from the interface.
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I. INTRODUCTION

The flow properties of everyday fluids like water are
governed by the Navier-Stokes theory of hydrodynamics.
The key parameter governing the dissipative aspects of such
fluids are the bulk and shear viscosities. The most abundant
electrically charged fluids are formed by electrons in metals.
The theory of transport in normal metals is well understood.
These form Fermi liquids; although at precisely zero temper-
ature this supports a “collisionless” quantum hydrodynamics
which is noticeably different from the classical Navier-Stokes
hydrodynamics at any finite temperature and at sufficiently
long times the gas of thermally excited quasiparticles takes
over forming yet again a “collision-full” effective classical
fluid [1]. These notions were successfully verified in the
1960’s and 1970’s in the neutral Fermi liquid realized in 3He,
in the form of the famous maximum in the attenuation of
zero sound [2]. The zero sound of the collisionless regime
corresponds to a coherent vibration of the Fermi surface with
a damping proportional to the microscopic collision rate of the
quasiparticles 1/τcoll ∼ T 2, while in the classical regime the
damping is just viscous. The damping is in turn determined by
� � (EF /me)τcoll, where EF is the Fermi energy [3].

The shear viscosity of the Fermi liquid is given by η �
nEF τcoll and it is noticed that the viscosity (and attenuation) is
now proportional to the quasiparticle collision time, diverging
like 1/T 2 at low temperatures. Why is it so that this quantity
does not play any role in the transport theory of electrons in
metals? The reason is well understood. For a hydrodynamical
description to make sense, the conservation of total momentum
of the fluid flow in a finite density system is required at least on
the time and length scales associated with the establishment
with local equilibrium. This in turn requires the Galilean
invariance at least on the microscopic scale, and in normal
metals, this is explicitly broken by the atomic lattice. Even
when this is perfectly periodic, it is detrimental for the
momentum conservation in a Fermi liquid. The reason is
that the quasiparticles are characterized by a large Fermi

momentum kF , which is of order of the umklapp wave
vector �Q with the effect that the states at kF have always
a finite admixture of umklapp copies. This in turn has the
effect that at every microscopic collision a certain amount
of momentum is dumped in the lattice expressed in terms
of the “umklapp efficiency” �, such that the (microscopic)
momentum relaxation rate 1/τK = �/τcoll while � ∼ 0.5 in
the transition metals [4].

Momentum conservation is therefore already destroyed at
the microscopic cutoff in normal metals. More concretely
this implies that in an expansion of the time and coordinate
derivatives of the current density with τK as the expansion
parameter, the leading term gives the dissipation of the local
current density proportional to 1/τK , followed by terms
proportional to dissipation caused by gradients of the current
density. The latter terms thus represent a correction on
the leading momentum dissipation, where the constant of
proportionality defines η. One of the challenges yet to be met
is to determine the value of η in a non-Gallilean invariant
setting, and its dependence on temperature and frequency. In
the context of this paper, we will simply assume that this
higher-order correction exists, and work out a number of
physical consequences. For this, we will adopt values for
η, which seem plausible at this moment, but which need
to be determined ultimately on the basis of first principles
and/or experimental data. As discussed recently by Andreev,
Kivelson, and Spivak, it might well be that an exception is
presented in electron systems with a very low density, where
kF becomes very small, and density of scattering centers is
small compared to 1/Q. In this case, other interesting transport
properties could emerge due to interaction of the scattering
centers with the viscous charged fluid [5].

Very recently it has been questioned to what extend these
notions apply to non-Fermi liquids, which might be realized
in the form of strange metals as in high-Tc superconductors,
heavy fermion systems and so forth. It is believed that these
are governed by quantum criticality. At zero temperature,
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their quantum dynamics would be scale invariant while the
expectation is that at finite temperatures these are characterized
by extremely short “Planckian” [6] relaxation times τ� ∼
�/kBT [7,8]. This got further impetus by the discovery of
the “minimal viscosity-entropy” ratio using the AdS/CFT
correspondence [9], which seems confirmed both in the quark-
gluon plasma created at the heavy ion colliders [10] as well as
the cold-atom unitary Fermi gas [11]. It is possible that such
quantum critical systems are much less sensitive to umklapp
scattering since these lack intrinsic microscopic scales like
1/kF . It was argued that it could therefore well be that first
hydrodynamics is realized in such systems, while only at
longer-time scales, the lack of the Galilean invariance becomes
noticeable [12]. Resting on these ideas, several proposals
appeared recently for the explanation of the mysterious linear
resistivity of, for instance, the normal state of the high-Tc

superconductors [13–15].
Electron systems in metals can be probed most conve-

niently by electromagnetic fields. The question arises, what
would be the fingerprint of (non)hydrodynamical behavior
of the electrons in the electromagnetic responses that can
be measured in the laboratory? Perhaps surprisingly, to the
best of our knowledge, a general theoretical framework to
describe the electromagnetic effects of finite viscosity for
charged fluids is not available. The goal of this paper is to
construct such a general phenomenological description. In the
context of heavy fermion superconductivity, sound attenuation
experiments have also been discussed as a probe of the
viscosity tensor [16,17]. The existence of at least two different
methods for probing the viscosity would allow to calibrate
the various different methods against each other. In Refs. [18]
and [19], the effect of viscosity on the refractive index was
discussed for different systems, using a string theory setup in
the former and linear response theory for pure hydrodynamics
plus electromagnetism in the latter. In particular, a prediction
was given for the generic presence of negative refraction that
should be manifest in actual systems such as a quark-gluon
plasma. In Ref. [20], the existence of multiple electromagnetic
waves with the same frequency was addressed. In Ref. [21],
these works were extended for intrinsically strongly coupled
materials beyond the hydrodynamic limit, using the AdS/CFT
correspondence. In principle, these phenomena could also be
present in the electron liquid for certain parameter ranges. For
the interpretation of practical experiments, two more steps are
needed: generalize the theoretical framework to include the
retarded effect for the viscosity and the presence of a lattice or
impurities; relate transmission or reflection coefficients to the
parameters describing the electron liquid. The purpose of the
present paper is to fill this gap and describe the phenomenology
of charged fluids.

The basic strategy of the approach in this paper is to
provide a general equation describing the viscous dynamics
of the transverse velocity of the fluid and couple it to Maxwell
equations to arrive to a theory of the electromagnetic response.
Such a closed system leads inter alia to negative refraction and
a bifurcation into two modes inside the viscous charge liquid
instead of one at any given frequency. In the paper, we apply
this formalism to the response of a Fermi liquid with finite
momentum relaxation to a transverse force [2], where it is easy
to incorporate the viscous response on a phenomenological

level, however, it should be understood that our theoretical
framework and its main consequences apply more broadly,
without the need to stack on a specific model. The description
of transmission and reflection at the interface involves three
constituent relations at the interface instead of the usual
two relations. The corresponding modification of the Fresnel
equations is derived in analytical closed form. The resulting
reflection coefficient exhibits a peak for ω ≈ 1/τK , which
disappears in the limit of zero viscosity. The transmission
through a thin metallic film exhibits an increased transparency
if the electronic viscosity is finite, which is accompanied by a
strong frequency dependence of the phase, which is a sensitive
parameter of the viscosity. Finally, in the limit of a weakly
interacting Fermi liquid, the surface impedance corresponds
closely to the results for the anomalous skin effect obtained
in the Reuter-Sondheimer approach [22,23], obtained with the
same parameters. The model presented here can be regarded
as a generalization of the Reuter-Sondheimer model to viscous
charge liquids at large.

II. EQUATIONS OF TRANSVERSE MOTION OF A
VISCOUS CHARGED FLUID

A. Electromagnetic field coupled to a viscous charged fluid

The velocity field, �υ(t,�r), of a liquid of particles of
charge e, mass m and density n gives rise to an electrical
current density �J (t,�r) = ne�υ(t,�r). Here, we will concentrate
on fields polarized transverse to the direction of propagation
corresponding to the wave vector �q. The wave propagation
of the transverse electric (ET ) fields is described by the
Maxwell equations. For the velocity distribution of the currents
(υT ) [24], we need to take into account the inertial response to
a force, the force exerted by the electric field, the momentum
relaxation rate to the crystal lattice, and the nonlocal coupling
within the fluid. The nonlocal corrections can be written as an
expansion in the coordinate derivatives of the velocity field.
The leading nonlocal correction for the transverse velocity
field is then given by the Laplacian �υ(t,�r). If a given flow
pattern is suddenly switched off at t = 0, a nonequilibrium
situation will persist on the time scale of the interparticle
collision time τcoll. Consequently, the individual particles
respond to the flow pattern that has existed in the past, i.e.,
the force, is

∫ 0
−∞ Mν(t)�υ(t,�r)dt , where Mν(t) is the memory

function related to the viscosity. In the frequency domain, this
can be represented as ν(ω)�υ(�r), where, according to the
preceding argument, the generalized viscosity ν(ω) is a causal
response function corresponding to the Fourier transform
of Mν(t). For fields and currents with a time dependence
described by exp (−iωt), the corresponding set of differential
equations forms a simple closed system:

(c2� + ω2)E (�r) = −4πiωJ (�r), (1)[
τ−1
K − iω − ν(ω)�

]
υ = eE (�r)/m. (2)

For τ−1
K = 0, the second equation is the Navier-Stokes

equation for transverse currents, generalized to a frequency
dependent ν(ω). The eigenstates of Eqs. (1) and (2) are linear
superpositions of terms of the form exp (iqj z − iωt) having
the same frequency ω, and qj satisfies the self-consistent
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relation
q2c2

ω2
= 1 − ω2

p

ω
(
ω + iτ−1

K + iν(ω)q2
) , (3)

where we defined ω2
p ≡ 4πne2/m. The q2 dependence of the

pole results from the nonzero viscosity of the medium and
gives rise to all the exotic effects that we describe in this
paper. For ν(ω) = 0, Eq. (3) reduces to the dielectric function
described by the Drude model. Previously, Benthem and
Kronig have derived a similar relation, where they neglected
the displacement current as being small compared with the
conduction current (Eq. (6) of Ref. [25]). From this expression,
they calculated the surface impedance, assuming for ν the
universal value ∼�/m. Combining Maxwell’s equations with
the general expression for the convective derivative for the
velocity of an electron, Gilberd arrived at a different result [26],
where in the denominator of the expression for q2c2/ω2 a real
term proportional to q/ω appeared instead of the imaginary
dispersive term iνq2 of Eq. (3) [27]. A similar situation
exists when light is absorbed by excitations exhibiting a non-
negligible dispersion as a function of q. This is known to occur
for excitons in semiconductors [28] and has been predicted for
strongly dispersing optical phonons [29]. Unlike Eq. (3), in
these cases, the q dispersion enters through a nondissipative
term in the denominator of the dielectric function. Using the
relation qj = njk between wave vector and refractive index
where k ≡ ω/c is the wave number in vacuum, and solving
Eq. (3) for qj , we obtain

2n2
j = 1 − 1 − iωτK

ω2νcτK

±
√(

1 + 1 − iωτK

ω2νcτK

)2

+ i4ω2
p

ω3νc

, (4)

where we adopted the compact notation νc = ν(ω)/c2 and nj

and νc have implicit frequency dependence. The electro-hydro-
dynamical properties are thus characterized by the two time
scales νc and τK and by the plasma frequency ωp. The first
interesting observation is that for any given frequency ω, two

modes of electromagnetic field coupled to matter (labeled j =
1,2) exist in a viscous charged liquid, which are distinguished
by the two possible values of n2

j (ω), a phenomenon described
as additional light waves in Ref. [30].

B. Behavior at the vacuum/matter interface

Here, we concentrate on experiments that can be performed
with state of the art methods, namely, reflection at the surface
of a sample and transmission through a film. The Maxwell
equations provide the conditions that at each interface E(z)
and ∂E/∂z are continuous. An additional condition follows
from the properties of Newtonian fluids. The tangential friction
per unit area exerted by the moving fluid on the boundary
of the solid is, in leading order, proportional to the velocity
at the interface, κυ. In equilibrium, this has to be balanced by
the force exerted by the velocity gradient of the viscous fluid,
η∂υ/∂z, leading to the Navier constitutive relation [31]. Taken
together, we arrive at the following three constitutive relations
at the two interfaces:

E(0 − δ) = E(0 + δ), E(d − δ) = E(d + δ),

∂E

∂z

∣∣∣∣
0−δ

= ∂E

∂z

∣∣∣∣
0+δ

,
∂E

∂z

∣∣∣∣
d−δ

= ∂E

∂z

∣∣∣∣
d+δ

, (5)

1

λ
= ∂ ln υ

∂z

∣∣∣∣
0+δ

,
∂ ln υ

∂z

∣∣∣∣
d−δ

= −1

λ
.

The constant λ = η/κ is the slip length, where λ = 0 (λ = ∞)
corresponds to the interface being maximally rough (smooth).
To be specific, we consider an electromagnetic wave of
frequency ω propagating along z from −∞ to the sample,
which has one boundary defined by the plane z = 0 and
the other by z = d. Part of the wave is reflected back,
with an amplitude characterized by the reflection coefficient
r , the amplitude transmitted to z > d is characterized by
the transmission coefficient t , and inside the slab the wave
amplitude is a superposition of the four modes:

E(z)/E(0) = eikz + re−ikz (z < 0),

= t1e
in1kz + θ1e

−in1kz + t2e
in2kz + θ2e

−in2kz (0 < z < d), (6)

= teikz (z > d).

Since Imnj > 0, the two terms e−inj kz are exponentially
diverging for z → ∞. In the limit of a half-infinite sample, θ1

and θ2 therefore converge to zero, and only t1 and t2 contribute
to the transport of electromagnetic radiation into the material.

In the case of reflection/transmission at the vacuum/sample
interface of a half-infinite sample, we combine Eq. (6) with
aforementioned constitutive relations at the vacuum-matter
interface at z = 0, which leads in a straightforward fashion to
the transmission and reflection coefficients at such an interface:

tj = 2(nj − 1)

(nj + 1)(nj − nj )

1 − nj iλk

1 + (1 − nj − nj )iλk
.

(7)
r = t1 + t2 − 1.

The surface impedance Z is obtained from the second member
of Eq. (7), using the general expression relating surface
impedance and reflection coefficient:

Z

Z0
= 1 + r

1 − r
, (8)

where Z0 is the vacuum impedance.
Another relevant case is that of a film of thickness d

with vacuum on either side. The field inside the film is
a superposition of all four solutions of Eq. (4), i.e., the
exponentially decaying as well as the exponentially increasing
ones. Taken together with the reflection amplitude rfilm for z <

0 and the transmission amplitude tfilm for z > d the problem
of the constitutive relations at both interfaces corresponds to a
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system of six linear equations with six unknown parameters. By combining the constitutive relations defined in Eq. (5), four of
these combinations provide the matrix expression⎡

⎢⎢⎢⎢⎣
1 + n1 1 − n1 1 + n2 1 − n2

(1 − n1)f1 (1 + n1)/f1 (1 − n2)f2 (1 + n2)/f2(
1 − n2

1

)
(1 − n1ξ )

(
1 − n2

1

)
(1 + n1ξ )

(
1 − n2

2

)
(1 − n2ξ )

(
1 − n2

2

)
(1 + n2ξ )(

1 − n2
1

)
(1 + n1ξ )f1

(
1 − n2

1

)
(1 − n1ξ )/f1

(
1 − n2

2

)
(1 + n2ξ )f2

(
1 − n2

2

)
(1 − n2ξ )/f2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

t1

θ1

t2

θ2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

2

0

0

0

⎤
⎥⎥⎥⎥⎦ , (9)

where we use the compact notations f1 = ein1kd , f2 = ein2kd ,
and ξ = iλk. Numerical inversion provides t1, θ1, t2, and θ2,
from which the reflection and transmission coefficients of
the film are obtained using the remaining two constitutive
relations:

rfilm = t1 + θ1 + t2 + θ2 − 1,
(10)

tfilm

tvac
= e−ikd (t1e

in1kd + θ1e
−in1kd + t2e

in2kd + θ2e
−in2kd ),

where, similar as in experimental practice, the transmission is
calibrated against the transmission through a slice of vacuum
with the same thickness d as the film.

III. RELEVANT PARAMETER RANGE OF MOMENTUM
RELAXATION AND VISCOSITY COEFFICIENT

Before we turn to the examples based on a numerical
solution of the expressions in the previous section, it will be
useful to explore the relevant parameter range for the viscosity
and the relaxation rate. Two limiting cases have been explored
theoretically in some detail in the literature: Fermi liquids and
quantum critical states.

Since in a Fermi-liquid context viscosity and diffusivity
correspond to the same quantity [3], it therefore follows that
ν(0) = υ2

F τcoll. For our numerical examples, we make the
reasonable approximation that the memory function follows
an exponential decay, i.e., Mν(t)τ̃ = ν(0) exp (−t/τ̃ ), so that
ν(ω) = ν(0)/(1 − iωτ̃ ). Definitions of τ̃ , υ̃F , and further
details are provided in Appendix. When we solve Eq. (2) with
this function, we obtain the relations for transverse sound in
a Fermi liquid describing the dispersion [Re q(ω)] and the
attenuation [Im q(ω)] of the first (ωτ 	 1) and zero (ωτ 
 1)
transverse sound of liquid 3He in the normal state. We thus
obtain the following expression for the generalized viscosity:

νc(ω)

τ̃
∼ (υ̃F /c)2

1 − iωτ̃
. (11)

The result for ν(ω) in the hydrodynamic limit (ω → 0) is a real
number, hence the viscous response is purely dissipative. In
the “collisionless” limit, i.e., for frequencies high compared to
the collision rate, this crosses over to purely reactive response.
Moreover, ν(ω) is proportional to υ2

F , implying that materials
with a high Fermi velocity such as aluminum (having υF /c ∼
0.003) are expected to be record holders for viscosity related
phenomena.

Despite its equally high Fermi velocity, a drastically
different situation has been anticipated for graphene as a result
of the quantum criticality of this system [7], therefore bringing
it close to the lower bound conjectured in the context of

the quark-gluon plasma. In this case, the dynamic viscosity
(related to the kinematic viscosity as η = mnν) is given by
the relation [32] η/s � A�/kB , where s is the entropy density.
We associate an elastic mean free path l0 with the breaking of
the Galilean invariance, and the kinematic viscosity ν with
the diffusivity. Besides the assumption that intrinsic rapid
relaxation processes are governing the electron system, an
additional condition is that the length scales associated with the
momentum relaxation processes are still large. Operationally,
this means that l0 has to be large compared to the lattice
constant: this is a “clean-limit” notion. The transport of
quantum critical systems can also be addressed—to a degree—
in the dirty limit [33] where very different principles are
at work. The momentum relaxation rate is in such simple
liquids (and also the local quantum critical liquid computed
holographically in Ref. [13]) 1/τK = ν/l2

0 . Taken together,
these arguments then lead to the simple result

νc

τK

∼
(

λe

2l0

)2(
s

nkB

)2

, (12)

where λe = 2.4 × 10−14 cm is the Compton wavelength for
electrons. Since l0 must be larger than the interatomic distance,
l0 > 10−8 cm and s can not exceed the equipartition value,
s < kBn, we conclude that νc/τK < 10−12, i.e., some seven
orders of magnitude below the Fermi liquid estimate. It may
therefore be difficult in practice to experimentally access the
regime relevant to the quantum critical state. For a Fermi liquid
on the other hand, the parameters are much more favorable for
experimental observation.

IV. NUMERICAL EXAMPLES

A. Refractive indices

In Fig. 1, the real and imaginary parts of the two refractive
indices are displayed for selected values of the parameters
describing the fluid, utilizing Eq. (A5) for the frequency
dependence of the viscosity parameter. For the range ωτK < 1,
the two solutions of Eq. (3) are described by the leading-order
terms of the expansion in νcω and ωτK :

n1 ≈ ωp

√
iτK

ω

(
1 − i

2
νcωτ 2

Kω2
p

)
,

(13)

n2 ≈
√

τK

4νc

(
1 − νcτKω2

p

) + i

ω
√

νcτK

.

In the nonviscous limit, n1 converges to the conventional
expression of an evanescent electromagnetic wave; in this
limit, the second mode has Imn2 → ∞, so that the wave
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FIG. 1. (Color online) The real and imaginary parts of the re-
fractive indices n1 and n2, as a function of the normalized frequency
for selected values of the Fermi velocity in units of light velocity,
υF /c. In all panels, the relaxation time τK = 1000/ωp . In the two
top panels showing Ren1 and Imn1, the curves for υF /c = 0.00032
coincide within plotting accuracy with the Drude result, υF = 0.

amplitude, exp (−Imn2kz), vanishes for all z. Consequently,
the n1 mode is the sole nontrivial solution for ν = 0. For
the viscous case, there exist two solutions for the same ω,
corresponding to collective modes of different admixtures of
the coupled charge-liquid and the electromagnetic field. At low
frequencies, the n1 branch approaches the usual evanescent
electromagnetic wave. The second branch n2 has, by virtue
of the constant real part, the characteristics of transverse
sound, with an attenuation constant diverging as 1/ω. This
mode is similar in character to aforementioned attenuated
transverse sound of 3He [2]. Another intriguing aspect of this
mode is the fact that for νcτKω2

p > 1, the real part of n2 is
negative at low frequencies. This is the footprint of a very
interesting phenomenon called negative refraction [34–36],
in which the phase velocities and the energy flux are in
opposite direction. It was discussed in the context of charged
fluids in Refs. [18] and [19], where a particular form of
Eqs. (1) and (2) was considered, for which the viscosity is
real and frequency independent, and the momentum is not
dissipated: 1/τK = 0. The frequency ωτK = 1 constitutes a
peculiar bifurcation point: for ωτK > 1, the character of n1 and
n2 is swapped when the viscosity drops below the critical value
νcτKω2

p = 1; i.e., for νcτKω2
p < 1 the n1 branch has Ren1 ∼ 1

and Ren2 
 1, whereas for νcτKω2
p > 1, this is the other

way around.

FIG. 2. (Color online) Frequency dependence of the surface resistance (left) and reactance (right) relative to the Drude limit (υF = 0) for
different values of the parameter α′ = (3/4)(τcollωpυF /c)2. The calculations were done for τ̃ = τK = τcoll and a frictionless surface (λ = ∞).
For comparison, the results for the limit of specular scattering of Reuter and Sondheimer (Figs. 2 and 3 of Ref. [22]) are reproduced in the
lower panel on the same scale and for the same values of α′.
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B. Surface impedance

In Fig. 2, the resulting spectra of R/RD and X/XD represent
the real and imaginary parts of the surface impedance relative
to the corresponding Drude limit (υF = 0). Ordinates and
abscissas are shown on a log10 scale. The results in Fig. 2
are in fact almost identical to the calculations of Reuter and
Sondheimer, displayed in Fig. 3 of Ref. [22] for the same
parameter choices of α′ = (3/4)(τωpυF /c)2. As is the case in
Ref. [22], the resulting curves for any given value of α′ are
universal, i.e., they do not depend on the particular choice of
υF /c and τωp. The Reuter-Sondheimer model parts from a
weakly interacting electron model, for which the Boltzmann
equations are solved in the case where the mean free path
is longer than penetration of the electromagnetic rays. The
situation at the surface is treated in terms of a fraction p of
particles, which are scattered specularly, and 1 − p, which is
scattered diffusively. The results in Fig. 3 Ref. [22] are for the
limit of pure specular scattering, corresponding to a perfectly
smooth interface for which λ = ∞. The close correspondence
between the Reuter-Sondheimer prediction and the present
result implies that, for the case of weakly interacting electrons,
we have obtained an alternative formulation of the anomalous
skin effect, with a set of simple expressions in analytically
closed form. At the same time, the present approach has a
potentially broader applicability since it does not rely on any
particular assumptions regarding the corpuscular nature of
the charge liquid and is of particular interest for the optical
properties of quantum critical matter.

C. Reflection at vacuum/matter interface of
a half-infinite sample

The result for the reflection coefficient is displayed
in Fig. 3 for selected values of the parameters. For a
clean material with a perfectly smooth surface, the ex-
pected behavior corresponds to the result shown in the
rightmost panel with λωp = ∞. Based on the estimates
made above for the viscosity and relaxation time, the
curve with υF /c = 0.0032 comes closest to the expected
parameter range of a Fermi liquid. We should contrast
this curve to the Drude curve (orange). Clearly, the vis-
cosity has the effect of suppressing the reflection co-
efficient, or increasing the absorption on the solid: the
absorption forms a peak at ωτK ≈ 1, where the maxi-
mum increases from about 0.002 in the Drude limit to
0.004 for υF /c = 0.0032. Increasing the surface roughness
(left panel of Fig. 3) demonstrates the increased effects
of finite viscosity on the absorption of the material. In-
tuitively, this confirms what one expects: extreme surface
roughness forces the current to be zero at the sample surface.
Due to the viscosity this slows also the current deeper in
the fluid, which therefore is less effective in screening the
external electromagnetic field, and so becomes a less effective
mirror. The phase shown in the lower panels is a much
less sensitive probe of the viscosity parameter. Since the
phase of a reflectivity signal is already notoriously difficult
to measure, for all practical purposes, the best strategy for
experiments is probably to concentrate on the absorption
coefficient 1 − |r(ω)|2.

FIG. 3. (Color online) Spectra of the absorption coefficient (A = 1 − |r|2) and the phase (in degrees) of the reflection coefficient as a
function of frequency for selected values of the slip length λ (left), relative Fermi velocity υF /c (middle), and relaxation time, τcoll = τK (right).
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FIG. 4. (Color online) Oscillations of the electric field intensity
resulting from interference by the two degenerate modes of the same
frequency, as a function of penetration away from the vacuum/sample
interface.

D. Nonexponential decay and amplitude oscillations inside the
viscous charge liquid

An electromagnetic wave of frequency ω incident at the
surface will excite two modes of the same frequency inside

the material, with amplitudes given by the transmission
coefficients tj at the vacuum-matter interface. Both solutions
are exponentially decaying as a function of distance, each
with a different decay length. An additional consequence is
that, since n1 and n2 have different real parts, the intensity
|t1 exp (in1kz) + t2 exp (in2kz)|2 exhibits standing wave pat-
terns as a function of distance from the interface in the range
where both modes are of comparable amplitude. An example
of this behavior is shown in Fig. 4. In principle, experimental
methods can be devised to measure these oscillations of the
field by local probe techniques.

E. Thin-film transmission

As pointed out at the end of Sec. II B, the thin-film trans-
mission can be calculated numerically from the reflection and
transmission amplitudes at both interfaces using Eq. (10), and
a numerical inversion of the 4 × 4 matrix of Eq. (9) describing
the four rays inside the film. Examples for representative
parameters are shown in Fig. 5. Just as for the reflectivity
of a thick sample, the viscosity has the effect of changing the
spectral appearance: for the Drude model without viscosity the
transmission spectrum has a plateau for ωτK < 1, followed by
a minimum at ωτK ≈ 1 and a rise to about |t | = 1 for ω → ωp.
Increasing the viscosity has several effects: the transmission
develops a maximum at ωτK ≈ 1, the minimum is pushed

FIG. 5. (Color online) Spectra of amplitude and phase (in radians) of the transmission of a film of viscous charged fluid of thickness
d = 10c/ωp for selected values of the slip length λ (left), relative Fermi velocity υF /c (middle), and collision time, τcoll (right). The phase
values are calibrated against vacuum, i.e., if the sample is replaced with vacuum, the phase is zero at all frequencies.
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to somewhat higher frequencies, and also in this case the
transmission rises to |t | = 1 for ω → ωp. Interestingly, in the
frequency range between the maximum and the minimum,
there are the Fabry-Perot resonances, associated with the
n1 branch, which has a relatively weak attenuation in this
frequency range. Note that the propagation of the n1 mode
becomes similar to a standard polariton mode in an insulating
material despite that we are dealing with a metal. We also see
that the phase of the transmission spectrum is an extremely
sensitive probe of the viscosity for ωτK 
 1. In particular,
while for small values of νc(0) it is a weakly decreasing
function of frequency, it has a rapid rise for υF /c > 0.003.

V. CONCLUSIONS

We have derived a general framework to deal with elec-
tromagnetic properties of charged fluids and we have derived
some of their main properties. We have shown the existence
of two coupled electromagnetic-matter modes for a given
frequency inside a viscous charged fluid, one of these two has a
negative value for the real part of the index of refraction for low
frequency. Moreover, we have computed some observables: re-
flection and transmission coefficients, that could be measured
in actual experiments. Our results provide perspectives for a
generation of experiments and devices for the detection of vis-
cosity in charged or electron liquids and the possible exploita-
tion of multiple waves and negative refraction in such systems.
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by the Communauté Francaise de Belgique through the ARC
program and by the ERC through the SyDuGraM Advanced
Grant. D.F. acknowledges the kind hospitality of the LPTHE,
where part of this research has been implemented.

APPENDIX: NEUTRAL FERMI LIQUID

For our numerical examples, we adopt the dispersion q(ω)
of transverse sound of the neutral Fermi liquid, which is

obtained in two steps [2,37]. First, x is solved for a given
(real) frequency ω from the transcendental relation

(1 − x2)

[
1 − x

2
ln

(
x − 1

x + 1

)]
= 1 + (1 − iωτcoll)(F1 − 6)/9

1 + (1 − iωτcoll)F1/3
,

(A1)

where, in general, the solutions for x have a complex
value. Here, F1 is the Landau parameter characterizing the
interaction in the l = 1 angular momentum channel, and
Landau parameters of the higher angular momentum channels
are assumed to be negligible. In the second step, q(ω) is
calculated from

q(ω) = i + ωτcoll

xυF τcoll
. (A2)

We see, that the function q(ω) depends uniquely on the
collision rate τ−1

coll, the Fermi- υF , and F1. We obtained the
following parametrization by fitting to the numerical solution
of Eq. (A1):

q2υ2
F τ 2

coll = 5iωτ coll(1 − iωτcoll

√
F17/32)/(1 + F1/3).

(A3)

This expression merges with the exact solution for ω →
0, and it is rather accurate for all other frequencies and
parameters.

To obtain the viscosity from this, we observe that the
hydrodynamic free propagation of transverse polarized modes
in a neutral liquid is described by ∂υ/∂t = ν�υ, from
which iω = νq2. In order to extend the description to finite
frequencies beyond the hydrodynamic limit, we introduce the
frequency dependent memory function

ν(ω) = iω

q2
(A4)

with q(ω) given by either the solution of Eq. (A1) or the
parametrization, Eq. (A3). In the latter case, we obtain the
expression

ν(ω) = υ2
F τcoll(1 + F1/3)/5

1 − iωτcoll
√

F17/32
. (A5)

We recognize here Eq. (11), where the various parameters are
related as

τ̃ = 7
√

F1

32
τcoll, υ̃2

F = υ2
F

1 + F1/3√
F1

32

35
,

1

τK

= 7
√

F1

32

�

τ̃
.

(A6)
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Chapter 3
Superconductivity at the band edge

3.1 Introduction to pairing correlations

One of the most spectacular effects of electronic correlations in metals is electronic pairing,

whereby the effective interaction between two given conduction electrons becomes attrac-

tive, and bound states of electronic pairs appear in the Fermi sea: these many-body effects

generate a phase transition to a new ground state, with the consequence that electron pairs

are able to propagate in the system without any dissipation, and to respond to external

magnetic fields as a perfect diamagnet. This phenomenon is known as superconductivity.

In this chapter, we will first review the phenomenon of Cooper pairing, by which two

given electrons in the Fermi sea perceive a net mutually attractive interaction, thus forming

bound states of pairs. The treatment of electron-phonon coupling in second quantization

will lead us to BCS theory: utilizing this microscopic model, we are able to study the

elementary excitations and the critical properties of a superconductor, like the energy gap

∆~k or the critical temperature Tc, whenever the effective electron-electron interaction,

stemming from electron-phonon interaction, can be assumed to be attractive and constant

in the relevant energy range for pairing.

Since we are ultimately interested to study systems where the Fermi energy EF can be

comparable with typical phonon energies ħhωD, we will focus on what happens to a BCS

superconductor at low density. In this situation, one realizes that the standard high-density

and weak coupling approximations, like EF � ħhωD and kB Tc � ħhωD, cannot be employed:

the chemical potential µ lies close to the inferior edge of a band, and this has profound

consequences on the dynamics of pairing and on Tc. Furthermore, this analysis will pave

the way for the next chapter, where we will analyze the influence of quantum confinement

on a BCS superconductor: in reduced dimensionality, µ crosses confinement-induced
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3. SUPERCONDUCTIVITY AT THE BAND EDGE

subbands by varying density and coupling; whenever this happens, band-edge effects must

be considered in order to provide a physical description of superconductivity.

3.2 Pairing interactions and mean-field theory

Correlations leading to the Fermi liquid ground state do not exhaust the variety of phenom-

ena exhibited by correlated electron systems. In chapter 1, we have analyzed how Coulomb

and exchange processes affect the physical properties of conduction electrons in metals:

when the energy scale of these properties is small with respect to the electronic kinetic

energy, the net effect of screening (by the surrounding lattice, free charge carriers, etcetera)

and Pauli exchange is the formation of Landau quasiparticles [64], in direct correspondence

with the noninteracting electron gas [8]. In other words, the electron-hole elementary

excitations of the Fermi sea are nearly independent and only interact via short-ranged

residual forces, that we can treat perturbatively. This framework greatly simplifies the

mathematical analysis, while simultaneously providing ways to test the limits of the theory,

by estimating the magnitude of the residual quasiparticle correlations. In chapter 1, we

described such correlations with electron-hole polarization bubbles, and we unveiled the

intrinsically nonlocal nature of these processes in the limit when the electronic mean free

path is large compared to the average quasiparticle spacing. This is sufficient to explore a

wide variety of novel phenomena occurring in the Fermi sea: for example, in chapter 1 we

have seen that nonlocal correlations, treated in the viscoelastic model, qualitatively affect

experimental observables that can be measured by optical spectroscopy and transport.

However, the picture of nearly-independent Landau quasiparticles does not contem-

plate additional two-body correlations, which can become relevant at sufficiently low

temperatures and trigger the phase transition to a new ground state. In fact, these two-

body processes lead to electronic pairing and superconductivity. In order to describe the

superconducting state, we have to add such processes to the theory.

In many superconducting materials, pairing correlations are provided by the coupling of

the Fermi sea with an underlying bosonic field: if the Fermi sea coexists and is coupled with

an external ensemble having bosonic collective excitations, quasielectrons can exchange

such collective excitations. In the appropriate momentum and frequency range, the negative

(attractive) energy due to boson exchange between two quasielectrons can overcome the

residual repulsive interactions: bosons can make the total interaction between electrons

attractive, thereby mediating electronic pairing. In crystalline solids, the bosonic field can

be formed by phonons, i.e. quanta of the ionic lattice vibrational collective modes; other

bosons that can mediate pairing in magnetic systems are magnons [71–73], that are quanta
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3.2 Pairing interactions and mean-field theory

of spin waves. Purely electronic mechanisms for pairing are also possible, with attractive

two-body forces provided for instance by overscreening of the Coulomb repulsion through

Friedel oscillations [74,75].

Electronic pairing emerges from the complexity of the many-body problem constituted

by electrons coupled to bosons. In general, the total hamiltonian for such problem is

Ĥ = ĤK ,el + ĤCoul + ĤK ,b + Ĥb−b + Ĥel−b (3.1)

where ĤK ,el =
∑

~k,σ ξ~k,σ ĉ†
~k,σ

ĉ~k,σ is the kinetic hamiltonian of electrons,

ĤCoul =
∑

~k,~k′ ,~q,σ,σ′ VCoul(~q)ĉ
†
~k+~q,σ

ĉ†
~k′−~q,σ′

ĉ~k′ ,σ′ ĉ~k,σ is the Coulomb hamiltonian for electrons,

ĤK ,b =
∑

α εα b̂†
α
b̂α is the boson kinetic hamiltonian, Ĥb−b =

1
2

∑

αβν1ν2
V b−b
αβν1ν2

b̂†
α
b̂†
β

b̂ν2
b̂ν1

is

the boson-boson interaction hamiltonian and Ĥel−b is the electron-boson coupling hamilto-

nian,

Ĥel−b =
∑

~k,~k′ ,α,σ

V el−b
~k~k′σα

ĉ†
~k,σ

ĉ~k,σ

�

b̂†
α
+ b̂α

�

. (3.2)

Here we have utilized the annihilation and creation operators for electrons
¦

ĉ~k,σ, ĉ†
~k,σ

©

in

the representation of wave vector ~k and spinσ, and the correspondent quantities for bosons
�

b̂α, b̂†
α

	

in states generically labeled by the index α. The many-body hamiltonian (3.1) has

formidable complexity, which prevents one from finding a general solution of this problem.

