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Preface

To Professor Tinkham on his 75th Birthday

This festschrift of Journal of Superconductivity
is dedicated to Professor Michael Tinkham on the
occasion of his 75th birthday. As a true scientist, an
excellent mentor, and a kind-hearted person, his col-
leagues, students, and friends are honored to present
this collection of memoirs and papers.

Mike Tinkham has been a defining figure in
the field of superconductivity for half a century. He
had done pioneering experiments and applied the-
oretical physics to experimental data to obtain a
deep understanding of superconductivity. Professor
Tinkham’s work has spanned many areas: infrared
spectroscopy, vortex physics, Josephson effect, and
mesoscopic systems. Of seminal importance, he was
the first to show spectroscopic evidence of supercon-
ducting energy gap preceding the BCS theory; he
made important contributions to the understanding
of nonequilibrium effects in superconductors; and he
established the famous Blonder–Tinkham–Klapwijk
(BTK) model describing Andreev reflection and
related tunneling phenomena. Many of the papers in
this issue reflect his influence on these fields. The pa-
pers have been arranged together with biographical
reminiscences.

It is a pleasure to thank all the authors for their
contributions to this special issue. Thanks are also
due to Dr. Vladmir Kresin for his encouragement
and patient assistance to make this issue come true.

Let’s all join together in sending our warmest
wishes to Mike, his wife Mary, and their family.

Jia Grace Lu
Guest Editor
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Pairing, Magnetic Spin Fluctuations, and Superconductivity
Near a Quantum Critical Point

J. R. Schrieffer1

Received August 15, 2004; accepted September 4, 2004

The properties of a wide variety of intermetallic compounds exhibiting magnetic localized
spin and superconducting fluctuations near a quantum critical point (QCP) are reviewed.
They show highly anomalous critical indices (anomalously small). Laws of corresponding are
observed in these materials and a theory is presented which gives a fully quantitative expla-
nation of these laws. The theory employs a gauge transformation which rotates the electron
spin quantization axis ẑ into the direction of the instantaneous staggered localized spin di-
rection �M(�r, t) = �M0(�r, t) cos �Q · �r, where �Q is the localized spin array wave vector. Many
properties of these materials are worked out on the basis of this theory. The technological
promise of these substances is truly immense, including energy generation, storage and trans-
mission, MRI magnets, industrial and scientific magnets, maglev, cellular communications,
µ-wave electronics, etc.

KEY WORDS: Magnetic spin fluctuations; quantum critical point; high Tc.

1. INTRODUCTION

The critical indices corresponding to the spin
susceptibility χ( �Q, ω, T), in a large number of fer-
romagnetic and antiferromagnetic intermetallic com-
pounds and the specific heat CV(T), as well as many
other quantities, exhibit critical indices which are
highly anomalous (i.e., exceedingly small). For exam-
ple, it is found that near the Quantum critical point
QCP [1],

χ( �Q, ωn = 0, T) ∝ 1/Tγ, γ � 0.14. (1)

Also, the specific heat CV(T) is found to obey

CV(T) ∝ ln(T/T0), (2)

over a wide range of T/T0 about the QCP. Thus a
law of corresponding states exists. Here we present
a theory which explains this anomalous behavior [2].
It is known that

χ0( �Q, ωn = 0, T) ∝ 1/(T − TN) (3)

1Department of Physics and NHMFL, Florida State University,
Tallahassee, Florida 32310.

and

C0V(T) ∝ T (4)

in a mean field approach.
Hertz [3], in his pioneering studies of the QCP

in ferromagnetic materials, used a fermion functional
integral action SH worked out to fourth order in
the spin fluctuation field (i.e., the one fermion loop
level) and found highly anomalous critical indices
near the QCP, although he did not investigate χ

and CV. In later studies, Millis [4] confirmed Hertz’s
results results in a calculation at a higher loop level.
Further studies [5–11] excluding the present work,
have shed little additional light on these remarkable
phenomena.

For clarity we study the spin fermion model

H(t)SF = −
∑
ij s

tij ψ
†
isψis + J

∑
iss′

ψ
†
isψis′ �σss′ · �Si(t), (5)

where ψ†, ψ, and �S satisfy

{ψ†
is, ψj s′ } = δij δss′ (6)

and

[Siα, Sjβ] = ihSγδij , (7)

with α, β, and γ being related cyclically.
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We have explored these anomalous phenomena
in the Hubbard model and find nearly identical re-
sults to those presented here, although the analysis is
far more complex.

To carry through the analysis, we exploit the
slow spatial and temporal variation of the critical de-
grees of freedom near the QCP. By making a WKB-
like adiabatic unitary transformation U(t), which ro-
tates the electron-spin quantization axis ẑ to that of
the direction of the local instantaneous staggered
magnetization,

�Mi(t) ≡ cos �Q · �ri �Si(t), (8)

we obtain rapid convergence of all observable quan-
tities, near the QCP, such as χ(T), CV(T), etc. We find
excellent agreement of all observable quantities with
experiment. A preliminary discussion of this theory
was published [12] in the Journal of Low Temper-
ature Physics in 1998. A more recent account was
published in Physical Review Letters [2]. Here we re-
view this theory and apply it to many experimental
observables.

2. SPIN-ROTATION TRANSFORMATION

We define the unitary electron-spin rotation
operator U(t) as

U(t) = T e
i
2

∑
iss′ ψ

†
is(t)�σss′ · �	i(t)ψ is′ (t) (9)

Here �	i(t) is the vector electron spin rotation angle,
defined by

�	i(t) = sin−1 |ẑ × �Mi(t)| · ẑ × �Mi(t)

|ẑ × �Mi(t)| (10)

Making the transformation,

H̄(t) = U†(t)HU(t), (11)

we find

H̄(t) = H0(t) + Hsdp(t) + Hdia(t) + H̄J (t), (12)

where H0(t) is given by the electron hopping in the
rotated basis s̄, by

H0(t) = −
∑
ij s̄

tij ψ
†
is̄ψj s̄. (13)

We find Hsdp is given by

Hsdp(t) = −
∑
iss′

tij ψ
†
is(t)�σss′ · �∇iψis′(t) ·

×[ �∇ri
�	(�ri, t) + �	(�ri, t) �∇ri ], (14)

Hsdp is the spin deformation potential, analogous to
the electron–phonon deformation potential Hel-ph in
solids [13],

Hel-ph(t) =
∑
isλ

gλψ
†
is(t)ψj s(t)(�ri − �rj ) · �∇ �ui(t) · ε̂λi

(15)

where (�ri − �rj ) · �∇�ui(t) · ε̂λi is the local lattice dilation
and gλ is the electron–phonon deformation potential
constant (units of energy/length where λ) which is
typically of order 1 − 4eV/Å in solids.

In addition, there is a diamagnetic-like coupling

Hdia(t) =
∑

is

tij ψ
†
is(t)ψist)|∇i �	i(t)|2, (16)

similar to the A2 term of QCD. For a free electron
band, H can be written as

H̄(t) = − h2

2m

∑
s

∫
d�rψ†

s (r, t)∇2ψs(�r, t)

− h2

2m

∑
ss′

∫
d�rψ†

s (�r, t)�σss′ · �∇ψs′(�r, t) ·

×[ �∇ �	(�r, t) + �	(r, t) �∇]

+
∑

s

∫
d�rψ†

is(�r, t)ψj (�r, t)|∇	(t)|2

+ J
∑
s̄s̄′

∫
d�rψ†

s̄ (�r, t)�σs̄s̄′ · �S(�r, t)ψs̄′(�r, t), (17)

where s̄ is quantized along the instantanous stag-
gered magnetization �M(�r, t). More compactly, H̄ can
be written as

H̄(t) = − h2

2m

∑
ss′

∫
dr̃ψ†

s (r, t)(∇̃δss′ + i �Ass′(�r, t))

× (∇δss′ ti �Ass′(�r, t))ψs(�r, t)

+ J
∑

s̄′

∫
d�rψ†

s̄ σS̄s̄s̄ψs̄SS̄(�r, t), (18)

�Ass′(�r, t) is defined by

�Ass′(�r, t) ≡ �σss′ · ( �∇ �	(�r, t) + �	(�r, t) �∇) (19)

It is Hsdp and Hdia that lead to the anomalous critical
indices near the QCP [1].

While the discussion to this point is exact it is
useful to make the pairing correlations explicit by in-
troducing the Gor’kov two component spinor ψ†

s (r, t)
[14] defined by

ψ†
s (�r, t) = [ψ†

s (�r, t), ψ−s(�r, t)]. (20)
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Fig. 1. Gor’kov self-energy �(k, ωn, T) in the one-loop approxi-
mation.

We introduce the Pauli pseudo spin matrices,

τi=0,1,2,3 (21)

where τ0 is the unit pseudo-spin matrix.
It is straightforward to see that the electrons

couple to the charge and spin through the vertices
τ3 for charge and τ0 for spin [14]. All of our calcu-
lations are manifestly gauge invariant, as opposed to
the original BCS calculations.

3. Tc AND THE GAP EQUATION

As in BCS, Tc is determined by the linearized
gap equation. The first remarkable fact is that Hsdp

leads to p-wave (l = 1, s = 1) pairing for ferromag-
netic spin fluctuations, at a remarkably high tem-
perature of order Tc � 30,000◦ K. Hdia and H̄J lead
to d-wave (l = 2, s = 0) and s-wave (l = 0, s = 0)
pairing, as in the work of Scalapino [15] and of
Pines [16], where H̄J plays the role of the weak
electron–phonon coupling. As we will see below,
Tc is highest for p-wave (l = 1, s = 1) pairing and
it should be readily observed in electron tunnel-
ing, ARPES, CV(T), χ(Q, ω, T) neutron scattering
measurements, Raman, IR, λ(T), KT(T), etc. These
and many other measurements should show highly
anomalous properties near the QCP [2].

The Gor’kov (see Fig. 1) one-electron self-
energy [17] is given at the one loop level by

�(�k, ωn, Tc) = −
∑
Q,ωm

[V( �Q, ωn, T)

×G(�k+ �Q, ωn − ωm, T)], (22)

where V is the pairing interaction arising from Hsdp,
Hdia, and H̄J , with ωn = 2nπkBT and ωm = (2m +
1)πkBT. The gap equation [14] (see Fig. 1) is given
for the complex pairing order parameter �(�k, ωn, T)
by

�(�k, ωn, T) = −
∑
Q,ωm

1

Z(�k, ωn, T)
[V( �Q, ωm) (23)

G( �Q + �k, ωn − ωm, T)]12

The normal state renormalization function
Z(�k, ωn, T) is given by [14]

iωnZ(k, ωn, T) = −1
2

∑
�Q,ωm

[V( �Q, ωm, T)

×G(�k+ �Q, ωn − ωm, T)]11+22 (24)

and the renormalized kinetic energy ε̄ is defined by

ε̄(k, ωn, T) ≡ εk + χ̄(k, ωn, T), (25)

where χ̄ is given by

χ̄(k, ωn, T) = −1
2

∑
Qωm

[V(Q, ωm, T)

×G(k+ Q, ωn + ωm, T)]11−22. (26)

4. SUPER-HIGH Tc (SHTC)

For the p-wave (l = 1, s = 1) phase Tc is given
for a square potential model [14] as

kBTc = 1.14ωs e− 1+λz
λV , (27)

where

hωs = J 2

W
, (28)

is the spin fluctuation frequency. The renormaliza-
tion constant λZ for l = 1 is zero due to the p-wave
character of the potential in (24).

λV =
(

W
J

)2

. (29)

Maximizing Tc for fixed W, we find

(kBTc)max = 1.14
J 2

W
e
− 1

λV,max , (30)

with

λV,max = W2

J 2
= 1. (31)

for W = 10 eV, Tc max is given by,

Tc = 1.14W e−1 � 30, 000 K (32)

Plotting ln Tc/W vs. J/W (see Fig(2)) we find Tc

remains relatively stable for 0.5 ≤ J/W ≤ 5. This
gives the advantage that Tc is highly insensitive to im-
purity concentration, fluctuations, etc., a fact of great
importance in technological as well as scientific appli-
cations of SHTC. For J/W > 5, one enters the Kondo
spin compensated regime.
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5. THERMODYNAMICS

The grand potential �(T) is given by

�(T) = −kBT ln TrT e−β(H̄−µNel) (33)

where µ is the electrochemical potential. CV(T) is
given by

CV(T) = − d
dT

�(T) (34)

Within the random phase approximation, �(T)
is given by

�RPA(T) = −1
2

∑
�Q,ωn,s

Tr V( �Q, ωn, T)�0( �Q, ωn, T)

×
[

1 − 1
2

Tr V( �Q, ωn, T)�0( �Q, ωn, T)

]−1

(35)

(see Fig. 3). The zeroth-order irreducible polarizabil-
ity is defined by

�0 ≡ −2
∑
k,ωm

G0(�k+ �Q, ωn + ωm, T)G0(�k, ωn, T)

(36)

where the factor of 2 arises from the spin sum in the
fermion loop.

Fig. 2. The phase diagram of the t − J model, showing the conven-
tional nearly antiferromagnetic fermi liquid of Scalapins and Pines
valid for J ≤ 0.01 W, where J is the electron localized spin ex-
change coupling and W is the electronic band width. For 0.01 W ≤
J ≤ 10 W a novel p-wave, (l = 1, s = 1) phase is predicted with an
extremely high TC of immense technological importance (see the
text). In this phase the existence of Leggett-like collective modes
is predicted, corresponding to an oscillation at frequency ωL of the
angle between �L and �s of a pair. However, here the novel strong
spin deformation raises ωL to a high value near IR range vs. the
low frequency of superfluid 3He, where the spin orbit coupling Hso
is extremely weak.

Fig. 3. RPA Grand canonical potential �RPA(T).

6. ELECTRON TUNNELING, ARPES
MEASUREMENTS, AND COLLECTIVE
(LEGGETT) MODES

As Bardeen showed, the Giaever differential
tunnelling conductance is given by

dI
dV

∝ Im G(�k, eV, T)11+22. (37)

This should show p-wave (l = 1, s = 1) pseudogap
behavior in the SHTC phase.

The ARPES differential cross section is given by

dσ

d�kdω
∝ ImG(k, ω, T)11+22, (38)

and should demonstrate p-wave (l = 1, s = 1) pseu-
dogap behavior, as will the London penetration
depth λ(T).

7. MAGNETIC SPIN SUSCEPTIBILITY
AND NEUTRON SCATTERING

The dynamic electronic spin susceptibility is
given by

χ( �Q, ωm, T)αβ = µB

∑
kss′ωn

ψ†
s (�k+ �Q, ωn + ωm)�σαss′ψs

× (�k, ωn, T)ψ†
s̄′(k− Q, ωn − ωm)

× �σβs̄s̄′ψs̄′(k, ωn) (39)

The results of the present theory agree very well with
the observed neutron scattering spectra [1].

8. ACOUSTIC ATTENUATION

The acoustic attenuation rate is given by

αλ( �Q, ωm) = −g2
λ

∑
k,ωn,s,s′,s̄,s̄′

ImTr[τ3ss′Gss′(�k+ �Q, ωn

+ωm, T)τ3s̄s̄′Gs̄s̄′(�k, ωn, T)]. (40)

α should show power law T behavior at low T cor-
responding to the pseudogap behavior of the p-wave
(l = 1, s = 1) phase.
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9. NMR

The 1/T NMR relaxation rate of p-wave l = 1,
s = 1 pairing is given by

1
T1

∝ lim
ω→0

Im
χ(Q, ω, T)

ω
coth−1(ω/kBT). (41)

1/T1 should also show p-wave l = 1, s = 1 pairing
analogous to the power law behavior observed for
the d-wave, l = 2, s = 0 pairing of conventional high-
temperature superconductors.

10. IR AND OPTICAL ABSORPTION PLUS
THE ELCTRONIC RAMAN SCATTERING

The complex dynamic electromagenetic conduc-
tivity is given by

σαβ( �Q, ωn, T) = −e2

(
h2

2m

)2 ∫
dt dt′

∑
ss′ s̄s̄′k

×〈T [ψ†
s (�k+ �Qt)τ3 ss′ψs′(�k, t)ψ†

s̄

× (�k− �Qt′)ψs̄′(�k, t′)]〉 eiωn(t−t′). (42)

The function should also show power law pseudo-
gap behavior, characteristic of p-wave (l = 1, s = 1)
parining.

11. CONCLUSIONS

We have given an account of the observable
properties of novel SHTC materials [2]. These ma-
terials are predicted to exhibit highly anomalous
behavior, in that (1) the critical indices are highly
anomalous (being small) near the QCP, and (2) the
properties should show power law T dependence at
low T, reflecting p-wave, (l = 1, s = 1) pairing with a
tremendously high Tc ≥ 30,000◦ K.

The potential for applications of SHTS to elec-
tric power generation, storage and transmission,

MRI, ma-glev, industrial and scientific magnets, and
µ-wave electronics should be tremendous. Since
these materials involve coupled pairing and mag-
netic spin fluctuations, highly nonlinear electrody-
namic properties should be observed, with applica-
tions in communication, computers, etc.
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Bolometric Detectors for Measurements
of the Cosmic Microwave Background

P. L. Richards1
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Measurements of the Cosmic Microwave Background radiation provide the strongest sup-
port for the standard model of Inflationary Big Bang Cosmology. This paper sketches the
impact of past and future CMB measurements on this rapidly developing field. Cryogenic
millimeter wave bolometric detectors contribute strongly to this important experimental ef-
fort. The first such detectors were developed in the laboratory of Professor Michael Tinkham
in the Berkeley Physics Department in the late 1950s. This development was first driven by
the study of the superconducting energy gap, and other spectroscopy of other condensed mat-
ter systems. Later, it was driven very strongly, by the requirements for measurements of the
CMB. This interaction between bolometer developments and the requirements of specific
measurements is described. Until the past few years, the most useful bolometers had semi-
conductor thermistors and JFET readout amplifiers. The new superconducting voltage biased
Transition Edge Sensor (TES) bolometers with SQUID readouts are beginning to have an
impact and are expected to be the technology of choice in the future.

KEY WORDS: cosmic microwave background; bolometric detectors; superconducting devices.

1. INTRODUCTION

The Cosmic Microwave Background radiation
(CMB) is the oldest electromagnetic radiation that
reaches the earth. Observations of the CMB give
a detailed picture of the universe 380,000 years af-
ter the Big Bang, and strongly support standard Big
Bang Cosmology. The smoothness of this radiation
supports the idea of an inflationary expansion of the
Universe at an early epoch. The black body spectrum
shows that the early Universe was very close to ther-
mal equilibrium. It constrains energy release in the
Universe back to about 2 months after the Big Bang.
Small anisotropies in the temperature of the CMB
provide a record of the interaction between mat-
ter and radiation. On scales of tens of degrees, this
anisotropy tell us about the primordial fluctuations
created by quantum fluctuations during the époque
of Inflation. The anisotropy on degree scales con-
firms the 35-year-old theory that acoustic waves mod-

1Department of Physics, University of California, Berkeley,
California 94720-7300.

ify the primordial fluctuations and play a dominant
role in the formation of structure in the Universe.
The angular power spectrum of this anisotropy shows
that structures observed on the far side of the observ-
able Universe are neither magnified nor demagnified.
This means that space is not curved, but flat over the
largest observable distances. Therefore, the average
density of mass-energy in the Universe is at the crit-
ical value. It also provides much information about
the contents of the Universe, giving strong support to
the picture that ordinary Baryonic Matter makes up
only 4% of the Universe, that Dark Matter is 23%
and that Dark Energy is 72%. This astonishing re-
sult is also strongly supported by measurements of
the brightness and redshift of the most distant su-
perenovas and by counts of the numbers of clusters
of galaxies as a function of redshift. The existence
of Dark Matter has been recognized for many years
from its gravitational effects. It is thought to be ex-
otic particles left over from the Big Bang, that have
not yet been detected directly. Dark Energy interacts
by gravity and by a pressure that is causing the ex-
pansion of the universe to accelerate. Understanding

545
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the nature of Dark Energy has been called the most
important current problem in fundamental Physics.
This standard cosmological model has been discussed
in many hundreds of publications [1,2].

There is much current interest in measurements
of the temperature anisotropy of the CMB on an-
gular scales less than 10 arcmin. Scattering of CMB
photons passing through the plasma of hot electrons
trapped by gravity in clusters of galaxies shifts the
photons to higher energies. This decreases the bright-
ness below the peak in the black body curve and in-
creases the brightness above the peak. Detailed stud-
ies of this Sunyaev-Zeldovich effect can provide a
wealth of information including a value of the Hub-
ble constant and large scale flows from peculiar ve-
locities. Because the temperature of the CMB in-
creases with redshift, the surface brightness of the SZ
features does not decrease with the distance to the
cluster. For this reason, the SZ effect is an excellent
way to locate clusters of galaxies back to the epoch
of cluster formation. In the future, large area SZ sur-
veys, coupled with redshifts from optical follow-up,
will test theories of structure development, and con-
strain the equation of state of the Dark Energy.

Observations of the anisotropy of the
polarization of the CMB have the potential to
provide information about the Universe near the in-
stant of its birth. Some mechanisms for polarization,
such as scattering from density fluctuations, produce
so-called E-mode Polarization, which has no curl-like
component. Measurements of this E-Mode Polariza-
tion are already providing additional confirmation of
the standard cosmological model and contributing to
our knowledge of important cosmological constants.
Gravitational waves created during Inflation are
thought to have imprinted a different and distinctive
Curl-like pattern on the CMB radiation called the B-
Mode Polarization. The detection of this extremely
small B-Mode Polarization would be a great triumph
for inflationary cosmology, providing us a picture
of physical processes in the Universe at the time of
Inflation, which is thought to have occurred about
10−34 seconds after the Big Bang. It would provide
information about particle physics on energy scales
that cannot be reached with any conceivable man
made particle accelerator.

2. DETECTORS FOR CMB MEASUREMENTS

One approach to CMB measurements at mil-
limeter wavelengths is to use low noise transistor

amplifiers based on high electron mobility (HEMT)
Transistors. A typical receiver includes a conical an-
tenna, a HEMT amplifier, a band pass filter, and a
diode detector. The HEMT amplifiers can be cooled
to ∼20 K to minimize their noise. Microwave inte-
grated circuit (MIMIC) techniques and new mate-
rials are improving manufacturability and high fre-
quency performance and reducing the noise in these
amplifiers. Because linear phase-conserving amplifi-
cation is involved, HEMT receivers are subject to
quantum noise, which corresponds to a fluctuation
of ± 1 in the number of photons in the amplifier
on the time scale set by the inverse of the band-
width. Reasonable projections of the development of
HEMT receivers suggests that in the next few years
they will have noise equal to ∼3 times the quan-
tum limit in bandwidths of 20–30% for frequencies
up ∼100 GHz. HEMT amplifiers have been used
in many CMB temperature anisotropy and polar-
ization anisotropy experiments. The largest instru-
ments use arrays of 10–15 receivers. In principle,
much larger arrays of HEMT amplifiers could be
used. Aperture synthesis interferometers, which use
HEMT amplifiers, are useful for CMB anisotropy
experiments. After amplification, the same signals
are combined with different baselines to simultane-
ously measure many different spatial frequencies on
the sky.

Bolometers are thermal detectors, which consist
of an absorbing element, a resistive thermometer to
measure the temperature, and a weak thermal con-
nection to a heat sink at some low temperature. As
there is no phase conserving amplification involved
in the detection process, bolometers do not produce
quantum noise. Bolometric receivers use cooled baf-
fles and filters to minimize the photons from sources
other than the in-band signal from the CMB. Mod-
ern low background bolometric receivers can be pho-
ton noise limited on the signal from the CMB itself in
bandwidths of 20–30%. They have optical efficiencies
>50%, values of the noise equivalent power (NEP)
as low as 10−18 WHz−1/2 and use heat sink tempera-
tures as low as 100 MK.

A comparison between the sensitivities of
HEMT and bolometer receivers depends on both
the rate of arrival of the detected photons and their
correlations. If the photon occupation number is
unity, as is the case when observing a black body
in the Rayleigh-Jeans limit, then the correlated pho-
ton noise is exactly the same as the quantum noise.
In practice, the sensitivities of optimized single po-
larization bolometers and HEMTS are essentially
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the same for CMB measurement at frequencies up
to ∼60 GHz. At frequencies approaching the peak
of the black body curve, however, the photon oc-
cupation number falls below unity, the photon cor-
relations disappear, and the performance of photon
noise limited bolometric receivers becomes rapidly
better than that of quantum noise limited HEMT
receivers.

Due to the efforts of many dedicated workers,
the NEP available from bolometers optimized for
low backgrounds had improved from ∼3 × 10−11 in
the late 1950’s to ∼3 × 10−19 Whz−1/2 by the late
1990’s. This corresponds to an increase in the speed
of measurement by a factor 1016 for a single pixel.
Since focal planes of ∼100 pixels were coming into
use, the speed of the most capable systems had in-
creased by a factor 1018 in 40 years. The correspond-
ing doubling of the speed every 12 months is more
dramatic than the 18-month doubling time for the
speed of digital computation. Measurements of the
CMB that are routine today were inconceivable only
a few years ago. However, since the sensitivities of
HEMT receivers below 100 GHz and of bolometric
receivers are approaching the photon noise limit, fu-
ture improvements in CMB measurements will come
from the use of larger arrays.