Even a system composed by free electrons (ĤK ,el) and free bosons (ĤK ,b) coupled through

an interaction Ĥel−b has many-body character, whereby electrons and bosons interact and

influence each other leading to new physical phenomena: for instance, electron-phonon

coupling can lead to the formation of polarons [76,77]. Therefore, instead of solving the

hamiltonian (3.1) directly, another strategy is to rewrite an effective hamiltonian for the

electrons, which is assumed to be the net result of all many-body interactions of electrons

and bosons, and which displays the essential physics of pairing. The philosophy of such

approach is analogous to the one for the Fermi liquid phenomenology, which applies to

electrons in simple metals - see section 1.5 of chapter 1: in that case, we have seen that the

net result of interactions is to leave weakly-interacting quasiparticles, i.e. quasielectrons and

quasiholes living in the Fermi sea (1.72). This provides the groundings for the description

of the normally-conducting state [8,78], from which the transition to the paired state begins

in conventional superconductors. However, as previously mentioned, pairing interactions

lead to a different ground state with respect to the Fermi liquid. In fact, when we add

bosons to the electronic system, new interaction processes for electrons are possible due to

electron-boson coupling. In the following, we focus on electron-phonon coupling, which is
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3. SUPERCONDUCTIVITY AT THE BAND EDGE

amongst the most common sources of pairing in known superconductors. In the presence of

electron-phonon coupling, we can follow aforementioned strategy and rewrite the problem

of electrons coupled to phonons in terms of an effective hamiltonian for quasielectrons,

interacting through a two-body potential; the latter is the net result of all initial interactions

comprising Coulomb, electron-phonon, and so on. Perturbation theory demonstrates the

validity of this approach: the perturbative expansion of the Green’s function for electrons

coupled to phonons can be rewritten as an expansion in terms of effective electron-electron

interactions through an effective potential V ph
el−el(τ); the latter is retarded in time τ -i.e.

energy-dependent V ph
el−el(ω) in Fourier space - because phonons travel at a finite velocity

and it takes a finite time for them to mediate the interaction with electrons. Physically,

this means that a phonon is emitted (absorbed) at some time τ by the electronic system,

and absorbed (emitted) at some later time τ
′
, leading to a retarded interaction [2]. This is

visually represented by the diagram 3.2 for the the electron-phonon interaction vertex.

←− ∑

λ |g~qλ|2D0
λ
(~q,τ−τ′)

τ

τ′

~k1+
~qσ1

~k2−~qσ
2

~k1σ
1

~k2σ
2

As we see in the diagram 3.2, the total momentum of the system is conserved, since

the involved electrons exchange a phonon momentum ~q. However, they also exchange an

energy Ω =ωλ(~q), with ωλ(~q) phonon dispersion relation for branch λ, which reflects the

energy dependence of the electron-phonon potential V ph
el−el(ω) due to retardation effects.

Phonon emission and absorption always come in pairs in these processes, so we can

define creation-annihilation operators of phonon pairs as B̂~q,λ = b̂†(~q,λ) + b̂(−~q,λ) and its

hermitian conjugate. Phonons have to physically propagate in order to reach the second

electron after being emitted by the first electron: therefore, the process depends on the

phonon propagator. The free phonon propagator for the branch λ reads

Dλ0 (~q,τ) = −
¬

TτB̂~q,λ(τ)B̂
†
~q,λ(0)

¶

(3.3)

where Tτ is the time-ordering operator [1]. In frequency space, equation (3.3) corresponds

to [1,2,9,78]

Dλ0 (~q,Ω) =
1

Ω−ωλ(~q)
− 1
Ω+ωλ(~q)

=
2ωλ(~q)

Ω2 − [ωλ(~q)]2
(3.4)

112



3.2 Pairing interactions and mean-field theory

The explicit form of the electron-phonon interaction vertex is then

V ph
el−el(τ) =

1
2

∑

~k1σ1

∑

~k2σ2

∑

~q

∫
1

kB T

0

dτ
′
V e f f

el−el(~q,τ−τ′)ĉ†
~k1+~q,σ1

(τ)ĉ†
~k2−~q,σ2

(τ
′
)ĉ~k2,σ2

(τ
′
)ĉ~k1,σ1

(τ)

(3.5)

where we have the ~q and τ−τ′ component of the interaction potential

V e f f
el−el(~q,τ)) =

∑

λ

�

�g~q,λ

�

�

2Dλ0 (~q,τ), (3.6)

where g~q,λ is the electron-phonon coupling matrix element. In the frequency domain,

equation (3.7) reads

V e f f
el−el(~q,Ω) =

∑

λ

�

�g~q,λ

�

�

2Dλ0 (~q,Ω). (3.7)

As previously mentioned, the potential (3.5) represents an effective interaction between

quasielectrons, which exchange the excitation momentum ~q and the energy ωλ(~q). This

directly affect electronic correlations. Indeed, the structure of V ph
el−el(τ) is similar to the

two-body Coulomb repulsion between electrons, with the exceptions that V ph
el−el(τ) is second

order in the matrix element g~q,λ and it is retarded in time - i.e. energy-dependent. It is this

energy dependence, given by phonon dynamics, that can make V ph
el−el(Ω)< 0: the effective

phonon-mediated electron-electron interaction can become negative, i.e. attractive. This

is encoded into the phonon Green’s function (3.4), which is indeed negative for physical

frequencies Ω<ωλ(~q). Such negative contribution is able to trigger the transition to the

superconducting state, with an effective attraction between electrons that couples them

into Cooper pairs [2,78]. By comparison, the Coulomb interaction is always positive, being

energy-independent: in fact, the Coulomb interaction reads

V̂Coul =
1
2

∑

~k1,σ1,~k2,σ2

∑

~q

VCoul(q)ĉ
†
~k1+~q,σ1

ĉ†
~k2−~q,σ2

ĉ~k2,σ2
ĉ~k1,σ1

(3.8)

where VCoul(q) =
e2

ε0q2 . Comparing equations (3.5) and (3.8), we immediately realize that

we can treat the phonon-mediated electron correlations on the same ground as Coulomb

processes, i.e. as effective electronic interactions. Hence, we can proceed along the same

lines as for the Fermi sea (1.72), and write the effective electronic hamiltonian comprising

the electron-phonon contribution in a similar way as for Fermi liquid phenomenology.

Consistently with section (1.5), some interaction effects are already considered in the

renormalized properties of Landau quasiparticles, e.g. their effective mass m∗; these

quasiparticles act as nearly-independent elementary excitations. For this reason, we build
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a first contribution to our effective hamiltonian by considering the kinetic term

Ĥ0
F L =

∑

~k,σ

ξ~k,σ ĉ†
~k,σ

ĉ~k,σ (3.9)

where ξ~k,σ are the energy eigenvalues of Landau quasiparticles, already including mass

renormalization effects due to Coulomb and electron-phonon interactions. In the same

spirit as in Landau theory, the quasiparticles are still interacting via a two-body hamiltonian,

which can act in the singlet channel between electrons of opposite spins

ĤS
el−el =

∑

~k,~k′ ,~q

VS(~k,~k
′
, ~q)ĉ†

~k+ 1
2 ~q,↑ ĉ

†
−~k+ 1

2 ~q,↓ ĉ−~k′+ 1
2 ~q,↓ ĉ~k′+ 1

2 ~q,↑, (3.10)

with VS(~k,~k
′
, ~q) effective singlet interaction, or in the triplet channel between electrons

having the same spin. [9, 79]. In a translationally-invariant system carrying no current,

the q = 0 paired state has the largest instability to precipitate into the superconducting

state [78]. Hence, we restrict our attention to the case q = 0, so that the pairing potential

becomes VS(~k,~k
′
, 0) ≡ VS(~k,~k

′
). Also, we assume singlet pairing interaction, which is

energetically favored with respect to triplet for what concerns exchange correlations [3].
In fact, the Pauli exchange energy is lower for antiparallel than for parallel spins. Although

singlet pairing is realized in many conventional superconductors, there are exceptions, with

Sr2RuO4 as a possible candidate for triplet superconductivity [80, 81]. The total singlet

hamiltonian becomes

Ĥ0
S = Ĥ0

F L + ĤS
el−el (3.11)

The hamiltonian (3.11) is at the foundations of many microscopic theories of supercon-

ductivity. The origin of pairing stems from the energy dependence of the electron-phonon

interaction potential (3.5): for a given superconductor and in appropriate momentum

and frequency ranges, the electron-boson potential V ph
el−el(Ω) is negative, leading to an

effective attractive electron-electron interaction (3.10) between quasielectrons. Also, when

the boson-mediated electron-electron interaction V ph
el−el(Ω) < 0 overcomes the Coulomb

repulsion (3.8), quasielectrons experience a net mutual attraction, which generates bound

states of Cooper pairs in the Fermi sea and determines a many-body phase transition to the

superconducting ground state. This means VS(~k,~k
′
, ~q)< 0 in the effective hamiltonian for-

mulation (3.10). The remarkably small energy difference between the normally-conducting

and the superconducting state of a metal (of the order of 10−8 eV per electron [78]) sug-

gests that only a subtle shift in electron correlations occurs in going to the superconducting

state. This subtle energy balance does not always work: indeed, some materials become
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3.2 Pairing interactions and mean-field theory

superconductors while others do not. Now we have replaced the complicated problem

(3.1) of electrons coupled to phonons by the effective electronic hamiltonian (3.11), where

a pairing (negative) interaction VS(~k,~k
′
) reproduces the essential low-energy physics of

the effective electron-electron attraction mediated by phonons V ph
el−el(τ). We still have

to specify an explicit form of the pairing potential VS(~k,~k
′
) which mimics V ph

el−el(τ). For

that reason, in the following section we look at the electrodynamics of electron-phonon

coupling more in detail, and we define the BCS caricature of the pairing potential, which

is able to grasp the essential features of superconductivity at weak coupling.

3.2.1 Electron-phonon coupling and BCS theory

In many superconductors, the mechanism generating the net electron-electron attraction is

the exchange of phonons; this physical picture is at the basis of the BCS model by J. Bardeen,

L. N. Cooper and J. R. Schrieffer [82], and of its strong-coupling extension by A. B. Migdal

and G. M. Eliashberg [78,83,84]. By virtue of electron-phonon coupling, quasielectrons

exchange quanta of lattice vibrations as depicted in the diagram 3.2. Since lattice ions carry

positive electric charge, the electron-phonon interaction has electrodynamic nature, in the

same way as Coulomb repulsion between electrons; this reinforces the similarities between

the two aforementioned interactions. Hence, the phonon mechanism can be regarded

as a phenomenon of anomalous dielectric screening: the overscreening of the Coulomb

repulsion by phonons reverses the sign of the net electron-electron interaction.

In order to get a glimpse at the dynamics of overscreening, we have to analyze phonon

exchange; this is best done using the many-body formalism, which allows us to gain

immediate physical insight into the pairing mechanism. The propagation of free phonons is

described by the Green’s function (3.4). However, phonons coupled to electrons are not free

since the former interact with the latter: the free phonon propagator (3.3) becomes the non-

free propagator Dλ(~q,Ω): phonons acquire a self-energy, i.e. a modified spectral function

and a finite lifetime (like electrons, see section 1.4.1), through electron-phonon interaction.

Likewise, the free electron Green’s function G 0(~k,ω) = 1
ω−ξ~k acquires a self-energy from

interactions with phonons and becomes the non-free propagator G (~k,ω). Finally, the

electron-phonon matrix element g~q,λ is also screened, because interactions occur between

dressed - i.e. non-free - quasiparticles, quasielectrons and dressed phonons. The final form

of the electron-phonon interaction depends on the phonon dispersion relations ωλ(~q), on

the electronic properties like density and mass, and on which classes of electron-phonon

processes we consider in the many-body theory. However, we can generally interpret the

results in terms of dielectric screening in the system of electrons and phonons, since the
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latter interact through electrodynamic forces. As we are dealing with screening, one useful

way to consider the many-body problem of electrons coupled to longitudinal phonons is

RPA, as we did for electrons alone in section 1.2. In this case, one retrieves the results

for electrons interacting with longitudinal phonons in the jellium model: the screened

phonons acquire acoustic dispersion relations, the Coulomb interaction is screened as well

as the electron-phonon coupling. Here, we first quote the essential results for the effective

electron-electron interaction in the case of acoustic phonons, characterized by a Debye

spectrum [3]. Given a phonon spectrum ωλ(q), the electron-electron effective interaction

stems from equations (3.7) and (3.4)1:

V e f f
el−el(~q,Ω) =

∑

λ

�

�g~q,λ

�

�

2 2ωλ(~q)

Ω2 − [ωλ(~q)]2
. (3.12)

Let us analyze the frequency dependence of the effective electron-electron interaction

(3.12), with the aim of extracting a characteristic value for a given phonon spectrum.

This effective interaction can be parameterized as a function of frequency by introducing

the Eliashberg function α2F(ω) [84], which is an average over the Fermi surface of the

electron-phonon interaction matrix element squared, multiplied by the phonon density of

states F(ω) =
∑

λ,~q δ [ω−ωλ(~q)]. Physically, α2F(ω) tells us how the phonon spectrum

of the material is modified by electron-phonon coupling. Therefore, from equation (3.12)

we can write

V e f f
el−el(~q,Ω)≈ V e f f

el−el(Ω) = 2

∫ +∞

0

dωα2F(ω)
ω

Ω2 −ω2
. (3.13)

Let us take the example of a Debye phonon spectrum [3] α2F(ω) = VD

�

ω
ωD

�2
θ(ωD −ω),

where ωD is the Debye frequency. This corresponds to the acoustic dispersion relation

ω(~q) = vSqθ (qD − q), where vS is the sound velocity and qD =
ωD
vS

is the Debye wave vector.

In this case, the effective electron-electron interaction (3.13) becomes

V e f f
el−el(Ω) = 2VD

∫ ωD

0

dω
�

ω

ωD

�2 ω

Ω2 −ω2
=

VD







−1+
�

Ω

ωD

�2

ln





�

Ω
ωD

�2

1−
�

Ω
ωD

�2











(3.14)

The frequency evolution of the effective electron-electron interaction (3.14) is shown by

1For acoustic phonons, we should substitute Dλ0 (~q,Ω) in equation (3.4) with the non-free phonon propa-

gator Dλ(~q,Ω) = 2ωλ(~q)
Ω2−[ωλ(~q)]2 , where ωλ(~q) = vSq, since acoustic phonons emerge from the renormalization

of phonon dispersion relations, due to electron-phonon coupling [1,9]
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ωD

−VD

〈
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〉
Ω
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Figure 3.1: Frequency evolution of the electron-electron effective interaction mediated by
coupling to a Debye phonon spectrum (3.14), characterized by the Debye frequency ωD and
the interaction strength VD. The blue curve shows effective interaction according to equation
(3.14). The shaded area shows the average value of the electron-electron attraction

¬

V e f f
el−el

¶

Ω
up to the Debye frequency, in accordance with equation (3.15).

the blue curve in figure 3.1: the effective interaction is negative, i.e. attractive, due to

electron-phonon coupling, up to a frequency
�

1+W
�

1
e

��− 1
2 ωD = 0.884ωD, where W (x) is

the Lambert function, solution to x =WeW ; above this frequency, the effective interaction

becomes positive, i.e. repulsive. Therefore, in the case of a Debye spectrum, ωD sets the

characteristic frequency scale within which the interaction is attractive.

Performing an average over frequency of equation (3.14), we can deduce the average

value of the effective electron-electron attraction:




V e f f
el−el

�

Ω
=

1
ωD

∫ ωD

0

dΩV e f f
el−el(Ω) =

1
3
(−1− ln 4)VD = −0.795VD. (3.15)

Hence, we can utilize the average value from equation (3.15) as a characteristic magnitude

of the electron-electron attraction which occurs in the frequency interval {0,ωD}. This

provides a simplified sketch of the electron-electron effective attraction, shown by the

shaded area in figure 3.1, which is able to reproduce the mechanism of pairing while

neglecting the frequency dependence of V e f f
el−el(Ω). This procedure, here outlined for a

simple Debye phonon spectrum, can be repeated for a more complicated function α2F(ω).
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As previously mentioned, apart from generating acoustic phonon dispersion relations,

electronic screening affects both the Coulomb repulsion Vcoul(q), as well as the electron-

phonon coupling vertex g~q,λ: taking a static approximation of dielectric screening, the

former becomes the screened Coulomb repulsion WCoul(q) =
VCoul(q)

ε(~q,0) , while the latter is

renormalized according to
g~q,λ

ε(~q,0) , where ε(~q,ω) is the dielectric function [9]. For a Fermi

liquid, the dielectric function can be calculated in RPA, as we did in section 1.2. Hence,

in the presence of screening, the effective phonon-mediated electron-electron interaction

becomes

V e f f
el−el(~q,Ω) =

∑

λ

�

�g~q,λ

�

�

2

[ε(~q, 0)]2
Dλ(~q,Ω). (3.16)

From equation (3.16), we see that whenever the sum of the effective phonon-mediated

electron-electron interaction V e f f
el−el(~q,Ω) and of the screened Coulomb repulsion WCoul(q)

is negative, the effective electron-electron interaction becomes attractive. This qualitatively

illustrates the origin of Cooper pairing from electron-phonon coupling, even in the presence

of Coulomb repulsion. The qualitative frequency evolution of the effective potential (3.16)

for a given momentum ~q is sketched in the left panel of figure 3.2.

While we have reviewed the interaction of electrons with longitudinal phonons in

the jellium model, one can consider also optical phonons, and use more sophisticated

many-body resummation techniques instead of RPA. We cannot use the momentum- and

frequency-dependent potential V e f f
el−el(~q,Ω) directly into the effective hamiltonian (3.10),

precisely because V e f f
el−el(~q,Ω) depends on frequency, while a two-body potential must be

local in time in a hamiltonian scheme [78]. Hence, retardation effects are best treated with

a many-body formalism [78,83,84], while if we insist on using the effective hamiltonian

(3.11) we must find an appropriate caricature VS(~k,~k
′
) that catches the qualitative signature

of pairing. The strategy to achieve such caricature follows the example that we sketched

for a Debye spectrum in equations (3.13) - (3.15). In the low-energy pairing range, we

can neglect the frequency dependence of V ph
el−el(Ω) if such dependence is sufficiently weak

in the Ω interval where the interaction is attractive, i.e. V ph
el−el(Ω)≈




V e f f
el−el

�

Ω
∀Ω<ωλ(~q),

where we consider only one phonon branch λ with the typical phonon energy ωλ(~q)≈ωD.

Thus, the only energy dependence of coupling comes from the typical cutoff energy ħhωD in

figure 1.5 (b), which qualitatively sketches the sign change of the interaction at ωλ(~q) in

figure 3.2 (a). Outside the pairing window (−ħhωD,ħhωD), we neglect the repulsive portion

of the potential in figure 3.2 (a), simply assuming zero interaction. Therefore, in this

approximation we can take ε(~q,Ω) = 1 and D0
λ
(~q,Ω) = Θ(ωD − Ω) − Θ(Ω +ωD). This

considerably simplifies the problem, since retardation effects only appear in the theory

118



3.2 Pairing interactions and mean-field theory

WCoul(q)

ωλ(~q)

Ω
−15

−5

5

15

V
ef

f
el
−
el
(~q
,Ω

)

−VBCS

ωD

Ω

0
V

B
C
S

ef
f

(ω
)

Figure 3.2: Left panel: schematic diagram of the effective electron-electron interaction
V e f f

el−el(~q,Ω), for a given momentum ~q, as a function of frequency Ω, which is controlled by the
energy dependence of the phonon Green’s function - equation (3.4) for free phonons - and which
becomes equation (3.16) in the presence of static electronic screening. V e f f

el−el(~q,Ω) is attractive
below the phonon frequency ωλ(~q) due to overscreening of the Coulomb interaction WCoul(q),
while the latter dominates for Ω�ωλ(~q) so that V e f f

el−el(~q,Ω) asymptotically reaches the positive
value WCoul(q) [1,9,78]. The dashed gold curve is obtained for free phonons - see equation
(3.4)- while real - i.e. non-free - phonons have an imaginary part in their dispersion relation,
which suppresses the singularity at ωλ(~q) and gives the red continuous curve. Right panel:
simplified Bardeen-Cooper-Schrieffer interaction V BCS

e f f (Ω) for the electron-phonon mechanism
of the left panel. The interaction is attractive and constant up to a typical phonon frequency,
taken as the Debye frequency ωD [82]. The colored area represents the energy window in
which Cooper pairing occurs according to the BCS model: this mimics qualitatively the region
where V e f f

el−el(~q,Ω)< 0, as highlighted in the left panel by a colored area as well.
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through the energy cutoff ħhωD. The effective singlet potential VS(~k,~k
′
) is then

VS(~k,~k
′
)≡ V BCS

e f f (ξ~k) = −VBCSη(ξ~k)η(ξ~k′ ) (3.17)

where the function η(ξ) = Θ(ξ+ħhωD)−Θ(ξ−ħhωD) implements the cutoff at energy ħhωD

for the quasielectron energy levels ξ~k measured with respect to the chemical potential µ.

This way, we arrive at the effective BCS hamiltonian

ĤBCS = Ĥ0
F L + ĤS

el−el =
∑

~k,σ

ξ~k,σ ĉ†
~k,σ

ĉ~k,σ − VBCS

∑

~k,~k′
η(ξ~k)η(ξ~k′ )ĉ

†
~k,↑ ĉ

†
−~k,↓ ĉ−~k′ ,↓ ĉ~k′ ,↑ (3.18)

Now we have the simplified pairing model (3.18), based on a caricature of electron-

phonon coupling in Fermi liquids, which is able to describe the essential features of singlet

superconductivity at weak coupling. We still have to solve the hamiltonian ĤBCS, to find the

new superconducting ground state and its elementary excitations. Of course, the two-body

interaction term in equation (3.18) complicates the analysis, and analytical solutions are

prevented without making further simplifications. In order to proceed, BCS opted for a

mean-field solution: this stems from either variational analysis with respect to a guessed

ground state ΨBCS, or through mean-field decoupling of the two-body interaction. In the

next section, we briefly review the method of mean-field decoupling in second quantization

to highlight its physical meaning; in the next chapter, we will apply this method to obtain

the Gor’kov equations, in order to derive the gap equation for a BCS superconductor

expressed in a generic single-particle basis.

3.2.2 Mean-field decoupling

The BCS pairing instability, characterizing the hamiltonian (3.18), generates the phase tran-

sition to the BCS ground state ΨBCS, in which a macroscopically large number of electrons

condenses in pairs of opposite momenta and spin. Therefore, the BCS state represents an

electronic condensate, with a large number of Cooper pairs mutually overlapping in real

space [85,86]. Since the condensed phase is macroscopically occupied, we can look at the

average condensate occupation and its deviations with respect to equilibrium, which we as-

sume perturbatively small. In this case, the average properties will be reliably representative

of the entire ensemble. This procedure is known as mean-field decoupling, since it allows

to decompose two-body correlations, like the Coulomb term (3.8) or the BCS two-body

term in (3.18), into an independent-particle problem; for conventional superconductors

like Al, this is a good approximation. For the Fermi liquid (1.72), mean-field decoupling
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3.2 Pairing interactions and mean-field theory

is equivalent to the Hartree-Fock approximation [2], while in the presence of pairing it

becomes the BCS theory [2,78]. In second quantization, we define the thermodynamic

average in the condensed state
¬

ĉ†
~k,↑ ĉ

†
−~k,↓

¶

and its hermitian conjugate. The deviations with

respect to these averages read

Φ†
~k
= ĉ†

~k,↑ ĉ
†
−~k,↓ −

¬

ĉ†
~k,↑ ĉ

†
−~k,↓

¶

(3.19a)

Φ~k = ĉ−~k,↓ ĉ~k,↑ −



ĉ−~k,↓ ĉ~k,↑
�

(3.19b)

and are assumed to be small compared to the averages themselves. Rewriting the hamilto-

nian (3.18) in terms of the averages in (3.19a) and neglecting the term Φ†
~k
Φ~k, the resulting

hamiltonian becomes quadratic in the annihilation and creation operators
�

ĉ~k,σ, ĉ†
~k,σ

�

,

hence it is diagonalizable. The diagonalization is completed through the Bogoliubov-

Valatin unitary transformations, that allow to find the elementary excitations of the BCS

ground state and to study finite-temperature properties like the superconducting energy

gap ∆~k(T) and the pairing temperature Tc. The equation through which we can study

finite-temperature properties is the BCS gap equation

∆~k =

∫

d3k
′

(2π)3
VS(~k,~k

′
)∆~k′

tanh

�r

(ξ~k′ )
2+|∆~k′ |2

2kBT

�

2
Ç

(ξ~k′ )2 +
�

�∆~k′
�

�

2
. (3.20a)

here written for one band. As previously mentioned, ∆~k = ∆~k(T) is the temperature-

dependent energy gap, which opens in the electron density of states N el
0 (µ + ξ)) (per

spin and per unit volume) around the chemical potential µ during the transition to the

superconducting phase, giving a gapped BCS density of states NBCS(µ+ ξ). The chemical

potential µ is set by the electronic density n through the density equation

n= 2

∫ ∞

−∞
dξ fF D(ξ)NBCS(µ+ ξ). (3.20b)

Here, fF D(ξ) = [eξ/kBT + 1]−1 is the Fermi-Dirac distribution function. In the standard

textbook solution of the BCS model, the gap is momentum-independent, i.e. ∆~k ≡∆: in

this case, the gap has s-wave symmetry. This allows us to rewrite the integral over k
′
in the

gap equation (3.20a), using the BCS interaction (3.17), as an energy integral. We have

1= −VBCS

∫ ħhωD

−ħhωD

dξN el
0 (µ+ ξ)

tanh
�p

ξ2+|∆|2
2kBT

�

2
Æ

ξ2 + |∆|2
. (3.21)
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3. SUPERCONDUCTIVITY AT THE BAND EDGE

The generalization of the gap equation (3.21) to many bands is straightforward: each

superconducting band α has a gap ∆α, and equation (3.21) becomes equation (1a) of

paper 2. In the following, in chapter 4, and in paper 2, we will only consider the s-wave

solution. The mean-field technique gives reliable results for systems in which thermal and

quantum fluctuations are negligible with respect to thermodynamic averages. This also

depends on the dimensionality of the system: rigidity with respect to fluctuations decreases

with decreasing number of spatial dimensions, thereby lowering the accuracy of mean-field

solutions. For two-dimensional systems, a pure BCS solution is prevented by fluctuations

according to the Mermin-Wagner theorem [87–89], although a superconducting transition

is still possible and its difference with respect to mean-field theory can be small, particularly

for multiband systems; instead, one-dimensional systems have to be treated with different

methods in general [90].

Up to now, we have reviewed how BCS theory models pairing through phonon exchange,

starting from the normal-state Fermi sea (1.72). However, we have not yet commented

on the electronic eigenstates ξ~k,σ entering into the hamiltonian (3.18): we have not

described the role of electrons yet, specifically how the normal-state properties influence

the superconducting transition. We notice that the electronic quantity entering into the

gap equation (3.21) is the density of states N el
0 (µ+ ξ) around the chemical potential µ.

This quantity represents how many electron states are available for pairing in the system,

inside the pairing energy window (3.17) that is set by the cutoff energy ħhωD. Hence, for

BCS the paired states reside in the region of the density of states N el
0 (µ+ ξ) such that

ξ ∈ (−ħhωD,ħhωD) (3.22)

Consequently, pairing depends on the density of states N el
0 (µ+ ξ) sampled by the pairing

window (3.22); the form of the density of states depends on the spatial dimensionality

of the system (i.e. 3D, 2D, or quasi-2D configurations that we will consider in the next

chapter 4) and on the number of bands (single band or multiband configurations), while

the energy position of the pairing window - given a cutoff ħhωD - depends on the chemical

potential µ, which is set by the density through equation (3.20b).

Therefore, spatial dimensionality and electron density have a significant impact on the

superconducting properties, and on the BCS solution of equation (3.21). The standard

textbook solution of BCS involves one parabolic band at high density, for which ξ~k =
ħh2k2

2m −µ
and µ� ħhωD: this considerably simplifies the mathematical treatment, in that the energy

dependence of N el
0 (µ + ξ) can be neglected. However, in low-density superconductors
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3.3 BCS theory near the band edge

where µ � ħhωD, we cannot employ the same approximations as for the high-density

solution, hence we have to seek new solutions. Important examples of such systems are

bulk SrTiO3, superconducting thin films and interfaces like LaAlO3/SrTIO3, which we will

study in the next chapter. In the next section, we describe the problem that we face when

dealing with low-density BCS superconductors, and we set the framework for its solution;

the latter is further developed in paper 2 at the end of this chapter.

3.3 BCS theory near the band edge

Section 3.2.2 led us to appreciate the role of dimensionality and electron density on pairing

in the BCS model [82]. Among many other insights, these aspects of BCS theory have

inspired the search for materials with improved performances: low-dimensional systems,

with a different density of states and a modified pairing interaction with respect to the bulk,

have been investigated as a possible way to boost superconductivity. However, reducing the

dimensionality of BCS superconductors brings out another density-related issue: the carrier

density in individual confined subbands can be so low that the standard approximation

µ� ħhωD on the pairing window (3.22) cannot be performed, as we discussed in section

3.2.2. Bulk materials can also inherently be low-density superconductors, as is the case

for doped SrTiO3. Therefore, in the regime where the condition µ� ħhωD is not met, the

form of the BCS solution for the critical properties changes. D. M. Eagles already produced

pioneering work in this direction half a century ago [91–93], although this has often been

overlooked until recently in calculations based on the BCS gap equation. In the following,

we will mainly focus on the influence of low density on the pairing temperature Tc.

As mentioned in section 3.2.2, textbook solutions of BCS theory are provided at high

density, such that EF � ħhωD: this is the adiabatic regime of superconductivity. In this

situation, phonon dynamics occurs on a much lower energy (i.e. velocity) scale than electron

dynamics, so that electrons are fast enough to follow and adapt to lattice vibrations almost

instantaneously [1, 2, 78]. For the BCS model, such situation is schematically depicted

in figure 3.3 (a). This means that, in all the pairing window (3.22), we can take the

density of states as to be constant and correspondent to the value at the chemical potential

N el
0 (µ+ξ)≈ N el

0 (µ) ∀ξ. Then, linearization of equation (3.20a) and the further assumption

kB Tc � ħhωD leads to the standard expression for the critical temperature Tc =
2eγ

π

ħhωD
kB

e−
1

λBCS ,

where γ is the Euler constant and λBCS = VBCSN el
0 (µ) is the BCS superconducting coupling

constant.

The situation is different at low density, where the antiadiabatic regime EF � ħhωD
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3. SUPERCONDUCTIVITY AT THE BAND EDGE
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πkB
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Figure 3.3: Schematic representation of the high-density regime and the low-density regime
for superconducting pairing. In the former, µ� ħhωD and the density of states N el

0 (E) can be
taken constant. In the latter, EF ® ħhωD, the interaction is cut by the band edge, and the details
of N el

0 (E) matter. This modifies the pairing temperature Tc with respect to the standard BCS
expression.

is realized. In this case, phonon dynamics occurs at higher energies with respect to

electron dynamics: lattice vibrations react almost instantaneously to electrons, so that

the latter locally polarize the lattice. This means that the screening of phonon clouds

surrounding electrons acts faster than electrons themselves, hence phonons dress electrons

into polarons [76]. If these new composite objects interact with a residual weak attraction,

in principle one can formulate the BCS model in terms of Cooper pairs of polarons [13].
Figure 3.3 (b) illustrates this low-density case in the context of the BCS model, with the

chemical potential lying near the bottom of a band: as the chemical potential crosses the

edge of a band, there is a regime where the dynamical cutoff of the pairing interaction is

controlled by the band edge. This regime is realized in low-density electron liquids: for

instance, in doped SrTiO3 the carrier concentration is typically 1019 cm−3 and the carrier

mass is in the range 2–4 electronic masses [94], corresponding to a Fermi temperature of

50–100 K, while the Debye temperature is 513 K [95]. Furthermore, as we see in figure 3.3

(b), the density of states has a non-negligible energy dependence near the band edge, from

which it starts to rise from zero: there, the common approximation of taking a constant

DOS over the full dynamical range fails to give a good estimate for Tc.

An exact solution of the gap equation (3.20a) requires one to take into account the

energy dependence of the DOS, most importantly the cutoff at the band bottom, and the

temperature dependence of the chemical potential µ, which is crucial at low-density n.

Because n, Tc, and µ all approach zero simultaneously, it is essential to use the exact
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3.3 BCS theory near the band edge

relation µ(n, Tc) in order to capture the correct behavior of Tc for n→ 0: equations (3.20a)

and (3.20b) have to be solved self-consistently. Furthermore, one should not assume weak

coupling and/or assume that Tc is small with respect to µ and ħhωD.

We develop the mean-field approach to the band-edge effect in paper 2, focusing on Tc

in the bulk, for one band in different dimensionalities and for multiband configurations.

This theory yields a pairing temperature which is in general higher than the temperature

of superconducting coherence, especially when the dimensionality and/or the density is

low and superconducting fluctuations become important [96–98], as mentioned in section

3.2.2. We ignore these fluctuations and focus on the mean-field equations, refraining

from making any approximation when solving them for Tc. This approach has many con-

nections to mean-field studies of the BCS-BEC crossover, where the self-consistency of

the temperature-dependent chemical potential at fixed density is required to solve the Tc

equation or the gap equation at zero temperature [86,99,100]. As we will see, nontrivial

consequences of low density are that Tc is a continuous non-analytical function of density

and coupling near the band edge, both in 2D and in 3D; the chemical potential at Tc is

negative in the low-density limit, in 2D for any coupling and in 3D for couplings larger

than a critical value. Moreover, the universal BCS gap to Tc ratio is not obeyed in the

low-density limit, so this ratio cannot be used to deduce Tc from the zero-temperature gap.

The results here derived will be applied in the next chapter to quantum-confined

systems in quasi-2D geometry. There, discretized energy levels - or subbands - are produced

along the confined direction, and the chemical potential can be tuned with respect to the

quantized eigenstates by altering the confinement parameters, the density, or the pairing

interaction: whenever µ crosses the bottom of a discretized subband, we are exactly in the

band-edge regime here described, and therefore band-edge effects have to be considered to

provide the correct mean-field solution for Tc. This situation models nanostructured BCS

superconductors in the form of thin films or interface. However, as previously mentioned,

the low-density cutoff of figure 3.3 is also met in bulk systems, with SrTiO3 as one of the

most remarkable examples. Due to its characteristics, we will focus on this material, either

in the bulk or in quasi-2D geometry, when applying our calculations in the remainder of

this thesis.

3.3.1 A low-density superconductor archetype: strontium titanate

Now that we have described the modifications to the pairing temperature when the BCS

pairing window (3.22) is inferiorly cut by the band edge, it is interesting to look for
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3. SUPERCONDUCTIVITY AT THE BAND EDGE

materials in which such conditions may be naturally realized, with the aim of testing our

theoretical predictions. Hence, we seek a superconductor with a low carrier density in the

conduction bands, which may also be grown in the form of thin films, or may be employed

in the construction of artificial heterostructures. Strontium titanate (SrTiO3, named STO

hereafter) is an archetype material in this sense, since it has been addressed as “the most

dilute superconductor” [101] due to the possibility of chemically dope its conduction

bands with carrier densities as low as n≈ 1017 cm−3, while still maintaining a Fermi-liquid

character with a low-temperature superconducting ground state. By comparison, ordinary

metals like Al, Au or Ag have much larger carrier densities of the order of n≈ 1022 cm−3

[3]. Such properties of STO stem from its peculiar band structure and from many-body

interactions, which dress electronic carriers and form polarons [102].