3. HISTORY OF CRYOGENIC MILLIMETER
WAVE BOLOMETERS

In the late 1950s, I was a Graduate Student in
the laboratory of Professor Michael Tinkham in the
Physics Department of the University of California
at Berkeley. My assignment, in the early days of the
BCS theory, was to show that superconducting Pb
has an energy gap. The technique that Mike sug-
gested was to measure the reflectivity of Pb as a func-
tion of frequency at millimeter and submillimeter
wavelengths. Fellow graduate student Don Ginsberg
was measuring the transmittance of superconduct-
ing films in the same wavelength range. We used a
Mercury arc source, a diffraction grating spectrome-
ter, and a Golay pneumatic detector. In my experi-
ment, Light pipes were used to convey the radiation
from the spectrometer to a cold Pb cavity and out to
the room temperature detector. At a critical stage in
these experiments, a paper arrived from Boyle and
Rogers [3] at Bell Laboratories reporting the devel-
opment of a cryogenic infrared bolometer made from
a flake of material taken from a carbon radio resis-
tor. I quickly reproduced this device, increasing its

area and thickness to absorb Millimeter wavelengths.
My experiment was well adapted to bolometric de-
tection. The input light pipe limited the short wave-
length background radiation on the bolometer, which
was located in the cavity. It was no longer necessary
to convey the radiation out of the cryostat to a room
temperature detector. This experiment gave the first
unambiguous evidence for a clean superconducting
energy gap and gave gap widths close to the BCS pre-
diction in several superconductors [4].

In the early 1960s at Bell Laboratories, I devel-
oped far-infrared and millimeter-wave Fourier trans-
form spectroscopy with bolometric detectors to mea-
sure low lying excitations in many condensed mat-
ter systems. Following a suggestion by Ted Geballe,
I experimented with bolometers made from doped
Ge. As expected, they had much lower noise than
the resistor material, but they did not absorb mil-
limeter waves well. The bolometers had to be very
thick and the resulting heat capacity caused very slow
response. I even tried a composite structure with a
carbon resistor absorber and a doped Ge thermistor.
The heat capacity was still high, but even this clumsy
device was useful at the time. At this time a paper
arrived from Frank Low [5] at Texas Instruments de-
scribing his doped Ge far infrared bolometer. He was
doing astronomy in the 100 µm wavelength range
where absorption in the doped Ge was not a prob-
lem, so his bolometer worked very well.

I did not find a solution to the absorption prob-
lem until after I returned to Berkeley and set out
to measure the spectrum of the CMB. The answer
was a thin metal film absorber on the thinnest pos-
sible dielectric substrate. We used Bi film absorbers
with sheet resistances of 200 ohms per square de-
posited on 30-µm thick sapphire substrates to ab-
sorb free space radiation efficiently. Current designs
use 377 ohms per square absorbers on 1-µm thick
membranes of silicon or silicon nitride. A reflecting
backshort produces nearly perfect absorption in use-
ful bandwidths. Using this approach, bolometers with
the large areas necessary for millimeter-wave experi-
ments can be made with adequate speed of response.
This idea was first announced in connection with a su-
perconducting bolometer development done in col-
laboration with John Clarke [6]. At the time it was
believed that superconducting thermistors had less
low-frequency noise than doped Ge. The observed
noise was low, but the reason was the careful temper-
ature regulation implemented to keep the bolometer
operating on the superconducting transition. It was
immediately clear that composite bolometers made
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with metal film absorbers attached to small doped
germanium thermistors were useful and convenient.
It took some time to realize that ideal performance
could be obtained, limited only by thermodynamic
energy fluctuations and/or photon noise.

In the early 1970s David Woody and I (with
early contributions from John Mather) measured the
spectrum of the CMB from a stratospheric balloon,
using a Winston horn antenna, a Martin-Puplett po-
larizing interferometer, and a composite bolometer
[7]. For more than a decade, this balloon experiment
provided the best evidence that the CMB has a black
body spectrum. This was the first use of a 3He-cooled
bolometer in astronomy. Tinkham student Al Sievers
at Cornell had previously pioneered the use of such
cold bolometers for the spectroscopy of solids. Many
of the technologies developed for this experiment
were used in the very accurate FIRAS measurement
of the CMB spectrum on the COBE spacecraft [8].

The desire to search for the very small
degree-scale anisotropies of the CMB drove a new
generation of bolometer development. I encouraged
Eugene Haller to produce small thermistors of neu-
tron transmutation doped (NTD) Ge with ion im-
planted contacts, which are now used worldwide. Our
Balloon CMB anisotropy experiment MAX (with
Andrew Lange, Phil Lubin, and George Smoot) de-
veloped measurement techniques and demonstrated
the power of the balloon approach. It made the
first observations of the degree scale anisotropies [9]
at the time when the COBE spacecraft measured
the primordial fluctuations at larger angular scales
[10] For the later MAX flights, we used composite
bolometers cooled to 100 mK by an adiabatic demag-
netization refrigerator. I reviewed the status of bolo-
metric detectors at that time [11].

The next big step in bolometer development was
carried out by Andrew Lange and Ernst Kreysa, who
did part of their work at Berkeley.Their bolome-
ters use metal film absorbers on silicon nitride mem-
branes with a reflecting backshort. The metallized
membranes developed by Lange and Jamie Bok are
patterned into a mesh or “spider web” to minimize
heat capacity and cosmic ray cross section. The metal
absorber has an average sheet resistance of 377 ohms
per square. The NTD-Ge thermistors are current-
biased, and read out through JFET amplifiers which
operate at ∼100 K to minimize their noise. An AC
bias is used when very good low frequency stability is
required. These devices have been perfected by the
Caltech/JPL group and are used in a large number of
important CMB anisotropy experiments.

My group (including Shaul Hanany, Adrian Lee,
Andrew Lange, and many others) built the MAX-
IMA balloon CMB anisotropy experiment using
an array of 16 JPL bolometers at 100 mK. This
provided the first test of the 100-mK spider web
technology that is incorporated in the forthcom-
ing Plank Surveyor spacecraft. We produced an
accurate millimeter wave map of 100 square de-
gree of the sky. The analysis of the Maxima data
[12] presented in the spring of 2000, agreed well
with the results of the Boomerang experiment,
which were released a week earlier [13]. The agree-
ment between these two independent experiments
showed that systematic errors had been adequately
controlled. Together, the results convinced an ex-
cited community that the acoustic mode model
of structure formation in the Universe was cor-
rect and that the Universe is flat. In 2003, the
results from the WMAP spacecraft confirmed the
MAXIMA results exactly and made large improve-
ments in our knowledge of important cosmological
constants [2].

Polarization-sensitive bolometers are made by
replacing the mesh absorber with a one dimensional
grid supported on a mesh of silicon nitride. Dual po-
larization bolometers have two closely separated or-
thogonal grids. Each grid is attached to a separate
thermistor and each is sensitive to a different linear
polarization. Dual polarization bolometers from Cal-
tech/JPL will be used on the next generation of CMB
polarization anisotropy experiments.

The current generation of bolometers gives ex-
cellent performance in many applications, but there
are practical limits to the number of pixels that can be
used. The JFET amplifiers limit the ability to produce
arrays of more than a few hundred pixels. In addition
to thermal and microphonics issues, the relatively
poor amplifier noise margin causes system problems.
Fortunately, very promising new approaches are un-
der active development. The voltage-biased super-
conducting bolometer with a voltage-biased super-
conducting transition edge sensor (TES) and SQUID
readout amplifier is a negative-feedback thermal de-
tector which can be made entirely by thin film depo-
sition and optical lithography. The feedback reduces
the response time, improves the linearity, and iso-
lates the bolometer responsivity from changes in in-
frared loading or heat sink temperature. There is also
some suppression of Johnson noise. The SQUID am-
plifiers operate at bolometer temperatures, dissipate
very little power, and have significant noise margin.
Adrian Lee in our group at Berkeley pioneered the
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development of these bolometers [14,15], which are
now being produced in several laboratories.

In addition, there is work on bolometers for
CMB polarization measurements that are coupled to
the optics by planar lithographed antennas and su-
perconducting microstrip transmission lines. The an-
tennas are inherently polarization sensitive and the
transmission lines can incorporate high performance
microstrip bandpass filters. In essence, the low loss
in superconductors is being used to extend MIMIC
technology to higher frequencies. There is a strong
interest in wideband antennas so that the radiation
reaching one pixel can be divided into several pho-
tometric bands. The transmission lines can branch to
form diplexers so that one antenna can feed bolome-
ters which measure adjacent millimeter wave bands.
Our group in Berkeley is making crossed double-slot
dipole antennas coupled to two bolometers through
microstrip filters. The sum and difference of the out-
puts of the bolometers gives the intensity and de-
gree of polarization of the signal illuminating the
pixel.

Simultaneously with the development of mill-
imeter-wave bolometers, my coworkers and I in-
vented and developed several other detectors and
mixers for far-infrared and millimeter wavelengths.
Some of these, like the Josephson Effect mixer, un-
derwent extensive development, but proved not to
be useful. Others have been very useful for ground,
and/or space astronomy. The stressed Ge photo-
conductor (developed with Eugene Haller) is a di-
rect detector for the 100–200-µm band [16]. It has
been used for a number of aircraft, balloon, and
rocket observations, as well as on the ISO and
Spitzer space observatories. The Superconductor In-
sulator Superconductor (SIS) Quasiparticle Hetero-
dyne Mixer was developed with Tek-Ming Shen
and many others, including Tinkham gratuates Andy
Smith and Dan Prober [17]. It is used in astronom-
ical heterodyne receivers for molecular line obser-
vations from 100 to 600 Ghz in many radio astron-
omy observatories. Nearly 1000 SIS ixers will be used
in the ALMA interferometer, which is beginning
construction.

4. CURRENT BERKELEY PROJECTS

The group that I started at Berkeley in 1966 is
now being led by Adrian Lee. The focus has shifted
to the development of technology to make large for-
mat arrays of voltage-biased superconductiong TES

bolometers and to carry out several major new CMB
projects. The group has grown to include Senior
Scientists: John Clarke, Bill Holzapfel, Adrian Lee,
Paul Richards, and Helmuth, Spieler, as well as Post-
docs: Sherry Cho, Matt Dobbs, Niels Halverson, and
Huan Tran.

Large format arrays of TES bolometers require
output multiplexing to avoid very large numbers of
leads leaving the cryostat. Lines of 30–50 detectors
can be multiplexed before amplification using super-
conducting thin film technology. The NIST group
has developed a time-domain multiplexer which uses
a SQUID for each bolometer to switch the out-
puts sequentially through a single SQUID ammeter.
Our group in Berkeley has pioneered a frequency-
domain multiplexer. Each bolometer in a row is bi-
ased at a different frequency. The signals are then
combined, amplified by a single SQUID amme-
ter, and separated with ambient temperature lock-in
amplifiers.

Bolometric array technology has advanced to
the point that it is attractive to build instru-
ments to survey hundreds of square degrees of
sky at ∼150 GHz to locate clusters of galaxies
with the SZ effect, A European consortium, includ-
ing the MPIFR at Bonn have purchased a 12-m
on-axis ALMA prototype telescope. This Atacama
Pathfinder Experiment (APEX) telescope is now in-
stalled at 5000-m elevation in the Chilean high desert.
Our group is preparing to carry out a 150 GHz SZ
sky survey on this telescope in collaboration with
Bonn. A ∼300 pixel receiver is being built in Berke-
ley using horn-coupled TES spider web bolometers
with a heat sink temperature of 250 mK. The base-
line design calls for one SQUID amplifier per pixel,
but multiplexing will be used if it is ready. In three
seasons of observation it should be possible to sur-
vey 250 square degrees to a noise level of 100 µKCMB

per 0.8-arcmin pixel at 150 GHz. Simulations show
that all galaxy clusters in the field that are larger than
4 × 1014 solar masses will be detected, regardless of
redshift. This survey should increase the number of
known clusters of galaxies by an order of magnitude.
The NSF has funded the 9-meter South Pole Tele-
scope project under the direction of John Carlstrom.
The Berkeley group is designing a 1000-pixel TES
bolometer array with multiplexed readout for this
telescoope to do a more ambitions search for clusters
of galaxies using the SZ effect.

The POLAR BEAR experiment is being de-
veloped by the Berkeley group to measure the
anisotropy of the polarization of the CMB from a
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small ground-based telescope at White Mountain
in California. Polar Bear-I uses an array of 300
dual-polarization, antenna-coupled TES bolometers
operated at 250 mK and configured for measure-
ments at 90, 150, and 270 GHz. With 3 years of obser-
vations, the effective integration time for CMB po-
larization is essentially the same as for the Planck
space mission. Current TES technology develop-
ments will be used to expand the 300 bolometer focal
plane to 2000 multiplexed pixels. In terms of sensi-
tivity and angular scale, this POLAR BEAR-II is the
most capable CMB polarization experiment yet pro-
posed. Even so, the estimated sensitivity is just ade-
quate to measure the contribution to B-mode polar-
ization predicted from inflation at the energy scale
of Grand Unification particle theories. The biggest
challenge of this project is to control systematic er-
rors, so that the sensitivity will produce accurate
results.
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The oscillator-strength sum rule played an important role in the first work on the en-
ergy gap of superconductors by Tinkham. Recently, a small but measurable depletion in
the sum rule integral has been observed at optical frequencies in the cuprates. It has
been suggested that this behavior contradicts what is expected of traditional models of
superconductivity. We disagree with this conclusion. We show that this depletion is con-
sistent with earlier Thermal Difference Reflectance (TDR) measurements and their in-
terpretation within the strong coupling extension of the BCS theory, as evidence of an
electronic contribution to the pairing interaction at energies between 1.0 and 2.0 eV for
these materials. We show quantitative agreement with the magnitude of the depletion and
agreement with recent work with ARPES on the dispersion and lifetime of quasiparti-
cles from the same model. We have located the two transitions responsible for the elec-
tronic contribution from TDR measurements of the thermal derivative of the dielectric
function.

KEY WORDS: pairing interaction; superconductivity; cuprates; phonon mechanism.

1. INTRODUCTION

It is appropriate to note on this occasion that it
was Glover and Tinkham [1], who were the first to
observe directly an energy gap of order kTc in super-
conductors. The superconducting gap � was revealed
by measuring the change of the transmission of far
infrared radiation through films of Pb and Sn on en-
tering the superconducting state. They found a dra-
matic reduction in the conductivity of the supercon-
ductor at energies below approximately 5 kTc. This
reduction depleted the value of the integral of the
real part of the complex, frequency-dependent con-
ductivity σs1(ω) when taken over all frequencies. It
presented a problem at the time as the total value
of this integral, which represents the total number of
electrons contributing to the optical processes at all
frequencies, has to be preserved. This relationship is
known as the oscillator-strength sum rule and can be

1Physics Department, Stanford University, Stanford, California
94305.

2Nove Technologies, 3380 South Lapeer Road, Metamora,
Michigan 48455.

cast in the form:∫ ∞

0
σ1(ω)dω = πne2

2m
(1)

where σ1(ω) is the real part of the optical conduc-
tivity, n is the electron density, and e and m are
the charge and mass of the electron, respectively.
Tinkham and Ferrell [2] were able to explain the
discrepancy and showed that the missing area was
transferred to a delta function at the origin (ω = 0),
which represented the response of the supercurrent
to a dc electric field, thus tying the BCS gap function
to the London response of the superconductor. With
the addition of the delta function at zero frequency,
the measured σs1(ω) data then satisfied the oscillator-
strength sum rule.

Recent studies by Molegraaf et al. [3] on the
high Tc, cuprate superconductor, Bi2Sr2CaCu2O8+δ

using spectroscopic ellipsometry shows a small but
measurable depletion in the area of the oscillator-
strength sum rule in the region between 10,000 and
20,000 cm−1 (1.24 to 2.49 eV) on entering the super-
conducting state. This energy lies well above that of
�, which is approximately 25 meV at temperatures
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well below Tc. Others have obtained similar results
with various interpretations[4]. Molegraaf et al. sug-
gest that such behavior contradicts what would be ex-
pected from traditional models of superconductivity
and argue that this depletion represents a strong in-
dication that superconductivity in the cuprates is un-
conventional. Their experimental observations agree
with our earlier published work [5] on other cuprate
superconductors, but in contrast to their conclu-
sion we argue that this behavior is well described
qualitatively and quantitatively by the proper appli-
cation of the Eliashberg theory [6, 7] with an elec-
tronic interaction added to the phonon pairing inter-
action. At the time the possibility of such an elec-
tronic interaction was first suggested [8] the idea was
considered unconventional, but today we believe it is
more nearly main stream.

Previous work [9–11] by our group had shown
that for all the optimally doped high Tc cuprate
superconductors studied (Tl2Ba2Ca2Cu3O10, Tl2Ba2

CaCu2O8, (BiPb)2Sr2Ca2Cu3O10, YBa2Cu3O7−x, Bi2
Sr2CaCu2O8+δ, and HgBa2CaCu2O6) there exists in
addition to a phonon mediated pairing interaction,
a high-energy, presumably electronic contribution to
the pairing interaction. Our analysis was based on
the optical properties of strongly coupled supercon-
ductors developed by Nam [12] and further refined
by Shaw and Swihart [13] to understand the optical
properties of superconducting Pb films. We found it
was necessary to include an electronic–component to
the pairing interaction, in addition to the electron-
phonon interaction, to account for both the changes
in the optical properties of the material at photon en-
ergies between l.0 and 3.0 eV on entering the super-
conducting state, and the high Tc. The changes in the
optical properties of these materials at Tc are small,
but can be determined with good signal-to-noise ra-
tio with the appropriate technique.

Ellipsometric, and direct reflectance measure-
ments allow changes of the optical properties to be
determined, at best, to an accuracy of a few parts in a
thousand (∼0.3%) at a given energy. On the other
hand at photon frequency ω, the fractional change
of the reflectance on entering the superconducting
state can be expected, on general grounds, to be of
order �2/ω2, which for the cuprates at 1.5 eV and
0.5 Tc is about 0.02%. For this reason we have used
a Thermal Difference Reflectance (TDR) technique
[14] that can measure changes in the reflectance of a
material with temperature at a level of 0.005%. This
technique has enabled us to resolve structure present
in the optical properties of the material on entering

the superconducting state that would be lost in the
noise of conventional reflectance measurements.

2. REFLECTANCE MEASUREMENTS

Our early work used a modified Drude model
[9–11] to describe the optical properties of the nor-
mal state. With this we could account qualitatively
for changes in the optical properties of these cuprates
on entering the superconducting state. However, sig-
nificant deviations between the data and the calcu-
lated changes of reflectance were found for some
of the cuprates, in particular, for Tl2Ba2CaCu2O8.
We believed that these differences were due to the
poor representation of the optical properties of the
normal state by the modified Drude model not to
the inadequacy of the theory. In order to test this
hypothesis we have made a direct determination of
the near-normal reflectance at room temperature of
Tl2Ba2CaCu2O8 over energies from 0.1 to 6.0 eV
and used a Kramers–Kronig analysis [15] to deter-
mine the real and imaginary parts of the frequency-
dependent dielectric function ε(ω), from which the
optical conductivity σ(ω) can be determined in a
model-independent manner. We then used the TDR
technique to determine the changes in the reflectance
of the material with temperature. Using the room
temperature reflectance spectrum, and a series of
TDR spectra collected at successively lower temper-
atures, we obtain the reflectance of the material at
any given temperature.

The Tl2Ba2CaCu2O8 sample was a shiny, high
quality, thin film grown epitaxially on a Mg-O sub-
strate, 7 mm × 7 mm in size, with a Tc of 105 K, man-
ufactured by Dupont Superconductivity, Central Re-
search and Development, Wilmington, DE.

The reflectance spectrum was measured at 300 K
using a single beam, near-normal incidence re-
flectance spectrometer [16] that had a background
noise of 0.3% of the reflectance of a Spectralon [17]
control sample between 0.5 and 6.0 eV, and 0.6% of
the reflectance of a silver control sample between
0.1 and 0.5 eV. In the region from 0.5 to 6.0 eV
four detectors were used. Changes in the observed
reflectance data on switching between detectors was
found to be less that 0.2% of the reflectance of a test
sample. TDR spectra were measured at near-normal
incidence from 300 to 90 K in 10 K increments, with
the sample mounted in a UHV optical chamber. The
baseline noise of the TDR spectrometer was found to
be approximately 0.005% from 0.1 to 5 eV. With the
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measured reflectance spectrum, and TDR spectra ob-
tained on the same sample, but at successively lower
temperatures, we determined the optical reflectance
ratio Rs(ω)/Rn(ω), where the subscripts s and n re-
fer to the superconducting and normal state, respec-
tively. Using this ratio, and the measured Rn(ω), we
obtain Rs(ω). We then use a Kramers–Kronig analy-
sis as described previously to determine σs1(ω)/σn(ω)
over this energy range independent of any model of
the optical properties of the material in the normal
state. These data, shown in Fig. l(a), display structure
in the phonon region and in the region between 1 and
2 eV.

3. DATA ANALYSIS

Shortly after Tinkham’s work on the energy
gap, Mattis and Bardeen [18] calculated σs1(ω)/σn(ω)
within the framework of the BCS theory [19] where
the gap is a fixed energy-independent quantity. Nam
[12] extended this to the strong coupling case tak-
ing into account the retarded nature of the electron–
phonon interaction. The gap function �(ω) now be-
comes energy dependent and complex. As shown by

Fig. 1. (a) Measured value of the ratio Re(σS/σN) for Tl-2212 at
90 K, as a function of photon energy (heavy line), compared to the
Mattis–Bardeen result (light line) for an energy independent gap
of 9 meV; (b) Calculated ratio of Re(σS/σN) as a function of pho-
ton energy assuming a gap function derived from the Eliashberg
Equations using the coupling function G(ω) shown in Fig. 2(a).

Shaw and Swihart [13] this takes the form:

σ
(ω)
s1

σn
= 2

ω

∫ ω/2

�0

dω1

[
Re

{
ω1

[ω2
1 − �(ω1)2]1/2

}

× Re
{

ω − ω1

[(ω − ω1)2 − �(ω − ω1)2]1/2

}

− Re

{
�(ω1)

[ω2
1 − �(ω1)2]1/2

}

× Re
{

�(ω − ω1)
[(ω − ω1)2 − �(ω − ω1)2]1/2

} ]
(2)

The first term is the convolution of the density of
states above and below the Fermi energy, while the
second results from the corresponding case II coher-
ence factors [20]. Here σn(ω) is the optical conduc-
tivity in the normal state and �0 the magnitude of
the Re �(ω) for ω = 0 (i.e. the gap edge). This ex-
pression is valid in both the extreme anomalous and
London limits. The London limit is appropriate for
the cuprates, where the mean free path, l and the co-
herence length, ξ are each much less than the pene-
tration length.

It is known from many studies of phonon-
mediated superconductors that �(ω) peaks at
phonon frequencies where the coupling function
α2F(ω) is large. Furthermore, Shaw and Swihart
showed that at high energies, where ω � �0 the ex-
pression (2) reduces to:

σs1(ω)/σn(ω) ∼ 1 − 2�0 Re{�(ω − �0)}
ω2

ln
2ω

�0
· · ·

(3)
At energies where Re(�(ω)) is large and positive (i.e.
energies where α2F(ω) is large), a characteristic dip
occurs in the ratio σs1(ω)/σn(ω). We use this to help
fit the data.

Note that the only energy dependent part of
Eq. (2) of significance at high energies is the part
that comes from the coherence terms. Our analy-
sis of the optical properties of the cuprates is crit-
ically dependent on the presence of these terms.
Although the existence of such terms is implicit in
the understanding of many experiments including
tunneling, ultrasonic attenuation, and nuclear-spin
relaxation their explicit energy dependence in the
cuprates had not been determined until recently. In
an elegant paper in 2003, Matsui et al. [21], veri-
fied by angle-resolved photoemission spectroscopy
(ARPES) measurements on Bi2Sr2Ca2Cu3O10 the
existence of these coherence terms and their
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BCS [18] energy dependence. These measurements
validate the use of the Nam, and Shaw and Swihart
analysis in the calculation of σs1(ω)/σn(ω) and their
application in what follows.

To fit the σs1(ω)/σn(ω) spectrum obtained from
the measured Rn(ω) and Rs(ω), we replace the
conventional electron–phonon coupling function a
α2F(ω) in the Eliashberg Equations [6] by a gen-
eralized trial function G(ω) that includes a phonon
term and electronic terms near 1.5 eV. We then solve
the Eliashberg Equations on the real-energy axis at
90 K to obtain the mass renormalization function
Z(ω), and the complex superconducting gap func-
tion �(ω) [22]. Using this energy-dependent gap
�(ω) in Eq. (2) we then calculate σs1(ω)/σn(ω),
and adjust G(ω) to get the best fit. The fit is con-
strained by the known Tc and the detailed optical
data. The model Tc is determined by solving for
�(ω) using the trial G(ω) and trial µ∗ for a se-
ries of temperatures, and finding the temperature at
which �(ω) collapses to zero. As anticipated from
Eq. (2), the resultant complex, energy-dependent
gap function �(ω) modulates the ratio σs1(ω)/σn(ω)
near the energies where the peaks in G(ω) occur,
even in the visible region of the spectrum. Good
agreement is obtained between the calculated ra-
tio, Fig. 1b, and the observed one, Fig 1a, with a
minimum set of fitting parameters—just the width
and strength of three terms—one phonon and two
electronic. This is illustrated in Fig. 1 using the
data taken on Tl2Ba2CaCu2O8. For comparison, the
Mattis–Bardeen calculation for a BCS gap of 9 meV
at 90 K is included. Deviations from the Mattis–
Bardeen curve occur in the phonon region and at
the two energies, 1.2 and 1.7 eV—a generalization
of the deviations seen in conventional superconduc-
tors [7,12,13] such as Pb, which occur at the phonon
frequencies.

The phonon and electronic terms can be de-
scribed by an effective coupling constant λ, defined
in the usual way for each of the three regions:

λ = 2
∫ ∞

0
dω

G(ω)
ω

(4)

From the fit we obtain the following: λphonon = 0.91,
λ1.2 eV = 0.114, and λ1.7 eV = 0.294, giving λtotal =
1.318 for Tl2Ba2CaCu2O8. A key feature in explain-
ing the high transition temperature is the strong
phonon contribution plus the high energy electronic
contribution. Neither one alone, yields a high transi-
tion temperature nor is able to account for the optical
properties [22].