3.3.1.1 Band structure

STO belongs to the crystallographic family of ABO3 perovskites, where A and B are two

cations, the alcaline Sr and the transition metal Ti in the case of STO. In this system, chemical

bonding between Sr and TiO3 has predominantly ionic character [103], whereby the

transition metal s electrons are transferred to the oxygen 2p orbitals. In stoichiometric form,

STO is a band insulator with an energy gap of Eg ≈ 3.2eV between valence and conduction

bands: the former are dominated by the 2p oxygen orbitals, while the latter are composed by

the 3d levels of titanium, namely
�

dx y , dxz, dyz, d3z2−r2 , dx2−y2

	

. At high temperatures T >

105 K , STO has a cubic crystal structure with undistorted oxygen octahedra surrounding

Ti atoms: figure 3.4 illustrates this geometry in pseudocubic notation, where the Ti atom is

at the center of the unit cell and Sr atoms sit on cube corners. The octahedral environment

causes a crystal field that acts on the 3d orbitals of Ti, with the result of removing their

degeneracy: a low-energy t2g triplet, including the orbitals
�

dx y , dxz, dyz

	

, is separated from

an upper eg doublet of orbitals
�

d3z2−r2 , dx2−y2

	

by an energy splitting ∆C F ≈ 2 eV [104].
Hence, in the neighborhood of the Brillouin zone center (Γ point), the band structure can

be effectively described by a tight-binding model within the t2g manifold of the Ti-3d states,

each of which has two directions of strong dispersion - e.g. kx and ky for dx y - and one

slowly-dispersing direction orthogonal to these - e.g. kz for dx y . Upon doping, this creates

a Fermi surface consisting of three interpenetrating ellipsoids centered at the Γ point, with

the ellipsoids oriented along the x , y , and z axes of the reciprocal lattice of the cubic crystal

structure. This zone-center degeneracy is lifted by the spin-orbit interaction, which mixes

the character of the orbitals in the neighborhood of the Γ point. In the cubic phase, this

results in two degenerate spin-orbit doublets at the lowest energy and an additional doublet
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Figure 3.4: Left: the cubic crystal structure of STO in pseudocubic representation. The
titanium atom (green) lies at the center of the cell, surrounded by oxygen atoms (orange) in
octahedral configuration; strontium atoms (blue) sit at the corners of the unit cell. Right: band
energies E [meV ] of tetragonal STO according to the tight-binding model of reference [13],
as a function of kx and ky in units of the lattice constant a, for kz = 0. The first, second and
third band that are progressively populated with doping are shown in red, green and blue,
respectively.

at ∆SO = 29.2 meV higher energy [13, 105, 106]. In addition to this, at temperatures

T < 105 K STO undergoes a tetragonal distortion, whereby adjacent oxygen octahedra

rotate around the c axis: this removes the degeneracy between the two low-energy doublets

by an energy splitting ∆T ≈ 3 meV [106,107]. Including the spin-orbit splitting ∆SO and

the tetragonal distortion energy ∆T into the tight-binding description of the t2g conduction

bands, we obtain an effective low-energy hamiltonian for the conduction bands of STO valid

at low temperatures [13]. The resulting band structure, obtained from diagonalization of

the effective hamiltonian [13] is depicted in the right panel of figure 3.4, as a function of
�

kx , ky

�

and for kz = 0. Different colors identify each of the three undegenerate bands of

the low-temperature phase.

The lowest conduction band, colored in red in figure 3.4, is a "heavy electron" band

consisting of states having angular momentum m j = ±3
2(1−δ), where δ =

�

∆T
∆SO

�2
. While

the band disperses upward rather sharply at the Γ point, it is deflected downward at
�

�~k
�

�≈ 0.1/a for momentum along the Ti-O bond [13], due to band anticrossing. Hence, the

parabolic approximation for this band works well only for momenta below aforementioned

downward-deflection value, while above such momentum the Fermi surface of this band

elongates into ellipsoid shape along the principal axes, with a starfish shape. The second

and third bands, colored in blue and green in figure 3.4, are "light electron" bands, the

dispersion of which is to a good approximation an isotropic parabola [13].
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Figure 3.5: Fermi surfaces of tetragonal STO at T = 0 according to the tight-binding model
of reference [13] at kz = 0, for a Fermi level EF = {20, 40, 100} meV . The color code for the
bands is the same as in figure 3.4.

3.3.1.2 Doping and Fermi liquid physics

Chemical doping allows one to populate the low-energy t2g manifold of the conduction

band: electrons can be introduced by substitution of Sr2+ by La3+, or Ti4+ by Nb5+. Alter-

natively, in reduced samples oxygen vacancies produce the same effect, giving SrTiO3−δ
[108]; this can be achieved by reducing STO in oxygen atmosphere at different tem-

peratures [94]. These methods permit to vary the doped carriers concentration in an

extensive range n ≈ �1017 ÷ 1021
�

cm−3 spanning more than four orders of magnitude.

Quantum oscillations studies [60,94] identified the critical dopings nc1 ≈ 7 1018 cm−3 and

nc2 ≈ 4.4 1019 cm−3 at which the second and third t2g bands start being populated, in

agreement with band structure calculations and optical measurements [13]: this highlights

the multiband character of conduction in STO. Another experimental indication of nc2

comes form the observation by Binnig et al. of an additional superconducting gap of smaller

size than the main gap for doping concentrations in excess of 5 · 1019 cm3, using tunneling

spectroscopy [109]; however, recent high-resolution tunneling spectroscopy [110] and

microwave spectroscopy [111] studies observed a single BCS-like superconducting gap in

doped STO. Figure 3.5 illustrates the Fermi surface components of STO at T = 0, in the
�

kx , ky

�

plane with kz = 0, for three values of the Fermi level EF = {20, 40, 100} meV .

We see that, for EF = 20 meV , the Fermi surface has two components corresponding to the

lowest two bands; further raising the Fermi energy, we start populating the third band as

well.

The metallic state of STO shows quadratic temperature dependence of the resistivity

ρel ∝ T 2 down to the lowest dopings and temperatures [60,94], and optical data confirms

a quadratic frequency dependence of the optical conductivity [102]: as we have seen in

chapters 1 and 2 - see specifically equation (2.29) and appendix D - this behaviour indicates

a Fermi liquid state. Surprisingly, this Fermi liquid phase persists to the lowest carrier
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densities and temperatures, when only the first t2g band is populated, interband scattering

could not produce momentum relaxation [13], and the phonon contribution becomes

negligible as well; also, Landau quasiparticle scattering alone cannot relax momentum.

Hence, as we observed in section 2.4, the precise mechanism at the origin of the Fermi

liquid behaviour of STO remains an unresolved conundrum.

3.3.1.3 Electron-phonon coupling and superconductivity

As we have seen in chapter 1, Fermi liquid physics can be understood in terms of Landau

electron-hole quasiparticles that are subjected to short-ranged weak interactions; in Lan-

dau’s hypothesis, this is the net result of interactions dressing bare particles. This allows one

to reformulate the problem of the interacting electron liquid in terms of nearly-independent

quasielectrons. Interactions between quasielectrons in metals can have intrinsic electronic

origin, like Coulomb and exchange processes, and can also stem from the solid-state envi-

ronment hosting the electron liquid. One of the most prominent sources of interaction in

doped STO is provided by the crystalline lattice, which dresses electrons through electron-

phonon interaction. Angle-resolved photoemission spectroscopy (ARPES) experiments

on Nb-doped STO found evidence for coupling involving longitudinal optical phonons,

for doping concentrations x = {1, 5}% [112], considering only long-range electrostatic

interactions; the analysis based on the polar Froelich model extracted three frequencies

ωph = {22, 58, 99} meV for phonon modes at the Γ point, characterized by the electron-

phonon coupling constants αe−ph = {0.018, 0.945, 3.090} respectively. Infrared optical

spectroscopy on Nb-STO samples at dopings x = {0.1, 0.2, 0.9, 2}% [102] showed three

transverse phonon absorption peaks, the first of which moving much more in frequency

as a function of temperature and doping; at T = 300 K, the reported peak frequencies

are ωph = {11, 21.8, 67.6} meV , the first of which measured in the x = 0.1% sample and

decreasing with doping. The associated electron-phonon coupling constants evaluated

from the single-polaron model are in the range 3 < αe−ph < 4. The first temperature-

and doping-dependent infrared peak was attributed to the low-energy "ferroelectric" soft

phonon, the softening of which causes the dramatic increase of the dielectric constant

of STO at low temperatures up to values ε ≈ 105 [113–115]. Indeed, this phenomenon

brings STO on the verge of a ferroelectric instability without becoming ferroelectric by

itself, so that STO is classified as a quantum paraelectric; ferroelectricity is realized at low

temperatures by the means of 18O isotope substitution [116], Ca doping [117], electric

field effect [118,119], or mechanical strain [120]. The interplay between ferroelectricity

and phonon modes highlights the role of electron-phonon interaction in the physics of STO.
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Figure 3.6: Critical temperature Tc [mK] of bulk doped SrTiO3 as a function of 3-dimensional
carrier density n3D

�

cm−3
�

. Blue square symbols show Tc for oxygen-reduced (first dome)
and Nb-doped (second dome) crystals from reference [94]; the blue solid line is a continuous
interpolation of Tc [4]. Gold circles correspond to the estimated value of Tc at 50 % of the
resistive transition for oxygen-reduced crystals and for Nb-doped crystals respectively, from
reference [126]. Green triangles represent Tc estimated at 50 % of the resistive transition for
Nb-doped SrTiO3 single crystals measured at the university of Geneva [125,127].

The main phonons involved in the screening of Coulomb repulsion are the optical ones

[13,102], with the important consequence that their energy exceeds the Fermi energy for

the lowest doping levels. In this condition we are effectively into the antiadiabatic regime,

discussed in section 3.3 in the context of superconductivity: in particle representation

phonons move faster than electrons beacuse the former have higher frequency, and one can

regard the electron and phonon ensemble as itinerant electronic quasiparticles which are

dressed by the phonon cloud, leaving residual interactions between such composite objects.

These objects are called polarons after Landau [121] (for recent reviews, see e.g. [76,122]).
The polaron-polaron interaction can be mediated by optical phonons [13], and in that case

the interaction is effectively nonretarded. Indeed, polaronic effects from electron-phonon

coupling were observed in the bulk [13, 112] and at the surface of STO [123], as well

as for LAO/STO [124]. The effective electron-electron interactions can also lead to the

formation of Cooper pairs by overscreening of the Coulomb repulsion, in the same spirit as

for our discussion in section 3.2.2. Indeed, doped bulk STO has a superconducting ground

state [13, 60, 94, 125] with a dome-shaped critical temperature as a function of carrier

density. Various datasets from transport experiments show a finite Tc in both Nb-doped

and oxygen-reduced samples, with some examples collected in figure 3.6.

In particular, the transport measurements of reference [94] showed the presence of
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a double Tc dome spanning three orders of magnitude in doping, whereby one, two and

eventually three bands compose the Fermi surface by increasing the carrier density. The

critical dopings nc1 and nc2 for two- and three-band conduction were experimentally

inferred from quantum oscillation frequencies, and found in good agreement with the

band structure calculations shown in figures 3.4 and 3.5. This correspondence between

the theoretical band structure and the transport measurements led us to focus on the

dataset [94] for the analysis of bulk STO in section 4.4. How many bands contribute to

superconductivity in the multiband doping regime, and what are the respective coupling

constants, are still controversial questions. Tunneling spectroscopy reported a measurement

of two superconducting gaps in doped STO [109], pointing towards at least two bands

contributing to superconducting pairing.

Numerous proposals for the driving mechanism of Cooper pairing in strontium titanate

have been advanced during the last 50 years, with many of them focusing on the previously-

described electron-phonon coupling. We mention some of the highlights in this field in

the following summary, which remains far from being exhaustive. Eagles considered a

model of effective electron-electron interaction via intervalley phonons of energy ħhωph =
49.7 meV modified by intervalley Coulomb repulsion, where "intervalley" refers to processes

connecting band valleys with minima lying at different points of the Brillouin zone [92].
Soon later, Eagles analyzed the effective masses of carriers in Zr-doped STO as a function of

doping, and their connection to superconductivity, in terms of a crossover from large to small

polarons [128]. Appel focused on the zone-boundary quasi-acoustic soft phonon associated

with the low-temperature tetragonal distortion, and considered this phonon as the source

of pairing [129]. Zinamon elaborated on Appel’s idea by considering small polarons as the

relevant charge carriers [130]. Takada identified plasmons [131,132] and the low-frequency

"ferroelectric" soft phonon [113] as concomitant pairing sources. Polaron formation, and

its connections to the Fermi-liquid character and superconducting ground state of STO

has been investigated both experimentally [13, 102, 133] and theoretically [134].The

relative contributions of acoustic and optical phonon branches of STO to superconducting

pairing were considered within a dielectric function approach [135]. Quantum critical

fluctuations due to the STO "ferroelectric" soft phonon mode were also proposed to explain

superconductivity and its connection to quantum paraelectricity [115]. Recent transport

experiments combined with optical spectroscopy [127] reported the striking result of a

negative isotope coefficient for STO, whereby Tc increases with 18O isotope substitution in

oxygen-doped samples; this result deviates from the standard BCS result αO = − ∂ ln Tc
∂ ln M =

1
2 ,

with M mass of lattice ions [78,82], and has been interpreted in the context of the polaronic

model of pairing [127]. All aforementioned proposals underline the interplay of electronic
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and lattice degrees of freedom in STO, from which the superconducting domes emerge as

a function of doping.

3.3.1.4 Minimal 2-band model for superconducting doped STO

Given the variety of alternative proposals regarding the microscopic pairing mechanism

in STO, we now choose to follow an alternative approach which refrains from relying on

specific microscopic pairing models. We take a step back and we describe phenomenologi-

cally the pairing interaction by fitting the Tc(n3D) transport data of reference [94]. In order

to estimate the relative contribution of the first two conduction bands to Cooper pairing,

we can employ the effective two-band model of section 4.4, which uses the band masses

m1 = 4m and m2 = m in parabolic approximation, with m free electron mass. The band

bottom energies are split by∆E = 2.4 meV [4]. The values of the band masses and splitting

are taken such that the resulting density of states in parabolic approximation agrees at best

with the one stemming from the tight-binding model [13], and they are further multiplied

by a factor 2 due to electron-phonon coupling renormalization [13,133,134]. We assume

that the pairing interaction V = V (n3D), depending on 3D density n3D, is the same for the

two bands: physically, this means that the two bands share a common pairing mechanism.

The non-parabolicity and anisotropy of the bands are both neglected in this minimal band

structure: this approximation is most severe for the first heavy band (red band in figure

3.5), which is strongly anisotropic and non-parabolic for large momentum. Focusing on the

low-doping range, we neglect the contribution of the third band to the total density and to

superconductivity; however, from the tight-binding model aforementioned band starts to

be populated at nc2 ≈ 4.4 1019 cm−3 [13] and may give additional contributions to Cooper

pairing. We employ a BCS-like interaction V (n3D), that is energy-independent up to a cutoff

ħhωD = 44.2 meV , the latter corresponding to the Debye energy of STO [95]. This way,

we fit the theoretical value of Tc(n3D) to the experimental data [94], and we extract the

doping-dependent value V (n3D) of the interaction. From the latter, we calculate the values

of the respective coupling constants λ11(µ) and λ22(µ), evaluated at the self-consistent

chemical potential µ. The calculation takes into account the proximity to the band edges

as discussed in Sec. 3.3. The result is plotted in figure 3.7, at dopings corresponding to the

dataset of reference [94], reported in figure 3.6.

The gray points show the adimensional interaction V (n3D)n1
ħhωD

, where n1 = 2
�mωD

2πħh

�
3
2 . The

blue and red points are the values of λ11(µ) and λ22(µ), for the first and second band

respectively. The decreasing tendency of the interaction V (n3D) with n3D is consistent

with the analysis on optical [13] and transport data [94], and may reflect the behaviour
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Figure 3.7: Superconducting coupling constants λ11(µ) and λ22(µ) at the chemical potential µ
for a two-band BCS model, as a function of 3D carrier density n3D, at the experimental dopings
of reference [94]. Blue squares correspond to the light band of mass m1 = m, while red squares
refer to the heavy band of mass m2 = 4m, with m free electron mass. The correspondent fitted

value of the interaction V n1
ħhωD

, where n1 = 2
�mωD

2πħh

�
3
2 , is shown in gray in the background, with

ħhωD = 44.2 meV Debye energy of STO [95].

of the electron-phonon coupling constant extracted from ARPES measurements on the

STO surface quasi-2D electron liquid [136]. The increased dielectric screening of electron-

phonon interaction with increasing n3D, which reduces the net polaron-polaron residual

interaction, can qualitatively explain this decreasing evolution with density [13, 137].
Moreover, from figure 3.7 we see that the heavy band has much larger coupling than

the light band, owing to the larger mass of the former with respect to the latter. Hence,

we expect heavy bands to dominate Cooper pairing and to be mainly responsible for

superconductivity in strontium titanate, in accordance with the observation of a larger

and a smaller gap in tunneling spectroscopy [109]. A phenomenological fit of the pairing

interaction, like the one in figure 3.7, cannot tell us the microscopic origin of Cooper pair

formation, which ultimately remains an open question. Nevertheless, this parabolic band

structure and BCS pairing interaction provides us with a minimal BCS model to describe

superconductivity in bulk doped STO. In particular, this model is a simple tool to investigate

what happens to the band structure and the pairing interaction when we lower the system

dimensionality, by confining one or more spatial directions to microscopic scales: in the

next chapter 4, we will see that confinement causes quantization effects for both electron

energy levels and the pairing interaction, which deeply affect superconducting properties

like the critical temperature. We will apply the quasi-2D model of a superconductor in a

square quantum well to the LAO/STO interface (section 4.4) in chapter 4, and we will

compare the results to the ones in the bulk.
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3.4 Conclusions and perspectives

The critical temperature of a BCS superconductor is modified in low-density systems, where

the Fermi energy is lower than the pairing cutoff energy, so that the pairing energy window

is inferiorly cut by a band edge. In such conditions, Tc is a continuous non-analytical

function of density and coupling near the band edge, both in two and three dimensions.

This also affects the evolution of the chemical potential at Tc with density, as well as the

ratio of the zero-temperature gap to Tc, which deviates from its universal high-density

value. These results show that the effects of band edges on the superconducting properties

have to be taken into account in the description of Tc in low-density superconductors,

such as bulk doped strontium titanate. Knowing the band structure of the material, this

allows one to extract a minimal BCS model for the doping dependence of the pairing

interaction from the evolution of Tc with density, like we did for doped STO in section

3.3.1. Further work could be directed to study the zero-temperature gap at any density in

different dimensions, and evaluate the gap to Tc ratio at any density in 3D, analogously

to the 2D case. Furthermore, one could analyze how fluctuations of the order parameter

can modify the critical temperature in the regime where the band edge cuts the pairing

window, particularly for two-dimensional systems where a pure BCS solution is prevented,

in order to evaluate the accuracy of the mean-field solution as a function of density.
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We revisit the problem of a BCS superconductor in the regime where the Fermi energy is smaller than the
Debye energy. This regime is relevant for low-density superconductors such as SrTiO3 that are not in the BEC
limit, as well as in the problem of “shape resonances” associated with the confinement of a three-dimensional
superconductor. While the problem is not new, exact results were lacking in the low-density limit. In two
dimensions, we find that the initial rise of the pairing temperature Tc at low density n is nonanalytic and faster
than any power of n. In three dimensions, we also find that Tc is nonanalytic, but starts with zero slope at weak
coupling and infinite slope at strong coupling. Self-consistent treatment of the chemical potential and energy
dependence of the density of states are crucial ingredients to obtain these results. We also present exact results
for multiband systems and confirm our analytical expressions by numerical simulations.

DOI: 10.1103/PhysRevB.94.024511

I. INTRODUCTION

The Bardeen-Cooper-Schrieffer (BCS) theory [1] remains
the only strong microscopic foundation to support our under-
standing of the fascinating phenomenon of superconductivity.
Among many other insights, the theory provides a simple
expression for the critical temperature Tc, which continues to
inspire the search for materials with improved performances.
In particular, it is expected that superconductivity is favored by
a low dimensionality due to enhanced density of states (DOS)
at the Fermi level [2]. For three-dimensional (3D) materials,
an early proposal to use quantum confinement in a thin
film [3] has received sustained attention until recently [4]. The
confinement-induced two-dimensional (2D) subbands produce
discontinuities in the DOS and abrupt changes of Tc as a
function of film thickness have been routinely predicted.

The purpose of this study is to explore some consequences
of an aspect of the problem, considered by Eagles half a
century ago [2,5], but often overlooked in recent calculations
based on the BCS gap equation. As the Fermi energy crosses
the edge of a band, there is a regime where the dynamical
cutoff of the pairing interaction is controlled by the band edge
(Fig. 1). This regime is realized in low-density electron gases,
when the Fermi energy is smaller than the dynamical range
of the interaction. In doped SrTiO3, for instance, the carrier
concentration is typically 1019cm−3 and the carrier mass is
in the range 2–4 electronic masses [6], corresponding to a
Fermi temperature of 50–100 K, while the Debye temperature
is 513 K [7]. In this situation, the common approximation
of taking a constant DOS over the full dynamical range
fails to give a good estimate for Tc. The near-band edge
regime is also relevant in the quasi-2D problem of shape
resonances, since each resonance is due to the Fermi energy
crossing a subband edge [8–10]. The pairing in that subband,
as well as the intersubband pairing involving that subband, are
dominated by the band edge. A synthesis of these two cases
is realized in the quasi-2D and low-density electron gas at
the LaAlO3/SrTiO3 interface [11–13]. In the present paper we
focus on the band-edge effect on Tc in the bulk, emphasizing

*christophe.berthod@unige.ch

the generic behaviors in the simple case of an electron gas
with parabolic dispersion and a local attraction. We recover
the expressions of Eagles [2] in the weak-coupling limit. In the
low-density regime, we provide exact relations as a function
of the density, which are valid at arbitrary coupling. We also
give exact numerical results in 2D and 3D, for one-band
and multiband systems. The implications for the problem of
quasi-2D shape resonances and the case of LaAlO3/SrTiO3,
will be reported in separate publications.

Our starting point is the mean-field theory for a momentum-
independent pairing interaction acting in a limited energy
range around the Fermi surface. This theory yields a pairing
temperature which is in general higher than the temperature of
superconducting coherence, especially when the dimensional-
ity and/or the density is low and superconducting fluctuations
become important [14–16]. We ignore these fluctuations and
focus on the mean-field equations, refraining from making
any approximation when solving them for Tc. This approach
is similar to previous mean-field studies of the BCS-BEC
crossover where the renormalized chemical potential is solved
self-consistently together with the Tc equation or the gap
equation at zero temperature [17,18].

An exact solution of the gap equation requires one to
take into account the energy dependence of the DOS, most
importantly the cutoff at the band bottom, and the temperature
dependence of the chemical potential μ, which is crucial
at low-density n. Because n, Tc, and μ all approach zero
simultaneously, it is essential to use the exact relation μ(n,Tc)
in order to capture the correct behavior of Tc for n → 0.
Furthermore, one should not assume weak coupling and/or
assume that Tc is small with respect to the Fermi energy and
the cutoff for pairing. As a matter of fact, analytical results in
this problem are rare. In Ref. [19], rigorous bounds for Tc were
obtained for a general interaction. These results are limited to
weak coupling and to a positive chemical potential. We will see
that the chemical potential at Tc is negative in the low-density
limit in 2D for any coupling and in 3D for couplings larger than
a critical value. Exact results have also been reported for the
zero-temperature gap in 2D [20]. However, since the universal
BCS gap to Tc ratio is not obeyed in the low-density limit,
these results cannot be used to deduce Tc.
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FIG. 1. Schematic representation of (a) the high-density regime
and (b) the low-density regime for superconducting pairing. In the
former, EF � �ωD and the density of states N0(E) can be taken
constant. In the latter, EF � �ωD, the interaction is cut by the band
edge, and the details of N0(E) matter.

This paper is the first in a series and it provides the
mathematical foundations for subsequent studies dedicated
to shape resonances in thin films and to the LaAlO3/SrTiO3

interface. It is organized as follows. In Sec. II we recall the
basic coupled equations giving n and Tc and we write them
in a dimensionless form, for one and several parabolic bands.
In Sec. III we present our analytical and numerical results for
one band in 2D and 3D, and in Sec. IV we briefly discuss
multiband effects.

II. BCS Tc EQUATION FOR MULTIBAND SYSTEMS

A. Dimensionless equations for the pairing temperature

We consider a multiband metal with a local BCS pairing in-
teraction −Vαβ acting between electrons of opposite momenta
and spins in bands α and β [21]. We assume that Cooper pairing
occurs only for two electrons in the same band, leading below
the pairing temperature Tc to an order parameter �α in each
band. This includes the possibility of a “proximity” induced
gap �β in a band that otherwise feels no pairing potential
(Vββ = 0), via the nonzero interband interactions Vαβ . The
mean-field gap equation for �α is

�α =
∑

β

Vαβ�β

∫ �ωD

−�ωD

dξ N0β(μ + ξ )
tanh

(√
ξ 2+�2

β

2kBT

)
2
√

ξ 2 + �2
β

.

(1a)

The pairing interaction acts in a range ±�ωD around the
chemical potential μ. Although the notation �ωD is used here,
we envision the problem in its generality and our results do
not require phonon-mediated pairing, but apply to any local
interaction with a dynamical cutoff. In a lattice version, for
instance, the cutoff could be the bandwidth. N0β (E) is the
DOS per spin and per unit volume for the band β. It is defined
on an absolute energy scale, such that N0β (μ) is the DOS
at the chemical potential μ, which is common to all bands.
The chemical potential must be adjusted to fix the density

according to

n = 2
∫ ∞

−∞
dE f (E) N (E). (1b)

Here, f (E) = [e(E−μ)/kBT + 1]−1 is the Fermi distribution
function and N (E) is the total BCS density of states (per
spin) resulting from the opening of the superconducting gaps
at the chemical potential in each band.

For the calculation of Tc, it is sufficient to consider the
two equations in the limit of vanishing order parameters. For
T = Tc we have

�α =
∑

β

Vαβ�β

∫ �ωD

−�ωD

dE N0β(μ + E)
tanh

(
E

2kBTc

)
2E

, (2a)

n = 2
∫ ∞

−∞
dE f (E)

∑
β

N0β(E). (2b)

We now insert explicit formulas for the energy-dependent
densities of states and the density and we rewrite the equa-
tions (2) in a dimensionless form, which is more convenient
for analytical and numerical treatments. The densities of states
for a parabolic band in dimensions d = 2 and d = 3 are given
by

N0β(E) = (d − 1)π

(
mβ

2π2�2

) d
2

θ (E − E0β)(E − E0β)
d
2 −1,

(3)

where mβ is the band mass, E0β is the energy of the band min-
imum, and θ is the Heaviside function. This definition ensures
that N0β(μ) is the DOS evaluated at the chemical potential μ

common to all bands, consistently with Eq. (1a). The relation
between density, chemical potential, and temperature for a
parabolic band in arbitrary dimension d is

n = −2

(
mkBT

2π�2

) d
2

Li d
2

( − e
μ−E0
kBT

)
, (4)

where Lip(x) is the polylogarithm given by the series expan-
sion Lip(x) = ∑∞

q=1 xq/qp. This function has the sign of its
argument and reduces to a usual logarithm in two dimensions
(p = 1): Li1(x) = − ln(1 − x). We provide a brief derivation
of Eq. (4) in Appendix A for the interested reader.

We measure all energies in units of �ωD, express the density
in units of 2[mωD/(2π�)]d/2 where m is a reference mass, and
we distinguish the dimensionless variables with tildes, e.g.,

T̃c = kBTc

�ωD
, μ̃ = μ

�ωD
, ñ = n

2[mωD/(2π�)]d/2
, etc.

The coupled equations (2) for Tc become

�α =
∑

β

�βλ̄αβ ψd (1 + μ̃ − Ẽ0β,T̃c), (5a)

ñ = −T̃
d
2

c

∑
β

(
mβ

m

) d
2

Li d
2

( − e
μ̃−Ẽ0β

T̃c

)
. (5b)
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We have introduced the dimensionless function,

ψd (a,b) = θ (a)
∫ 1

1−min(a,2)
dx (x + a − 1)

d
2 −1 tanh

(
x
2b

)
2x

,

(6)

as well as the coupling constants,

λ̄αβ = Vαβ(d − 1)π

(
mβ

2π2�2

) d
2

(�ωD)
d
2 −1. (7)

We use a bar to recall that these coupling constants are not
evaluated at the Fermi energy like in the common practice,
but at an energy �ωD above the bottom of each band:
λ̄αβ = VαβN0β (E0β + �ωD). This choice is natural and leads
to the simplest equations. The usual definition λ = V N0(μ)
poses problems when μ lies below the band bottom and more
generally because μ is a function of interaction strength and
temperature.

In an N -band system, the relations (5) provide N + 1
equations for the N + 1 unknowns, which are T̃c, μ̃, and the
N − 1 ratios �β/�1. We can assume that �1 �= 0 without
loss of generality, because there is at least one nonzero gap
parameter at Tc and we are free to number the bands such that
�1 is this one. We now eliminate the N − 1 gap ratios and
reduce the problem to a pair of equations for T̃c and μ̃. With
the new definitions rβ = �β/�1 and

�αβ(μ̃,T̃c) = λ̄αβψd (1 + μ̃ − Ẽ0β,T̃c), (8)

the set of N equations (5a) becomes the eigenvalue problem
�r = r with r = (1,r2, . . . ,rN ). This means that, when
evaluated at a value of T̃c solving Eq. (5a), the matrix � has
at least one unit eigenvalue. In other words, T̃c corresponds to
the largest temperature that satisfies the characteristic equation
det(1 − �) = 0. The two coupled dimensionless equations
giving n and Tc for N bands are therefore

0 = det[1 − �(μ̃,T̃c)], (9a)

ñ = −T̃
d
2

c

N∑
α=1

(
mα

m

) d
2

Li d
2

( − e
μ̃−Ẽ0α

T̃c

)
. (9b)

The existence of a nontrivial solution to Eq. (5a) clearly
implies Eq. (9a). The converse is also true: The vanishing
of the determinant in Eq. (9a) is sufficient to enforce that the
matrix � has one unit eigenvalue, which provides a solution
to Eq. (5a). The equations (9) have the same structure in 2D
and 3D, the quantitative differences stemming mostly from
different functions ψd (a,b). In the next paragraph we discuss
the properties of these functions, which we shall use in the
following sections to derive analytical results.

B. Properties of the functions ψd(a,b)

The functions ψd (a,b) are displayed [22] in Fig. 2. The
strongest structure develops around a = 1, which corresponds
physically to having the chemical potential at the bottom
of one band. We are mostly interested in the behavior for
b � 1, which is explored in the regime kBTc � �ωD and
particularly in the limit b → 0, which is relevant when the
density approaches zero. If a < 1, ψd (a,b) is finite for b = 0.

FIG. 2. Representation of the functions ψd (a,b) defined in Eq. (6)
for dimensions d = 2 (top) and d = 3 (bottom). Physically, the a axis
corresponds to varying μ around the band bottom (a = 1) and the b

axis is proportional to Tc. The blue lines show the behavior for b = 0
and a < 1. The two red lines in each graph show the asymptotic b

dependencies for 1 < a < 2 and a > 2, respectively. The green lines
show cuts at the value ψd (a,b) = 2.5, which correspond to the path
followed in the (a,b) plane by the solution of the BCS equations (9)
for one band and for λ̄ = 0.4.

The limiting value is given by

ψd (0 < a < 1,b → 0)

=
∫ 1

b

1−a
b

dx
(bx + a − 1)

d
2 −1

2x

=
{− ln

√
1 − a (d = 2)√

a − √
1 − a sin−1(

√
a) (d = 3).

(10)

These limiting behaviors are indicated on the graphs as blue
lines. If a > 1, ψd (a,b) diverges logarithmically for b → 0,
but in different ways in the two ranges 1 < a < 2 and a > 2.
The former range corresponds physically to 0 < μ < �ωD,
such that the band edge sets the lower cutoff for the pairing
interaction, while the latter range is the usual regime, where
the Fermi energy is larger than the Debye energy. In two
dimensions, the asymptotic behavior is quite simple: If a > 2,
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we have the well-known result,

ψ2(a > 2,b → 0) =
∫ 1

b

− 1
b

dx
tanh(x/2)

2x
= ln

(
2eγ

πb

)
, (11)

with γ ≈ 0.577 the Euler constant. The function is indepen-
dent of a, because the DOS is constant over the range of
integration when μ > �ωD. If 1 < a < 2, we evaluate the
function by extending the integral to reproduce the case a > 2
and subtracting the difference:

ψ2(1 < a < 2,b → 0) =
∫ 1

b

− 1
b

dx
tanh(x/2)

2x
−

∫ 1−a
b

− 1
b

dx
−1

2x

= ln

(√
a − 1

2eγ

πb

)
. (12)

Equations (11) and (12) are represented in Fig. 2 (top) as red
lines. In order to obtain the exact asymptotic behavior for
b → 0 in three dimensions, we introduce the function t(x)
as a piece-wise linear approximation of tanh(x/2)—namely,
−1 for x < −2, x/2 for |x| < 2, and +1 for x > 2—and we
calculate analytically the integral with tanh(x/2) replaced by
t(x). The difference between the latter approximation and the
exact result is

lim
b→0

∫ 1
b

1−min(a,2)
b

dx
√

bx + a − 1
tanh(x/2) − t(x)

2x

= √
a − 1 ln

(
4eγ−1

π

)
.

Expanding the nonsingular terms to leading order in b, we
finally get in the regime 0 < μ < �ωD:

ψ3(1 < a < 2,b → 0) = √
a + √

a − 1

× ln

(
a − 1√

a + √
a − 1

8eγ−2

πb

)
,

(13)

and in the regime μ > �ωD:

ψ3(a > 2,b → 0)

= √
a + √

a − 2 + √
a − 1

× ln

(
a − 1√

a + √
a − 1

√√
a − 1 − √

a − 2√
a − 1 + √

a − 2

8eγ−2

πb

)
.

(14)

These asymptotic behaviors are indicated in Fig. 2 (bottom)
as red lines. Lastly, in the high-density, high-Tc sector a > 2
and b → ∞, the function reduces simply to ψd (a,b) = (a −
1)d/2−1/(2b).

Figure 2 also shows a particular cut at the value ψd =
2.5. Since the BCS equation (9a) for one band is simply
ψd = 1/λ̄, these cuts show the locus of the solutions (a,b) =
(1 + μ̃,T̃c) for λ̄ = 0.4. Note that the approximations (11)
to (14) shown in red underestimate the function ψd at low
b; using them instead of the exact functions thus leads to
underestimating Tc.

III. ONE PARABOLIC BAND IN 2D AND 3D

A. Analytical results

For a single band, we place the origin of energy at the
bottom of the band and we use the band mass as the reference
mass. The coupled equations (9) for Tc become simply:

1 = λ̄ ψd (1 + μ̃,T̃c), ñ = −T̃
d
2

c Li d
2
(−eμ̃/T̃c ). (15)

In 2D the relation between ñ and μ̃ can be trivially inverted
and the two equations reduce to a single implicit relation for
T̃c as a function of ñ and λ̄:

1 = λ̄ ψ2(1 + T̃c ln(eñ/T̃c − 1),T̃c). (16)

At not too low density, we see from the asymptotic expressions
indicated in Fig. 2 that the pairing temperature crosses over
between two regimes at μ̃ = 1. In 2D we have

T̃c ≈ 2eγ

π
exp

(
− 1

λ̄

)
×

{√
μ̃ μ̃ � 1

1 μ̃ > 1
(d = 2). (17)

T̃c is independent of μ̃ (hence of ñ) for μ̃ > 1, due to
the constant DOS and the conventional BCS expression is
recovered. In 3D we find

T̃c ≈ 8eγ−2

π

√
μ̃ exp

(
− 1

λ̄
√

μ̃

)
e
√

1+1/μ̃

1 + √
1 + 1/μ̃

×
{

1 μ̃ � 1

e
√

1−1/μ̃

√
1−√

1−1/μ̃

1+√
1−1/μ̃

μ̃ > 1
(d = 3). (18)

The product λ̄
√

μ̃ is the coupling evaluated at the chemical
potential, which enters the exponential as expected. Equa-
tions (17) and (18) are identical to Eqs. (2) and (3) of Ref. [2]
if we admit that kBTc = (eγ /π )�, which is true in the regime
of validity of these expressions, but not in the low-density
and/or strong-coupling regimes (see below). We emphasize
that these approximations result from expanding the function
ψd (a,b) in the limit b → 0 for a > 1 and are therefore accurate
only in the limit Tc → 0 at finite positive μ. These equations
are not accurate in the high-density regime where Tc is large.
Our numerical results show that Eqs. (17) and (18) provide a
rather poor approximation as soon as Tc reaches a few tenths
of �ωD.

We now turn to the low-density region. In 2D any cut of
the function ψ2(a,b) at the value 1/λ̄ converges at b = 0 to
a value a < 1, given by the relation − ln

√
1 − a = 1/λ̄ (see

Fig. 2). Hence the chemical potential converges to a finite
negative value μ̃min = −e−2/λ̄ when the density approaches
zero. This is a conjugated effect of the pairing interaction and
the DOS discontinuity: At any finite coupling the momentum
distribution is spread and a negative chemical potential leads
to a finite density even at zero temperature. The chemical
potential at zero density is related to the energy Eb of the two-
particle bound state by μ̃min = Ẽb/(2 + Ẽb). Equation (16)
for T̃c → 0 becomes 1 = −λ̄ ln

√
−T̃c ln(eñ/T̃c − 1), which

can be solved for ñ as a function of T̃c: ñ = T̃c ln{1 +
exp[− exp(−2/λ̄)/T̃c]}. The latter expression shows that ñ is
smaller than T̃c when both approach zero, such that in this
limit we can replace ln(eñ/T̃c − 1) by ln(ñ/T̃c). We thus find
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the solution,

T̃c = ñ exp

[
W

(
e−2/λ̄

ñ

)]
(d = 2, n → 0). (19)

W (x) is the Lambert function (or “product logarithm”),
which gives the principal solution of the equation x = WeW .
Equation (19) is nonanalytic in both λ̄ and ñ. It gives a
Tc starting with an infinite slope at n = 0 and increasing
faster than any power of n (in the sense that the running
exponent given by the logarithmic derivative approaches zero
for n → 0). An approximation of (19) valid to logarithmic
accuracy was given earlier [24].

In 3D the function ψ3(a < 1,0) approaches 1 for a →
1. Therefore we have the same situation as in 2D if
λ̄ > 1. In this case the chemical potential approaches a
finite negative value given by the solution of

√
μ̃min + 1 −√−μ̃min sin−1 (

√
μ̃min + 1) = 1/λ̄ as the density approaches

zero. Since μ̃ is finite and negative in the limit T̃c → 0,
we can use the asymptotic expression −Li3/2(−ex) → ex for
x → −∞ and get the chemical potential μ̃ = T̃c ln(ñ/T̃

3/2
c ).

Equation (15) can then be solved for T̃c in the relevant regime
−μ̃ � 1, by making use of Eq. (10) to leading order in 1 − a.
This yields

T̃c ≈ ñ
2
3 exp

[
W

(
8(1/λ̄ − 1)2

3π2ñ
2
3

)]

(d = 3, λ̄ > 1, n → 0). (20)

Like in 2D, Tc starts with an infinite slope at n = 0 and
increases faster than any power of n if λ̄ > 1. If λ̄ < 1
there is no finite solution a to the equation ψ3(a,0) = 1/λ̄,
meaning that μ = 0 at zero density. As can be seen in
Fig. 2, the curvature along the cut for ψ3 > 1 is such that
μ̃ > T̃c. In the limit T̃c → 0 we can use the large-x expansion
−Li3/2(−ex) → 4/(3

√
π )x3/2 and recover μ̃ = (3

√
πñ/4)2/3,

which is the zero-temperature noninteracting result. Using the
asymptotic form (13) we finally obtain

T̃c = 8eγ−2

π

(
3
√

πñ

4

) 2
3

exp

[
−

(
1

λ̄
− 1

)(
4

3
√

πñ

) 1
3
]
,

(d = 3, λ̄ < 1, n → 0). (21)

This function starts with zero slope at n = 0 and increases
slower than any power of n. It is exactly equivalent to the
result [17] kBTc = (8eγ−2/π )EF exp[π/(2kFas)] if the s-wave
scattering length as is computed with our interaction potential,
namely 4π�2as/m = V/(λ̄ − 1). This potential has no bound
state for two particles if λ̄ < 1, which explains why μ = 0 at
zero density in this case. The change of behavior at λ̄ = 1 is
discontinuous according to Eqs. (20) and (21), both functions
giving T̃c ∝ ñ2/3 with different pre-factors.

The analytical expressions (17)–(21) are compared below
with the numerical results. Note that if the reference mass is
not the band mass mα , one must replace ñ by ñ(m/mα)d/2 in
these equations.

As the BCS mean-field theory is not believed to be
a useful model in 1D, we have not discussed this case.
For completeness, and because it has been argued that the
singularity of the 1D DOS could induce large enhancements
of Tc in striped quasi-1D superconductors [8], we show in

Appendix B that the pairing temperature is also continuous
and nonanalytic at the bottom of a 1D band.

Before closing this section, we point out that the solution
of the gap equation at T = 0 does not generally allow one to
deduce Tc. Although the focus of the present paper is on Tc,
we give in Appendix C exact results for the zero-temperature
gap in 2D at low density, for the purpose of showing that the
usual BCS gap to Tc ratio is not obeyed in this limit.

B. Numerical results

The numerical solution of Eq. (16) is shown in Fig. 3.
T̃c reaches a plateau at high density due to the constant
DOS of the band. For λ̄ of order one, the value Tc,∞
on the plateau departs significantly from the approximate
solution (17), which becomes worse with increasing λ̄, while
the simple large-Tc result T̃c,∞ = λ̄/2 becomes increasingly
reliable [inset of Fig. 3(b)]. The density ñ∞ at which the
plateau is reached corresponds to μ − �ωD coinciding with

λ̄ = 1

λ̄ = 0.75

λ̄ = 0.5

λ̄ = 0.3

ñ∞ T̃c,∞

0 0.5 1 1.5 2
ñ

0

0.1

0.2

0.3

0.4

0.5

T̃c

(a)

λ̄ = 1

λ̄ = 0.3

10−8 10−6 10−4 10−2 100

ñ/ ñ∞

10−3

10−2

10−1

100

T̃ c
/T̃

c,
∞

(b)

0 1 2λ̄
0

1
T̃c,∞

FIG. 3. (a) Pairing temperature as a function of electron density
for one parabolic band in two dimensions. Tc is expressed in units
of �ωD/kB and n in units of mωD/(π�). The thin horizontal lines
show the approximate solution (17) for each λ̄. The vertical bars
indicate ñ∞ [Eq. (22)]. The dashed lines show the approximate
scaling T̃c = T̃c,∞(ñ/ñ∞)1/2. (b) Same data normalized. The white
dashed lines are the prediction of Eq. (19) and the black dashed
line indicates the square-root behavior for ñ � ñ∞. (Inset) Maximum
pairing temperature as a function of λ̄ (solid line), compared with
Eq. (17) (dotted) and λ̄/2 (dashed).
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the bottom of the band, which means

ñ∞ = T̃c,∞ ln(e1/T̃c,∞ + 1). (22)

For ñ � ñ∞, Eq. (17) gives T̃c/T̃c,∞ ≈ μ̃1/2. Since μ̃ is very
close to a linear function of ñ at intermediate and high densities
(see below), we expect to have the universal scaling T̃c/T̃c,∞ ≈
(ñ/ñ∞)1/2. This is well obeyed by the data.

Close to ñ = 0 the behavior is nonuniversal, in the sense
that the curves do not collapse if ñ and T̃c are rescaled by
ñ∞ and T̃c,∞ [Fig. 3(b)]. The numerical data are in perfect
agreement with the limiting behavior (19) at all couplings.
The flattening of the curves in the log-log plot shows that
the running exponent η(n) in Tc ∝ nη(n) approaches zero for
n → 0. This is suggestive of a discontinuity in Tc(n) at n = 0,
reminiscent of the DOS discontinuity. However, since Eq. (19)
vanishes continuously for ñ → 0, the correct picture is that of
a Tc tending asymptotically to a discontinuity of size zero with
decreasing n.

The numerical results for the 3D case are displayed in Fig. 4.
Also shown is the high-density approximation (18), evaluated
with μ̃ replaced by its zero-temperature noninteracting value
μ̃0. The approximation falls on top of the numerical data for

FIG. 4. (a) Pairing temperature as a function of electron density
for one parabolic band in three dimensions. Tc is expressed in units
of �ωD/kB and n in units of 2[mωD/(2π�)]3/2. The thin and dashed
lines show Eq. (18), evaluated using μ̃0 = (3

√
πñ/4)2/3 for μ̃. The

vertical bars indicate μ̃0 = 1. (b) Same data on a log-log scale. The
dashed lines show Eqs. (20) and (21). Equation (21) was used for
λ̄ = 1. The short-dashed white line for λ̄ = 1.5 is obtained without
expanding Eq. (10) around a = 1 (see text).

small λ̄, but deviates significantly for larger coupling. The
good agreement at weak coupling is due to a cancellation
of errors: the agreement worsens if μ̃ rather than μ̃0 is used
in Eq. (18). The reason is that μ(Tc) < μ0 and the use of μ0

always leads to overestimating Tc. This happens to compensate
the underestimation of Tc due to the use of Eqs. (13) and (14).

At low density, the change of behavior from a convex
increase for λ̄ < 1 to a concave increase for λ̄ > 1 is visible
on the log-log plot in Fig. 4(b)—where a convex function
has a slope larger than unity. The low-density, low-coupling
limit (21) describes the numerical data perfectly. The low-
density, high-coupling expression (20) deviates slightly due
to the use of Eq. (10) at lowest order in 1 − a. This small
discrepancy disappears if μ̃ is evaluated without expanding
Eq. (10). The value λ̄ = 1 is somewhat peculiar: The numerics
shows the expected ñ2/3 scaling, but the pre-factor is neither
unity as implied by Eq. (20), nor 0.742 as given by Eq. (21),
but ∼0.6.

Figure 5 shows the chemical potential calculated numer-
ically at Tc. In 2D μ converges to a negative value for any
coupling, as discussed above. In 3D μ tends to zero at n = 0 if
λ̄ � 1. If λ̄ > 1 it converges to a negative value. The density at
which μ = 0 is given for λ̄ � 1 by ñ ≈ 0.62(1 − 1/λ̄)3. This
coincides with the condition 1/(kFas) ≈ 0.68. The effect of
increasing the pairing interaction is mainly to shift the μ(n)
curve downwards. At n = 0 this shift is entirely due to the

FIG. 5. (Top row) Chemical potential at Tc in the low-density
limit. The dots show the solution of ψd (1 + μ̃,0) = 1/λ̄, with ψd (a,0)
given by Eq. (10). The insets show that μ(n = 0) < 0 in 2D for all
λ̄, while μ(n = 0) = 0 in 3D for λ̄ � 1. (Bottom row) Difference
between the chemical potential at Tc and the zero-temperature
noninteracting value μ̃0. The vertical bars indicate μ̃ = 1.
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interaction-induced spreading of the momentum distribution.
At finite n part of the shift is due to the thermal smearing.

As the density increases, the behavior is qualitatively
different in 2D and 3D: while μ̃ approaches μ̃0 = ñ in 2D,
this does not happen in 3D. In 2D the chemical potential
is μ̃ = T̃c ln(eñ/T̃c − 1). Since T̃c saturates for ñ > ñ∞, we
have ñ > T̃c at large ñ and μ̃ approaches exponentially the
value ñ. This is peculiar to the 2D constant DOS, since
both interaction and temperature redistribute states in equal
amounts below and above μ0. In 3D the square-root DOS
implies that there are more states added in the tail of the mo-
mentum distribution above μ0, than there are states removed
below μ0. The equilibrium chemical potential must therefore
remain below the zero-temperature noninteracting value, by
an amount which increases with increasing λ̄ and also with
increasing n.

IV. MULTIBAND EFFECTS

The interest raised by multiband superconductors, in
particular MgB2 and the iron-based family, has triggered many
studies over the years [25]. Here we discuss multiband effects
that occur near a band edge and are associated with the low
density in one of the bands.

It is clear from the previous section that a knowledge of the
self-consistent chemical potential is required to understand the
behavior of Tc close to a band minimum. This raises the ques-
tion of the role played by perturbations that affect the chemical
potential, such as the presence of a nonsuperconducting band
(NB) beneath the superconducting band (SB). In the absence of
interband coupling, the NB can only alter the superconducting
properties of the SB by changing the chemical potential. In 2D
and in 3D for λ̄ > 1, the key observation was that μ is finite and
negative at the band bottom, such that the nonanalytic behavior
of Tc is not controlled by μ. An NB is therefore not expected
in general to change this nonanalytic behavior qualitatively.
An exception—confirming the rule—occurs when the bottom
of the NB coincides precisely with the energy at which the SB
begins to be populated. For this peculiar arrangement, the NB
controls the relation between μ and n in the limit Tc → 0 and
Tc displays a simple analytic dependence on n, which is linear
in 2D and ∝n2/3 in 3D. This is illustrated in Fig. 6(a) for the
2D case. Solving the coupled equations (9) for two bands in
the appropriate regime, we get a relation between ñ and T̃c

which is accurate near the band minimum:

ñ = T̃c

[
m1

m
ln

(
1 + e

− exp(−2/λ̄11)
T̃c

) + m2

m
ln

(
1+ e

− exp(−2/λ̄11)−Ẽ02
T̃c

)]
.

(23)

This reproduces the near-band edge behavior as shown in
Fig. 6(a) and in particular gives the linear dependence
ñ = T̃c(m2/m) ln(2) at the transition point where Ẽ02 =
− exp(−2/λ̄11).

If Ẽ02 < − exp(−2/λ̄11), the SB is not populated at low
density and superconductivity appears at some finite density.
In all cases, the Tc(n) curve is “stretched” to higher densities
with respect to the one-band result due to the carriers “lost” in
the NB. For instance, if the band minima are degenerate, we see
from Eq. (9) that the one-band Tc(n) curve is simply modified

FIG. 6. Pairing temperature for two bands in two dimensions,
with couplings λ̄11 = 1, λ̄22 = 0, and (a) λ̄12 = 0, (b) λ̄12 = 0.2.
E02 is the energy minimum of the second band, measured from the
energy minimum of the first. The masses are m1 = m2 = m. The
dashed line in (a) is the one-band result, shifted horizontally for
easier comparison. (Inset) Blowup of the transition region. Curves
are shown for Ẽ02 = − exp(−2/λ̄11) + δẼ, with δẼ ranging from
−0.04 (blue, right) to +0.04 (red, left). Note the linear behavior for
δẼ = 0. The white dashed lines show Eq. (23). In (b), the dotted lines
are the result for λ̄12 = 0 and the dashed white lines show Eq. (24).

by a rescaling of the density n → n/[1 + (m1/m2)d/2]. This
implies that the pairing temperature is necessarily reduced
by a nonsuperconducting band, in the absence of interband
coupling.

Both attractive and repulsive interband interactions increase
Tc for two bands [26,27], as illustrated by the fact that
Eq. (9) involve only λ̄2

12: interband interactions do not induce
interband pairing in the present model, but reinforce the
intraband pairing by second-order processes involving the
other band. If Tc starts at finite density, the interband coupling
leads to a tail in the Tc(n) curve. In the regime where the
chemical potential is below the SB but well into the NB, we
find, for instance, in 2D:

T̃c = 2eγ

π

√
ñ

m

m2
exp

{
1

λ̄2
12

[
λ̄11 + 2

ln
(
−Ẽ02−ñ m

m2

)]}
. (24)

This is compared with the numerical result in Fig. 6(b).
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We move on to the case of two superconducting bands
and begin with general trends. The observation that Tc is
an increasing function of density [28] remains true in the
near-band edge regime. It is possible to show that the property
dTc/dn � 0 is guaranteed by Eq. (9) for an arbitrary number of
bands and any values of the coupling constants. Reference [6]
reports a nonmonotonic dependence of the pairing temperature
on carrier concentration in doped SrTiO3: this cannot be
interpreted on the basis of Eq. (9) without invoking density-
dependent interactions.

A second band can nevertheless lead to a decrease of Tc

at fixed density. Specifically, consider a one-band system at
some density with coupling λ̄11 and pairing temperature T 0

c ;
add a second band at higher energy with coupling λ̄22 � λ̄11

and no interband coupling; then the two-band system with the
same density has Tc � T 0

c . This can be rigorously proven by
manipulating Eq. (9).

If the second band has a coupling λ̄22 > λ̄11, Tc exceeds T 0
c

at high enough density and follows the dependence that would
correspond to a nonsuperconducting first band. These various
trends are illustrated in Fig. 7 (top panels). Figure 7 (bottom

FIG. 7. (Top panels) Change of Tc induced by a second super-
conducting band in 2D and 3D, without interband coupling. (Dashed
black lines) Pairing temperature for a single band with coupling
λ̄11 = 1 and mass m1/m = 1. (Solid lines) Pairing temperature for
the two-band system with Ẽ02 − Ẽ01 = 0.75, m2 = m1, and coupling
λ̄22 = 0.5 (red) and λ̄22 = 2 (blue). (Dash-dotted) Case of the second
band alone. (Dotted) Case of the two-band system with λ̄11 = 0.
(Bottom panels) Increase of Tc by interband coupling. (Solid lines)
No interband coupling, same data and coloring as in the top panels.
Dotted and dashed lines correspond to interband coupling λ̄12 = 0.2
and 0.5, respectively.

panels) shows the effect of interband interaction, which is
generically an increase of Tc.

V. CONCLUSION

In summary, in the low-density regime where the dynamical
range of the pairing interaction is set by the band edge, the
pairing temperature Tc depends on the electron density n in
a nonanalytic way. For parabolic bands, we provided exact
asymptotic formulas describing this dependency, taking into
account the energy variation of the electronic DOS, as well as
the variation of the chemical potential with interaction strength
and temperature. In one and two dimensions and in three
dimensions at strong enough coupling—in other words, when
there is a bound solution to the two-particle problem—the
chemical potential (at Tc) becomes negative at low density: As
a result the Tc(n) curve starts with infinite slope and increases
faster than any power of n. Otherwise, i.e., in three dimensions
at weak coupling, the chemical potential approaches zero at
low density, the Tc(n) curve starts with zero slope, and it
increases slower than any power of n.

Our results may be relevant for low-density superconduc-
tors. In SrTiO3, oxygen reduction and niobium doping allows
one to tune the carrier density [6] in a range such that the
dimensionless density ñ varies typically between 10−2 and
10. In the LaAlO3/SrTiO3 interface, the field-effect induced
sheet carrier density can also be tuned [29] such that ñ varies
typically from 10−1 to 1. In the low-density range of these
domains, our exact formulas differ from the usual formulas
valid at higher densities. In the numerical illustrations of the
present paper we have used coupling constants λ̄ of order one,
which may appear very large in comparison to the typical
values of the order 0.1 reported for SrTiO3. We emphasize
that our definition of the coupling constants differs from the
usual definition, such that in three dimensions ours are bigger
that the usual ones by a factor (μ/�ωD)1/2, which is typically
three in SrTiO3.

The observation that Tc is a nonanalytic function of n near a
band bottom calls for a reconsideration of the problem of shape
resonances. These refer to oscillations of Tc in a quasi-two-
dimensional superconductor confined in a slab, as a function
of the slab thickness. The oscillations arise when the chemical
potential crosses the bottom of one of the confinement-induced
subbands and were presented in the literature on the subject as
discontinuities [4]. Our results show that such discontinuities
are artifacts, because Tc vanishes continuously at a band edge
in any dimension. The actual dependence of Tc on the slab
thickness is therefore a continuous function, which remains
to be investigated. A particularly interesting system in this
respect is the LaAlO3/SrTiO3 interface, which cumulates the
characteristics of being a low-density superconducting system,
confined in a quasi-two-dimensional geometry, and also a
multiband system.
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APPENDIX A: SIMPLE PROOF OF EQ. (4)

The density of a free-electron gas in dimension d is
proportional to the volume of the d-dimensional Fermi sphere,
smeared by the Fermi function:

n = 2
∫

ddk

(2π )d
1

exp
(�2k2/2m−μ

kBT

) + 1

= 2
∫

ddk

(2π )d
x

x − exp
( �2k2

2mkBT

) ,

with x = − exp (μ/kBT ). In order to evaluate the integral,
we use the expansion x/(x − a) = −∑∞

q=1 xq/aq and we

write k2 = ∑d
i=1 k2

i . This leads to a product of Gaussian

integrals:

n = −2
∞∑

q=1

xq

d∏
i=1

∫ ∞

−∞

dki

2π
exp

(
− q

�2k2
i

2mkBT

)

= −2
∞∑

q=1

xq

d∏
i=1

√
mkBT

2π�2q
= −2

(
mkBT

2π�2

) d
2

∞∑
q=1

xq

qd/2
.

Considering the Taylor expansion of the polylogarithm, we see
that the q sum in the last expression is Lid/2(x), which proves
Eq. (4).

APPENDIX B: RESULTS FOR ONE PARABOLIC
BAND IN 1D

With the proviso that the factor (d − 1)π in Eqs. (3)
and (7) be replaced by 1, Eqs. (2)–(9) are valid for d = 1.
The asymptotic properties of the function ψ1(a,b) are

ψ1(0 < a < 1,b → 0) = sin−1(
√

a)√
1 − a

≈ π/2√
1 − a

− 1,

ψ1(1 < a < 2,b → 0) = 1√
a − 1

ln

(
a − 1√

a + √
a − 1

8eγ

πb

)
,

ψ1(a > 2,b → 0) = 1√
a − 1

ln

(
a − 1

(
√

a + √
a − 1)(

√
a − 1 + √

a − 2)

8eγ

πb

)
.

The corresponding weak-coupling approximations in the regime ñ � 1 are

T̃c ≈ 8eγ

π
exp

(
− 1

λ̄/
√

μ̃

)
1

1 + √
1 + 1/μ̃

{√
μ̃ μ̃ � 1

1
1+√

1−1/μ̃
μ̃ > 1 (d = 1), (B1)

in agreement with the result of Ref. [2], where λ̄/
√

μ̃ is
the coupling constant evaluated at the chemical potential.
In the low-density limit the chemical potential approaches
a finite negative value given by the solution of 1/λ̄ =
sin−1 (

√
1 + μ̃min)/

√−μ̃min ≈ (π/2)/
√−μ̃min − 1. We can

use the expansion −Li1/2(−ex) → ex for large negative x and
deduce the relation μ̃ = T̃c ln(ñ/T̃

1/2
c ). We find for T̃c,

T̃c ≈ ñ2 exp

[
W

(
1

2

(
πλ̄

1 + λ̄

)2 1

ñ2

)]
(d = 1, n → 0). (B2)

The numerical results are shown in Fig. 8 and compared with
the analytical formulas (B1) and (B2). Equation (B1) works
well at high density, but severely breaks down at low density,
even at weak coupling. The cancellation of errors observed
in the 3D case also occurs here to some extent, but the main
issue is that Eq. (B1) fails to describe the regime where μ̃ < 0
at low density, while in 3D this regime is absent for λ̄ < 1.
Equation (B2) is accurate at weak coupling where −μ̃ � 1 and
has the small inaccuracy associated with the approximation
made in solving for μ̃ at larger coupling.

APPENDIX C: GAP TO Tc RATIO IN THE LOW-DENSITY
LIMIT

We give here the zero-temperature gap explicitly for one
band in 2D, as a function of density and coupling. This can
be combined with the result (19) in order to obtain the exact
gap to Tc ratio in the low-density limit. The expression of the
density at T = 0 is

n =
∫ ∞

−∞
dξ N0(μ + ξ )

(
1 − ξ√

ξ 2 + �2
ξ

)
, (C1)

where N0(E) is the normal-state DOS given by Eq. (3) and
�ξ = θ (�ωD − |ξ |)� with � the zero-temperature gap. We set
E0α = 0 and m = mα as in Sec. III and move to dimensionless
variables. In 2D we have at T = 0,

ñ =

⎧⎪⎨
⎪⎩

0 μ̃ < −1
1
2 (μ̃ + 1 +

√
μ̃2 + �̃2 −

√
1 + �̃2) −1 < μ̃ < 1

μ̃ μ̃ > 1.

(C2)
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FIG. 8. (a) Pairing temperature as a function of electron density
for one parabolic band in one dimension. Tc is expressed in units
of �ωD/kB and n in units of 2[mωD/(2π�)]1/2. The thin and dashed
lines show Eq. (B1), evaluated using μ̃0 = (π/4)ñ2 for μ̃. (b) Same
data on a log-log scale. The dashed lines show Eq. (B2).

The gap equation is obtained by replacing tanh(· · · ) by unity
in Eq. (1a). For one band in 2D we find

1/λ̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 μ̃ < −1

1
2 ln

( 1+
√

1+�̃2√
μ̃2+�̃2−μ̃

) −1 < μ̃ < 1

ln
( 1+

√
1+�̃2

�̃

)
μ̃ > 1.

(C3)

FIG. 9. Zero-temperature gap � to Tc ratio calculated numeri-
cally for one parabolic band in two dimensions. Curves are drawn
as a function of density n expressed in units of mωD/(π�) for
λ̄ = 0.3, 0.5, 0.75, and 1. The dashed lines show the ratio of Eqs. (C4)
and (19). The horizontal line indicates the BCS weak-coupling ratio
π/eγ ≈ 1.76.

For μ̃ > 1, the gap is independent of density and given by �̃ =
1/ sinh(1/λ̄); combined with the weak-coupling result (17),
this yields the usual weak-coupling BCS ratio �/(kBTc) =
π/eγ . In the low-density regime μ̃ < 1, we eliminate �̃ among
Eqs. (C2) and (C3) to find μ̃ = ñ + (ñ − 1)e−2/λ̄. Solving for
the gap, we then arrive at

�̃ =
√

ñ + ñ(ñ − 1)e−2/λ̄

sinh(1/λ̄)
(ñ < 1). (C4)

Comparing Eqs. (C4) and (19) we see that Tc increases
faster than � with increasing density. As a result the gap
to Tc ratio vanishes for n → 0, as we show in Fig. 9. This
result may look surprising in view of the fact that known
two-dimensional superconductors tend to have a gap to Tc

ratio larger than the BCS value. The suppression shown
in Fig. 9 concerns a regime of density which none of
these known superconductors has reached until now, to our
knowledge.
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[4] See, e.g., A. Romero-Bermúdez and A. M. Garcı́a-Garcı́a,
Shape resonances and shell effects in thin-film multiband
superconductors, Phys. Rev. B 89, 024510 (2014).

[5] D. M. Eagles, Effective Masses in Zr-Doped superconducting
ceramic SrTiO3, Phys. Rev. 178, 668 (1969); Possible pairing

without superconductivity at low carrier concentrations in
bulk and thin-film superconducting semiconductors, 186, 456
(1969).

[6] X. Lin, G. Bridoux, A. Gourgout, G. Seyfarth, S.
Krämer, M. Nardone, B. Fauqué, and K. Behnia, Criti-
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Chapter 4
Quantum confinement and

superconductivity

Superconducting pairing is influenced by spatial dimensionality and geometry. A primary

reason for this influence is that geometry determines both the band structure of the material

- for instance, 3D bands in the bulk or quasi-2D bands in thin films - and the pairing

interaction between electrons. In turn, the relative position in energy of the electronic

bands with respect to the chemical potential µ not only sets the number of occupied bands,

according to the total density n, but it also affects deeply the superconducting properties. In

particular, as we began considering in chapter 3, the BCS pairing temperature Tc is affected

when µ approaches the bottom energy of a band E0 ≤ µ, such that the pairing window

for superconductivity is inferiorly cut by the band edge - see figure 3.3. This aspect of the

BCS problem is crucial for Tc calculations in quantum-confined systems, like thin films or

interfaces, because confinement determines the geometry, and it alters the dimensionality,

the energy of quantized subbands and their position relative to the chemical potential. The

effect of quantum confinement can be qualitatively sketched as follows: when one or more

spatial dimensions of the system are confined to microscopic scales, thereby becoming

much smaller than the other dimensions, the ensemble starts to show quantum effects in the

confined directions. In particular, when we confine one or more dimensions the quantum

states start to feel the presence of the system boundaries, and the boundary conditions for

eigenfunctions change with respect to the ones of an infinite solid - i.e. periodic (Born-von

Karman) boundary conditions [3]. As a consequence, the electronic energy levels ξ~k,σ

become discretized and form quantized subbands. For example, confining one band ξ~k,σ

of a 3D system along one direction z into a length Lz �
�

Lx , L y

	

produces a series of

discrete levels εp, where p ∈ N+ is the subband index stemming from the quantization of
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z

uq(z) εq

up(z) εp

U

L

Figure 4.1: Schematic representation of the quantization of subbands due to quantum con-
finement in a square quantum well of width L and height U . The first two eigenvalues εp and
εq, and the correspondent two eigenfunctions up and uq, are depicted.

the z-component of the bulk wave vector kz, the latter being no longer a good quantum

number [3]. Hence, we can enumerate the eigenfunctionsψp associated to the eigenvalues

εp according to the subband index p - see figure 4.1.

The quantization of eigenvalues εp in the confined direction has non-negligible conse-

quences for the density of states (per unit volume and spin) N el
0 (E) =

1
V
∑

~k δ(E − ξ~k): in

a quasi-2D geometry, the latter is composed of a series of steps, of absolute height mb

2πħh2 p

with mb band mass, which occur at energies corresponding with the quantized eigenvalues

εp [3]. This situation is depicted in figure 4.2.

In the other two directions
�

Lx , L y

	

we have no confinement effects by hypothesis,

so that the density of states is composed of 2-dimensional sheets in reciprocal space,

enumerated by the subband index p. Therefore, the dimensionality of the system becomes

quasi-2D from the initial 3D geometry.

Moreover, the modifications of the eigenfunctions ψp has significant consequences for

a superconductor: since superconducting pairing for a BCS-like interaction depends on

the spatial overlap of the eigenfunctions for paired states, confinement alters the pairing

interaction through the changes in ψp and their respective overlaps in space. Similar

arguments for the density of states and the pairing interaction apply when more than one

spatial direction is affected by quantum confinement.

We see that quantization effects can tune the subband eigenvalues εp through the

confinement parameters, e.g. the thickness Lz for a quasi-2D configuration. On the other

hand, the chemical potential is also set by the density according to equation (3.20b). Hence,
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Figure 4.2: Schematic representation of the quasi-2D electronic density of states and the
associated subbands εp due to quantum confinement, in the specific case of a in infinite square
quantum well of width L.

by varying either the confinement parameters or the density, µ successively crosses the

edge of different subbands: for a superconductor, this situation corresponds precisely to

the regime where BCS pairing is governed by the band edge, as we described in section

3.3. In order to correctly describe the pairing temperature Tc for a confined system, it is

necessary to take into account such effects. In this chapter, we will analyze the influence of

quantum confinement on a BCS superconductor. For a quasi-2D geometry, we will see that

Tc develops a continuous oscillatory evolution as a function of thickness L and density n,

determined by the entrance of successive subbands into the pairing window (3.22): such

phenomenon is known as shape resonances. Various aspects of this problem are analyzed

in paper 3, for a confinement model composed of a single square quantum well of finite

width L and depth U . A synthesis of low-density and quantum-confined superconducting

system is provided by the quasi-2D interface between lanthanum aluminate and strontium

titanate, LaAlO3/SrTiO3 (LAO/STO). In this case, we expect subband edges to play a

relevant role for the critical properties like Tc. Since our formalism allows us to study

superconductors in different dimensionality, given a model for confinement, we can ask

ourselves whether quantum confinement in quasi-2D geometry, acting on superconducting

bulk STO, can explain the doping dependence of Tc in thin films and at the interface. This

investigation is pursued in section 4.4, at the end of this chapter. Before dwelling into the

details of superconducting shape resonances, we first analyze in the many-body formalism

how dimensionality and confinement determine the gap equation of a singlet mean-field

superconductor; we then linearize the gap equation at Tc, to find an expression valid in a

general single-particle basis for a BCS-like interaction, which can be specialized to different
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geometries.

4.1 Gor’kov equations in a basis

4.1.1 Many-body mean-field decoupling

The BCS hamiltonian (3.18) belongs to the general class of condensed-matter hamiltonians

composed of a single-particle kinetic term (3.9) and a two-body interaction term (3.10),

with the latter providing the source of pairing in a superconductor. In general, we can

write these hamiltonians as

Ĥ =
∑

αβ

ξαβ â†
α
âβ +

1
2

∑

αβν1ν2

Vαβν1ν2
â†
α
â†
β
âν2

âν1
(4.1)

where {α,β ,ν1,ν2} are eigenstates of the many-body system with matrix elements ξαβ ,

e.g |α〉 =
�

�~k,σ
�

and ξ~k for electrons with momentum ~k and spin σ.
�

âα, â†
α

�

are the

annihilation and creation operators acting on the eigenstate |α〉.
Our interest is to study the effect of the potential Vαβν1ν2

on the single-particle eigen-

states, in particular for low-dimensional systems, and specifically for BCS superconductors

in this chapter. The equation of motion method for imaginary-time correlation functions is

convenient in this case, because it shows transparently how correlations are neglected in

the mean-field approximation. We start by defining the Green’s matrix

Gαβ(τ) = −
¬

T̂τâα(τ)â
†
β
(0)
¶

, (4.2)

which is the correlation function for creation and annihilation operators
�

âα, â†
α

�

. We can

write the equation of motion for Gαβ(τ), that reads [2]

− ∂
∂ τ
Gαβ(τ) = δ(τ)δαβ +

∑

γ

ξαγGγβ(τ) +
∑

γν1ν2

Vαγν1ν2
C(â†

γ âν2
âν1) â†

β
(τ) (4.3)

The correlation function C(â†
γ âν2

âν1) â†
β
(τ) results from the two-body portion of the hamilto-

nian (4.1). Equation (4.3) means that the relaxation of single-particle excitations described

by Gαβ(τ) occurs via the two-body interaction Vαβν1ν2
through processes involving the

creation of particle-hole pairs. On its turn, the relaxation dynamics depends on the time

evolution of C(â†
γ âν2

âν1) â†
β
(τ), which is controlled by higher-order processes in an infinite

recursive series of equations of motion, involving an increasing number of ladder opera-

tors. [2]. Such an infinite series cannot be solved analytically. If Wick theorem applied,
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we could decompose higher-order processes into products of terms involving two field

operators at a time, and this way a solution could be obtained in closed form; unfortunately,

this is not rigorously valid when two-body correlations are present. Nevertheless, we can

obtain a good approximate solution employing mean-field decoupling, that we described

in section 3.2.2: introducing the mean value of terms involving two field operators at a

time, and neglecting fluctuations with respect to averages - i.e. higher order correlations -

we rewrite equation (4.3) using only one-body terms, therefore obtaining an independent-

particle approximation for the hamiltonian (4.1). Here we specialize to fermions having

annihilation and creation operators
�

ĉα, ĉ†
α

�

, since we are going to apply this formalism to

electrons. In the many-body formalism, the mean-field approximation yields

C(ĉ†
γ ĉν2

ĉν1) ĉ†
β
(τ)≈

¬

ĉ†
γ
ĉν2

¶

Gν1β
(τ)−

¬

ĉ†
γ
ĉν1

¶

Gν2β
(τ) +




ĉν2
ĉν1

�F †
γβ
(τ) (4.4)

where we recognize the single-particle Green’s function (4.2), as well as a new object

F †
γβ
(τ). The latter is the anomalous Green’s function, defined as

F †
αβ
(τ) = −

¬

T̂τ ĉ†
α
(τ)ĉ†

β
(0)
¶

(4.5)

In the normal state of metals we have Fαβ(τ) = 0, since the hamiltonian commutes with

the number operator. However, we are not going to solve the full hamiltonian (4.1), neither

its effective BCS counterpart (3.18), but the mean-field approximation of (3.18), which

does not commute with the number operator. In this case, we obtain a nonzero F †
αβ
(τ) in

the mean-field approximation, which turns out to be proportional to the superconducting

energy gap ∆αβ . This phenomenon is analogous to the appearance of a finite anomalous

average
¬

ĉ†
~k,↑ ĉ

†
−~k,↓

¶

in the superconducting state, as mentioned in section 3.2.2.