Fig. 2. (a) Coupling function G(ω) that gave the best fit to the ex-
perimental data shown in 1(a); (b) Renormalization function Z(ω),
calculated from the Eliashberg equations using G(ω) of 2(a): Re
Z(ω) (heavy line) and Im Z(ω) imaginary (light line); (c) Gap func-
tion �(ω) calculated from the Eliashberg equations using G(ω) of
2(a): Re �(ω) (heavy line) and Im �(ω) imaginary (light line).

In Fig. 2a we plot G(ω) that gave the best fit
to the experimental data. With a µ∗ = 0.15, the re-
sultant real and imaginary parts of Z(ω) calculated
for this G(ω) are shown in Fig. 2b, and the real and
imaginary parts of �(ω) in Fig. 2c. The real part of
Z(ω) is large below the phonon peak and falls rapidly
above this energy. However, unlike a simple strongly
coupled superconductor [7] such as Pb, the real part
of Z(ω) does not fall to unity monotonically above
this energy. Rather, the real part of Z(ω) plateaus
at a value of approximately 1.45 due to the effect
of the electronic coupling terms at higher energies
and peaks again at 1.25 and 1.7 eV before ultimately
approaching 1.0 at much higher energies.

The phonon, and the high-energy components in
G(ω) manifest themselves in the energy dependence
of the superconducting gap function. Below the char-
acteristic energy of the phonon, the real part of �(ω)
remains close to �0. Above the phonon energy, the
real part of �(ω) drops abruptly to near zero, but
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then remains positive up to the energy of the electronic
terms. In contrast, the real part of �(ω) in conven-
tional strongly coupled superconductors changes sign
immediately above the phonon energies and remains
negative at high energies due to the Coulomb pseu-
dopotential µ∗. The absence of this reversal of sign
in the real part of �(ω) gives a characteristic signa-
ture in the superconducting to normal reflectance ra-
tio that indicates the presence of high energy terms
that contribute to the pairing [10,11].

In our model calculation, the real part of �(ω)
rises to about three times �0 at the peak of the elec-
tronic terms then reverses sign above this. Although
the gap in this region is large, its effect on the en-
ergy of the quasi-particles is small (∼0.05%) because
it occurs at such a high energy. The large peak in
the imaginary part of Z(ω) indicates heavy damping
near 2.0 eV and to a lesser extent for energies up
to 3.5 eV.

Having established the fit, the model fixes the
renormalization of the particle velocity through Z(ω)
and the particle lifetime through the imaginary part
of this function. In Fig. 3a we show our calculation
of the quasi-particle dispersion for Tl2Ba2CaCu2O8.
We compare these in Fig. 3b with dispersion curves
of Lanzara et al. [23] on similar materials, in this case
Bi2Sr2CaCu2O8, determined using ARPES and plot-
ted in the same fashion. A similar change of slope of
the curves above and below the phonon peak is seen.
We find 1.85 ± 0.20 for the ratio of these slopes for
Tl2Ba2CaCu2O8, and Lanzara’s data for optimally
doped Bi2Sr2CaCu2O8+δ (δ = 0.16) gives about the
same value ∼1.91 ± 0.10. Our figure also agrees with
data from eight other cuprates reported by Lanzara
et al. in the same paper. The ratio of these slopes is
given approximately by 1 + λphonon for a pure phonon
superconductor but due to the effects of the elec-
tronic terms discussed above this is only a rough
approximation.

Our plot exhibits an upward turn and then
a steep drop immediately after the peak in the
phonon energies due to our choice of a single sharp
Lorentzian electron–phonon contribution centered
at 50 meV, whereas Lanzara’s data has a smoother
change of slope. A more realistic, broader distribu-
tion of phonons in our model calculation would pro-
duce a smoother change of slope in the resulting
quasiparticle dispersion curves. However, Lanzara
et al., noted a sharpening of the kink for dispersions
off the (0, 0) − (π, π) direction in an insert to their
Fig. 1b that shows a steepening of the plot, remark-
ably similar in shape to ours.

Fig. 3. (a) Calculated energy dispersion of quasi-particles in
T12212, based on the renormalization function, Z(ω) derived from
the Eliashberg equations using G(ω) of Fig. 2(a). Momenta have
been normalized relative to the Fermi momentum in the same way
as done by Lanzara et al. [23]. Note the change of slope of the curve
from below to above the energy of the phonon peak of G(ω). (The
upward curl and sharp drop in energy close to the phonon ener-
gies arise from the use of a single narrow phonon peak in G(ω). A
broader distribution of phonon energies would yield a smoother
transition at the Debye energy); (b) Reproduction of Lanzara’s
dispersion curves for Bi2212 (δ = 0.16). Note the similar change in
slope from below to above ∼50 mev quasiparticle energy to that
shown in (a) for the calculated dispersion.

In Fig. 4a we plot the quasiparticle widths deter-
mined by ARPES on(BiPb)2Sr2Ca2Cu3O10, and un-
derdoped, optimally and overdoped Bi2Sr2CaCu2O8

by Lanzara et al. [23]. Similar results were obtained
by Bogdanov et al. [24]. In Fig. 4b we plot our width
as determined from Z(ω) from our best fit G(ω).
Our width is about half of theirs and hence our
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Fig. 4. (a) Quasi-particle width along the 
Y direction for Bi2212
and Pb-Bi2212, and along the 
M direction for Pb-Bi2212 deter-
mined by Lanzara et al. [23] by ARPES measurements. (width
of quasi-particle momentum state); (b) quasi-particle width cal-
culated for T12212 from the renormalization function, Z(ω) de-
rived from the fitting of the coupling function, G(ω) to the optical
properties shown in Fig. l(a). (width of quasi-particle energy state).
Thus, the life of a pure momentum state prepared in ARPES is
shorter than the life of the quasi-particle itself. This is consistent
with the fact that the single particle part of a quasiparticle state of
a given energy, is a linear combination of momentum states mixed
by elastic scattering [25].

lifetime about twice as long. Our result is determined
by the life of the energy state of the quasiparticle,
while theirs is determined by the life of a momen-
tum state. The single-particle portion of the quasi-
particle state of a given energy is not an eigenstate
of momentum but a combination of states of differ-
ent momenta mixed by elastic scattering. This has
been shown by Hoffman et al. [25], who observed in-
terference effects in Bi2Sr2CaCu2O8 using scanning
tunneling spectroscopy that arise from this mixture
of momentum states. Similar behavior is to be ex-
pected in all the superconducting cuprates. The dif-
ference between the lifetimes measured in our work
and those of Lanzara and Bogdanov et al. can be ex-
plained as follows. A quasi-particle prepared in a par-
ticular momentum state at t = 0, as in an ARPES

experiment, can evolve into its other momentum
components before it de-excites. Consequently, the
life of these individual momentum states will be less
than that of the quasi-particle excited state, itself.
Our TDR experiments determine the life of the ex-
cited state via Z(ω); and thus our width is smaller
than theirs. The difference depends on a number of
factors including the energy of the particle, the de-
gree of disorder, and details of the elastic scattering
cross-section. Further work would be needed to in-
vestigate these factors.

Our measurement of Rs(ω)/Rn(ω) by TDR,
along with the determination of Rn(ω), allows us
to determine σs1(ω) and thus any depletion of the
sum rule integral in the superconducting state for
Tl2Ba2CaCu2O8. In addition it allows us to deter-
mine the region in energy where this depletion oc-
curs. We define the depletion, D in the following way:

D ≡ 1.0 −
∫ b

a σs1(ω) dω∫ b
a σn1(ω) dω

, (5)

where we take the lower limit, ‘a’ below the first elec-
tronic peak, at 1 eV for Tl2Ba2CaCu2O8, and the up-
per limit, ‘b’ at the point where the calculated ra-
tio σs1(ω)/σn(ω) crosses unity, 1.85 eV. In this way
we capture the depletion caused by all the electronic
terms. At 90 K, which is a reduced temperature of
0.86 for our sample, we find a value for D of 0.0015 ±
0.0002 from our measured data, and 0.0013 ± 0.0002
for our fitted data. We find from Molegraaf’s pub-
lished data on Bi2Sr2CaCu2O8 [26], a depletion
of 0.0029 between Tc and 0.86 Tc. Of this, 0.0015
comes from an extrapolation from above Tc of the
temperature-dependent normal state depletion, and
the remainder, 0.0014 to the growth of the supercon-
ducting gap. We thus find the same order of magni-
tude depletion for Tl2Ba2CaCu2O8 between 1.0 and
1.85 eV, as do Molegraaf et al. for Bi2Sr2CaCu2O8 be-
tween 1.24 and 2.49 eV at the same reduced temper-
ature. Above these energies the real part of �(ω) be-
comes negative, σs1(ω)/σn(ω) becomes greater than
unity, and the integral approaches its sum rule value.

4. DISCUSSION

The dips we observe in σs1(ω)/σn(ω) in the re-
gion between l and 2 eV, and the depletion of the
oscillator-strength integral at similar energies ob-
served by Molegraaf et al. provide persuasive ev-
idence of the existence of a superconducting en-
ergy gap at these energies. Starting with the strong
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coupling extension of the BCS theory and a trial
function, G(ω), we have calculated the superconduct-
ing gap function �(ω) and renormalization function
Z(ω). Using an iterative procedure, we then vary the
trial G(ω) an µ∗ and repeat the calculations until a
satisfactory fit is obtained between the calculated and
the observed σs1(ω)/σn(ω) from the infrared to the
ultraviolet, all the while requiring the calculated Tc

to match the measured Tc. A good match is even-
tually achieved. However, the electronic terms that
are added to the phonon terms to explain these
properties, present a problem. The strong coupling,
or Eliashberg theory is based on the validity of
Migdal’s theorem [27] that states that corrections to
the lowest order electron–phonon vertex are of order
(me/Mion), and thus can be neglected. For an elec-
tronic interaction the mass of the ion must be re-
placed by that of the electron and the corrections
then could be expected to be of the order of unity.
However, Allen and Mitrovic [28] have shown that
these corrections can be much smaller. They show
that the first correction is of the order of the prod-
uct of the electronic coupling parameter λelectronic and
a phase space factor (<1.0) that depends on the en-
ergy of the excitation and the structure of the Fermi
surface. We have found that for Tl2Ba2CaCu2O8,
the electronic coupling term λelectronic is small ∼0.36,
and have estimated [29] the phase space factor to
be about 0.28, giving a 10% correction to the low-
est order Migdal term. The inclusion of these terms
would give a vertex with a small additional energy
and momentum dependence. However, we do not
know, a priori, the bare interaction, so whatever the
corrections are to this, they are contained in the ef-
fective interaction which we approximate by G(ω).
In the end, the measured σs1(ω)/σn(ω) spectrum is
fit using the causal �(ω) obtained from the solu-
tions of the Eliashberg equations and Eq. (2). The
calculated σs1(ω)/σn(ω) spectrum obtained in this
manner then automatically satisfies the oscillator-
strength sum rule when taken over a sufficiently large
energy.

No evidence is seen of these electronic exci-
tations in the direct optical reflectance of Tl2Ba2-
CaCu2O8 [16]. However, using Rn(ω) and TDR
data collected at 300 K, we have determined the
temperature derivative of the complex dielectric
function �ε/�T for Tl2Ba2CaCu2O8 [16]. Struc-
ture in �ε/�T reveals optically-weak temperature-
dependent changes in the dielectric function of the
material. In a Drude–Lorentz model, for example,
structure in �ε/�T occurs at the energy of the

Fig. 5. Left axis: plot of real and imaginary parts of the derivative
dielectric function versus energy for T12212 obtained from TDR
measurements. Right axis, lower panel: plot of the pairing inter-
action, G(ω) that gives the best fit to Re (σS/σN) of Figure 1(a);
The two peaks in Im (�ε/�T), and the corresponding dispersive
curves in Re (σS/σN), clearly match the peaks at 1.25 eV and 1.7 eV
in Re (σS/σN) and G (ω). These excitations, plus the phonon con-
tribution, are responsible for the high transition temperature of
this cuprate. Identification of these transitions should provide an
understanding of the superconductivity of these materials.

oscillators, i.e. zero frequency for the Drude term
and at the transition energy for the Lorentz terms.
The presence of the two electronic components of
the generalized coupling function G(ω) obtained
from the fit of the σs1(ω)/σn(ω), are revealed as weak
optical transitions in the �ε/�T spectra shown in
Fig. 5. We have thus located the electronic transi-
tions that are responsible for the large supercon-
ducting gap at optical frequencies, which, with the
help of the phonons, explain the high transition
temperature.

The nature of these excitations has not yet been
determined. Their weakness in the visible suggests
that they are not dipole allowed but are probably
quadrupolar in nature. We have suggested [5] that
they arise from symmetry forbidden d–d transitions
in the Cu----O plane of the material. An understand-
ing of their true nature might be obtained from
Medium Energy, Electron Energy Loss studies in re-
flectance mode, where the higher momenta available
with electrons could probe these symmetry forbidden
transitions. In studies of high temperature supercon-
ductivity, the experimental identification of these ex-
citations should be given the highest priority for they
appear to hold the secret to the understanding of the
superconductivity of the cuprates.