Collecting the equations of motion of Gαβ(τ) and F †
αβ
(τ), using a matrix notation, and

going to the frequency domain, we obtain the two coupled equations known as the Gor’kov

equations

(iω− K̂0)G (iω)−∆F †(iω) = 1 (4.6a)

(iω+ K̂∗0)F †(iω) +∆∗G (iω) = 0 (4.6b)

where we introduced the generalized single-particle hamiltonian

K̂0 = Ĥ + VH + VX (4.7)

as well as the Hartree and exchange mean fields, which modify the single-particle hamilto-
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nian Ĥ at mean-field approximation

[VH]αβ =
∑

ν1ν2

Vαν1βν2

¬

ĉ†
ν1

ĉν2

¶

=
∑

ν1ν2

Vαν1βν2
l imτ→0−Gν2ν1

(τ) (4.8a)

[VX ]αβ = −
∑

ν1ν2

Vαν1ν2β

¬

ĉ†
ν1

ĉν2

¶

= −
∑

ν1ν2

Vαν1ν2β
l imτ→0−Gν2ν1

(τ) (4.8b)

If the interaction is taken to be the Coulomb repulsion (3.8), the mean fields (4.8) cor-

respond exactly to the Hartree and exchange mean fields, and the formalism reduces to

Hartree-Fock theory; the mean-fields also play a similar role for other types of interaction

Vαβν1ν2
. If the two-body potential Vαβν1ν2

is positive (repulsive), then the exchange mean

field VX < 0 (attractive). However, this attractive exchange term does not produce any

pairing, but it only lowers the energy levels of single-particle eigenstates. The gap equation

is

[∆]αβ =
∑

µ1µ2

Vαβµ1µ2

�

F †
µ2µ1
(τ= 0−)

�∗
(4.9)

The Gor’kov equations (4.6) are valid for both spin-singlet and spin-triplet pairing.

4.1.2 Spin-singlet pairing

We now specialize equations (4.6) to the most common situation, namely spin-singlet

pairing of electrons in a non-magnetic system. These assumptions are retained in the

standard formulation of BCS theory. If pairing occurs only in the singlet channel, the gap

∆ and the anomalous Green’s matrix F †(iω) do not include any triplet component of the

type ↑↑ or ↓↓. Furthermore, the assumption of a non-magnetic system implies that the

Hamiltonian has no spin-flip term, and that the Green’s function is diagonal in the spin

indices: this allows to factorize out the spin part from both the hamiltonian and the Green’s

functions, so that we have

(iω− K0)G (iω)−∆F †
↑↓(iω) = 1 (4.10a)

(iω+ K∗0)F †
↑↓(iω)−∆†G (iω) = 0 (4.10b)

where now G represents the matrix with components Gα↑β↑ and F † has components F †
α↓β↑.

The gap equation is

∆α↑β↓ ≡∆αβ =
∑

µ1σ1µ2σ2

Vα↑β↓µ1σ1µ2σ2

�

F †
µ2σ2µ1σ1

(0−)
�∗

(4.11)
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4.1 Gor’kov equations in a basis

Now the indices α do not contain the spin degrees of freedom anymore, but refer only

to the orbital part of the wave functions. If we consider an interaction which acts only

between electrons of opposite spins, the gap equation further simplifies. We make this

assumption since we often consider a contact interaction, and in this case, the interaction

between parallel spins is forbidden by the Pauli principle [3]. For pairing between opposite

spin states, we have V (~rσ,~r ′σ′) = V (~r,~r ′)δσ,−σ′ , therefore the spin part can be separated

from equations (4.10). The pairing potential in the basis of the single-particle orbital

eigenstates ϕα(~r) is

Vαβµ1µ2
=

∫

d~r1d~r2ϕ
∗
α
(~r1)ϕ

∗
β
(~r2)V (~r1,~r2)ϕµ1

(~r1)ϕµ2
(~r2). (4.12)

Inserting the latter into equation (4.11), we find

∆αβ =
∑

µ1µ2

Vαβµ1µ2

�

F †
µ2↓µ1↑(0

−)
�∗

(4.13)

The gap equation (4.13) is valid in general for a pairing interaction acting between opposite

spin states: they show that the gap function ∆αβ is proportional to the anomalous Green’s

function, which is a general feature of mean-field decoupling as previously mentioned.

Now, in order to write F † explicitly - in terms of the single-particle eigenvalues ξα and the

gap ∆αβ itself - we first have to specify the form of the singlet pairing interaction Vαβµ1µ2
,

and then to solve the Gor’kov equations (4.10) forF †. In the following section we linearize

the gap equation (4.13) at Tc in a generic single-particle basis, and then we specialize to

the BCS interaction (3.17) with the aim of analyzing the pairing temperature for a BCS

superconductor in different geometries.

4.1.2.1 Linearized equations at Tc

Since the anomalous propagator F † is proportional to the order parameter ∆ =
�

∆αβ
	

,

the linearized Gorkov equations are

(iω− K0)G (iω) = 1 (4.14)

(iω+ K∗0)F †(iω)−∆†G (iω) = 0 (4.15)
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which means that at Tc the electronic Green’s function is the normal-state one G = G0, in

the absence of gap ∆. Hence, we can find the explicit solution for the anomalous term:

F †(iω) = (iω+ K∗0)
−1∆†G0(iω)

F †
µ2↓µ1↑(iω) =

∑

µ3µ4

[(iω+ K∗0)
−1]µ2µ3

︸ ︷︷ ︸

δµ2µ3
iω+ξµ2

[∆†]µ3µ4
︸ ︷︷ ︸

∆∗µ4µ3

[G0(iω)]µ4µ1
︸ ︷︷ ︸

δµ4µ1
iω−ξµ1

=
∆∗
µ1µ2

(iω− ξµ1
)(iω+ ξµ2

)
.

We transform from imaginary frequency to imaginary time, as needed in equation (4.13),

using the fact that

1
β

∑

iω

e−iω0− 1
(iω− ξµ1

)(iω+ ξµ2
)
=

fF D(ξµ1
)− fF D(−ξµ2

)

ξµ1
+ ξµ2

and that, for the Fermi-Dirac distribution fF D(ξ), we have

fF D(−ξ) = 1− fF D(ξ),

such that we find the gap equation valid at Tc:

∆αβ =
∑

µ1µ2

Vαβµ1µ2

∆µ1µ2

ξµ1
+ ξµ2

�

fF D(ξµ1
) + fF D(ξµ2

)− 1
�

. (4.16)

Equation (4.16) is written for a generic single-particle basis {α}: therefore, it can be

specialized to a given dimensionality, confinement geometry and type of singlet interaction,

to find the pairing temperature Tc.

4.1.2.2 BCS Tc equation in a basis

We now specify the pairing interaction Vαβµ1µ2
according to the BCS model [82]. This means

assuming a local attraction between degenerate time-reversed pairs of states, denoted

(α, ᾱ), with a separable energy cutoff. In the homogeneous continuum, momenta ~k provide

a good basis and the BCS interaction corresponds to the usual form, given by equation

(3.17). In a generic single-particle basis, we have

Vαβµ1µ2
= −VBCSδβᾱδµ2µ̄1

η(ξα)η(ξµ1
)

∫

d~rϕ∗
α
(~r)ϕ∗

ᾱ
(~r)ϕµ1

(~r)ϕµ̄1
(~r)

≡ −VBCSδβᾱδµ2µ̄1
η(ξα)η(ξµ1

)Oαµ1
. (4.17)
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4.1 Gor’kov equations in a basis

Notice that equation (4.17) has only one spatial integral over ~r, while the generic singlet

interaction (4.12) integrates over ~r1 and ~r2: this is because the BCS interaction is local, i.e.

it acts only between two electrons at the same coordinate ~r1 ≡ ~r2 = ~r.

Here we have defined the pairing overlap matrix elements

Oαβ =

∫

d~rϕ∗
α
(~r)ϕ∗

ᾱ
(~r)ϕβ(~r)ϕβ̄(~r). (4.18)

Equation (4.18) shows that, with a BCS-like separable interaction (4.17), superconducting

pairing depends on the overlap in space between paired eigenstates. This stems from

the spatial locality of the BCS interaction. Since the eigenstates ϕ∗
α
(~r) are modified by

quantum confinement, the interaction Vαβµ1µ2
is altered in confined geometry as well: this

is the origin of the so-called shape resonances, whereby the pairing interaction is changed

by quantum confinement in a quasi-2D geometry.

As previously mentioned, in the homogeneous continuum the time-reversed pairs (α, ᾱ)
are the wave-vector states (~k,−~k), so the interaction is (3.17). Equation (4.16) shows that

the order parameter can only pair time-reversed states as well,

∆αβ = δβᾱη(ξα)∆α

and the gap equation becomes

∆α =
∑

µ1

η2(ξµ1
)VBCSOαµ1

∆µ1

2ξµ1

tanh

�

ξµ1

2kBTc

�

. (4.19)

Equation (4.19) gives the pairing temperature Tc for a BCS singlet interaction −VBCS with

cutoff ħhωD in a generic basis of states {µ1}. We will now specialize equation (4.19) to

a quasi-2D system, in which one spatial direction is confined, thereby realizing a BCS

superconductor in a quantum well. In the case of a finite square well, we obtain the

situation depicted in figure 4.1, but many other geometries - e.g. triangular, parabolic, and

so on - are possible. In the following, we will focus on a single square quantum well as the

confinement model for simplicity: this allows one to write the overlap matrix elements

(4.18) in closed form. Later, we will compare the square well solution to other typical

confined geometries.
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4.1.2.3 Quasi-two dimensional system

We consider a quasi-2D configuration with free particles along the coordinates x and y , and

a confinement potential U(z) acting along the z direction: the single-particle hamiltonian

K̂0 is then

K̂0 =
p2

2m
−µ+ U(z) (4.20)

This allows us to factorize the eigenstates into a plane-wave portion 1pS ei~k‖·~r‖ in the free

direction ~r‖ = xûx + yûy , with ûx and ûy unit vectors along x and y, and a confined

z-eigenfunction uq(z) depending on the quantum number q ∈ N+. S is the 2-dimensional

surface of the system in the unconfined x y plane. Hence, in real space we have

ϕα(~r) 7→ ϕ~k‖(~r‖)uq(z) =
1pS ei ~k‖· ~r‖uq(z) (4.21)

The corresponding overlap matrix elements from equation (4.18) are

O~k‖q~k′‖q′ =

∫

d~r‖dz
1pS e−i~k‖·~r‖u∗q(z)

1pS ei~k‖·~r‖u∗q̄(z)
1pS ei~k

′
‖·~r‖uq′(z)

1pS e−i~k
′
‖·~r‖uq̄′(z)

=
1
S

∫

dz u∗q(z)u
∗
q̄(z)uq′(z)uq̄′(z) =

1
S Oqq′ . (4.22)

where we have defined the overlap matrix elements between paired states in the confined

direction z,

Oqq′ =

∫

dz u∗q(z)u
∗
q̄(z)uq′(z)uq̄′(z). (4.23)

Equations (4.22) and (4.23) show that the overlap matrix elements in the well only depend

on the egienfunctions uq along z, but not on x and y: therefore the gap is independent of

the in-plane momentum ~k‖. Also, the separable form of the hamiltonian (4.20) means that

the eigenvalues are additive in the unconfined ξ~k‖ and confined εq directions, according to
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4.1 Gor’kov equations in a basis

ξ~k‖,q = ξ~k‖ +εq. Hence, the gap equation stemming from equations (4.19) and (4.22) reads

∆q =
∑

~k‖,q′

η2(ξ~k‖,q′)V
1
S Oqq′

∆q′

2ξ~k‖,q′
tanh

�

ξ~k‖,q′

2kBTc

�

=
∑

q′
VOqq′∆q′

1
S
∑

~k‖

η2(ξ~k‖ + εq′)
1

2(ξ~k‖ + εq′)
tanh

�

ξ~k‖ + εq′

2kBTc

�

︸ ︷︷ ︸

∫

dE
1
S
∑

~k‖

δ(E − ξ~k‖ − εq′)

︸ ︷︷ ︸

N2D
0q′ (µ+E)

η2(E)
1

2E
tanh

�

E
2kBTc

�

=
∑

q′
VOqq′∆q′

∫ ħhωD

−ħhωD

dE N 2D
0q′ (µ+ E)

1
2E

tanh
�

E
2kBTc

�

. (4.24)

In equation (4.24) we transformed the sum over the wave vector ~k‖ into an integral over

energy E, employing the 2D density of states for the q-th confined subband:

N 2D
0q (µ+ E) =

1
S
∑

~k‖

δ(E − ξ~k‖ − εq). (4.25)

Hence, as anticipated at the beginning of this chapter, we see from equation (4.25) that the

effect of quasi-2D confinement on the band structure is to produce a series of 2D sheets in

reciprocal space of momenta, labeled by the quantum number q. For a BCS superconductor,

the pairing window extending from µ − ħhωD to µ + ħhωD determines which subbands

contribute to Cooper pairing, depending on the relative position of the chemical potential

µ with respect to the eigenvalues εq. A realistic quantum well has a finite energy barrier

U < +∞: states having energy εq < U are bound by the potential well, while eigenvalues

εq > U belong to unbound states, also named scattering or resonant states [138]. Hence, we

have to take into account this dichotomy of states when we consider a well of finite height.

It is useful to imagine the system as composed by the well of width L, inserted into a larger

box having dimension L in the confined z direction - see figure 4.3. In particular, we must

split the q′ sum in equation (4.24) to separate bound and scattering states. Whenever q

and/or q′ is a scattering state, the overlap integral Oqq′ is proportional to 1/L , such that we

can take this factor away from the definition of the overlap, and use it to convert the sum

over scattering states to an integral, assuming that the gap is the same for all scattering

states, ∆s, and likewise the overlap Oqs, and assuming moreover that the density of states
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z

L

LU(z)

uq(z)

us(z)

U

0

Figure 4.3: Schematic representation of the quasi-2D confinement geometry for the treatment
of bound and scattering states, in the case of a rectangular quantum well of finite width L
and depth U . The large orange-shaded box has lateral dimension L , while the blue-shaded
quantum well has width L�L in the confined z direction (horizontal axis). The confinement
profile U(z) (vertical axis) is rectangular, with energy barrier U: scattering states having energy
εs > U are unbound, while bound states of the quantum well have energy εq < U . One example
of unbound eigenfunction us(z), subjected to periodic boundary conditions in L , is shown in
red; one example of bound eigenfunction uq(z), obeying the finite-well boundary conditions in
L, is shown in blue.
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4.1 Gor’kov equations in a basis

of the scattering state is not modified by the potential. Namely, we can write

N 3D
0 (µ+ E − U) =

1
L

∑

q′(unbound)

1
S
∑

~k‖

δ(E − ξ~k‖ − εq′)≡
1
V
∑

~k3D

δ(E − ξ~k3D − U) (4.26)

where the total system volume is V = S L . Therefore, for the bound states we have

∆q =
∑

q′(bound)

VOqq′∆q′

∫ ħhωD

−ħhωD

dE N 2D
0q′ (µ+ E)

1
2E

tanh
�

E
2kBTc

�

+
1
L

∑

q′(unbound)

VLOqq′∆q′

∫ ħhωD

−ħhωD

dE
1
S
∑

~k‖

δ(E − ξ~k‖ − εq′)
1

2E
tanh

�

E
2kBTc

�

=
∑

q′(bound)

VOqq′∆q′

∫ ħhωD

−ħhωD

dE N 2D
0q′ (µ+ E)

1
2E

tanh
�

E
2kBTc

�

+ VLOqs∆s

∫ ħhωD

−ħhωD

dE N 3D
0 (µ+ E − U)

1
2E

tanh
�

E
2kBTc

�

.

For the scattering states, in principle the small potential well of width L influences the

gap ∆s in the continuum of width L → +∞, as there are overlaps Osq′ - see figure 4.4

for a finite square well. However, since Osq′∝ 1
L → 0, the presence of the small quantum

well below negligibly alters the states in the continuum, and therefore we neglect such

alteration of scattering states. The equation is

∆s =
∑

q′(bound)

VOsq′∆q′

∫ ħhωD

−ħhωD

dE N 2D
0q′ (µ+ E)

1
2E

tanh
�

E
2kBTc

�

︸ ︷︷ ︸

→0

+ VLOss∆s

∫ ħhωD

−ħhωD

dE N 3D
0 (µ+ E − U)

1
2E

tanh
�

E
2kBTc

�

which means that, with our approximations, the gap for the scattering states is the same as

in the absence of potential. This way, normalizing the gap to that of the lowest bound state,

the gap equation at Tc can be put in the form of an eigenvalue problem - see equation (1a)

of paper 3, which depends on the couplings among all subbands and on the value of the

chemical potential µ. The largest temperature that satisfies the characteristic equation

is the pairing temperature Tc of the system. The chemical potential µ = µ(Tc) is set at

the pairing temperature Tc self-consistently, adjusting itself in accordance with the given

3D density n - see equation (1b) of paper 3. The solution for Tc depends on the specific
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confinement geometry U(z), that determines the energies εq. In paper 3, we solve the

problem for Tc in a square confinement potential of length L, in the case of an infinite and

a finite potential barrier U; this case is illustrated in figure 4.3.

There is still one detail to discuss regarding scattering states, i.e. in the case εq > U .

In principle, the bound states are coupled to the continuum through the overlaps Oqs. We

have assumed that this overlap, as well as the gap ∆s, are the same for all scattering states.

Hence we have to choose a suitable value for the overlap Oqs, which is representative of all

scattering states. Moreover, the scattering states contribute to the total density n, and their

influence on the density equation (1b) of paper 3 must be considered as well, particularly

in the case when a state enters into the well from the continuum, thus becoming bound.

In the following section, we present our treatment of aforementioned issues involving

scattering states for a square potential well.

4.1.2.4 Treatment of scattering states for a square potential well

For a square potential well of width L and height U , we find that the overlap Oqs is a function

of the energies εq and εs. This function approaches unity for all εs when εq approaches

U . For smaller values of εq, the function decreases to zero at small εs with oscillations

depending on L. In paper 3 we have found it convenient to use ħhωD as the unit of energy,

and n1 = 2
�mωD

2πħh

�
3
2 as the unit of density in 3D. We take the same convention here. Some

examples of the energy evolution of Oqs are depicted in figure 4.4, where we show the

overlap LOqs for a bound state having energy εq = 0.1ħhωD, as a function of the scattering

state energy εs in units of the cutoff energy ħhωD. The well depth is set to U = ħhωD.

Blue, red and gold curves correspond to a normalized well thickness (n1)
1
3 L = {1, 2,5}

respectively.

In line with our assumption that all scattering states share the same gap, we must

replace Oqs by a single value which is representative for all bound and scattering states. For

simplicity we choose the value Oqs = 1, which is the limit for large εs, as we see in figure

4.4. For the overlap of scattering states, we find Oss = 1.

The scattering states give a small contribution to the total density. In first approximation,

the density contributed by the scattering states is that of a 3D electron gas with chemical

potential µ− U . However, when we vary the well thickness L, some scattering states enter

the well and become bound at particular values of L. This situation must be handled

carefully, because in our approximations the new bound state leads to a discontinuous

jump in the density of states. In an exact treatment there would be a deformation of the

continuum, such that the evolution of the density of states with L is smooth. We mimic
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Figure 4.4: Adimensional pairing overlap LOqs for a bound state having energy εq = 0.1ħhωD,
as a function of scattering state energy εs/(ħhωD) with cutoff energy ħhωD, for a square quantum
well of thickness L and depth U = ħhωD. Blue, red and gold curves correspond to a normalized

well thickness (n1)
1
3 L = {1, 2,5} respectively, with 3D density unit n1 = 2

�mωD
2πħh

�
3
2 .

this smooth evolution by continuing the localized state into the continuum and taking

its contribution into account before it gets localized, on top of the contribution of other

scattering states. The details of this model are reported in the appendix of paper 3.

4.2 Superconducting shape resonances

4.2.1 Theory

With the results of section 4.1.2.3 at our disposal, we are now ready to analyze the effect

of quasi-2D confinement on Tc for a BCS superconductor: we can solve self-consistently

for the pairing temperature Tc to analyze the dependence of the latter on density and

confinement parameters. In the following, we focus on the finite square well geometry,

for which we have an analytic expression of the pairing overlaps for bound and scattering

states, as we have seen in section 4.1.2.4. This geometry is suitable to model a free-standing

superconducting thin film of thickness L, with a potential barrier U of the order of the

material work function, i.e. the difference between the Fermi level inside the material

and vacuum. When analyzing thin films, it is convenient to fix the value of n3D, which

corresponds to the intrinsic density of conduction carriers in metals or to the dopant

concentration in doped semiconductors. This way, we can look at how Tc varies with

film thickness at constant n3D, for a given bulk coupling λ; fixig L and analyzing Tc as a
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function of density, one retrieves the non-analytic increasing function of n3D described in

paper 2. The result of changing L is to move the relative position of the chemical potential

with respect to quantized subbands εp: therefore, the BCS pairing window (3.22) moves

with µ as well, so that different subbands enter and exit from the pairing window itself.

Each time a new subband enters into the window, that subband starts to contribute to

superconducting pairing, hence we expect an increase of Tc in that condition; then, since

the individual subband couplings decrease with increasing thickness - see equation (5)

of paper 3 - Tc decreases until a new subband comes into play. In summary, the pairing

temperature displays an oscillatory evolution as a function of film thickness, known as

shape resonances. In particular, depending on n3D, λ and U , Tc can be higher than the bulk

value T 3D
c = l imL→+∞Tc(L). The sharp steps in the quasi-2D density of states of figure

4.2 would cause abrupt changes in Tc, producing discontinuities at each µ = εp, if the

cutoff of the pairing window and the energy dependence of the density of states at subband

edges were not considered. Indeed, previous studies [139–149] tracing back to the work

of C. J. Thompson and J. M. Blatt [150,151] neglected the presence of aforementioned

subband edges, and obtained discontinuous functions for Tc(L) in an infinite square well,

where the oscillation amplitudes are overestimated and the characteristic peak-to-peak

periodicity is altered with respect to the full solution comprising subband edges. Hence,

we see that the results of paper 2 are essential to provide an exact mean-field calculation

of Tc in superconducting thin films; in particular, the consideration of subband edges

allows us to discover the presence of a Tc maximum in the low-thickness one-subband

regime, which can be studied as a function of density, coupling and confinement barrier.

The discrepancies between the exact mean-field solution and the one neglecting subband

edges increase as the density is lowered, while the two solutions consistently converge in

the high-density limit n3D� n1, with 3D density unit n1 = 2
�mωD

2πħh

�
3
2 , where the standard

BCS approximations become increasingly accurate. Moreover, studying Tc as a function of

confinement barrier, we see that there is a critical value U = U∗ below which Tc is always

lower than the bulk value at all thicknesses, while for U > U∗ Tc increases with respect to

T 3D
c ; U∗ turns out to be an almost-universal function of the product λn3D - see figure 7

of paper 3. The physical meaning of these findings is that, by lowering the confinement

barrier, the confined eigenstates up are increasingly penetrating outside the barrier, "leaking

out" of the well: this weakens pairing inside the well and is detrimental to Tc. Hence,

we see that the thin-film pairing temperature can be higher or lower than the bulk value,

depending on U: quasi-2D confinement does not always lead to a Tc increase. A higher

ratio of the thin-film Tc relative to the bulk value is obtained when we go to low density

and low coupling, according to the mean-field treatment. Various aspects of this problem
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and the mathematical details are presented in paper 3 at the end of this chapter, for a finite

square quantum well.

More elaborate confinement geometries are possible: an asymmetric rectangular well

can model a thin film grown on a substrate; a triangular well can describe the confinement

profile created by an electric field at polar interfaces; a parabolic well is appropriate for

local electrostatic potentials created by Coulomb interaction on charged carriers, and so

on. Nevertheless, the quantization of confined states and its impact on the density of states

and on the pairing interaction are general features of quasi-2D superconductors, so that we

expect the evolution of Tc to be qualitatively similar for different confinement geometries.

Additional effects, not considered by the mean-field solution of paper 3, can significantly

alter the experimental results with respect to the theoretical predictions. Superconducting

fluctuations of amplitude and phase, already mentioned in section 3.2.2, can influence

the behaviour of Tc at low density and thickness. Disorder can significantly alter the

conduction dynamics both in the normal and in the superconducting state, also leading to

superconductor-insulator transitions [152–154]; in appendix E, we sketch how the BCS

gap equation (4.19) changes when we introduce a frequency- and momentum-independent

scattering rate Γ , in the same spirit as for the normal-state Green’s function of section

1.4.1. The band structure of the material is also modified at very low thickness, in a way

not captured by simple discretized subbands. Also, retardation effects in electron-phonon

interaction and other strong coupling phenomena are not included into the BCS description.

The mean-field prediction of continuous Tc oscillations with thickness in superconducting

thin films, and the possibility of increasing Tc in the low-thickness regime, calls for possible

experimental tests. For this reason, we present a brief review of recent experiments on

epitaxial thin films in the following section.

4.2.2 Experiments on epitaxial thin films

The constant progress in thin-film growth technologies during the last decades allows to

produce high-quality epitaxial thin films at the nanometric scale for a variety of materials,

some of which become superconducting at low temperatures. The control over the film

thickness offers viable experimental tests for the shape resonances described in section

4.2.1, with the ultimate aim of improving the superconducting performances. In figure

4.5, we show some selected data on the ratio Tc
T3D

c
as a function of film thickness for

epitaxial thin films of lead on silicon substrate [155], niobium nitride on magnesium oxyde

substrate [156], tin on alumina substrate [157], as well as for SrTiO3/Nb:SrTiO3/SrTiO3

nanostructures [158]. Other references for experiments on superconducting thin films and
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Figure 4.5: Critical temperature Tc
T3D

c
divided by the bulk value T3D

c as a function of film

thickness L for different datasets. Cyan points: Pb/Si(111) [155]; gold points: NbN/MgO [156];
blue points: Sn/Al2O3 [157]; red points: SrTiO3/Nb:SrTiO3/SrTiO3 nanostructures [158].
Vertical error bars are shown whenever reported in the respective reference.

islands can be retrieved in paper 3.

From figure 4.5, we see that the thin-film Tc can be higher or lower than the measured

bulk value, depending on the material. As mentioned in section 4.2.1, one possible factor

that contributes to this dichotomy is the confinement barrier U , which may be higher or

lower than the critical value U∗. Hence, a systematic estimation of the latter quantity for

different materials can help in identifying the best candidates for a Tc enhancement at the

nanometric scale. Oscillations of the measured pairing temperature as a function of film

thickness are observed in Sn, Pb and SrTiO3/Nb:SrTiO3/SrTiO3, with Tc exceeding T 3D
c in

the latter two cases, beyond experimental uncertainty. Continuous improvement on thin

film quality can hopefully provide new measurements to investigate quasi-2D confinement

of BCS superconductors. We consider specifically the dataset of reference [155] in section

VI of paper 3. The case of strontium titanate is particularly interesting for our analysis,

since doped SrTiO3 is a low-density Fermi liquid with a superconducting ground state
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already in the bulk, as we described in chapter 3. In particular, in section 3.3.1 we have

developed a minimal 2-band BCS model to describe superconductivity in bulk doped SrTiO3,

including the presence of band edges. Therefore, we can ask ourselves how Tc changes

when we confine strontium titanate in quasi-2D geometry. The calculation of Tc as a

function of doping in the confined configuration can shed new light on the relation between

the superconducting properties of bulk doped STO and of the LaAlO3/SrTiO3 interface

(LAO/STO hereafter). In the next section, we summarize the fundamental properties of

LAO/STO which concern our analysis, while the comparison between the bulk and the

interface Tc domes within a simple square well potential is presented in section 4.4.

4.3 The LAO/STO interface: a low-density quantum- con-

fined superconductor

Shape resonances in thin films are only one of the possible methods to modify the properties

of superconductors by controlling geometry and confinement with experimentally accessible

techniques. In fact, the search for superconductors with novel electronic properties has

benefited from recent advancements in material engineering: the design and fabrication

of epitaxial heterostructures led to the discovery of artificial superconducting systems,

with the interface between the band insulators LaAlO3 (LAO) and SrTiO3 (STO) being one

of the most known examples [159–161]. The interplay among charge, spin and orbital

degrees of freedom at this interface originates quantum confinement [125, 159, 162],
superconductivity [163,164], ferromagnetism [165,166], spin-orbit coupling [105], all

influencing each other to various degrees. From that date, the field of transition metal

oxide interfaces has been expanding in different directions: recent developments include

the search for topological states [167], spin-polarized electron gases [168] and multiferroic

coupling [169,170].

4.3.1 Charge accumulation

Conduction carriers of LAO/STO reside in a quasi-2D electron liquid (Q2DEL), generated

on the STO side of the interface [171] by charge accumulation in a potential well due

to quantum confinement. The Q2DEL is formed when LaO and TiO2 are the atomic

planes facing each other at the interface, and when the LAO layer thickness exceeds 3

unit cells [159]. The driving mechanism for the charge accumulation at the interface is

still a controversial subject, however the main proposed explanations can be divided into
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Figure 4.6: Schematic representation of the polar catastrophe scenario for charge accumulation
in the q2DEL at the LAO/STO interface. The top part of the figure shows the atomic structure
at the interface: LAO grows in a series of atomic planes (LaO) and (AlO2) carrying a formal +1
and −1 electronic charge, respectively, while STO grows as a set of non-polar planes (SrO) and
(TiO2). The interface band alignment is shown below, with the STO and LAO energy gaps of
3.2 eV and 5.6 eV respectively. The chemical potential µ is common between the two materials
in thermodynamic equilibrium. An electric potential (black line) grows with the number of
polar LAO monolayers, until the potential reaches the energy gap of STO (see exclamation
point) and Zener breakdown occurs, which causes the compensating migration of electrons
towards the q2DEL [175].

two categories: extrinsic scenarios which refer to the interface stoichiometry, and intrinsic

scenarios whereby electrons move to the interface because of the interface atomic structure

and the polar nature of LAO. According to the extrinsic picture, interface electrons could

be at least partly supplied by oxygen vacancies in STO [172] or by cationic intermixing

[173, 174]. An alternative, or complementary, intrinsic mechanism links the origin of

the carrier density to the polar nature of the LAO layer: along the [001] direction, this

material grows as a series of atomic planes (LaO) and (AlO2) carrying a formal +1 and

-1 electronic charge, respectively. On the other hand, STO grows as a set of non-polar

planes (SrO) and (TiO2). Such a structure is schematically illustrated in figure 4.6. The

interface band alignment is also shown, with the STO and LAO energy gaps of 3.2 eV and

5.6 eV respectively. The chemical potential µ is common between the two materials in

thermodynamic equilibrium.
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Figure 4.7: Schematic representation of the electrostatically-induced q2DEL at the LAO/STO
interface, resulting from the polar catastrophe scenario of figure 4.6. The band bending at the
interface forms a potential well for charged carriers, which is highlighted by a yellow circle.

This alternation of LAO polar planes induces a polar discontinuity and an electric

potential (black line in figure 4.6) that grows with the LAO layer thickness. When this

potential equals the energy gap of STO (see exclamation point in figure 4.6), a Zener

breakdown can occur, whereby electrons are transferred from the top of the valence

band of LAO to the interface conduction band of STO [171]. The predicted transferred

charge amounts to 1
2 electrons per unit cell, corresponding to a sheet carrier density

n2D = 3.3 1014 cm−2 [175]. This configuration is sketched in figure 4.7, where the

electrostatically-induced potential well hosting the Q2DEL is highlighted by a yellow circle.

The minimum value of 4 LAO unit cells for the occurrence of electron transfer has

been predicted by ab-initio calculations [176,177] and confirmed by transport experiments

[163, 178]. Further support for the role of the polar discontinuity has been gained by

alloying the LAO layer with STO, which results in a change of the critical LAO thickness

for interface conductivity [179]. Nevertheless, there are still problems associated with the

intrinsic scenario. Hall effect measures carrier densities that are one order of magnitude

lower than the predicted polar catastrophe value, possibly due to charge localization.

Moreover, the potential gradient inside the LAO layer and the corresponding hole band

arising from the electron transfer have not been seen by spectroscopic measurements
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[180–182]. Recent proposals invoke a combination of the extrinsic and intrinsic scenarios;

for recent reviews on the growth methods and the charge accumulation mechanisms

at the LAO/STO interface, see e.g. references [162, 175]. Regardless of the specific

mechanism underlying the formation of the interface Q2DEL, its presence on the STO

side highlights the role of quantum confinement on the STO band structure, which is

deeply connected to the electronic properties of LAO/STO. Indeed, it is also possible to

create Q2DELs in STO (001) single crystals by different means, all giving rise to similar

electronic transport phenomena: such techniques include bombardment of Ar+ ions [183],
electrolyte gating [184], hydrogen adsorption [185] or deposition of amorphous [186]
and nonperovskite oxides [187]. Furthermore, Q2DELs are known to be produced at other

types of interfaces involving a Mott insulator and STO, i.e. LaTiO3/STO (LTO/STO) [188]
and GdTiO3/STO (GTO/STO) [189] The LTO/STO heterostructure displays very similar

properties to those of LAO/STO; this supports the prominent role of confined STO in the

physics of these interfaces.

One key point for our analysis - see section 4.4 - is that in LAO/STO the Hall sheet

carrier density is of the order of n2D ≈ 1013 cm−2, which translates as a 3D carrier density

n3D =
n2D
L ≈ 1020 cm−2 if we employ the measured thickness L ≈ 10 nm of the Q2DEL

[125,162,190]. Since n3D is two orders of magnitude lower than the values in standard

metals - see e.g. Al in chapter 2 - we realize that LAO/STO is a low-density system, as it

is bulk doped STO - see section 3.3.1. Therefore, when analyzing superconductivity at

the interface, we have to take into account the presence of subband edges, in the way

described in chapter 3. This argument is further reinforced by the presence of interface

quantum confinement, which creates subbands and generates shape resonances. We review

the essential features of quantum confinement for LAO/STO in the following section.

4.3.2 Quantum confinement

The 2D nature of the Q2DEL, which indicates that carriers are indeed confined on the STO

side of the interface, is revealed by various experimental techniques: transport [163,164,

191], atomic force microscopy [190], infrared ellipsometry [192], X-ray photoelectron

spectroscopy [193], all infer an order of magnitude of 1÷ 10 nm for the spatial extension

of the gas in the direction perpendicular to the interface, depending on temperature. These

findings are in accordance with band structure calculations [162], aimed at investigating

the confinement spatial profile and the symmetry and carrier density of individual subbands.

As we have seen in figure 4.7, the Q2DEL is quantum-confined due to the interface electric

field: the band bending at the interface creates a quantum well of close-to-triangular shape.
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This spatial profile can be analyed either by ab initio calculations or model hamiltonians.

Ab initio methods reveal that the lowest-energy states at the Γ point, resulting from the

Ti 3d levels (see section 3.3.1) have dx y symmetry for the first few TiO2 planes close

to the interface, while farther from the interface the dominant state symmetry changes

to dxz /dyz states having higher energies and with eigenfunction tails extending further

into STO [194–196]. The dx y states have higher effective mass than dxz/dyz states in

the direction perpendicular to the interface, and they might be localized by disorder in

practice: this could explain the discrepancy between the polar catastrophe transferred

density and Hall measurements [162]. Doping-dependent band structure calculations

compared to polarized ARPES experiments have investigated the connection between the

Fermi surface shape and the measured carrier density [197]. However, at present ab initio

calculations still suffer from finite size effects due to the limited STO layer thickness used

in the simulations, which affects the resulting band structure. Furthermore, the strong

dependence of the STO dielectric constant with electric field and doping - see also section

3.3.1 - deeply affects the dielectric screening at the interface, in a way not quantitatively

reproduced by calculations [184,198]. Model hamiltonians allow to selectively study some

aspects of the confinement problem, such as the effect of an electric field on the STO band

structure without spin-orbit coupling and tetragonal distortion [177], the dependence of

the LAO/STO subband energies on the transferred carrier density [199], or the role of the

STO dielectric constant [200]. Nevertheless, the presence of Rashba-Dresselhaus spin-orbit

coupling at the interface [201–203] has yet to be included in the calculations and may

have non-negligible consequences for the resulting band structure.

All above considerations highlight the complexity of the LAO/STO band structure: on

the theoretical side, the relative contributions of many intertwined degrees of freedom

are not precisely known, while direct comparison of subband energies with experiments is

complicated by a still limited experimental resolution [162]. However, the electrostatic

nature of quantum confinement for the LAO/STO Q2DEL offers another experimental way

to investigate the relation between transferred carrier density and band structure: the value

of n2D can be tuned by diluting LAO with STO thereby changing the polar discontinuity

strength [179], by gating with an electric field on the STO side (back gating [184]) or on

LAO (top gating [204]), or combining polar interfaces and field-effect [164, 178]. The

mechanism at play can be summarized as follows: an external negative (positive) electric

field reduces (increases) the sheet carrier density [164], while simultaneously modifying

the spatial profile of confinement, which reacts to the presence of charged carriers in

a self-consistent way. This reciprocal feedback of confinement and density has inspired

Poisson-Schroedinger calculations of the interface confinement potential, which rely on
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Figure 4.8: (a) Schematic view of the assumed carrier density profile which results from the
the sum of the q2DEL mobile charges (ρ f ree

3D , in blue), and localized charges (ρloc
3D , in green).

The assumption of localized charges is made to explain the discrepancy between the predicted
electron transfer from polar catastrophe and the measured Hall carrier density [162]. (b)
Results of Poisson-Schroedinger simulation assuming a total transferred carrier density of 0.25
electrons per unit cell, of which 0.15 electrons per unit cell are trapped, i.e. not mobile. Green:
sub-bands with x y symmetry; Red: sub-bands with yz symmetry; Blue: sub-bands with xz
symmetry. (c) Confining potential (black) and 3D electron density (light blue) obtained from
the Poisson-Schroedinger simulation. From reference [162].

the effective mass and envelope function approximations [162]: given a sheet carrier

density n2D, the Schroedinger equation for eigenstates in the orthogonal direction to the

interface z, and the Poisson equation determining the local 3D density n3D(z), are solved

self-consistently to find the density n3D(z) and confinement UPS(z) profiles. Figure 4.8

reports one example of such calculations for the LAO/STO interface. Similar supercell

calculations have been performed for the STO surface electron liquid and compared to

ARPES experiments [123,205], revealing an analogous confinement physics.

In a broad perspective, quantum confinement at the LAO/STO interface may be regarded

as an instance of quasi-2D configuration, obtained by confining the bulk bands of STO

in a quantum well. From the above discussion, we know that electrons are confined

within a distance of the order of L ≈ 10 nm. Therefore, at first approximation, we may

consider the problem of confining STO into a square quantum well of thickness L, to draw

a connection between the band structures in the bulk and at the interface. This can help in

identifying similarities and differences between the latter two geometries, especially as far

as superconductivity is concerned: we can employ the minimal model for the bulk STO band

structure and BCS pairing interaction of section 3.3.1, and then apply quasi-2D confinement

as for shape resonances. This approach is developed in section 4.4. As we have discussed

in this section, the real confinement profile is not square but rather close-to-triangular, and

170



4.3 The LAO/STO interface: a low-density quantum- confined superconductor

the accumulated charge modifies the quantum well shape self-consistently. Therefore, the

effective quasi-2D band structure of section 4.4 is only a first approximation. Utilizing

a triangular or self-consistent confinement potential could provide a better playground

to investigate the couplings among realistic LAO/STO subbands. Nevertheless, if the

physics at play is the one of superconducting shape resonances in a thickness L ≈ 10 nm,

we do not expect qualitative changes for the doping evolution of Tc with respect to the

square well solution. A quantitative comparison between shape resonances obtained in

different confinement geometries could demonstrate this conjecture. As in bulk doped

STO, superconductivity is indeed observed in the gate-tunable LAO/STO Q2DEL. The

following section summarizes the essential aspects of this phenomenon and complements

the discussion in section 4.4.

4.3.3 Superconductivity

The Q2DEL at the LAO/STO interface shows a superconducting ground state [163] with

a maximum critical temperature Tc,max ≈ 350 mK, comparable to the one of bulk doped

STO. Field effect allows one to tune the interface superconductivity, changing the sheet

carrier density with gate voltage while simultaneously modifying the confinement potential

as described in section 4.3.2. This way, one traces a dome-shaped phase diagram of

Tc as a function of n2D [164], reminiscent of the bulk STO domes, while the Q2DEL

superconducting thickness remains of the order of L ≈ 10÷ 30 nm throughout the phase

diagram [125,175]. The estimation of this superconducting thickness is extracted from

the angular dependence of the critical field [125, 175]. With magnetic field aligned

perpendicularly to the interface, one extrapolates the zero-temperature coherence length

ξ0 from µ0 limT→0 Hc⊥ =
Φ0

2π(ξ0)2
, where µ0 is the vacuum magnetic permeability and Φ0 =

h
2e

is the flux quantum. This coherence length is renormalized into the Pearl length [206] by

the superconducting thickness L in perpendicular-field configuration, provided that ξ0� L.

In parallel field configuration, this renormalization does not happen and this allows one to

extract L from µ0 limT→0 Hc‖ =
p

3Φ0
πξ0 L . The experimental in-plane coherence length remains

larger than the superconducting thickness at all dopings [125,162], which is consistent

with the 2D character of the superconducting q2DEL.

Transforming the sheet carrier density in a 3D value by n3D =
n2D
L [175], we can directly

superimpose the doping phase diagrams in the bulk and at the interface, as shown in

figure 4.9: the bulk Tc data (blue squares) corresponds to the transport measurements of

reference [94], that we have already utilized in section 3.3.1, while the interface Tc (red

circles) employs the dataset By A. Fête et al. [175], also utilized in section 4.4.
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Figure 4.9: Comparison between the experimental Tc domes of doped bulk STO [94] (blue
squares) and LAO/STO [175] (red circles), as a function of 3D carrier density n3D. For LAO/STO,
the latter has been obtained by n3D =

n2D
L , where n2D is the sheet carrier density measured

by Hall effect [125] and L is the thickness of the superconducting q2DEL extracted from
measurements of the angular dependence of the interface critical field [125].

We see that, while the bulk and interface maximum Tc values are similar, the interface

dome spans a limited n3D region of doping compared to the bulk domes. Therefore, the

LAO/STO dome is not just a copy of the 3D dome. This discrepancy has suggested that the

superconductivity of the LAO/STO interface is different from that of bulk STO, although the

microscopic nature of either systems is yet to be elucidated [125,207]. Many speculations

for the origin of quasi-2D superconductivity have been proposed. The suppression of Tc on

the underdoped side has been linked with superconducting phase fluctuations [87,97,208]
and the temperature-dependent resistivity was analyzed within BKT theory [164], or a

crossover between Ginzburg-Landau fluctuations and BKT regime [209]. The enhancement

of Coulomb repulsion due to disorder also affects the resistive transition [152–154,210].
Another proposed mechanism for superconductivity involves resonances due to multi-

subband effects [211]. In the underdoped regime, a pseudogap-like order parameter

was observed [207]. The strong interface electric field, leading to Rashba-Dresselhaus

spin-orbit coupling, could influence Tc [212,213] and produce singlet-triplet mixing [214].
Topology can help in distinguishing the symmetry of the order parameter and the associated

pairing mechanism [215]; these properties may depend on the crystallographic orientation

of the interface [216]. Quantum confinement and Rashba coupling could also produce

electronic phase separation at the interface, with percolating paths among superconducting
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puddles [217,218]. The interface dome shape has also been ascribed to onsite Hubbard-

type correlations between electrons. [219]. In addition, electron-phonon coupling at the

interface generates polarons similarly to bulk STO: polaronic effects have been observed in

many STO-based system, comprising the bulk [13,110,112] the surface Q2DEL [123], and

LAO/STO [124]. Hence, such polaronic effects may contribute in a similar way to Cooper

pairing in bulk and quantum-confined STO.

Aside from the open problem of the microscopic origin of pairing in STO and LAO/STO,

the comparison of the Tc domes in figure 4.9 calls for a detailed comparison of supercon-

ducting STO in 3D and quasi-2D, in order to assess whether the differences between the

bulk and interface domes mostly stem from quantum confinement. Taking the minimal

two-band model for STO as described in section 3.3.1, confining in a square quantum

well of width L as mentioned in section 4.3.2, and calculating the interface Tc as a func-

tion of n2D and L, we can explore the possibility that the interface dome results from a

shape resonance of quantum-confined STO. Employing the experimental values for n2D

and L, in section 4.4 we find a quasi-2D Tc dome, having maximum height of the order of

300÷ 400 mK [175], for any value of the confinement barrier 10 meV < U < +∞. This

supports the idea that quantum confinement provides the essential link between bulk and

interface superconductivity.

4.4 Surfing the shape resonance at the LAO/STO inter-

face

In this section, we propose an interpretation of the dome in LAO/STO as the result of a shape

resonance triggered by the confinement of carriers at the STO surface. We support this

scenario by a microscopic calculation reproducing both STO and LAO/STO superconducting

domes with the same pairing model, taking into account measurements of the 2DEL

thickness and confinement effects for the latter 1. According to the new interpretation, the

differences between the two domes confirm the commonality of the pairing mechanism for

the 2D and 3D cases. LAO/STO offers new opportunities to study shape resonances, thanks

to a continuously tunable carrier density, in contrast to metallic thin films whose thickness

can only be changed in increments of one unit cell. Our modeling furthermore clarifies the

roles of the STO light and heavy bands in the LAO/STO superconductivity, showing that

Tc is controlled almost exclusively by the heavy one. We first build a minimal model able

1This section collects the results in the preprint arXiv:1611.07763, to appear in revised form in Phys. Rev.
B.
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to capture the density dependence of Tc in bulk STO with a small number of parameters.

We then confine this model along one dimension, set the carrier density to the equivalent

3D density for the 2DEL, and obtain a prediction for Tc in the confined geometry. The

conversion from the measured 2D density of the 2DEL to a 3D density uses the measured

2DEL superconducting thickness. We will first describe the model we use for bulk STO,

next describe recent experimental data on the 2DEL thickness [175], and then present the

theoretical results for the 2DEL dome. Focusing on the essential ingredients, we opt for two

parabolic bands and a BCS pairing interaction to describe STO. The low-energy sector of

the STO conduction band involves three bands with mostly Ti 3d character, split by crystal

field and spin-orbit interaction [13,220]. We discard one band lying 30 meV above the

other two and not occupied at the densities considered in this study. The bare masses of the

remaining two bands and their splitting at the Γ point are chosen such that the 2D density

of states evaluated at kz = 0 with the tight-binding and parabolic dispersions agree at best.

We then renormalize both band masses by a factor two representing the effect of electron-

phonon coupling and the emergence of large polarons [102, 128, 133]. The resulting

band structure is shown in Fig. 4.10(a), where the parameters are indicated as well. The

pairing mechanism in STO is still debated [115,135]. Standard phonon-mediated pairing

is questioned because the low density of STO puts it in the anti-adiabatic regime EF < ħhωD,

where EF and ħhωD are the Fermi and Debye energies, respectively. Leaving alone the origin

of pairing, it is believed that STO is amenable to a BCS description with low coupling

constants of the order of 0.1–0.3 [13,220]. We adopt a local BCS interaction of strength V

with a dynamical cutoff ħhωD = 44 meV, consistent with the Debye temperature of STO [95].
The interaction is the same in both bands and we neglect inter-band coupling for simplicity.

In this model, for V independent of density n, the critical temperature can only increase

with increasing n [221,222], in contradiction with the observations [94,126,223,224]. To

explain the dome, V must drop with increasing n [94]. We fix the n-dependent interaction

such that the model reproduces the Tc(n) data of Ref. [94]. This dataset is preferred because

it covers a broad range of densities, but this choice does not affect any of our conclusions.

The resulting interaction decreases monotonically with increasing n as shown in the inset

of Fig. 4.10(b). We interpolate this dependency to get a continuous parametrization V (n).
The main panel of Fig. 4.10(b) displays the data of Ref. [94] on top of the continuous

Tc(n) curve resulting from that interpolation. The calculation takes full account of the

energy-dependent DOS, including the fact that EF < ħhωD, and uses the self-consistent

chemical potential calculated at Tc [222]. With this parametrization the heavy band starts

to be populated before the first maximum of the double dome, as shown by quantum

oscillations [94]. A glimpse at the band structure and the value of ħhωD reveals that the
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Figure 4.10: Weak-coupling model for the density-dependent superconductivity of SrTiO3.
(a) Parabolic approximation for the bottom of the conduction band; ∆E is the band splitting at
k = 0. (b) Data of Ref. [94] (squares with error bars) and calculated Tc(n) curve (solid line).
(Inset) Dimensionless interaction strength [222] Ṽ = 2V [me/(2πħh2)]3/2

p

ħhωD reproducing the
experimental Tc (circles) and interpolation (solid line). The colored arrows indicate remarkable
values of Tc in (b) and the corresponding values of the chemical potential in (a). The thick
lines in (b) mark the range of densities visited at the LAO/STO interface.

heavy band contributes to the pairing instability even when it is not populated (see arrows

in Fig. 4.10) 2. Our hypothesis is that the pairing strength at the LAO/STO interface follows

the bulk interaction V (n). The carrier density varies across the 2DEL following the profile

of the confinement potential, such that the pairing strength would be, strictly speaking,

a function of position. As the coherence length is large (50–100 nm) compared with the

typical confinement length (≈ 10 nm), which itself is only marginally larger than the

Fermi wavelength [225], we use an average V associated with the average carrier density

n = n2D/L. The density integrated along the confinement direction, n2D =
∫∞
−∞ dz n(z),

has been determined by measuring the Hall sheet conductance [164]. For an estimation

of the effective 2DEL thickness L [175], we resort to the analysis of the superconducting

transitions measured in magnetic fields [191], applied perpendicular and parallel to the

interface 3.

Figure 4.11 displays the thicknesses and critical temperatures measured as a function

of the Hall density n2D [175]. The dependence Tc(n2D) draws a dome with maximum at

365 mK. The measured thickness is close to 10 nm except at densities above 2.5×1013 cm−2

2In fact, the contribution of the heavy band is dominant: if the interaction is switched off in the light band
the calculated Tc changes by less than a percent, while if the interaction in the heavy band is reduced by
20%, Tc does not exceed 80 mK at all densities.

3The angular dependence of the critical field allows the coherence length and the effective thickness of the
superconducting 2DEL to be determined. For the samples of Ref. [175], the in-plane coherence length remains
larger than the superconducting thickness for all dopings [125,162], consistently with 2D superconductivity.
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Figure 4.11: 2DEL critical temperature (squares) and thickness (crossed squares, right scale)
measured at the LAO/STO interface as a function of sheet carrier density [175]. The solid lines
show the calculated Tc obtained by confining the model of Fig. 4.10 in a square potential well
of width L and various depths U as indicated. A continuous interpolation of the thickness as
a function of density (dotted) was used. For each couple (n2D, L), the pairing interaction is
read from the inset of Fig. 4.10(b) at the density n = n2D/L. The thick line shows the 3D Tc at
density n.

where it increases steadily. Fig. 4.10(b) shows that the field-effect doping at the interface

explores a relatively narrow density range (thick line) compared with the chemical doping.

Knowing the equivalent 3D density n = n2D/L for each measured n2D, we can determine

the pairing strength V (n) in the 2DEL. We model the confinement by taking the band

structure of Fig. 4.10(a) into a square potential well of width L and depth U , following

Ref. [226]. This leads to the formation of 2D subbands at energies that depend on L and U .

All subbands are coupled by the pairing interaction, which furthermore gets renormalized

by the confinement and becomes a function of the band and subband indices via the bound

wave functions. The potential well at the LAO/STO interface is certainly not square, but its

precise shape is unknown. The formation of 2D bands, interpreted as confinement-induced

subbands, is observed experimentally [162,227,228], but their occupations and energies

are uncertain, preventing us from reconstructing a more realistic potential. We do not

expect qualitative changes in our conclusions on going from a square to a triangular or

self-consistent confinement potential. The square well moreover has the advantage that

the pairing matrix elements are known analytically [226]. The only unknown parameter
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of our model is therefore U , whose order of magnitude is estimated from first-principles

calculations to be a few tens of meV [177]. Figure 4.11 compares Tc calculated in the

square well for various U with the measured Tc of the 2DEL. The calculation yields critical

temperatures similar to those measured and a dome-shaped density dependence for all

U . This is our main result: localizing STO carriers at a density ∼1019 cm−3 into a ∼10 nm

thick layer leads, owing to quantum confinement effects, to a dome in Tc as a function

of sheet carrier density between 1.5 and 3× 1013 cm−2, with a maximum similar to the

maximum Tc of bulk STO. As L becomes large, for n2D > 2.5×1013 cm−2, the calculated Tc

approaches the 3D value (green line) with rapid oscillations for all U . The measured Tc is

also very close to the 3D value in this regime, where Tc drops because n actually decreases

with increasing n2D. In the range where L ≈ 10 nm, the 3D Tc raises monotonically like

in Fig. 4.10, and one notices a density-dependent critical U , above which the Tc at the

interface is higher than in the bulk [226].

We now refine our model to achieve semi-quantitative agreement with the experiment.

First, remembering that we mimic a quasi-triangular well by a square one, and also because

a systematic error in the experimental determination of L cannot be excluded, we replace

the measured 2DEL thickness Lexp by L = αLexp when comparing model and experiment.

Second, an increase of the splitting ∆E is expected at the interface, since both strain

and electric field contribute directly to the 4-fold crystal field. A modified screening

also modifies the Hartree shifts of the bands [219]. We adopt the simple dependence

∆E =∆ESTO(1+λ/L) with the fit parameter λ, which ensures that the bulk STO splitting

is recovered for a thick well. Finally, the confinement potential U is in principle linked with

n2D and L via Poisson’s equation. The simplest relation results from dimensional analysis

as U = e2n2D L/(ε0ε). The model parameters are adjusted to get the best fit displayed in

Fig. 4.12(b), with α = 0.65, λ = 30 nm, and ε = 630. The result α < 1 is expected, because

a square well of width Lexp hosts an electron gas thicker than a triangular well of the

same width. Moreover the effective thickness αLexp ≈ 7 nm matches the value measured

by AFM [190]. Figure 4.12(a) shows the subband structure with a splitting five times

larger than the bulk splitting at a density 2× 1013 cm−2. We find that two light and two

heavy subbands are partly occupied. Photoemission measurements have reported two light

subbands lying below the lowest heavy band [197]; our model reproduces this configuration

at densities larger than 2.8 × 1013 cm−2. The Hall-coefficient nonlinearity observed in

Ref. [229] at 1.6 × 1013 cm−2 corresponds in our model to entering the second heavy

subband. Finally, the fitted dielectric constant is consistent with the high polarizability

of STO: it agrees well with the value ε = 600 obtained from the low-temperature field-

dependent dielectric function of STO, given approximately by ε= 1+χ0/(1+ E/E0) with
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Figure 4.12: (a) Subband structure in a quantum well of width 6.8 nm and depth 39 meV for a
band splitting ∆E = 12.9 meV, corresponding to n2D = 2× 1013 cm−2. The bound light (heavy)
subbands with energies below U (U+∆E) are shown on the left (right). The chemical potential
µ= 20.5 meV is also indicated. (b) Measured critical temperature (squares) and calculated
Tc (solid line) for a band splitting ∆ESTO(1+λ/αLexp) and a potential U = e2n2DαLexp/(ε0ε)
with α = 0.65, λ = 30 nm, and ε = 630. The dashed line shows Tc calculated with the same α,
λ= 12 nm, and ε= 377.

χ0 = 24000 and E0 = 110 kV/m [225,230], if we substitute for E the order of magnitude

of the interface electric field, e.g., E = U/(eL) = 4.3 mV/nm at n2D = 1.5× 1013 cm−2.

Although we have until now compared the critical temperature with the mean-field Tc

from the calculation, in Fig. 4.12(b) we show that the model is not inconsistent with the

pseudogap scenario suggested by tunneling experiments [207], in which the mean-field Tc

continues to increase as the density is reduced, while the critical temperature is suppressed

by 2D fluctuations.

In a thin-film geometry, the critical temperature of a weak-coupling BCS superconductor

is a continuous oscillating function of the film thickness L and electron density n [226].
Pronounced oscillations due to the rapid change in L are visible in Figs. 4.11 and 4.12(b),

but not resolved in the experiment. Note that the detailed oscillating behavior is very

sensitive to the approximations made for the shape of the potential well. Using our square-

well model, we plot in Fig. 4.13 the evolution of Tc as a function of both L and n2D = nL

in the domain of thicknesses and densities relevant for the 2DEL. The experimental data

are shown for comparison at the rescaled thickness αLexp. The Tc landscape in the (L, n2D)
plane is rich and displays three types of structures. To describe the features we start at

5 nm thickness, and follow the doping from zero upwards. At the lowest doping Tc is

exponentially small and reaches a first low-Tc step near 8×1012 cm−2, before raising steeply

to ∼400 mK for doping of the order of 1013 cm−2. At this thickness and for the doping
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range displayed in the figure, superconductivity is entirely in the two heavy subbands

(the two lowest red curves in Fig. 4.12). The low-Tc stage corresponds to the first heavy

subband, with a Tc suppressed by a shallow confinement potential (see Fig. 4.11 for the

effect of U on Tc) [226]. For fixed 2D carrier density, the number of occupied subbands

varies with the layer thickness as (n2D L2)1/3. Since Tc passes through a maximum when

a new heavy subband becomes occupied, the effect of increasing the thickness results

in a succession of Tc maxima; the amplitude of these oscillations decays rapidly with

increasing thickness since the layer becomes more and more like a 3D bulk sample with

carrier density approaching zero according to n= n2D/L. The location of maxima is given

approximately by n2D ≈ π
12 p(p+1)(4p+5)/L2 with integer p. The scars running at a small

angle with respect to the first maximum are slope changes of Tc occurring when a new

heavy subband gets bound in the well as L increases, leading to a slight Tc enhancement.

The very faint lines almost parallel to the density axis indicate that a new heavy subband

enters the pairing window at µ+ ħhωD. These features reflect that in our calculation we

use a BCS-type model interaction with a sharp cutoff at ħhωD. Finally, µ crossing the third

light subband gives another faint structure crossing the previous ones and ending at zero

density near L = 20 nm; other structures associated with the light band are too weak to

be visible. Moving up in density for L = 20 nm, Tc becomes distinguishable from zero for

n2D = 3.6×1012 cm−2, and rises in a succession of steps, each corresponding to a new heavy

subband becoming occupied. In the limit of infinite thickness the 3D situation depicted in

Fig. 4.10 is ultimately obtained. The figure illustrates that many combinations of thickness

and doping parameters can result in a dome-like doping or thickness dependence of Tc,

however the maximal value of Tc itself is never strongly different from T max
c observed in

optimally doped bulk STO. We believe that this theoretical observation provides the main

clue as to why Tc is so similar in bulk and interface superconductivity: The pairing potential

is basically the same in all cases. Tuning of the density of states by 2D confinement allows

the effective pairing interaction to be varied to a certain extent, but its main effect is to

define the subband structure. Optimal Tc is found for small densities, which holds true in

bulk 3D and quasi-2D alike, thus leading to very similar values of the optimal Tc in 2D and

3D systems.

In summary, we have explored the hypothesis that the pairing potential responsible

for superconductivity is the same in 2D interfaces and 3D bulk SrTiO3. We showed that

the superconducting dome in the 2D material corresponds to a much narrower effective

doping range than in the 3D material, and the optimal Tc in this case coincides with a

shape resonance due to the onset of occupation of one of the subbands created by the

3D confining potential. We have shown that the optimal Tc should be very similar in the
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Figure 4.13: Critical temperature as a function of thickness L and sheet carrier density n2D.
The spheres show the experimental data of Fig. 4.11 where the thickness has been reduced
by a factor α = 0.65. The shaded surface shows the Tc calculated with a band splitting
∆ESTO(1+ λ/L) in a square well of width L and depth U = e2n2D L/(ε0ε), with λ = 30 nm,
and ε= 630.

2D and 3D cases. Potential for optimization of Tc is offered by tuning the confinement

potential U , which in principle allows Tc to be increased up to a factor 3, and by controlled

tuning of the thickness parameter L on the 1 nm scale.

4.5 Conclusions and perspectives

Quantum confinement in quasi-2D geometry produces quantized subbands, thus mod-

ifying the density of states and the pairing interaction of a BCS superconductor. The

chemical potential, and the associated BCS pairing window, move as a function of density

as well as of the confinement parameters, like the width L and barrier height U for a
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rectangular well. Different subbands enter into the pairing window and contribute to

superconductivity for different density and confinement parameters: this influences the

pairing temperature. Considering the cutoff of the pairing window near a subband edge

and the finite-temperature chemical potential is necessary to obtain the exact solution for

Tc in the quasi-2D configuration. In a rectangular well, the pairing temperature shows

continuous shape resonances as a function of well width L, and the quasi-2D Tc can be

either enhanced or reduced with respect to the bulk value depending on the barrier height

U . This rectangular-well geometry provides a simple model for superconducting thin films

of thickness L, and it allows to evaluate at mean field how Tc changes in the thin-film ge-

ometry with respect to the bulk. The latter evaluation method finds a natural application in

the LAO/STO interface, which represents a synthesis of low-density and quantum-confined

superconducting system. We interpret the doping evolution of Tc at the interface as a shape

resonance due to heavy subbands, created by the confining potential acting on bulk STO.

This provides an explanation for the similar value of the optimal Tc in the quasi-2D and 3D

cases, and highlights the connections between superconductivity in doped bulk STO and at

the LAO/STO interface. Further developments may include a systematic analysis of Tc for

different quasi-2D geometries, apart for the rectangular well, to compare the changes in Tc

with respect to the bulk value for different confinement models of interest for practical

applications. Also, the exact solution for the quasi-2D zero-temperature gap would allow to

study the gap shape resonances, and compare them to the ones in the pairing temperature.
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The confinement of a superconductor in a thin film changes its Fermi-level density of states and is expected
to change its critical temperature Tc. Previous calculations have reported large discontinuities of Tc when the
chemical potential coincides with a subband edge. By solving the BCS gap equation exactly, we show that such
discontinuities are artifacts and that Tc is a continuous function of the film thickness. We also find that Tc is
reduced in thin films compared with the bulk if the confinement potential is lower than a critical value, while for
stronger confinement Tc increases with decreasing film thickness, reaches a maximum, and eventually drops to
zero. Our numerical results are supported by several exact solutions. We finally interpret experimental data for
ultrathin lead thin films in terms of a thickness-dependent effective mass.
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I. INTRODUCTION

The quantum confinement of superconductors has histor-
ically attracted considerable interest, as a plausible route to
increase the critical temperature through the enhancement
of the Fermi-level density of states in reduced dimensions.
Among the factors that influence the critical properties,
dimensionality and geometry are appealing, being easier to
manipulate than the microscopic parameters of the materials.
New fascinating phenomena have been predicted to occur in
confined geometries: for instance, Thompson and Blatt [1],
followed by many others until recently [2–10], predicted large
oscillations of the critical temperature Tc in superconducting
films, as a function of the film thickness. The oscillations
known as “shape resonances” arise when the Fermi level
crosses the edge of one of the confinement-induced subbands.
Early experimental studies with disordered thin films revealed
significant enhancements of Tc in Al and Ga, but little or no
enhancement in Sn, In, and Pb [11–14]. Measurements made
on epitaxial films and islands showed instead no noticeable
change of Tc in Al with respect to the bulk value [15], and a
decrease in Bi, In, and Pb [16–19], as well as in NbN [20].
Oscillations of Tc as a function of film thickness were seen in
Sn [21], and more recently in Pb [22–25]. Last but not least,
a spectacular enhancement of Tc was recently observed in a
monolayer of FeSe grown on SrTiO3 [26].

A common trend of these experiments is that oscillations
of Tc as a function of film thickness are either below
the level of noise or, when they are seen, much smaller
than the oscillations typically reported in theoretical studies.
The calculations published so far for ideal thin films show
discontinuous jumps of Tc with relative amplitudes which can
be as large as 100% at low thickness, while the strongest
oscillations seen experimentally hardly exceed 15% [21–23].
Such theoretical results are obtained by solving the BCS gap
equation approximately, with a thickness-dependent Fermi-
level density of states (DOS), which has discontinuities at
the edge of each subband. These DOS discontinuities are

*Author to whom correspondence should be addressed: christophe.
berthod@unige.ch

responsible for the large jumps in Tc. Extrinsic effects such
as an interaction with the substrate have been invoked to
explain the discrepancy between theory and experiment [9]. In
a previous paper (denoted part I hereafter) [27], we have shown
that the BCS gap equation predicts a continuous evolution of
Tc when the Fermi energy approaches a band minimum. In
view of this, discontinuities in Tc are an artifact of replacing
the energy-dependent DOS by a DOS which is constant
over the full dynamical range of the pairing interaction. This
approximation breaks down when the interaction is cut by the
band edge. In the BCS theory, the actual dependence of Tc on
film thickness must therefore be continuous, and the previously
reported large oscillations must be replaced by a smoother
evolution. In the present paper, we unveil the precise shape of
the Tc(L) curve predicted by the BCS gap equation for ideal
thin films of thickness L, and we interpret the numerical results
with the help of exact asymptotic formulas derived in part I.

Beside the oscillations, the overall trend of Tc with
reducing thickness is of particular interest. Thompson and
Blatt [1] found an increase, but their model assumed hard-wall
boundary conditions for the wave functions. Yu et al. [3]
noticed that the leakage of the wave functions outside the
film reduces the pairing strength within the film, and they
proposed a phenomenological model to account for this effect,
which can produce a decrease of Tc with decreasing L.
This phenomenological description may be improved and
challenged by calculating the pairing matrix elements with
the exact wave functions of a finite potential well. This
program was followed by Bianconi and coworkers in a series of
papers [28,29] where they considered a periodic arrangement
describing a multilayer. Here we consider a single well as
a model for a thin film. We thus find two regimes for the
confinement potential. Below a certain critical potential, Tc

goes down with reducing L while if the confinement is stronger
than the critical value, Tc increases until it reaches a maximum
at a parameter-dependent thickness, before dropping rapidly
to zero. The existence of a critical confinement potential—
below which no enhancement of the critical temperature
is to be expected—may help to understand the contrasting
experimental results obtained with different thin films.

It was recently found that ultrathin Pb films deposited on
Si(111) have a Tc lower than bulk Pb, with a nonmonotonic
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dependence on the film thickness [25]. The authors tentatively
ascribed this to an interaction with the substrate. Based on
our calculations, we propose a semiquantitative interpretation
in terms of an effective mass which increases significantly
in ultrathin films. Another system of interest is the two-
dimensional electron gas at the LaAlO3/SrTiO3 interface,
which enters a superconducting phase at a density-dependent
temperature slightly lower than the Tc of bulk SrTiO3 [30].
Whether or not this interface superconductivity has the same
origin as in bulk SrTiO3, and whether it can be understood by
the confinement of SrTiO3 carriers, remain important open
issues [31–33]. The investigation of this case requires to
consider a multiband system. We defer it to an upcoming study
and focus here on the one-band problem.

In Sec. II, we recall the basic BCS equations for Tc and we
give the modified pairing matrix elements in a square potential
well. Sections III and IV deal with the Tc(L) curve in infinite
and finite potential wells, respectively. A discussion of our
main results is proposed in Sec. V. The application to Pb thin
films is presented in Sec. VI. Conclusions and perspectives are
given in Sec. VII.

II. MODEL AND BASIC EQUATIONS

A. Critical temperature of a one-parabolic band BCS
superconductor in a quasi-two dimensional geometry

We consider a one-band three-dimensional (3D) BCS super-
conductor with parabolic dispersion, and a pairing interaction
−V effective in an energy range ±�ωD around the chemical
potential μ. The superconductor is confined to a thin film of
thickness L, leading to quantization of the energy levels in the
direction z perpendicular to the film. This system is equivalent
to a two-dimensional (2D) multiband system in which all
bands are coupled by the pairing interaction. The bands of
the 2D system are the subbands of the 3D one associated
with the discrete energy levels in the confinement direction,
and the intersubband couplings reflect the pairing in 3D
between momenta kz and −kz. In the quasi-2D film geometry,
the two coupled equations giving Tc and μ as a function of the
density n are (see part I)

0 = det[1 − �(μ̃,T̃c)], (1a)

ñ = 21/3

L̃

mb

m
T̃c

∑
q

ln
(
1 + e

μ̃−Ẽq

T̃c

)
. (1b)

As in part I, tildes indicate dimensionless quantities defined
by measuring energies in units of �ωD and densities in units of
2(mωD/2π�)3/2, where m is a reference mass, while mb is the
band mass of the material. Thus μ̃ = μ/�ωD, T̃c = kBTc/�ωD,
ñ = n/[2(mωD/2π�)3/2], and L̃ = L × 21/3(mωD/2π�)1/2.
The energies Eq are the discrete levels in the confinement
potential, corresponding to the minima of the 2D subbands.
Equation (1b) differs by a factor 21/3/L̃ from Eq. (9b) of part
I in dimension d = 2; this can be understood as follows. The
energy levels of the quasi-2D system, Eqk = Eq + �2k2/2mb,
allow one to express the density of states (DOS) per unit vol-
ume and per spin as N0(E) = (1/L)

∑
q

∫
d2k/(2π )2δ(E −

Eq − �2k2/2mb) = (1/L)
∑

q N2D
0 (E − Eq), where N2D

0 (E)
is the DOS of a 2D electron gas measured from its band

minimum. The factor 1/L, which becomes 21/3/L̃ once the
equation has been turned to dimensionless form, ensures that
the density in Eq. (1b) is a 3D density. It is easy to check that
Eq. (1b) goes to the correct 3D limit at large L.

�(μ̃,T̃c) is a matrix in the space of subbands with matrix
elements

�qp(μ̃,T̃c) = λ̄qpψ2(1 + μ̃ − Ẽp,T̃c), (2)

ψ2(a,b) = θ (a)
∫ 1

1−min(a,2)

dx

2x
tanh

(
x

2b

)
. (3)

As the function ψ2(a,b) vanishes for negative a, the size of
the matrix � is set by the condition Ẽp < μ̃ + 1, meaning
that subbands at energies higher than �ωD above the chemical
potential do not contribute to Tc. The determinant in Eq. (1a)
accounts for the fact that the superconducting gap parameters
take different values in all the coupled subbands. We ignore the
spatial dependence of the gap parameters [34], which should
be irrelevant since all gaps approach zero at Tc. The coupling
constants λ̄qp characterize the intra- and intersubband pairing
interactions. They depend on the 3D Fermi-surface interaction
V , as well as on the subband wave functions uq(z) in the
confinement direction. The pairing interaction in the quasi-2D
geometry is [1]

Vqp = V

∫ ∞

−∞
dz |uq(z)up(z)|2.

On the other hand, the coupling constants λ̄ in 3D and λ̄qp in
2D are related to the interaction parameters via (see part I):

λ̄ = 2πV

(
mb

2π2�2

) 3
2

(�ωD)
1
2 , λ̄qp = Vqp

mb

2π�2
.

Moving on to dimensionless variables for the wave functions,
we are led to the following relation between the coupling
constants in 3D and in quasi-2D:

λ̄qp = λ̄

√
π

22/3

(
m

mb

) 1
2
∫ ∞

−∞
dz̃ |ũq(z̃)ũp(z̃)|2. (4)

Once the shape of the confinement potential is chosen, and
the resulting eigenvalues Eq and eigenstates uq(z) are known,
Eqs. (1) to (4) completely determine the value of Tc as
a function of n, λ̄, and L. We shall solve this problem
numerically without further approximation, and also take
advantage of some analytical results derived in part I.

B. Coupling constants for bound states in a square potential

For a square confinement potential with hard bound-
aries, the energy levels and the wave functions are Eq =
(�2/2mb)(qπ/L)2 and uq(z) = (2/L)1/2 sin(qπz/L), respec-
tively, with q a positive integer. The correction to the pairing
matrix element follows [1]:

Oqp ≡
∫ ∞

−∞
dz |uq(z)up(z)|2 = 1

L

(
1 + 1

2
δqp

)
. (5)

Using the model (5), Thompson and Blatt found a general
increase of the critical temperature with decreasing L, and
discontinuous jumps of Tc at the subband edges [1]. Similar
results were obtained using von Neumann rather than Dirichlet
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boundary conditions for the wave functions [2]. These calcula-
tions neglected self-consistency in the chemical potential and,
more importantly, the suppression of Tc discussed in part I
when the chemical potential lies less than �ωD above one of
the subband minima. We shall see in the next section that taking
this suppression into account removes the discontinuities,
but preserves the overall increase of Tc in quasi-2D with
respect to 3D. The usefulness of the hard-wall model (5) for
describing real systems was questioned early on [35], as it
violates charge-neutrality conditions at the surface [36]. In an
attempt to overcome this difficulty, Yu et al. [3] considered
hard walls shifted beyond the physical film surfaces, and
found a correction factor (1 − b/L) to Eq. (5), with b a length
measuring the extension of the wave functions outside the film.
By tuning the value of b, the Tc(L) curve can be changed from
an increasing to a decreasing function of decreasing L [3,5].