5. A TRIBUTE

It is great pleasure to present this article as
a tribute to Mike Tinkham on the occasion of his
75th birthday. I (WAL) am indebted to him for
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teaching me some of the elements of far-infrared
spectroscopy, and for the correct explanation of ex-
periments done with Ron Parks on fluxoid quanti-
zation, many years ago. I have long admired Mike’s
work and willingness to tackle and solve theoretically
and experimentally problems that often appeared to
be wholly intractable, such as the decrease of resis-
tance of a “one-dimensional” wire through the su-
perconducting transition [30]. We both have bene-
fited from the teachings of the ‘BTK’ paper [31] and
his book has been within arm’s reach, for at least
one of us, for a quarter of a century. His wry wit
and low key presentations have been a goldmine
of inspiration. Thank you Mike, and many happy
returns!
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An introduction is given to collective modes in layered, Josephson coupled high Tc supercon-
ductors. An experimental demonstration is treated of the mechanism proposed by Ander-
son whereby photons travelling inside the superconductor become massive, when the U(1)
gauge symmetry is broken in the superconductor to which the photons are coupled. Using the
Ferrell-Tinkham sumrule the photon mass is shown to have a simple relation to the spectral
weight of the condensate. Various forms of Josephson plasmons can exist in single-layer and
bilayer cuprates. In the bilayer cuprates a transverse optical plasma mode can be observed
as a peak in the c-axis optical conductivity. This mode appears as a consequence of the exis-
tence of two different intrinsic Josephson couplings between the CuO2 layers. It is strongly
related to a collective oscillation corresponding to small fluctuations of the relative phases of
the two condensates, which has been predicted in 1966 by A. J. Leggett for superconductors
with two bands of charge carriers. A description is given of optical data of the high Tc cuprates
demonstrating the presence of these and similar collective modes.

KEY WORDS: superconductivity; collective mode; Higgs mechanism; Tinkham-Ferrell sumrule;
exciton.

1. INTRODUCTION

Electrons form, together with the atomic nu-
clei, the basic fabric of materials. In order to ex-
pose the organizing principles of matter, experimen-
tal physicists take apart the complicated fabric of
matter, aimed with a vast array of different spec-
troscopic methods experimental physicists. Spectro-
scopic tools typically expose the sample to an exter-
nal field or a beam of particles, and one measures
the response of the sample to this external stimulus.
Most of the spectroscopic tools, such as optical ab-
sorption or inelastic scattering, do not reveal the nu-
clei or the electrons directly. Instead one observes a
spectrum of excited states which typically involve the
excitation of several or many electrons and/or nuclei
simultaneously.

The reason is, of course, that the elementary
particles forming a solid behave in a correlated way,

1Département de Physique de la Matière Condensée,Universitée
de Genève, CH-1211 Genève 4, Switzerland.

and this is already the case for the ground state of
the material. As a result one can not excite a single
electron without influencing the state of the other
particles in it’s vicinity. Usually, if the amplitudes
are not too large, the excitations can be treated in
the harmonic approximation. Regardless of the de-
tails of the material and of the type of interactions
between the particles one can, in principle and at
least for small amplitudes, identify a set of funda-
mental modes in the harmonic approximation. These
so-called collective modes form an orthogonal set of
eigenstates of the material. To treat the electrical
transport properties of metals it is usually much sim-
pler to refer to the language of electrons and holes.
Nevertheless, even for simple metals like aluminum
or sodium, the metallic luster is caused by the plasma
oscillations, which are one out of several possible col-
lective modes in a conducting material.

One of the relevant features of collective exci-
tations is, that they provide the dynamical fluctua-
tions transforming between different states of mat-
ter. They can be populated either by varying the
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Table I. Some Analogies Between the Theory of Superconductivity and the Electroweak Theory

Superconductivity Electroweak symmetry breaking

Spontaneous symmetry breaking of the pairing
order parameter, �.

Spontaneous summetry breaking of the Higgs field, �.

|�| is proportional to the gap in the electron-hole
excitation spectrum.

|�| is proportional to the mass of the Higgs-boson.

The coupling between � and the EM-field,
(∂µ + iqAµ)�, generates a mass-gap for plasmons
and photons interior to the superconductor.

The coupling between the Higgs- and W+/−, Z-fields,
(∂µ+igτ · Wµ + ig′BµY)�, causes the W+, W−, and Z
bosons to be massive.

temperature or by applying and external field, for
example an electrical field, pressure, or magnetism.
Broken symmetries are typically accompanied by
collective modes. We will now discuss a few exam-
ples.

(1) The phase of the order parameter in a super-
conductor is an example of a spontaneously broken
U(1) symmetry. This implies that the ground state is
not unique but has a continuous degeneracy. In neu-
tral superfluid the fluctuations of this phase then pos-
sess linear dispersion [1–3].

(2) Earlier Anderson had shown from the
gauge-invariant treatment required for the Meiss-
ner effect, and taking into account the long-range
nature of the Coulomb interactions, that in a
superconductor the longitudinal modes are massive
[4–6], and that the transverse electromagnetic waves
traveling in a superconductor acquire a mass due to
their coupling to the superconducting condensate.
An experimental example of this effect is shown in
Fig. 4. A detailed discussion of these data follows in
section VI.

(3) Anderson’s mechanism was later used in
the context of elementary particle physics to predict,
among other things, the occurence of a novel mas-
sive elementary particle due to spontaneous symme-
try breaking, the Higgs boson, and to show that the
W and Z bosons acquire a finite mass due to the
coupling to the symmetry broken Higgs-field [4,5,7–
9]. The analogy between the theory of superconduc-
tivity and the electroweak theory is summarized in
Table I. The collective modes spectrum of the am-
plitude of the order parameter of a superconductor
has a gap, which has been observed experimentally
in NbSe2 with Raman spectroscopy, and which plays
role equivalent to the Higgs particle in the electro-
weak theory [115–117].

(4) Motivated by the observation of a precursor
infrared absorption in Pb and Hg by Ginsberg et al.
[10], Bardasis and Schrieffer have predicted excitons
in the superconducting gap, corresponding to pairing

symmetries different from those of the ground state
[11,12]. Figure 1 shows an example of such a mode
in a model where the pairing-interaction has both an
s-wave and a d-wave channel. In the absence of a lo-
cal repulsive potential, the calculation predicts a soft
excitonic mode near k = (0, 0), which corresponds to
a transition from s-wave to d-wave order parame-
ter. Increasing the on-site interaction results in an
increase of the energy of this exciton, implying the
d-wave order parameter becomes more stable com-
pared to s-wave symmetry.

(5) A different type of exciton has been pre-
dicted by Leggett for the case were a superconduct-
ing gap occurs in two or more overlapping bands [14]
provided that a weak Josephson-coupling between
those bands is present. A similar type of exciton is
expected for the case where the crystal structure con-
tains pairs of weakly coupled two-dimensional layers

Fig. 1. RPA calculation of the collective modes of a layered
d-wave superconductor using a tight-binding calculation, repro-
duced from Ref. [13]. Below the particle-hole continuum two types
of modes occur: A fluctuation between d-wave and s-wave pairing
symmetry of the variety predicted by Bardasis and Schrieffer [11]
and a spin-fluctuation near the (π, π) point. The plasma-mode
along the planes is at a much higher energy, not visible in this
diagram.
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[15,16]. For the latter case the Coulomb interaction
between the layers plays a dominant role. An exper-
imental example is shown in Fig. 11. A detailed dis-
cussion of these data follows in section XIV.

(6) Various additional collective modes have
been identified, which are associated with a rota-
tion between different order parameters permitted
by models containing additional symmetries. Exam-
ples are the SO(4) symmetry of the negative U
Hubbard model [17], the SO(5) symmetry [18], and
the SU(2) symmetry groups [19], where the latter
two have been proposed in the context of the t − J
model. The complex order parameter permitted by
these models corresponds to a rich and complicated
spectrum of collective modes. The SO(5) model gen-
erates a bosonic excitation with spin quantum num-
ber S = 1 and momentum (π, π). This mode has been
proposed for the resonance with the same quantum
numbers in the cuprates, which has been observed
with inelastic neutron scattering [20].

(7) A paramagnetic Fermi-liquid is composed
of two degenerate liquids of opposite spin. The
plasma-oscillations discussed above correspond to
an in-phase modulation of the two spin-densities.
The out-of-phase modulation is called a param-
agnon. Because the two spin-liquids oscillate out of
phase, there is no net charge-displacement, and con-
sequently no restoring electric force as for the ordi-
nary plasmon. These modes are therefore inside the
particle-hole continuum and they are normally over-
damped. However, if the particle-hole continuum is
gapped, as happens in the superconducting state, a
paramagnon branch can occur below the particle-
hole continuum, with a correspondingly weak damp-
ing. In order to exist on an energy scale below the
superconducting gap, the paramagnon must be very
soft, implying that the system has been tuned close
to a spin-density wave instability. In Fig. 1 an ex-
ample of this fine-tuning is given, which was calcu-
lated using the generalized random phase approxi-
mation scheme by Anderson [4] and Bogoliubov et al.
[1]. Increasing a local repulsive interaction vertex U
from 0 to 0.5, results in the emergence of a soft spin-
density mode near the (π, π) point. Similar behavior
has been observed with inelastic neutron scattering in
the cuprate superconductors [106,107], where indeed
a transition takes place to a spin ordered state when
the Mott-insulating state is approached by tuning the
carrier concentration.

The superfluid phases of He3 provide par-
ticularly beautiful examples where several of the
collective modes mentioned above (and several oth-

ers which are not in this list) have been observed
experimentally [21]. In this article we concentrate
mostly on collective modes which can be observed
with optical spectroscopy, i.e., items 1–5 of the pre-
vious list involving flow of charge and current. Be-
cause the cuprates are strongly correlated materials,
and many of their properties can not be explained
within the context of the random-phase approxima-
tion, a large part of the subsequent discussion will be
based on classical field theory. The penalty one pays
for this, is that the set of properties which one can ad-
dress with such a formalism is limited to a particular
set of collective modes. The advantage is, that the re-
sults calculated with such a model do not heavily rely
on details on the microscopic level.

2. SOUND AND PLASMONS

We begin by discussing the collective mode spec-
trum of a classical compressible fluid of interact-
ing particles of charge e∗ in a charge-compensating
background. The compressibility of the fluid is κ =
n−2∂n/∂µ, which is a scalar. The mass of the particles,
m, is in some cases an anisotropic tensor. The fluctu-
ations of the particle density around its equilibrium
value are described by the field n(r, t) = ntot(r, t) −
n0. We furthermore allow the coupling of the
fluid to an electromagnet field, �E(r, t) = −�∇φ(r, t) −
c−1e∗d�A(r, t)/dt, �B(r, t) = �∇ × �A(r, t). The dynamical
behavior of such a fluid can be described with the
Hamiltonian [22]

H =
∫

�π(r) · n0

2m̄
· �π(r)d3r +

∫ |n(r)|2
2κn2

0

d3r

+
∫ ∫

e∗2n(r)n(r′)
2|r − r′| d3rd3r′ +

∫
e∗φ(r)n(r)d3r

(1)

where

�π(r) ≡ �∇ν(r) + �∇ × �µ(r) − e∗ �A(r)
c

The first set of Hamiltonian equations of motion
for the longitudinal currents are dn/dt = δH/δν =
∂H/∂ν − �∇ · ∂H/∂( �∇ν), and −dν/dt = δH/δn. The
second set for the transverse currents is d�η/dt =
δH/δ�µ = ∂H/∂�µ + �∇ × ∂H/∂( �∇ × �µ), and −d�µ/dt =
δH/δ�η. The potential energy does not depend on �η,
because a liquid has zero shear-modulus. This pro-
vides four coupled relations between the currents
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and the density fluctuations

− d
dt

ν(r) = n(r)

κn2
0

+ e∗2
∫

d3r′ n(r′)
|r − r′| + e∗φ(r) + ν(r)

τ

− d
dt

�µ(r) = 0 (2)

d
dt

n(r) = −�∇ · n0

m̄
·
(

�∇ν(r) + �∇ × �µ(r) − e∗ �A(r)
c

)

d
dt

�η(r) = �∇ × n0

m̄
·
(

�∇ν(r) + �∇ × �µ(r) − e∗ �A(r)
c

)

where the last term of the first line was introduced
to represent the effect of dissipation on the current.
Combining these expressions we obtain the wave-
equation

n0e∗ �∇ · 1
m̄

· �E(r) +
{

d2

dt2
+ 1

τ

d
dt

}
n(r)

= �∇ · 1
m̄

· �∇
{

n(r)
κn0

+ e∗2n0

∫
d3r′ n(r′)

|r − r′|
}

(3)

for the propagation of density fluctuations, or plas-
mons, of a charged fluid.2 For plane waves �E(r, t) =
�Ekeik·r−iωt, n(r, t) = nkeik·r−iωt, this amounts to(

ω2 + iω
τ

− �k ·
[

w̄2
p

| �k|2 + v̄2
s

]
· �k

)
nk = i �k · e∗n0

m̄
· �Ek

(4)

where ωp = (4πn0e∗2/m)1/2 is the plasma frequency
and vs = (κn0m)−1/2 is the sound-velocity. We should
keep in mind that m, ω2

p , and v2
s are tensors; when the

mass-tensor is anisotropic, the plasma-frequency and
it’s dispersion depend on the direction of propaga-
tion in the medium.