In our calculations the charge neutrality is guaranteed
by the self-consistent adjustment of the chemical potential.
Nevertheless, for a more realistic confinement model, it is
useful to consider a finite-depth potential well. This allows
one to put the approach of Ref. [3] on a firmer ground, giving
a meaning to the phenomenological parameter b. We shall also
find that the correction factors Oqp have a richer dependence
on L and on the subband indices than the simple model (5)
and the extension of Yu et al.

For a square well of depth U , the eigenvalues for the
even and odd bound states are determined, as is well known,
by solving the transcendental equations tan(kqL/2) = sq and
tan(kqL/2) = −1/sq , respectively, where k2

q = 2mbEq/�2

and s2
q = U/Eq − 1. The wave functions for bound states

are known as well, and will not be reproduced here. From
these wave functions, we calculate the correction to the pairing
matrix element and find for the diagonal terms

Oqq = 1

L + 2
kq sq

(
3

2
− Eq

U

1

2 + kqsqL

)
. (6a)

This expression reproduces the result 3/(2L) of Eq. (5) at
large U and gives 3/(2L) × (1 − b/L) in the limits of large
L and Eq � U , as in the approach of Ref. [3], with b =
2/(2mbU/�2)1/2. For the off-diagonal terms, we find

Oqp = 1(
L + 2

kq sq

)(
L + 2

kpsp

)
(

L + 2
Eq

U
kpsp − Ep

U
kqsq

k2
q − k2

p

)
.

(6b)

This again reproduces the 1/L of Eq. (5) and approaches
1/L × (1 − b/L) with the same b as above in the correspond-
ing limits. Except in those particular limits, however, one sees
that the coupling constants (4) depend on the subband indices
for a finite-depth square well.

III. INFINITE QUANTUM WELL

A. Continuity of Tc(L) curve and suppression of Tc oscillations
with respect to Thompson-Blatt model

In a potential well of width L and infinite depth, the sub-
bands have energies proportional to 1/L2. The contribution of
each subband to the three-dimensional density is proportional
to 1/L. As L is increased, all subbands move down in energy

like 1/L2: in order to keep the three-dimensional density fixed,
the chemical potential must follow with a slower decrease
proportional to 1/L. In the approximate treatment of the BCS
gap equation by Thompson and Blatt (TB) [1], the chemical
potential μ is calculated at zero temperature and the subbands
contribute to the critical temperature if μ lies above their
minimum. As soon as μ enters a subband, this subband is
treated as if its DOS were extending over the whole pairing
window. This abrupt increase of “virtual” states available
only for pairing produces a discontinuous jump of the critical
temperature to a higher value. The resulting dependence Tc(L)
oscillates with discontinuous jumps as illustrated in Fig. 1.
After the jump, Tc decreases because the effective couplings
behave as 1/L [see Eq. (5)]. Consistently, since each new
subband contributes with a smaller effective coupling, the
amplitude of the jumps decreases with increasing L. In the
exact BCS equation (1), a subband begins to enhance Tc

when the chemical potential lies �ωD below its minimum,
as it is apparent in Eq. (2). The contribution of this band is
exponentially small in its first stages, and gradually increases
to reach a plateau when μ > Ep + �ωD (see part I and Fig. 2
below). The resulting Tc(L) curve has no discontinuity, as
seen in Fig. 1. The absence of discontinuities in Tc, despite
the existence of discontinuous jumps in the quasi-2D DOS, is
reminiscent of the continuous vanishing of Tc at the bottom of
a single two-dimensional band (part I).

In order to facilitate the comparison of the TB and exact
results, the critical temperatures are normalized in Fig. 1
to the corresponding 3D values which are asymptotically
reached at large L. The 3D value is slightly larger in the TB
approximation, which neglects the energy dependence of the
3D DOS and the self-consistent adjustment of the chemical
potential. Overall, the two curves show an enhancement of
Tc with reducing film thickness, accompanied by oscillations
whose amplitude also increases with decreasing L. The main
qualitative difference between the TB and exact results is that

0 2 4 6 8 10
L̃

0.8

1

1.2

1.4

1.6

1.8

T c
/T

3D c

TB

Exact
Tmax

c

FIG. 1. BCS critical temperature in a thin film, modeled as a
square potential of infinite depth, as a function of film thickness L.
The Thompson–Blatt approximate result (TB) is compared with the
exact result for a dimensionless 3D density ñ = 1 and a coupling
λ̄ = 1. Similar results are obtained for other densities and couplings.
The 3D critical temperatures are kBT 3D

c /�ωD = 0.500 and 0.436
in the TB and exact calculations, respectively. The band mass is
used as the reference mass: L̃ = 21/3(mbωD/2π�)1/2L.
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FIG. 2. Relative variation of the critical temperature with varying
film thickness (curve 0) and its interpretation (curves 1 to 6); see
text. The vertical bars at the top mark the film thicknesses where
μ = Eq − �ωD for q = 2,3,4,5.

the former is discontinuous while the latter is continuous, as
already discussed. Consequently, the exact amplitude of the
Tc oscillations is much smaller than the TB approximation
would suggest. Using the self-consistent μ rather than its
zero-temperature counterpart provides further smoothing of
the Tc(L) curve, since there is no sharp structure associated
with μ crossing a subband edge. Another qualitative difference
is that, thanks to a consistent treatment of the pairing down to
the smallest L, the exact Tc vanishes in the limit L → 0, while
the TB result diverges. The exact Tc thus presents a striking
maximum at small L. Finally, the period of the oscillations as
a function of L is shorter in the exact data. We analyze the
period, the behavior of Tc at small L, and the properties of the
maximum Tc in the subsequent sections. In the remainder of
the present section, we provide a step-by-step interpretation of
the exact Tc(L) curve, and we study its dependence on coupling
and density.

Figure 2 presents a deconstruction of the exact Tc(L) curve.
This is achieved by pushing a set of subbands to high energy
such that they become irrelevant and by selectively turning
on and off the various intra- and intersubband couplings. For
the curve labeled “1”, all subbands are eliminated except the
lowest. This curve matches the exact result labeled “0” in
the regime of small L, showing that only the lowest subband
contributes to Tc in this regime. The one-subband regime
corresponds to a 2D problem with an effective 2D density
proportional to nL and an effective coupling proportional to
λ̄/L, as described further in Sec. III C. A comparison with the
2D results of part I therefore allows one to understand curve 1.
In 2D, Tc vanishes at low density for arbitrarily large coupling,
hence the vanishing of Tc in quasi-2D for L → 0, in spite of
the diverging effective coupling. As the density increases, Tc

reaches a plateau in 2D when the whole pairing window lies
within the band—hence the break close to L̃ = 1.2—and then
remains constant at a coupling-dependent value—hence the
decrease after the break in curve 1, controlled by the decrease
of the effective coupling. For the curve labeled “2”, only
the two lowest subbands are kept but all couplings related
to the second subband are set to zero: λ̄12 = λ̄21 = λ̄22 = 0.
The sole effect of the second subband in this case is to correct

(lower) the chemical potential and thus displace the break of
curve 1 to a slightly larger value of L, which coincides with
the position of the break in curve 0. At larger L, curves 1
and 2 are identical. One sees that the model 2 with only two
subbands and only λ̄11 different from zero explains the exact
result up to the first resonance, which is marked by the double
arrow in Fig. 2. This resonance is due to the pairing in the
second subband. For ñ = 1, the break and the first resonance
accidentally occur at nearly the same L̃ (see Fig. 1): this is the
reason for taking ñ = 1.2 in Fig. 2.

Curves 3 and 4 illustrate the superconducting properties of
the second subband when the first remains normal and all the
others are irrelevant. Curve 3 has λ̄11 = λ̄12 = λ̄21 = 0, such
that the lowest subband accommodates a certain number of
electrons but plays no role in pairing. Curve 3 is therefore
analogous to curve 1, except for a shift in chemical potential.
This explains why both curves are identical at large L.
Curve 4 has λ̄11 = 0 but λ̄12 = λ̄21 �= 0. The raise of Tc

is shifted to a lower value of L as compared to curve 3
due to induced superconductivity in the lowest subband.
An analytical expression for the exponential raise of Tc in
this situation has been derived in part I. The double arrow
indicates that the onset of this “proximity effect” in the lowest
subband corresponds to the position of the first resonance in
curve 0. In other words, the first resonance occurs when the
pairing interaction in the second subband starts to reinforce
the superconductivity of the lowest subband. Turning on the
pairing in the lowest subband changes curve 4 into curve 5.
Specifically, curve 5 is the complete two-subband model with
all intra- and intersubband couplings turned on. The break
associated with the second subband in curve 5 occurs after
the second resonance (see also curves 3 and 4), as opposed to
the break in curve 1 which occurs before the first resonance.
The second break in curve 5 is shifted to larger L when the
lowering of the chemical potential due to the third subband
is considered (curve 6), leading to a model accurate up to
the second resonance. The second resonance coincides with
induced superconductivity from the third subband into the
second one, and so on for the other resonances.

One sees that the exact Tc(L) curve has more structure
than the TB curve. These structures are of two different
types and induce discontinuities in the derivative dTc/dL. The
structures which set the main oscillation pattern correspond
to the onset of induced superconductivity from one subband
into the subband immediately underneath: they occur when
μ = Eq − �ωD. At these points dTc/dL jumps to a higher
value producing a cusp, as opposed to the TB case where
dTc/dL jumps to a lower value at each discontinuity. The
other structures are weaker and occur when the lower end of
the pairing window coincides with the minimum of a subband,
i.e., μ = Eq + �ωD. At these points dTc/dL jumps to a lower
value producing a break. Two such structures are present in
the data of Fig. 2, although only one of them can be seen with
the naked eye, just below the first resonance.

In Fig. 3, we plot the evolution of the chemical potential
and of the subband energies with increasing L, illustrating
graphically their mutual relationship with the features of
the Tc(L) curve. Figure 3(a) shows the exact μ and the
noninteracting zero-temperature chemical potential μ0 used
in the TB approximation, both measured from the lowest
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FIG. 3. (a) Evolution of the approximate (dashed-blue) and exact
(solid-red) chemical potentials as a function of film thickness. The
dimensionless density is ñ = 3, the coupling is λ̄ = 1, and all energies
are measured from the lowest subband E1, and expressed in units of
�ωD. (b)–(g) Chemical potential in different ranges of film thickness
and energies Eq (thin solid lines), Eq − �ωD (thin dashed), and Eq +
�ωD (dotted) for q = 1, . . . ,6. In (d) and (g), the gray line shows
the 1/L behavior at large L. The horizontal axis in all graphs is
L̃ = 21/3(mbωD/2π�)1/2L.

subband minimum E1, and expressed in units of �ωD. We
observe that μ < μ0, as expected since the chemical potential
is a decreasing function of both temperature and coupling. In
particular, we see that while μ0 approaches E1 for L → 0, the
exact μ approches E1 − �ωD; this will be further discussed
in Sec. III C. Figures 3(b), 3(c), and 3(d) emphasize different
parts of the μ0 variation, while Figs. 3(e), 3(f), and 3(g) do the
same for μ. The thin solid lines in panels (b), (c), (e), and (f)
correspond to the subband energies measured with respect to
E1, which decrease as 1/L2 with increasing L.

Clearly, the singularities of μ0, hence the discontinuities of
Tc(L) in the TB approximation, are given by the condition
μ0 = Eq . There is no singularity at the points μ = Eq in
the exact calculation, however, as seen in panels (e) and (f).
Instead, the singularities of the first type discussed above
correspond to μ = Eq − �ωD (thin dashed lines), and those of
the second type to μ = Eq + �ωD (dotted lines). The density
was fixed to ñ = 3 in Fig. 3, in order to reveal several of these
singularities. The panels (d) and (g) show that the chemical
potential approaches the 3D value at large L from above

FIG. 4. Critical temperature as a function of film thickness for
(a) various densities at fixed coupling and (b) various couplings at
fixed density. Tc is expressed in units of �ωD/kB and n in units of
2[mbωD/(2π�)]3/2. The dashed lines show the asymptotic behavior
at low L, Eq. (11).

with a correction of order 1/L, as argued at the beginning
of this section. In the TB case, the large-L behavior is [1]
μ̃0 = (3

√
πñ/4)2/3 + (3π2ñ/128)1/3/L̃, as indicated by the

gray line in panel (d). In the exact case (g), the gray line shows
a fit to the form μ = μ3D + A/L.

In Fig. 4, we illustrate how the Tc(L) curve changes
with density and coupling. With increasing density at fixed
coupling, the amplitude of the Tc oscillations increases and
their period decreases [Fig. 4(a)]. At the same time, the bulk
value T 3D

c increases (see part I), and so does the maximum
critical temperature T max

c observed at low L. One can identify
two regimes for the behavior of T max

c . At low density, the
maximum occurs before the break and is therefore determined
by the smooth evolution of Tc close to the edge of the lowest
subband; at high density, the maximum coincides with the
break and is determined by the condition μ = E1 + �ωD.
We will see in Sec. III D that the position and height of the
maximum approach universal functions of the product λ̄ñ,
and that the transition between two regimes takes place at
λ̄ñ = 1. Increasing coupling at fixed density, one sees that
the position and height of the maximum move up [Fig. 4(b)].
The positions of the resonances are weakly affected, because
the coupling influences them only indirectly via its effect
on Tc, hence on the self-consistent chemical potential at Tc:
increasing the coupling pushes Tc up, μ down, and therefore
moves the resonances to larger L. One can finally notice that
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the maximum enhancement of the critical temperature due to
confinement, T max

c /T 3D
c , is close to unity at strong coupling

but increases dramatically at weak coupling.

B. Characteristic length of Tc oscillations

An oscillatory evolution of Tc as a function of film thickness
is one of the most striking observations made in several
experiments performed on metallic thin films [13,21–25]. It is
therefore crucial to connect the length 	L of these oscillations
with the microscopic properties of the metal. In the TB model,
the length is simply π/kF as quoted in many papers [1–10],
irrespective of the band mass and of the properties of the
superconducting pairing. This result follows directly from
the condition μ0 = Eq which defines the discontinuities of
Tc(L) in the TB model. The condition yields unevenly spaced
discontinuities at low L, but the spacing becomes constant
as the chemical potential depends much less on L with
increasing L (see Fig. 3). At large L, the chemical potential
approaches the bulk value, which is μ̃0 = m

mb
(3

√
πñ/4)2/3 in

dimensionless form, where we have reintroduced explicitly
the band mass. On the other hand, the dimensionless subband
energies in an infinite square well are Ẽq = m

mb
(π/24/3)(q/L̃)2.

The condition μ̃0 = Ẽq thus yields equidistant values of L̃ for
integer q, separated by the characteristic length

	L̃0 =
(

π

3ñ

) 1
3

. (7)

Using n = k3
F/(3π2), we get the desired result 	L0 = π/kF.

In the exact BCS equation, however, the period of oscillations
is fixed by the condition μ̃ = Ẽq − 1 as we have seen. It is
straightforward to extract from this condition an analytical
expression for the characteristic length at large L in the weak
coupling limit λ̄ → 0, where μ can be replaced by μ0. We
obtain

	L̃ = 1√(
3ñ
π

)2/3 + 24/3

π

mb

m

(λ̄ → 0). (8)

In dimensionful form, this gives 	L = π/

√
k2

F + 2mbωD/�.
The exact period of oscillations at weak coupling is shorter
than the TB result. Beside the Fermi wavelength, one sees
the emergence of a new length scale �/

√
2mb�ωD associated

with the pairing cutoff, which controls the length of the Tc

oscillations at low density—or, more specifically, when the
Fermi energy is small compared with the Debye energy. The
TB result is recovered at high density.

For a finite coupling, the bulk chemical potential can be
written as μ = μ0 − 	μ. 	μ is a positive function increasing
with density and coupling (see part I). Considering this
correction, the exact length becomes

	L̃ = 1√(
3ñ
π

)2/3 + 24/3

π

mb

m
(1 − 	μ̃)

. (9)

This shows that a finite coupling brings the exact length closer
to the TB result as compared to Eq. (8), and can even lead
to a length longer than π/kF if 	μ > �ωD, which happens
at large coupling and/or high density. The various trends are

0 1 2 3

ñ−1/ 3

0

0.5

1

ΔL̃

TB

Eq. (8)

FIG. 5. Characteristic length of the Tc oscillations as a function
of density and coupling, calculated numerically at large L. The
Thompson–Blatt (TB) expression (7) and weak-coupling expres-
sion (8) are shown for comparison. The band mass is used as
the reference mass (m = mb), ñ = n/[2(mbωD/2π�)3/2], and 	L̃ =
21/3(mbωD/2π�)1/2	L.

illustrated in Fig. 5. We have evaluated numerically the length
by tracking successive oscillations at L̃ > 50. The result (8) is
well obeyed for λ̄ < 1. A length longer than the TB value can
be seen at high density on the λ̄ = 3 curve.

C. Asymptotic behavior for ultrathin films

For ultrathin films the exact BCS Tc approaches zero for
all densities and couplings (Fig. 4). This is a regime where
only the lowest subband matters. The TB model is unreliable
in this limit, as it returns a diverging Tc. The reason for a large
Tc is the 1/L divergence of the quasi-2D coupling [Eqs. (4)
and (5)], combined with the facts that the lowest subband
remains occupied all the way down to L = 0 (μ0 > E1, see
Fig. 3) and contributes to Tc like a bulk 2D band. In the
self-consistent calculation, the chemical potential at Tc moves
below the lowest subband as L approaches zero, and reaches
the limit E1 − �ωD at L = 0 (Fig. 3). Thus there is no state to
pair at L = 0 and Tc vanishes. In the one-subband regime, the
problem reduces to a 2D problem with effective density and
coupling. Indeed, for a single subband, Eq. (1) becomes

1 = λ̄eff ψ2(1 + μ̃′,T̃c), ñeff = T̃c ln(1 + eμ̃′/T̃c ), (10)

with μ̃′ = μ̃ − Ẽ1. The effective 2D density vanishes lin-
early with L and reads ñeff = 2−1/3(m/mb)ñL̃, while the
effective coupling diverges as 1/L and is given by λ̄eff =
(3

√
π/25/3)(m/mb)1/2λ̄/L̃. Equation (10) is identical to

Eq. (15) of part I in dimension d = 2. The exact solution
as ñeff approaches zero is

T̃c = ñeff exp

[
W

(
e−2/λ̄eff

ñeff

)]
. (11)

W (x) is the Lambert function. The limiting value of the
chemical potential for ñeff = 0 is μ̃′ = −e−2/λ̄eff , which gives
μ̃′ = −1 at L̃ = 0 consistently with Fig. 3. Equation (11)
is compared with the full Tc(L) dependency in Fig. 4. For
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FIG. 6. (a) Thickness Lmax leading to the maximum Tc normal-
ized by the coupling λ̄ and (b) maximum Tc as a function of λ̄ñ

for various values of λ̄. The broken thick lines show the asymptotic
formulas in the various regimes.

small values of λ̄ñ, the validity of the asymptotic formula
extends past the maximum Tc: Eq. (11) is therefore the good
starting point for obtaining analytically T max

c in this limit. In
the opposite limit of large λ̄ñ, the initial raise of Tc is correctly
described, but the maximum is controlled by the break as
already pointed out.

D. Maximum Tc in the one-subband regime

A figure of merit of the Tc(L) curve is the maximum critical
temperature which can be achieved by varying L. In Fig. 6,
we display the thickness Lmax at which the maximum occurs
as well as T max

c as a function of the product λ̄ñ. It is seen that
Lmax/λ̄ and T max

c approach universal functions at large and
small values of λ̄ñ. While Lmax/λ̄ shows some dependence on
λ̄ in the transition region λ̄ñ ∼ 1, T max

c follows a remarkable
scaling law in the whole range of λ̄ñ values, with only tiny
dependence on λ̄ in the transition region.

The asymptotic behavior at small λ̄ñ can be deduced from
Eq. (11), because in this limit λ̄ and/or ñ can be taken arbitrarily
small, such that the position and height of the maximum is
exactly captured (see Fig. 4). Differentiating Eq. (11) with

respect to L̃, we find the position of the maximum as

L̃max

λ̄
= A

2B
[− ln(Aλ̄ñ) −

√
ln2(Aλ̄ñ) − 4], (12)

where A = (3
√

π/8)(m/mb)3/2 and B = 2−1/3m/mb. This is
indeed a function of the product λ̄ñ. Substituting this back into
Eq. (11) gives the maximum critical temperature. In order to
simplify its expression while preserving the correct asymptotic
behavior, we replace L̃max/λ̄ in Eq. (12) by the simpler formula
−A/[B ln(Aλ̄ñ)]. T max

c can then be rearranged in the form

T̃ max
c = e1/ ln(Aλ̄ñ)

W
(− ln(Aλ̄ñ)

Aλ̄ñ
e1/ ln(Aλ̄ñ)

) . (13)

Equations (12) and (13) capture the universal behavior of the
maximum Tc at small λ̄ñ, as demonstrated in Fig. 6.

For large λ̄ñ, the maximum Tc coincides with the
break which occurs when μ = E1 + �ωD. Eq. (22) of part
I shows that the following holds at this break: ñmax

eff =
T̃ max

c ln (e1/T̃ max
c + 1). The effective coupling at the maximum

is proportional to λ̄/L̃max, which becomes large in the regime
considered [Fig. 6(a)]. In this strong-coupling regime, the
critical temperature is proportional to the coupling (part I) such
that T̃ max

c = λ̄max
eff /2. Putting everything together we obtain

λ̄ñ

(
L̃max

λ̄

)2

= A

B2
ln

(
e

B
A

L̃max

λ̄ + 1
)
.

This equation yields L̃max/λ̄ as a function of λ̄ñ, but admits no
closed solution. Since L̃max/λ̄ approaches zero in the limit of
interest, we can expand the ln and solve. This gives

L̃max

λ̄
= A

2B

1 +
√

1 + 16 ln(2) Aλ̄ñ

2Aλ̄ñ
, (14)

T̃ max
c =

√
1 + 16 ln(2) Aλ̄ñ − 1

4 ln(2)
. (15)

Both expressions are compared with the numerical data in
Fig. 6.

IV. FINITE QUANTUM WELL AND CRITICAL
POTENTIAL

The infinite-well model has the advantage of its simplicity,
permitting exact analytical results in some regimes. However,
realistic superconducting films are better described by a finite
confinement potential. For a free-standing film, this potential
is set by the material’s work function, possibly reduced by
finite-size effects if the film is very thin; this is usually a large
energy scale compared with �ωD. For films deposited on a
substrate or sandwiched between two buffer layers, however,
the confinement potential may be weak and comparable
with �ωD. The phenomenological model of Yu et al. [3] is
appropriate for thick films and large confinement potentials,
but breaks down in the opposite limits. In this section, we
study numerically the critical temperature for a film confined
in a square potential well of width L and depth U . The main
changes in the model with respect to the infinite-well case are
a modification of the bound-state energies and the replacement
of the overlap integral (5) by (6). Since (6) is smaller than (5),
a smaller Tc is to be expected in the finite well. An additional
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FIG. 7. Relative change of the critical temperature as a function of
film thickness for various strengths of the confinement potential. The
dotted lines are calculated by neglecting the contribution of scattering
states. (Inset) Critical potential as a function of λ̄ñ for various
couplings. The thick gray line is the function 4.65 (Aλ̄ñ)1/2 with
A = (3

√
π/8)(m/mb)3/2. The confinement potential is measured in

units of �ωD. The band mass is used as the reference mass.

difficulty appears at small U , because unbound states outside
the well feel the pairing interaction and change Tc. If U is
small and the density is high enough, we may even reach
a regime where the scattering states are occupied. We have
found that spurious discontinuities occur in the dependence
of Tc on various model parameters if the scattering states are
ignored. These discontinuities are removed by including the
appropriate corrections in Eq. (1). The details are reported in
the Appendix.

Figure 7 illustrates the evolution of Tc with film thickness
in a finite well. The critical temperature is lower than in the
infinite well as expected. As the well becomes more and
more shallow, the energy of the bound states decreases and
the resonances move to lower values of L. There are two
regimes for the potential U , separated by a critical value U ∗.
For U > U ∗, Tc is an increasing function of decreasing L and
there is an absolute maximum in Tc at small L, like for the
infinite well. For U < U ∗, Tc decreases as the thickness is
reduced and the maximum at low L is lost. The scattering
states give a non-negligible contribution in this latter regime
as illustrated in Fig. 7. The critical potential U ∗ decreases with
decreasing density and increasing coupling. We find that Ũ ∗
approaches a universal function of λ̄ñ at strong coupling (inset
of Fig. 7). Except at small λ̄ñ, this function is well fitted by
the power law Ũ ∗ ∝ (λ̄ñ)1/2.

The maximum in Tc, when it exists, is no longer a universal
function of λ̄ñ as illustrated in Fig. 8. T max

c is much more
efficiently suppressed in a finite well at weak coupling than
at strong coupling, consistent with the fact that U ∗ is lower
at strong coupling. The analysis leading to Eqs. (12)–(15) can

FIG. 8. Maximum Tc as a function of λ̄ñ for a confinement
potential Ũ = 10. The dashed line is the result for Ũ = ∞ and λ̄ = 2
(Fig. 6). The gray line shows the variation of T̃ 3D

c with λ̄ at the critical
density.

be repeated, with the factor 3/(2L) appearing in the effective
coupling due to Eq. (5) replaced by O11 defined in Eq. (6a).
Figures 4(b) and 6(a) show that at weak coupling the maximum
occurs very close to L = 0; this is also where the overlap O11

is dominated by the tails of the wave function outside the
well and is therefore most strongly suppressed by reducing U .
At large λ̄ñ, T max

c eventually disappears when the Ũ ∗ line is
crossed at some critical density (see inset of Fig. 7). At this
density the maximum Tc corresponds to the 3D value, which
is plotted as a gray line in Fig. 8.

V. DISCUSSION OF THE MAIN RESULTS

Our primary result is that the critical temperature of an elec-
tron gas with BCS-like pairing interaction varies continuously,
unlike the DOS, as a function of thickness when the system is
confined into a thin film. While approximate calculations have
suggested jumps in Tc when the chemical potential coincides
with the bottom of a subband, our calculations show dips in
Tc when the chemical potential lies �ωD below the bottom
of a subband. This fact changes the characteristic length of
Tc oscillations from π/kF at high density to π�/

√
2mb�ωD

at low density. In-between the dips, Tc exhibits maxima
which are rather weak, except in the ultrathin limit where
only one subband is occupied: there Tc shows a maximum
which can be high. The parameter driving the maximum Tc is
Aλ̄ñ = 3V n/(8�ωD). For a strong confinement, we have

kBT max
c = �ωDF

(
3

8

V n

�ωD

)
, (16)

where F (x) is the nearly universal function displayed in
Fig. 6(b). Surprisingly, while the critical temperature increases
in 3D with increasing the band mass, the largest critical
temperature achievable by quantum confinement does not
depend on the mass. The function F (x) is proportional
to

√
x at large x and kBT max

c approaches 0.74
√

�ωDV n

for V n � �ωD. In the opposite limit V n � �ωD, the
expression kBT max

c ≈ �ωD/ ln(6.3�ωD/V n) provides a good
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approximation. These expressions show that T max
c is an

increasing function of �ωD, V , and n in all parameter regimes.
Another finding of our study is the existence of a critical

confinement potential U ∗ below which the thin films have
a Tc lower than the bulk Tc. This observation may shed a
new light on the experimental data available for thin films.
At strong to intermediate coupling, the critical potential is
well fitted by the power law U ∗ ≈ 2.85

√
�ωDV n. Therefore

the larger the density, the stronger the confinement needed in
order to observe an enhancement of the critical temperature
in thin films. The optimal conditions for observing the Tc

enhancement are a low value of U ∗ and a large value of T max
c .

The classical BCS superconductors are in the high-density
regime where T max

c ∼ √
�ωDV n, for they obey the adiabatic

condition �ωD � EF, which implies ñ ∝ (EF/�ωD)3/2 � 1.
Since T max

c and U ∗ both scale in the same way in this
regime, it is unlikely that the optimal conditions be met. For
instance, the critical temperature of bulk Al (Tc = 1.2 K,
nominal valence electron density n = 6 × 1022cm−3, mass
mb = m, Debye energy �ωD = 37 meV) is reproduced by
setting λ̄ = 0.0135. This implies λ̄ñ = 19, putting indeed Al
in the high density regime. Because λ̄ is so small, the fit given
above underestimates U ∗. The exact value is U ∗ = 8.3 eV, that
is, 2.7 eV measured from the Fermi energy. This is smaller
than the Al work function (4 eV), such that free-standing Al
films would be expected to show some Tc enhancement. For
ultrathin epitaxial films grown on silicon [15], the confinement
is limited by the Si bandgap and a decrease of Tc is predicted.
We speculate that the Tc enhancement observed in granular
films [11,14,37] is due to stronger confinement effects in the
grains [38].

It is interesting to ask whether the spectacular enhancement
of Tc recently discovered in FeSe monolayers grown on SrTiO3

(STO) [26] may be, at least partly, ascribed to quantum
confinement. Unlike the classical superconductors, FeSe is
a low-density system. The four bands forming the Fermi
surface have masses between 1.9 and 7.2 electronic masses
and similar Fermi energies as low as 3.6 to 18 meV [39].
For simplicity, we envision a one-band system characterized
by the average values mb/m = 5.5 and EF = 10 meV for a
density equivalent to 0.0091 electron per Fe atom, consistent
with the measurements. It is uncertain which value one should
use for the cutoff of the pairing interaction, especially for
the monolayer where this value may be set by the coupling
to the STO substrate. For bulk FeSe, we take as the lower bound
the spin resonance at 4.4Tc = 3 meV [40,41], which would
be the characteristic energy in the spin-fluctuation pairing
scenario. An upper bound may be the Debye energy of 18 meV
in a phonon-mediated scenario [42]. The corresponding range
of interaction strength needed to reproduce the bulk Tc of
8 K is given by V n = 8.4–4.2 meV. For the lower cutoff,
we have V n > �ωD while for the higher we have V n < �ωD.
The approximate formulas given above yield T max

c ≈ 43–63 K
for strong confinement if the bulk cutoff is used for the thin
film. The exact values are T max

c = 30–63 K, and these maxima
occur for thicknesses L = 9.2–2.4 Å, larger than the FeSe
interlayer distance (1.46 Å). Exactly at the latter thickness,
the predicted critical temperature range is Tc = 20–61 K.
The critical potential, on the other hand, is low and easily
overcome: we find U ∗ = 18–27 meV, in good agreement with

the approximate formula given in the previous paragraph. With
a finite confinement barrier given by half the STO bandgap
(1.6 eV) and for the thickness L = 1.46 Å, the calculated Tc

varies between 17 and 47 K. Thus the quantum confinement
alone can explain an increase of Tc by a factor 2 to 6. We
estimate the effect of a possible “boost” from the substrate by
raising the cutoff to the energy of the STO optical phonon mode
to which the FeSe electrons appear to be strongly coupled
(100 meV) [43], while keeping the interaction strength fixed
to the bulk FeSe value. The range of critical temperatures for
the monolayer skyrockets to 219–173 K. With its low density
and relatively high Tc, FeSe appears as an ideal candidate to
observe significant confinement effects.

VI. APPLICATION TO LEAD THIN FILMS

There is a large body of experimental literature dedicated
to lead thin films [17,19,22–25,44] and islands [18,45,46]
deposited on silicon. The thin films generically have a
lower Tc than bulk Pb. Oscillations as a function of film
thickness showing larger Tc’s for films made of an even
number of monolayers (ML) were reported [22,23]. These
trends can be understood within the Bogoliubov–de Gennes
formalism [34,47]. Other theoretical ideas have also been put
forward, such as a change of the electron-phonon coupling
in the films [48] or a role played by the interaction with
the Si substrate [9]. Superconductivity was later shown to
persist down to 5 ML [24], 2 ML [25], and even a single
ML [19]. A recent first-principles strong-coupling calculation
for free-standing films could explain their superconductivity
down to 5 ML [49]. We consider more specifically here the
data set of Ref. [25] for ultrathin films (2–15 ML) deposited
on Si(111), in particular the peculiar behavior of the thinnest
films. Qin et al. measured by scanning tunneling spectroscopy
a 10% enhancement of Tc at 4 ML, followed by an abrupt drop
by ∼30% at 2 ML. 3-ML films were not stable. The authors
argue that the 2-ML films are in the one-subband regime. Two
types of these 2-ML films were found, with different Tc values.
In the first type with the larger Tc, the in-plane lattice parameter
of the film is the same as in bulk Pb, while for the second type
with the lower Tc the in-plane parameter is 86% larger than in
the bulk, suggesting that the film is pseudomorphically strained
to match the Si

√
3 × √

3 reconstructed surface.
The maximum at 4 ML and the drop at 2 ML in the

one-subband regime are reminiscent of the behavior seen in
Fig. 7. This suggests that the model may shed some light on the
various trends seen in these data. A direct application seems
questionable, because Pb is not a free-electron-like metal and
the confinement potential of these films is most probably
asymmetric [9]. Nevertheless, we find that the simple model
with one parabolic band and a symmetric potential can provide
an effective description of the experiment and give hints about
the origin of the maximum at 4 ML. We have converted the film
thicknesses from ML to length using an interlayer distance of
2.86 Å, except for the strained 2-ML film for which we used
1.54 Å. 2.86 Å corresponds to the distance between (111)
planes in bulk Pb, while the value 1.54 Å assumes that the
86% in-plane tensile strain is isochoric, leaving the density
unchanged. The interlayer distance of the strained 2-ML film
is uncertain, but its value does not influence critically our
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FIG. 9. Superconducting transition temperature of Pb thin films
as a function of film thickness L. The diamonds with error bars show
the measurements of Ref. [25]; different colors correspond to different
data sets. (a) Prediction of the model using parameters of bulk Pb with
a strong (dotted line) and weak (dashed line) confinement potential.
A running average is shown by the solid lines. (b) Interpretation of the
data by means of thickness-dependent coupling parameter and band
mass. The L dependence of these quantities is shown in the inset.

analysis. The evolution of the measured Tc with film thickness
is shown in Fig. 9 (diamonds with error bars).

Among the five parameters of the model, the ones with best
known values are the electron density, the coupling strength on
the Fermi surface, and the band mass. The cutoff of the pairing
interaction and the confinement potential are less obvious. The
nominal Fermi-surface density of lead is n = 6.6 × 1022 cm−3,
corresponding to two 6p electrons per atom and four atoms
per cell in a cubic cell with lattice parameter a = 4.95 Å.
Although the strain in the films may induce small changes,
we will keep the electron density fixed to this nominal value
in the following. For the Fermi-surface coupling we use the
Allen–Dynes value λ = 1.55 [50]. Recall that the coupling
λ̄ is evaluated at an energy �ωD above the band bottom, not
at the Fermi energy, hence we define λ̄ = λ

√
�ωD/EF. We

fix the band mass to the free-electron value, as indicated by
electronic structure calculations [51]. With this band mass, the
linear coefficient of the electronic specific heat is k2

B/(3�2)(1 +
λ)mbkF = 3.03 mJ mol−1 K−2, very close to the experimental
value of 3.06 [52]. The resulting Fermi energy is EF = 5.95 eV.