3. ISOTROPIC PLASMON-DISPERSION

Let us first consider the case of an isotropic
charged fluid. In this case the plane wave solutions
obey the dispersion relation

ω(k)2 = ω2
p + v2

s k2 (5)

2The wave-equation for the transverse modes are d2

dt2
�η(r) = �∇ ×

n0
m̄ · (e∗ �E(r) − �∇ ∫

d3r′ e∗2n(r′)
|r−r′ | − �∇n(r)

κn2
0

− �∇ν(r)
τ

). For waves travel-

ing along one of the principle axis of the mass tensor: d2

dt2
�η(r) =

− e∗n0
m

d
dt

�B(r, t). Solving this together with the Maxwell equations
yields the polariton dispersion relation k2c2 = ω2ε(ω).

In a 3D Fermi gas the compressibility arises purely
from the density of states at the Fermi energy: κ =
n−2dn/dµ = 3/(mv2

F n), and consequently the zero-
sound velocity is34 vs = 3−1/2vF. If we apply Eq. (5)

to this case, we obtain ωk = ωp + v2
F

6ωp
k2 + O(k4) for

the dispersion formula. Although this resembles the
result obtained with the random-phase approxima-
tion (RPA) of the electron gas model [23] ωRPA =
ωp + 3v2

F
10ωp

k2 + O(k4) the dispersive term in the RPA
is a factor 9/5 larger, which shrinks to a value closer
to 1 when higher order electron-correlation diagrams
are included in the calculation [23,24]. In the alkali
metals a systematic reduction has been observed with
high energy electron energy loss spectroscopy as the
relative importance of the Coulomb interaction in-
creases [25]. It is important to point out here, that at
a qualitative level the dispersion of the plasma modes
does not rely on the fact that microscopically the par-
ticles in the fluid are fermions. Indeed, Eq. (5) ex-
presses a rather generic feature of a liquid, namely
that it has a finite compressibility. For this reason
Eq. (5) has a broad applicability, which goes beyond
the special case of a Fermi-gas. This becomes par-
ticularly important in cases where on a microscopic
level the properties are not fully understood, like in
the cuprate materials: In spite of the lack of a fully
established microscopic framework it is still possible
to predict a certain number of properties at least at
a qualitative level, in particular the collective plasma
modes.

Superconductors are characterized by a macro-
scopic coherent state ψ(r, t). Usually it is assumed
that the variations of the amplitude are negligibly
small, hence ψ(r, t) = n1/2

0 exp{iϕ(r, t)} In this case
the macroscopic current and the density of such a
state are

n(r, t) = |ψ(r, t)|2 = n0 (6a)

�j (r, t) = −n0

m
h �∇ϕ(r, t) (6b)

The equations of motion and the dispersion relation
of the plasma-modes in the superconducting state are
also given by Eqs. (3) and (5), with the dissipation 1/τ
set to zero, but vs and ωp may differ from those in
normal state.

4. STRONG ANISOTROPY

Let us consider now the case of quasi-two di-
mensional materials, characterized by a large mass
along perpendicular to the planes and a light mass
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along it. For this case we obtain from Eq. (4) the dis-
persion relation

ω( �k)2 = ω2
p,pk2

p + ω2
p,sk

2
s

k2
p + k2

z
+ v2

s,pk2
p + v2

s,pk2
z (7)

Inspection of this expression reveals, that k = 0 cor-
responds to a singular point: If we approach it along
the planes, we obtain ω(kp → 0, kz = 0) = ωp,p , while
along the z-direction ω(kp = 0, kz → 0) = ωp,z. In the
extreme case, where the material is insulating along
the z-direction, one obtains

ω( �k)2 = ω2
p,p

k2
p

k2
p + k2

z
+ v2

s,pk2
p (8)

which corresponds to the small kz limit of the lay-
ered electron gas model [26–28]. In this case ω(kp =
0, kz �= 0) = 0. Moreover, if we consider the disper-
sion along the plane, while keeping kz fixed at a fi-
nite value, it becomes sound-like: ω = veffkx, with
a sound velocity v2

eff = ω2
p,p/k2

z + v2
s,p . This behavior

can be measured with k-dependent electron energy
loss spectroscopy [29].

5. DIELECTRIC FUNCTION

It is straightforward to solve Eq. (3) in the
presence of a longitudinal external field �Ee(r, t) =
−�∇φ(r, t) : The total electric field is the sum of the
externally applied field and the field arising from the
charge distribution of the matter-field, �∇ · �E(r, t) =
�∇ · �Ee(r, t) + 4πe∗n(r, t). The longitudinal inverse di-
electric function, describing the response to an ex-
ternal charge, is defined as the external field divided
by the total field: ε = �∇ · �Ee/ �∇ · �E. With the help of
Eq. (3) the inverse dielectric function is now easily
obtained

1
ε(ω, k)

= 1 + 4πe∗n(r, t)
�∇ · �Ee(r, t)

= 1 − ω2
p

ω2
p + v2

s k2 − ω(ω + i/τ)
(9)

The plasma-modes correspond to the condi-
tion that an arbitrarily weak density fluctuation with
wave-vector k and frequency ω can generate a fi-
nite electromagnetic response �E. Because 1/ε(ω, k)
describes the response to the density fluctuation, in
an isotropic fluid these modes have the electrical po-
larization parallel to the propagation direction. The
charge-density modes therefore correspond to the

Fig. 2. Dielectric function with polarization along the c-direction
of La1.86Sr0.14CuO4+δ for different temperatures. Tc of this sam-
ple is 33 K. The data are from Ref. [108]. Copyright (1995) with
permission from Elsevier.

poles of Eq. (9)

ω = 1
2iτ

±
√

ω2
p + v2

s k2 − 1
4τ2

(10)

The relevant limit for optical spectroscopy is k → 0
for which the mode frequencies become purely imag-
inary if 1/τ > 2ωp . This corresponds to the limit of
overdamping. This situation is characterized by the
fact that Reε(ω, k) > 3/4 for all (real) frequencies.
On the other hand, the condensate of a supercon-
ductor is characterized by the absence of dissipa-
tion, at least for frequencies much smaller than the
superconducting gap, implying that ε(ω, k) = 0 must
occur at some finite frequency. Hence in materials
where the dissipation in the normal state is large
enough to cause an overdamped charge response,
the charge-density collective mode must emerge at
some finite frequency within the frequency window
of dissipation-less flow when the material becomes
superconducting at low temperatures.

This kind of behavior is indeed observed for the
c-axis optical response of the cuprate superconduc-
tors [30–36]. An example of this is shown in Fig. 2.
Tc of this crystal was 33 K. At this temperature ε′(ω)
never crosses zero except for the phonons between
200 and 400 cm−1. Below Tc a dissipation-less low-
frequency electronic mode appears, characterized
by a zero-crossing of ε′(ω) reaching about 50 cm−1

for T 	 Tc Note, that although superconductivity
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implies the presence of a plasma-mode, the re-
verse is not true: In fact in most superconductors
known to date, the plasmon is not overdamped in
the normal state, and the transition into the super-
conducting state affects the plasma-frequency only
marginally.

A second type of collective mode has the elec-
tric field perpendicular to the direction of propaga-
tion. Those modes correspond to absorption peaks of
the optical conductivity function, σ(ω) = j /E, which
in the long wavelength limit is proportional to the di-
electric function σ1(ω) = ωImε(ω)/(4π). In the limit
that k → 0 this condition requires, that an arbitrarily
weak electric field results in a finite current. Hence at
the transverse collective mode frequency σ(ω) → ∞.
For a single component plasma this happens at ω =
−i/τ. In a superconductor τ = 0, and the condensate
causes indeed a diverging conductivity at zero fre-
quency. In a normal metal τ is finite, and the opti-
cal conductivity is characterized by a narrow Drude
peak. In the cuprates, if the electric field is polarized
along the c-direction, a narrow Drude peak is how-
ever not observed in the frequency dependence of
a σ(ω, T). Also the temperature dependence of the
c-axis conductivity is reminiscent of a semiconductor,
at least in samples which are not strongly overdoped.
Hence the cuprates have a strong anisotropy between
ab-plane and c-axis conductivity in several respects:
(i) The DC-resistivity, (ii) the superfluid spectral
weight of the superconducting state, (iii) the temper-
ature dependence of the conductivity, (iv) and the
frequency dependence of the conductivity. Although
(i) and (ii) can be easily explained from a large effect
mass anisotropy, (iii) and (iv) imply that the trans-
port mechanism itself is anisotropic. These observa-
tions, which belong to the oldest and most firmly
established features of the cuprate superconductors,
have been—and still are—the subject of many spec-
ulations, none of which have been completely sat-
isfactory in every respect. Figure 3 demonstrates
an example of this. The strong optical phonons
obscure part of the electronic response along the
c-axis, but it is clear from this graph that the elec-
tronic response has only a weak frequency depen-
dence, and does not appear to agree with the Drude
line-shape.

6. THE ANDERSON-HIGGS MECHANISM

For long wavelengths the energy momentum
dispersion relation of transverse polarized electro-

Fig. 3. Optical conductivity with polarization along the planes
and along the c-direction of La1.85Sr0.15CuO4+δ for T = 100 K.
To obtain a high accuracy for the optical conductivity along the
c-direction, the transmission coefficient was measured of a 20-µm
thick slab, which had been cut along ac-plane. Because of a strong
absorption by the optical phonons between 200 and 600 cm−1, no
transmission could be detected in this range. Therefore the c-axis
optical conductivity is not shown in this range. The data are from
Ref. [37]. Copyright (2000) with permission from Elsevier.

magnetic waves propagating inside the supercon-
ductor can be calculated from the relation3 k2c2 =
ε(ω)ω2 between the wave-vector, the frequency and
the dielectric function. In Fig. 4, the data of Fig. 2
have been displayed in this way. This is an ex-
ample of the Anderson-mechanism discussed in
the introduction, which generates a finite mass of
the photons by coupling them to a spontaneous
symmetry-breaking field. Compared to the Higgs-
boson in elementary particle physics this is merely
a feather: the mass is about 6 meV, or ·1013 times
lighter than the Higgs-boson according to recent es-
timates [38]. Using a cavity resonance technique, the
mass-gap has been observed both for k‖E‖ c and for
k⊥E ‖ c in Bi2212 [39,40].

7. THE TINKHAM–FERRELL SUMRULE

A useful and important property of the c-axis
optical conductivity concerns the spectral weight
sum-rule, or f -sum rule: (i) The spectral weight
represented by the zero-frequency δ-function in the

3See Footnote 2.
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Fig. 4. Energy-momentum dispersion of photons polarized along
the c-direction in La1.85Sr0.15CuO4+δ for different temperatures.
Tc of this sample is 33 K. The photons travelling inside the super-
conductor become massive, when the U(1) gauge symmetry is bro-
ken in the superconductor to which the photons are coupled.

superconducting state is represented as the square
of the plasma-frequency of the condensate, ω2

p,s.
(ii) A consequence of BCS theory is, that the spec-
tral weight at finite frequencies is reduced due to
the opening of a gap in the optical conductivity,
(iii) The Tinkham–Ferrell sumrule [41–44] illus-
trated in Fig. 5, asserts that the spectral weight

of the condensate balances exactly the decrease
of optical spectral weight integrated over all fre-
quencies larger than zero, compared to the normal
state:

ρs =
∫ ∞

0+
Re(σn(ω, �q) − σs(ω, �q)) dω (11)

where the wave-vector �q is introduced in a general
framework for the analysis, where all space and time-
dependent quantities inside the material are Fourier-
analyzed. The above stated sumrule has a general va-
lidity, irrespective of the microscopic details, due to
the fact that it follows from a strict conservation law
(i.e. particle number conservation). In recent years
the sumrule has been an important instrument to ad-
dress ideas that superconductivity may be stabilized
by interlayer tunneling, or, more generally, to study
the direction of change of kinetic energy when the
material becomes superconducting both along the
c-direction [45–60], and along the planar direction
[61–65].