The films are confined on one side by vacuum and on
the other side by the Si substrate. An estimate for the
potential barrier to vacuum is given by the Pb work function

φ = 4.14 eV, corresponding to a confinement potential U =
EF + φ = 10 eV. The barrier to the Si substrate is given by
the n-type Schottky barrier which, for bulk Pb on Si(111), is
0.7–0.9 eV [53]. The Schottky barrier is sensitive to the details
of the interface atomic and electronic structure: for thin films it
may or may not agree with the value for macroscopic contacts.
We will consider as an extreme case the limit of a vanishing
Schottky barrier by taking a confinement potential U = 6 eV.
We fix the remaining parameter, �ωD, by the requirement that
the critical temperature for the thickest films is of the order
of 6 K like in the experiment. This gives �ωD = 0.71 and
0.73 meV for U = 10 and 6 eV, respectively. These “Debye
energies” are roughly ten times smaller than the specific-heat
Debye temperature of 105 K [54]. It must be kept in mind
that our model is a weak-coupling parametrization of the
critical temperature of lead, and that no Coulomb correction
is involved. If we insist on identifying �ωD with the Debye
temperature, the coupling parameter and band mass needed in
order to reproduce Tc and the Fermi-level DOS are 0.34 and
1.9 electronic masses, respectively. Both sets of parameters
bring us to the same qualitative conclusions; our preference for
the former set with λ = 1.55 and unit mass will be explained
below.

The Tc(L) curves calculated with U = 10 and 6 eV are
plotted in Fig. 9(a). In both cases, there are rapid oscillations of
Tc. The period of oscillations is given by the Thompson–Blatt
formula, as expected at high density. The experimental data
seems to indicate a longer period of ∼2 ML, as would be
expected if the density were ten times smaller than the nominal
value. Such a big loss of electron density is unlikely, and
we tentatively attribute the apparent change of period to the
fact that the interlayer distance is incommensurate with the
expected period. The amplitude of the oscillations has the
correct order of magnitude, though. This amplitude is chiefly
controlled by the cutoff �ωD, and would be more than two
times larger with a cutoff equal to the Debye temperature of
lead. This is our motivation for favoring low values of �ωD. The
curve for U = 10 eV happens to hit the experimental points
at 2 and 4 ML. Given the uncertainty about the effective film
thickness, this must be viewed as an accident. Without precise
information about the effective film thickness, it seems more
appropriate to ignore the oscillations and focus on the overall
trend of Tc as a function of L. Performing a running average
with period π/kF, we thus find that the weak-barrier model
with U = 6 eV better captures the low Tc at 2 ML.

Neither model explains the maximum at 4 ML, however.
This suggests that at least one of the parameters n, mb, and
λ is changing with decreasing thickness. Changes of n will
not produce the desired result. To explain the 4-ML data, an
increase of λ up to ∼1.8 would be necessary; with such a
coupling, however, the 2-ML data can only be explained if
the relative band mass is decreased to ∼0.6. The opposite
scenario with an increase of the mass in the ultrathin films
seems more likely. A number of photoemission experiments
have indeed reported large effective masses for Pb thin films
grown on Si(111), with mass enhancements by up to a factor
ten [55–57]. Figure 9(b) represents one possible interpretation
of the whole experimental data set, by means of an effective
mass which decreases from 10m to m with increasing film
thickness, as plotted in the inset. At the same time, the coupling
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must be suppressed at very low L, in order to explain the data at
2 ML. This suppression of coupling with decreasing thickness
is supported by ab initio calculations based on the Migdal-
Eliashberg theory for free-standing Pb films [18,48], and the
same decreasing tendency has been deduced from femtosecond
laser photoemission spectroscopy measurements [58].

VII. CONCLUSION

By solving exactly the BCS gap equation at Tc, we
have shown that the critical temperature of thin films is a
continuous function of the film thickness. Previously published
discontinuous jumps of Tc are artifacts of approximating the
DOS by a constant. This approximation breaks down when
the chemical potential is close to the edge of a subband, such
that the pairing interaction is cut by the subband bottom. In
the extreme case of a hard-wall confinement, Tc increases with
reducing thickness until it reaches a maximum before dropping
to zero. The value of Tc at the maximum follows a surprising
scaling law, which is independent of the electronic band bass.
In a symmetric rectangular potential well of finite depth U ,
the evolution of Tc with thickness changes qualitatively at a
parameter-dependent characteristic potential U ∗. For U > U ∗,
the behavior is similar to the hard-wall case, while for U < U ∗
the critical temperature is lower in the film than in the bulk.

Our results provide new guidelines in the endeavor to
improve the superconducting properties by quantum confine-
ment. The existence of a maximum in Tc at low thickness is
intriguing, but the observation of this maximum requires a
strong enough confinement. Quite generally, one expects Tc

to be enhanced by a stronger confinement potential. In this
respect, small-bandgap semiconductors may not be the ideal
substrates. The exploration of different substrates, the use of
interface engineering, or ideally the study of free-standing
films would allow to challenge this idea. The scaling law
for the characteristic potential in the regime λ

√
�ωD/EF >

1 reads U ∗ ∝ √
λ �ωDEF. This points towards low-density

superconductors like SrTiO3 or FeSe as the best candidates
for a small U ∗, which could be overcome to observe the Tc

increase.
One may question the relevance of a continuous free-

electron-like weak-coupling model for representing realistic
thin films. While the limitations of this model are obvious, we
have shown that it provides a description of the evolution of Tc

with thickness for thin films of Pb on Si(111) with reasonable
parameters. This strengthens our confidence that the model
may perhaps be useful for other systems as well.
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APPENDIX: INCLUSION OF SCATTERING STATES

To begin with, we consider electrons interacting via a
generic two-body interaction V̂ = 1

2

∑
αβγ δ Vαβγ δc

†
αc

†
βcδcγ

where the greek letters denote single-particle states with wave
functions ϕα(r), etc. Decoupling this interaction in the usual
way, we derive Gor’kov equations which we then linearize at
Tc in order to obtain a gap equation expressed in the generic
single-particle basis. This gap equation is

	αβ =
∑
μν

Vαβμν

	μν

ξμ + ξν

[f (ξμ) + f (ξν) − 1]. (A1)

ξμ is the single-particle energy measured from the chemical
potential and f (ξ ) is the Fermi distribution. At this point
we specialize to a BCS-like interaction which is local, acts
between pairs of time-reversed states denoted (α,ᾱ) with
ξα = ξᾱ , and has a separable energy cutoff:

Vαβμν = −V δβᾱδνμ̄η(ξα)η(ξμ)Oαμ. (A2)

V > 0 gives the strength of the local pairing, the function
η(ξ ) implements the energy cutoff, and the overlap integrals
are defined as Oαμ = ∫

d r ϕ∗
α(r)ϕ∗

ᾱ(r)ϕμ(r)ϕμ̄(r). The order
parameter is nonzero only for time-reversed pairs, 	αβ =
δβᾱη(ξα)	α , and the following equation for the gap parameters
results from (A1) and (A2):

	α =
∑

μ

η2(ξμ)V Oαμ

	μ

2ξμ

tanh

(
ξμ

2kBTc

)
. (A3)

We now apply this to a quasi-two-dimensional geometry with
translation invariance in the (x,y) plane, and some potential
well in the region around z = 0. The potential is such that
all states with energy larger than U are scattering states. The
wave functions can be taken as ϕα(r) �→ 1√

S
eik·ruq(z) with

S the system size in the (x,y) plane. If the gap parameter
is independent of the in-plane momentum k, the in-plane
momentum sum in (A3) can be expressed in terms of the
2D DOS, leading to

	q =
∑

p

V Oqp	p

∫ �ωD

−�ωD

dE N2D
0 (μ + E−Ep)

tanh
(

E
2kBTc

)
2E

.

(A4)

We want to separate the p sum into bound and scattering
states. Whenever q and/or p corresponds to a scattering state,
the overlap integral Oqp is proportional to 1/L where L is
the system size in the z direction. We can take this factor away
from the definition of the overlap, and use it to convert the
sum over scattering states into an integral. At this stage we
assume that the gap parameter is the same for all scattering
states, 	s , and likewise the overlap Oqs ; this is not true in
general, as discussed further below. We moreover assume that
the DOS of the scattering states is not significantly modified
by the formation of bound states. Using the letters q and p

for bound states, and the letter s for scattering states, Eq. (A4)
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becomes

	q =
∑

p

V Oqp	p

∫ �ωD

−�ωD

dE N2D
0 (μ + E−Ep)

tanh
(

E
2kBTc

)
2E

+V L Oqs	s

∫ �ωD

−�ωD

dE N3D
0 (μ + E−U )

tanh
(

E
2kBTc

)
2E

,

	s = V L Oss	s

∫ �ωD

−�ωD

dE N3D
0 (μ + E − U )

tanh
(

E
2kBTc

)
2E

.

The sum over scattering states has been recast in terms of
the 3D DOS. In the second relation, the coupling between
scattering and bound states has disappeared, because the
overlap Osp ∼ 1/L is summed over a finite number of
bound states, and the resulting contribution drops in the
thermodynamic limit. Moving on to dimensionless variables
and proceeding like in part I, we find that the equation for Tc

in the presence of scattering states is once again of the form
0 = det[1 − �(μ̃,T̃c)], but the matrix � must be augmented
by one line and one column in order to account for scattering
states. The matrix elements are

�qp(μ̃,T̃c) = λ̄qpψ2(1 + μ̃ − Ẽp,T̃c), (A5a)

�qs(μ̃,T̃c) = λ̄L Oqsψ3(1 + μ̃ − Ũ ,T̃c), (A5b)

�sq(μ̃,T̃c) = 0, (A5c)

�ss(μ̃,T̃c) = λ̄L Ossψ3(1 + μ̃ − Ũ ,T̃c). (A5d)

λ̄ is the 3D coupling and λ̄qp is defined in Eq. (4). For a
square potential well of width L and depth U , we find that the
overlap L Oqs is a function of the energies εq and εs in the
thermodynamic limit. This function approaches unity for all εs

when εq approaches U . For smaller values of εq , the function

is unity at large εs but decreases to zero with L-dependent
oscillations at small εs . In line with our assumption that all
scattering states share the same gap, we must replace L Oqs

by a single value which is representative of all bound and
scattering states. For simplicity, we choose the value L Oqs =
1, which is the limit for large εs . For the scattering states, we
find L Oss ′ = 1 for all states.

In addition to changing the equation for Tc, the scattering
states also give to the electron density a small contribution
which must be considered for the determination of the
self-consistent chemical potential. In first approximation,
the density contributed by the scattering states is that of a
3D electron gas with chemical potential μ − U . We must,
however, handle carefully the situation where a new state
comes out of the continuum and localizes into the well, for
instance while varying the well thickness L. This process is in
principle smooth, but with our approximations, which neglect
the distortion of scattering states due to the potential well, it is
not: when a new state enters the well, it makes a discontinuous
contribution to the density of states such that the self-consistent
chemical potential jumps to a lower value in order to keep
the total density fixed. To avoid this jump, we continue the
localized state into the continuum and take its contribution
into account before it gets localized, on top of the contribution
of the other scattering states. The correction to the density
in Eq. (1b) is therefore n3D(μ − U ) + n2D(μ − U − εz)/L,
where ndD(μ) is the density of a free-electron gas in dimension
d with chemical potential μ, and εz is the continuation of the
bound-state energy in the continuum. This function must start
at +∞, decrease as a state approaches the well, and reach zero
when the state enters the well. We use

εz = �2

2mb

(
π

L

)2
⎧⎨
⎩− tan

(√
2mbU

�2 L

)
− tan

(√
2mbU

�2 L

)
> 0

∞ otherwise
.
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Appendix A
Kinetic equation for soundlike collective

excitations in Fermi liquids

Starting from the hamiltonian (1.73), we linearize the changes in the quasiparticle energies

En

�

~p+ e~A(~r, t),σ
�

and in the distribution function δN~p′ ,σ′ (~r, t), with respect to the vector

potential ~A(~r, t), as in

δN~p,σ(~r, t) = N~p(~r, t)− N0

�

En

�

~p+ e~A(~r, t),σ
��

≈ N~p(~r, t)− N0 (En [~p])−
dN0 (En [~p])
dEn (~p,σ)

~p · ~A(~r, t)
m∗

(A.1)

The nonequilibrium quasiparticle distribution function N~p(~r, t) descends directly from

Liouville’s equation, for a classical flow characterized by volume-conserving evolution in

phase space. Therefore, we can write a quasi-classical mean-field kinetic equation for

N~p(~r, t), which is

∂ N~p,σ(~r, t)

∂ t
+

1
ħh
∂ Ĥqp(~r, ~p,σ)

∂ ~p

∂ N~p,σ(~r, t)

∂ ~r
− 1
ħh
∂ Ĥqp(~r, ~p,σ)

∂ ~r

∂ N~p,σ(~r, t)

∂ ~p
=

�

∂ N~p,σ(~r, t)

∂ t

�

col l
(A.2)

In equation (A.1), the collisional term
�

∂ N~p,σ(~r,t)
∂ t

�

col l
describes damping by collision processes

that are not included into the mean field hamiltonian Ĥqp(~r, ~p,σ). In fact, the Fermi liquid

phenomenology relies on the existence of low-energy nearly-independent quasiparticles,

which do not collide, and additional damping must be introduced by an external collision

term. This collisional integral makes quasielectrons and quasiholes acquire a finite lifetime,

τqel < +∞ and τqh < +∞ respectively: as common in quantum mechanics, we are

treating a time-dependent problem with the eigenstates of a stationary configuration, in
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this case the one for free fermions, but including time-dependent scattering as a finite

lifetime for the stationary states. For the true thermodynamic equilibrium, we know

that the distribution function is the Fermi-Dirac statistics fF D [En (~p,σ)] [3]: since this

is the configuration for global thermodynamic equilibrium, it is a stationary state and

we must have a vanishing collison term
�

∂ fF D[En(~p,σ)]
∂ t

�

col l
= 0, which specifies the relation

between the lifetimes τqel and τqh. The nonequilibrium distribution function N~p,σ(~r, t)
can be written as a deviation with respect to the true Fermi-Dirac global equilibrium, as

N~p,σ(~r, t) = fF D [En (~p,σ)] +Ξ~k,σ(~r, t). Inserting the latter into equation (A.1), we arrive

at

∂Ξ~k,σ(~r, t)

∂ t
+ ~v~k,σ ·

∂Ξ~k,σ(~r, t)

∂ ~r
+ ~v~k,σ · ~Fσ(~r, t)δ [En (~p,σ)−µ] =

�

∂Ξ~k,σ(~r, t)

∂ t

�

col l

(A.3)

In equation (A.3), we have defined the total quasi-classical force acting on the individual

quasiparticles

~Fσ(~r, t) = −∇~r



−eφσ(~r, t) +
∑

~k′ ,σ′
f~k,σ,~k′ ,σ′Ξ~k,σ(~r, t) +

ħh~k
m
· e~A(~r, t)



 (A.4)

The linearized kinetic equation (A.3) is manifestly gauge-invariant, and it satisfies the

continuity equation for the flow of quasiparticles [7]: this is the starting point for many

applications of Landau phenomenology of Fermi liquids, for example the study of collective

modes in the absence of perturbations.

Now, we concentrate on stable density-density collective modes in the Fermi liquid.

Hence, we neglect collisions between quasiparticles according to
�

∂Ξ~k,σ(~r,t)
∂ t

�

col l
≈ 0. Stable

collective modes propagate even in the absence of perturbations, so we set the electro-

magnetic potentials to zero as φσ(~r, t) = 0, ~A(~r, t) = 0. Collective modes have wave-like

evolution, therefore the deviation of the distribution function with respect to global equi-

librium will be periodic in space and time, i.e. Ξ~k,σ(~r, t)∝ ei(~q·~r−ωt), with ~q transferred

wave vector for the excitation. Inserting this wave-like form in equation (A.3), without

electromagnetic potentials and collisions, leads to

�

~q · v~k,σ −ω
�

Ξ~k,σ(~r, t) + ~q · v~k,σδ
�

En

�

~k,σ
�−µ�

∑

~k′ ,σ′
f~k,σ,~k′ ,σ′Ξ~k,σ(~r, t) = 0 (A.5)

We assume small deviations with respect to thermodynamic equilibrium: physically, we

consider changes in the distribution function at first order in the quasiparticle energies, with
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respect to the Fermi-Dirac distribution at global equilibrium. In principle, excitations can

alter the quasiparticle energies En

�

~k,σ
�

either by changing the wave vector ~k or by flipping

the spin σ; in the following, having in mind sound-like collective modes, we assume that

alterations of En

�

~k,σ
�

stem from variations in the quasiparticle momentum ~k. Under these

hypothesis, expanding the distribution deviations to first order in the energies En (~q,σ),

we have Ξ~k,σ(~q,ω) = ε~k(~q,ω)
∂ fF D[En(~k,σ)]
∂ En(~k,σ) µ

, with
∂ fF D[En(~k,σ)]
∂ En(~k,σ) µ

≡ −δ �En

�

~k,σ
�−µ� for

the Fermi-Dirac distribution [2,3]. If we had wanted to analyze magnetic modes in the

Fermi liquid, like spin waves, we could also have assumed a distribution function change

of the kind Ξ~k,σ(~q,ω) = sσ(~q,ω)σ
∂ fF D[En(~k,σ)]
∂ En(~k,σ) µ

= sσ(~q,ω)σδ
�

En

�

~k,σ
�−µ�, with the

quasiparticle energies modified by spin rotations [7]. Finally, let us note that a Taylor series

expansion at first order of the change in the distribution function selects quasiparticles

at the chemical potential µ: essentially only excitations around µ contribute to collective

modes, since states at E << µ deep down into the Fermi sea are occupied and blocked by

Pauli exclusion principle.

This way, the kinetic equation (A.5) in local equilibrium, written in reciprocal space of

momenta ~q and frequency ω, becomes

�

~q · ~v~k,σ −ω
�

ε~k(~q,ω)+~q·~v~k,σδ
�

E
�

~k,σ
�−µ�

(

∑

~k′ ,σ′
f~k,σ,~k′ ,σ′ε~k′ (~q,ω)δ

�

En(~k
′
,σ

′
)−µ�

)

= 0

(A.6)

As previously mentioned, the delta functions δ
�

En(~k,σ)−µ� and δ
�

En(~k
′
,σ

′
)−µ� fix the

value of k and k
′
, respectively: therefore, the character of the collective mode, including

its polarization direction, will be determined by the respective orientation of the excitation

wave vector ~q with respect to ~k and ~k
′
.

For long wavelengths q→ 0, we expect sound waves with acoustic dispersion ωλ(~q) =
vS,F Lq, with vS,F L sound velocity for the Fermi liquid. Setting the latter relation into equation

(A.6), we have in scalar form

�

v~k,σ cosθ − vS,F L

�

ε~k(~q,ω)+v~k,σ cosθδ
�

E
�

~k,σ
�−µ�

(

∑

~k′ ,σ′
f~k,σ,~k′ ,σ′ε~k′ (~q,ω)δ

�

En(~k
′
,σ

′
)−µ�

)

= 0

(A.7)

where θ =
arccos(~q·~v~k,σ)
|~q·~v~k,σ| is the angle between the wave vector ~q and the quasiparticle velocity

v~k,σ.

To continue, we need to expand the angular dependence of the interaction matrix

elements f~k,σ, ~k′ ,σ′ , which determines the spatial polarization of the perturbation. Being an
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angular distribution in 3-dimensional space, a suitable expansion basis for f~k,σ, ~k′ ,σ′ is given

by spherical harmonics, in terms of Legendre polynomials [7,8]. We recall that Legendre

polynomials are ℘n(x) =
1

2nn!
dn

d xn

�

(x2 − 1)n
�

, and the associated Legendre polynomials

satisfy Pm
l (x) = (−1)m(1−x2)

m
2 dm

d xm [℘l(x)]. The latter are used in the definition of spherical

harmonics Yl,m(θ ,φ) =
Ç

(2l+1)(l−m)!
4π(l+m)! Pm

l (cosθ )eimφ, −l ≤ m≤ l. , which often intervene in

physical problems where spherical symmetry is involved [138]. The Fermi liquid expansion

of the interaction matrix elements is usually done in terms of Landau parameters Fαn , n ∈
N, α = {S, A} [7,8], which represent the respective magnitudes of quasiparticle interactions

for each possible angular pattern of the collective mode at the Fermi surface, i.e. for all

spherical harmonics. First, we observe that, having selected quasiparticle energies at the

Fermi surface at first order, the interaction matrix elements will be at the Fermi surface FS:

f~k,σ, ~k′ ,σ′ ≡ fFS
σ,σ′δ

�

En(~k,σ)−µ�δ �En(~k
′
,σ

′
)−µ�. The Fermi liquid Landau parameters in

d ∈ N+ dimensions are defined as

FS,A
l =

N ∗0 (0)

2

∫

dΩ
4π

�

fFS
↑,↑(cosθ )± fFS

↑,↓(cosθ )
� ℘l(cosθ )

2l + 1
, d = 3 (A.8)

FS,A
l =

N ∗0 (0)

2

∫

dΩ
2π

�

fFS
↑,↑(cosθ )± fFS

↑,↓(cosθ )
� cos(lθ )(1+δl0)

2
, d = 2 (A.9)

In equations (A.8) and (A.9), the superscript S or A refers to the additive or subtractive

combination of fFS
↑,↑(cosθ)± fFS

↑,↓(cosθ), which distinguishes between symmetric and anti-

symmetric Landau parameters. The former kind is associated to the charge density-density

perturbations, while the latter deals with the magnetic spin-spin response. The density of

states per unit volume N ∗0 (0) includes renormalization effects due to quasiparticle residual

interactions, and therefore differs from the free fermions one N el
0 (0). We concentrate on

the problem in 3 dimensions, and write the inverse relation of (A.8), which is

fFS
↑,↑(cosθ )± fFS

↑,↓(cosθ ) =
2

N ∗0 (0)

+∞
∑

l=0

FS,A
l ℘l(cosθ ) (A.10)

With these definitions, we can act on the term between curly brackets in equation (A.6).

The delta function δ
�

En(~k
′
,σ

′
)−µ� inside the sum over ~k

′
and σ

′
effectively counts how

many states at the chemical potential we have, which is the definition of the density of

states N ∗0 (0). All remains of the sum is an integration over angular variables, which depends

on the angles between the wave vectors ~k and ~k
′
. With a factor 1

2 to avoid double counting
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of interactions for ~k with ~k
′
and viceversa, we have

∑

~k′ ,σ′
f~k,σ,~k′ ,σ′ε~k′ (~q,ω)δ

�

En(~k
′
,σ

′
)−µ�≡ 1

2

∑

~k′ ,σ′
δ
�

En(~k
′
,σ

′
)−µ�

∫

dΩ
′

4π

∑

σ′
fFS
σ,σ′ε~k′ (~q,ω)

=
N ∗0 (0)

2

∫

dΩ
′

4π

∑

σ′
fFS
σ,σ′ε~k′ (~q,ω)

Equation (A.6) becomes

�

~q · ~v~k,σ −ω
�

ε~k(~q,ω) + ~q · ~v~k,σ

N ∗0 (0)

2

∫

dΩ
′

4π

∑

σ′
fFS
σ,σ′ε~k′ (~q,ω) = 0 (A.11)

Employing the Landau parameter expansion (A.10) of the interaction matrix elements

leads to

�

qv~k,σ cosθ −ω�ε~k(~q,ω) + qv~k,σ cosθ

∫

dΩ
′

4π

+∞
∑

l=0

FS,A
l ℘l(cosθ

′
)ε~k′ (~q,ω) = 0 (A.12)

which is equation (1.74) quoted in the main text of section 1.5.1.
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Appendix B
General form of collective excitations in

3D Fermi liquids

Following the work of Abrikosov and Khalatnikov [7], we present the general solution in 3

dimensions for sound-like collective excitations in a Fermi liquid, at any order of spherical

harmonics expansion l ∈ N. The kinetic equation to solve is always (1.74), with the

interaction matrix elements expanded in terms of symmetric Landau parameters FS
l as in

equation (A.10). The quasiparticle distribution change is also expanded in spherical

harmonics as in equation (1.75). In the latter, the associated Legendre polynomials

Pm
l (z) = P−m

l (z) appear, while the interaction matrix elements are expanded in terms

of Legendre polynomials ℘l(z) . It is convenient to write everything in terms of associated

polynomials Pm
l (z), utilizing the combination theorem

℘l(z) =
l
∑

m=−l

Pm
l (θ )P

m
l (θ

′
)eim(φ−φ′ ) (n− |m|)!

(n+ |m|)! (B.1)

Introducing the notation

Φlm = FS
l

(n− |m|)!
(n+ |m|)!

∫

dΩ
′

4π
Pm

l (θ
′
)e−imφ

′
εθ ′ ,φ′ (B.2)

the kinetic equation (1.74) becomes

(qv~k,σ cosθ −ω)εθ ,φ + qv~k,σ cosθ Pm
l (θ )e

imφΦlm = 0 (B.3)
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From (B.3), the distribution function change εθ ,φ is explicitly

εθ ,φ = −
qv~k,σ cosθ

qv~k,σ cosθ −ωPm
l (θ )e

imφΦlm (B.4)

Substituting back equation (B.4) into equation (B.2) and integrating with respect to φ
′
,

we have

−FS
l

(n− |m|)!
(n+ |m|)!

∫

dΩ
′

4π

∑

n

Pm
l (θ

′
)

qv~k,σ cosθ
′

qv~k,σ cosθ ′ −ωPm
n (θ

′
)Φnm =

∑

n

Φnmδnl (B.5)

Thus we have obtained a system of homogeneous equations which determine the quantities

Φlm [7]. The system separates into independent sub-systems corresponding to various

values of m. Equation (B.5) shows that oscillations of several different kinds can propagate

in a Fermi liquid at absolute zero temperature, and that they are characterized by a different

dependence of the amplitude on the angles θ
′
and φ

′
. The class m = 0 corresponds to

oscillations for which the distribution change εθ ,φ is isotropic in a plane perpendicular

to the wave vector ~k, while for m > 0 the oscillations are polarized in a definite way in

this plane. The number of types of oscillations is determined by the possible values of

m : |m| ≤ l. The propagation velocity vS,L =
ω
q of the oscillations is found from the

condition that the determinant of the corresponding system should be null,





δnl F
S
l Ω

m
nl(vS,L)





= 0 (B.6)

Ωm
nl(vS,L) =

(n− |m|)!
(n+ |m|)!

∫

dΩ
′

4π
Pm

n (θ
′
)

v~k,σ cosθ
′

v~k,σ cosθ ′ − vS,L
Pm

l (θ
′
)

Since Pm
l (z) = P−m

l (z) from the properties of associated Legendre polynomials, the coeffi-

cients of the determinant (B.6) do not depend on the sign of m, and therefore oscillations

which differ only in the sign of m propagate with the same velocity. Equation (B.6) shows

that the equations for the velocity are transcendental. In the general case, they do not

always have real roots, but cases are possible in which there are several. This corresponds

to several types of self-sustained oscillations, having identical polarization in a plane

perpendicular to the wave vector ~k.
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Appendix C
Can we transmit only one mode through

an interface?

The refractive indexes of the two degenerate electromagnetic modes in the presence of

viscosity are given by equation (2.2) Then, the transmission coefficients for the two modes

{t1, t2} are

tα =
2(nβ − 1)

(nα + 1)(nβ − nα)

1− nβ iλsk

1+ (1− nβ − nα)iλsk
(C.1)

where k = ω
c is the wavenumber in vacuum. From equation (C.1) we see that the trans-

mission coefficient tα would be null if two conditions were satisfied: either nβ = 1, or

nβ iλsk = 1. We take the second mode t2, as it is the most interesting one that undergoes

negative refraction for νcτ~k(ωp)2 > 1, and we want all the intensity to feed this mode, i.e.

t1 = 0. Considering n1 = 1, and solving with equation (2.2), this becomes equivalent to
4(ωp)2

ω3c = 0; therefore, we would have t1 = 0 only in the limit of infinite frequencyω→ +∞.

However, we also know that viscosity disappears in the high-frequency collisionless limit

as ν(ω)∝ 1
1−iωτ̄ , with τ̄∝ τ~k, so that, even in this limit, the mode n2(ω) is completely

suppressed for all frequencies.

The other condition, n2iλsk = 1, leads to an equation which can never be satisfied for a real

and positive frequencyω> 0. Since the treatment for the mode n1 is completely equivalent

by interchanging the labels {1,2}, we conclude that it is not possible to completely separate

one viscous optical mode from the other at an interface, but the two modes always come

together; this is reasonable, since outside the viscous material only the coherent sum of

the electric fields from the two modes matters [12].
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Appendix D
Derivation of Landau quasiparticle

scattering time

In a Fermi liquid, short-range quasiparticle residual interactions at the Fermi surface

are usually expressed in terms of symmetric and antisymmetric Landau parameters F j
l ,

j = {A, S}, as described at the beginning of section 1.5.1 and in appendix A. These quantities

parameterize the bare interactions among quasiparticles. The many-body polarization of

the medium renormalizes these interactions, produces renormalized Landau parameters

[13,23]

Aj
l =

F j
l

1+
F j

l
2l+1

(D.1)

The quantities (D.1) represent the scattering amplitudes between quasiparticles and can

mediate Cooper pairing in superconducting materials [13]. The parameters Aj
l enter into

the Fermi liquid collision time, due to phase-space limitation of quasiparticle scattering

[1,13,23], according to

1
τc
=
(m∗)3∆u

12π2ħh3

�

(ħhω)2 + (πkB T )2
�

®

W (θ ,φ)

cos θ2

¸

(D.2)

where W (θ ,φ) is the transition probability governing inelastic scattering at the Fermi

surface, and {θ ,φ} are the angles between the Fermi momentum ~kF and the excitation

momentum ~q in 3-dimensional space. The brackets 〈〉 represent an average over the solid

angle in momentum space. In s-p approximation [1,13], we consider short-range quasi-

particle interactions only in the angular channels l = {0,1}, comprising both symmetric

and antysimmetric parts. Then, the angular average in equation (D.2) is performed on the
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D. DERIVATION OF LANDAU QUASIPARTICLE SCATTERING TIME

transition probability

W (θ ,φ) =
π

4ħh
[AS(θ ,φ) + At(θ ,φ)]2 +

π

2ħh
[At(θ ,φ)]2 (D.3)

where AS(θ ,φ) = 1
N el

0 (0)

�

(AS
0 − 3AA

0) + (A
S
1 − 3AA

1 cosθ )
�

and

At(θ ,φ) = 1
N el

0 (0)

�

(AS
0 + AA

0) + (A
S
1 + AA

1 cosθ )
�

cosφ are the scattering amplitudes for singlet

and triplet state, respectively [1, 13]. Averaging over the angular coordinates θ and φ

gives
®

W (θ ,φ)

cos θ2

¸

=

∫

sinθdθdφ
4π

W (θ ,φ)

cos θ2
= 12(λt)

2 π5ħh5

(m∗)3E∗F
(D.4)

where 12(λt)2 contains contributions from the Landau interaction parameters
�

AS
0, AA

0, AS
1, AA

1

	

with numerical coefficients, in accordance with equation (B.7) of reference [13]. Inserting

equation (D.4) into equation (D.2) finally yields equation (2.29) quoted in the main text.
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Appendix E

Gor’kov equations with a scattering rate

We derive the BCS gap equation in a basis, in the presence of an energy- and momentum-

independent scattering rate Γ - see also section 1.4.1. The linearized equations at Tc

become

(iω+ iΓ − K0)G (iω) = 1
(iω+ iΓ + K∗0)F †(iω)−∆†G (iω) = 0

and the anomalous function is

F †
µ2µ1
(iω) =

∆∗
µ1µ2

(iω+ iΓ − ξµ1
)(iω+ iΓ + ξµ2

)
.
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E. GOR’KOV EQUATIONS WITH A SCATTERING RATE

In order to perform the Fourier transform we note that

1
β

∑

iω

e−iω0− 1
(iω+ iΓ − ξµ1

)(iω+ iΓ + ξµ2
)
=

i
2π

1
ξµ1
+ ξµ2

∞
∑

n=−∞

�

1

n+ 1
2 +

β

2πi (ξµ2
+ iΓ )

− 1

n+ 1
2 − β

2πi (ξµ1
− iΓ )

�

=
i

2π
1

ξµ1
+ ξµ2

¨∞
∑

n=0

�

1

n+ 1
2 +

β

2πi (ξµ2
+ iΓ )

− 1

n+ 1
2 − β

2πi (ξµ1
− iΓ )

�

+
1

−n+ 1
2 +

β

2πi (ξµ2
+ iΓ )

− 1

−n+ 1
2 − β

2πi (ξµ1
− iΓ )

− 1
1
2 +

β

2πi (ξµ2
+ iΓ )

+
1

1
2 − β

2πi (ξµ1
− iΓ )

«

=
i

2π
1

ξµ1
+ ξµ2

�

−ψ
�

1
2
+
β

2πi
(ξµ2

+ iΓ )
�

+ψ
�

1
2
− β

2πi
(ξµ1
− iΓ )

�

+ψ
�

−1
2
− β

2πi
(ξµ2

+ iΓ )
�

−ψ
�

−1
2
+
β

2πi
(ξµ1
− iΓ )

�

− 1
1
2 +

β

2πi (ξµ2
+ iΓ )

+
1

1
2 − β

2πi (ξµ1
− iΓ )

�

. (E.1)

In equation (E.1), we have utilized the digamma functionψ(z) = limM→+∞
�

ln M −∑M
n=0

1
n+z

�

.

Now we use the property of the digamma function

ψ(−x) =
1
x
+π cot(πx) +ψ(x)

to get

Fµ2µ1
(0−) =∆∗

µ1µ2

i
2

1
ξµ1
+ ξµ2

�

cot
�

π

2
+
β

2i
(ξµ2

+ iΓ )
�

− cot
�

π

2
− β

2i
(ξµ1
− iΓ )

��

=∆∗
µ1µ2

i
2

1
ξµ1
+ ξµ2

�

− tan
�

β

2i
(ξµ2

+ iΓ )
�

+ tan
�

− β
2i
(ξµ1
− iΓ )

��

= −∆∗
µ1µ2

1
ξµ1
+ ξµ2

1
2

�

tanh

�

ξµ1
− iΓ

2kBTc

�

+ tanh

�

ξµ2
+ iΓ

2kBTc

��

.

The gap equation becomes

∆αβ = −
∑

µ1µ2

Vαβµ1µ2

∆µ1µ2

ξµ1
+ ξµ2

1
2

�

tanh

�

ξµ1
+ iΓ

2kBTc

�

+ tanh

�

ξµ2
− iΓ

2kBTc

��

.
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or, with the BCS interaction (3.17):

∆α =
∑

µ1

η2(ξµ1
)VBCSOαµ1

∆µ1

2ξµ1

Re tanh

�

ξµ1
+ iΓ

2kBTc

�

.

Hence, the effect of the scattering rate Γ is to add an imaginary part to the hyperbolic

tangent function tanh
�

ξµ1
+iΓ

2kBTc

�

, with respect to the clean case (4.19), thus reducing Tc.
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�

104, 1000, 100
	

respectively. The slip length is λS → +∞ for all calculations. All other parameters are the

same as in panel (b) of figure 2.7: plasma frequencyωp = 10 eV ; Fermi velocity vF
c = 3.2·10−3;

umklapp efficiency ∆u = 1; temperature kB T = 0.26 meV ; Landau parameters FA
0 = FA

1 = 0,

FS
0 = 1, FS

1 = 6; Debye temperature kBΘD
ħhωp
= 2.6 10−3; Debye constant CD = 0.1ωp s−1. The

three dashed curves are the Drude result, using the same parameters as the full curves of the

nonlocal theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.9 Real part of the refractive indexes Re {ni} i = {1,2} for the degenerate optical modes as a

function of normalized frequency ω
ωp

, for a Fermi liquid coupled to acoustic phonons. All

parameters are the same as in figure 2.7: plasma frequency ωp = 10 eV ; Fermi velocity
vF
c = 3.2 · 10−3; umklapp efficiency ∆u = 1; Landau parameters FA

0 = FA
1 = 0, FS

0 = 1,

FS
1 = 6; Debye temperature kBΘD

ħhωp
= 2.6 10−3; Debye constant CD = 0.1ωp s−1. Panel (a)
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3.1 Frequency evolution of the electron-electron effective interaction mediated by coupling to a

Debye phonon spectrum (3.14), characterized by the Debye frequency ωD and the interaction

strength VD. The blue curve shows effective interaction according to equation (3.14). The
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¬

V e f f
el−el

¶

Ω
up to the

Debye frequency, in accordance with equation (3.15). . . . . . . . . . . . . . . . . . . . . . . . . 117
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reference [126]. Green triangles represent Tc estimated at 50 % of the resistive transition for

Nb-doped SrTiO3 single crystals measured at the university of Geneva [125,127]. . . . . . . 130
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