In a BCS superconductor one expects that by
and large most of the spectral weight should be
recovered on an energy range of four times the

Fig. 5. Figure copied from by Tinkham and Ferrell [41]. Original caption: “Effect of the
superconducting transition on the frequency-dependent conductivity for (a) long- and
(b) short-wavelength transverse electromagnetic waves. The normal-state conductivity
is indicated by dashed curves and extends to the maximum frequency of v0q where v0 is
the Fermi velocity and q is the wave number. In (a) the wavelength is sufficiently long
that the maximum absorption frequency in the normal state falls short of the energy
gap threshold hωg . Consequently essentially all of the oscillator strength is absorbed by
the delta function at zero frequency, leading to a full London current. In (b) the shorter
wavelength causes the absorptions in the normal state to be spread over a frequency
interval much larger than the energy gap. The strength of the delta function is therefore
less and the London current is weakened. This dependence of the London current on
wavelength is equivalent to the nonlocal current-field relation of Pippard.” Copyright
(1959) by the American Physical Society.
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Fig. 6. Optical conductivity of underdoped (top panel) and op-
timally doped LSCO (bottom panel). In the middle panel the
sum-rule check is displayed. The quantity displayed here corre-
sponds to (Nn(ω, T) − Nsc(ω, T))/ρs(T), where the temperature-
dependent optical conductivity of the normal state has been ex-
trapolated to obtain (Nn(ω, T) and (Nsc(ω, T) both at the same
temperature below Tc. The details of this analysis are given in
Ref. [67].

gap [66].4 Experiments with light polarized along
the c-axis of the cuprates have revealed that in the
underdoped samples a large fraction of the spec-
tral weight remains unrecovered up to 20 times the
gap energy [55,57,67]. At optimal doping the abso-
lute value of nonrecovered c-axis spectral weight is
even larger (see Fig. 6), but the ratio �N(ωm)/ρs ≡
ρ−1

s

∫ ωm
0+ Re(σn(ω) − σs(ω)) dω decreases due to the

fact that ρs increases sharply as the doping is in-
creased. Interestingly, in addition to the opening of
the superconducting gap, we observed an increase
of conductivity above the gap up to 270 meV with a
maximal effect at about 120 meV [67]. This may indi-
cate a new collective mode at a surprisingly large en-
ergy scale [19]. For the ab-direction of underdoped
and optimally doped Bi2212 about 0.25% of the ab-

4However, a not widely realized consequence of BCS theory is,
that in fact a small amount of superconductivity induced spec-
tral weight transfer should occur between the Drude peak and
the interband transitions, provided that the electrons have a non-
parabolic ε(k) dispersion.

plane spectral weight remains unrecovered up to
about 20 times the gap energy [63]. However, in ab-
solute numbers the unrecovered spectral weight is or-
ders of magnitude larger along the planes than along
the c-direction.

7.1. Relation Between Photon-Mass and
Spectral-Weight

The presence of the superconducting conden-
sate contributes a term −8ρs/ω

2 to the dielectric
function. Because this term diverges for ω → 0,
and ε(ω) should become positive for ω → ∞, this
means that in the superconducting state the di-
electric function must cross through zero for some
finite frequency. This is the plasma-frequency of
the superconducting condensate. If the remaining
contributions to the dielectric function, εb (for exam-
ple those coming from optical photons) have a weak
frequency dependence in the region where this zero
crossing occurs, the plasma frequency of the con-
densate will be ωp,s = (8ρs/εb)1/2. In section VI we
have seen that, due to Anderson’s mechanism for
mass generation, inside a superconductor the pho-
tons acquire a gap hωp,s. For the conditions described
above the photon dispersion relation is ω2 = (k2c2 +
8ρs)/εb. Because the dynamical mass of the photons
is mA = h/(d2ω/dk2), we conclude that the follow-
ing relation exists between the spectral weight re-
moved from the optical conductivity implied by the
Tinkham-Ferrell rule, and the photon-mass inside
the superconductor discussed in the previous section:

ρs = m2
Ac4

8h2εb
(12)

In the example given in Fig. 4 we have ρs  2.5 · 1026

s−1, and εb  22.7. Using the expressions above, the
dynamical mass of c-polarized photons in this com-
pound is then 2.5 · 10−34 g, which is about four-million
times less than the mass of an electron.

8. MULTICOMPONENT PLASMA

The problem of a coupled two-component su-
perconducting plasma has been studied by Leggett.
In this model one considers a homogeneous mixture
of two liquids, representing two different bands
of charge carriers (e.g. an s-band and a d-band).
Electrons can flow from one band to the other,
which introduces a current between the two bands,
d
dt (ns − nd). Even though the two reservoirs overlap
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in space, their wave-functions differ on an atomic
scale, and therefore the flow of charge from one
band to the other involves a real motion of electrons.
This contributes a portion to the kinetic energy
proportional to ( d

dt (ns − nd))2. The corresponding
Hamiltonionan is

H = κn2
0�

2

4
(νs(r, t) − νd(r, t))2

+ 1

2κn2
0

(ns(r, t)2 + nd(r, t)2) (13)

where � is a parameter which characterizes the
coupling. With these definitions the Hamil-tonian
equations of motion are

d
dt

(ns − ns) = κn2
0�

2(νs − νd) (14a)

d
dt

(νs − νd) = − 1

κn2
0

(ns − ns) (14b)

The solution has of the form δn(t) = δn(0)ei�t: This is
a collective mode with a frequency �, where charge
oscillates between the two reservoirs.

Already in a normal metal with two partly occu-
pied bands, excitations exist which correspond to the
oscillation of charge between the two bands: From
the single electron band structure the lowest optical
energy electron-hole transition occurs at an energy
corresponding to the smallest vertical distance be-
tween the two bands, for k-values where there is one
band above and one below the Fermi energy. This
splitting is usually of the order of the bandwidth, i.e.
of the order of 1 eV, although in principle it can be
zero provided that the two bands accidentally cross
at EF (this happens in some of the bucky-tubes).

A special case occurs if the two bands are degen-
erate for all k-values: The presence of an interband-
coupling, t scatters electrons between two different
bands, while conserving their momentum, k. The
eigenstates become symmetric and antisymmetric
combinations of the two original bands at every k-
point, split by an energy difference 2t (see Figs. 7

Fig. 7. A doubly degenerate band is split due to a interband cou-
pling term t. Electromagnetic radiation at a frequency 2t/h can ex-
cite the electrons across the split band.

Fig. 8. (a) Interband coupling whereby a single electron is trans-
ferred from band 1 to band 2, while conserving momentum,
(b) Interband coupling process whereby a pair of electrons is trans-
ferred from band 1 to 2.

and 8a). In the optical spectra this splitting causes
an absorption band, corresponding to the “vertical”
(δk = 0) excitations from the occupied “symmetric”
to the unoccupied antisymmetric band, as indicated
in Fig. 7. This absorption is peaked at a frequency
2t/h, which indicates that in this case � represents the
single-particle interband coupling: h� = 2t.

However, the energy of interband-excitations is
usually large compared to the superconducting gap.
The collective modes discussed by Leggett [14] are
of a fundamentally different nature: If the two liq-
uids are superfluids, an additional type of tunneling
becomes important, i.e. the simultaneous tunneling
of a pair of electrons. The tunneling-rate of a pair
is usually much smaller than that of a single elec-
tron, and the collective modes which correspond to
the dynamical oscillations of pairs between the two
bands have a correspondingly low energy. If the en-
ergy is below the gap for pair-excitations, the dissi-
pation is suppressed, hence these modes can exist by
virtue of their low energy. The coupling between the
reservoirs, indicated in Fig. 8b, in this case involves
the scattering of a pair of electrons in band 1 with mo-
mentum (k, −k) to a pair in band 2 with momentum
(k′, −k′) due to the interaction between the electrons.
In Fig. 8 this interaction is represented by the ex-
change of a single boson, but more complicated pro-
cesses may be involved. For coupled superconducting
bands h−1(νs − νd) = ϕs − ϕd is just the phase differ-
ence between the two reservoirs [14]. In this case the
pre-factor of the kinetic energy in Eq. (12), κn0h2�2,
is nothing but the Josephson coupling between the
two reservoirs. If the material is not a superconduc-
tor, a priori there is no reason for the exciton to
be absent. However, the gap in the superconducting
state removes the dissipation for frequencies below
the gap, making multiband superconductors the best
candidates to observe this type of collective mode.
At present this type of relative-phase excitons have
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been reported in two type of superconductors: (i) the
high Tc cuprates [68,69], and (ii) MgB2 [70–72]. In the
following section we discuss the former case in detail.

9. LAYERED MATERIALS

The cuprates present a rather special case where
the interband Coulomb interactions, which were left
out of consideration in the formalism sketched in the
previous section, are actually more important than
the compressibility term. Following the Lawrence–
Doniach model [73], we consider each plane as an in-
dividual charge reservoir, or band. Because we will
be mainly interested in collective modes involving
currents perpendicular to the planes, we will only
deal with the discrete nature of the lattice in the
c-direction. As a result it is convenient to define
the Hamiltonian and the equations of motion in
terms of discrete momentum-νj and density-fields nj

(where j is a layer-index) introduced in the previ-
ous section, instead of the continues fields ν(r, t) and
n(r, t), used in Section 2. The amiltonian therefore
becomes similar to Eq. (12), but we also want to
include a Coulomb interaction between the layer-
charges. We already encountered the Coulomb in-
teraction in Section 2. Because we want to discuss
only propagation perpendicular to the planes, we
work in the limit of zero charge fluctuations par-
allel to the planes. Integrating over the planes the
Coulomb term of Eq. (1) becomes equivalent to
the interaction between parallel plates of charge.
The Coulomb energy of two positively charged par-
allel plates decreases linearly as a function of dis-
tance. The Hamiltonian density relevant to the case
of c-axis plasmons in layered superconductors is
then [15]

H = κn2
0

4

∑
j

�j ,j +12 (νj − νj +1)2

+ 1

2κn2
0

∑
j

n2
j − 2πe∗2

ε∞

∑
j >1

dj ,lnj nl (14)

where dj ,l is the distance between the layers with
indices j and l. The other parameters have already
been discussed in the previous sections. In Ref.
[15,16] the discussion has been limited to the Joseph-
son coupling. In a superconductor h−1(νj − νj +1)
corresponds to the phase difference ϕj − ϕj +1 be-
tween neighboring layers. However, superconductiv-
ity and long-range phase coherence are not a pre-

requisite for the validity of Eq. (14): Under spe-
cial conditions the first term of the Hamiltonian cor-
responds to a Josephson coupling, but more gen-
erally it represents the kinetic energy related to
the charge flow. It has a finite value due to the
fact that the inertial mass of the charge carriers is
finite.

10. PLASMA DISPERSION IN A SINGLE
LAYER MATERIAL

We will first discuss the case of a stack of 2D su-
perconducting planes, with lattice constant d along
the c-direction, an compressibility κ, and an inter-
layer coupling �. For later use we define here also
the Josephson plasmafrequency, and a dimensionless
constant proportional to the compressibility

γ ≡ ε∞
4κn2

0de∗2
(15)

ω2
j ≡ 2κn2

0de∗2�2

ε∞
= 1

2γ
�2 (16)

The Hamiltonian equations of motion, dnj (t)
dt = ∂H

∂νj
,

dνj (t)
dt = − ∂H

∂nj
, give

d2

dt2
nj = κn2

0�
2

2
d
dt

((νj − νj +1) + (νj − νj −1))

= �2 nj +1 + nj −1 − 2nj

2

+ω2
j

∑
m

2dj ,m − dj +1,m − dj −1,m

2
nm (17)

The distances between the lth and the jth plane
is dj ,m = d|j − m|. Because 2|j − m| − |j + 1 − m| −
|j − 1 − m| = −2δj ,m the only remaining term in the
summation over m corresponds to m = j . Substitut-
ing the plane wave expression, nk = ∑

j eikd j nj , in
Eq. (17) we obtain the frequency momentum disper-
sion relation for Josephson-plasmons traveling per-
pendicular to the planes

ω(k) = (ω2
j + 2γ(1 − cos(kd))1/2 (18)

For k = 0 we obtain the usual value for the
Josephson plasma frequency. In addition there is an
upward dispersion, which is determined now by the
compressibility parameter γ, similar to the dispersion
in the continuum model, Eq. (5).



Optical Spectroscopy of Plasmons and Excitons in Cuprate Superconductors 569

11. FIELD EFFECT DOPING OF A
SINGLE-LAYER MATERIAL

Some special consideration deserves the doping
of insulating parent compounds by the field effect.
Field effect devices of high Tc materials are a tech-
nological challenge. Although this kind of technol-
ogy has not yet completely matured, several groups
are working into this direction, and a small tuning
of the superconducting transition temperature in a
cuprate based field effect device has for example al-
ready been realized [74].

The doping profile in this layered electron liquid
model has a simpler form, than the doping profile in
a 3D semiconductor [75], and the equations are sim-
pler: All we need to do in order to calculate the dop-
ing profile below the insulating barrier (see Fig. 9), is
to evaluate Eq. (17) in the static limit. In other words,
we have to equate the lefthand side of the expression
to zero. Multiplying both sides of the expression with
�−2 we obtain

nj +1 + nj −1 −
(

2 + 1
γ

)
nj = 0 (19)

which has the following very simple solution

nj = n0(1 − f )f j

f = 1 + 1
2 γ

− 1
2 γ

√
1 + 4 γ (20)

Fig. 9. Doping profile of a field-induced layered electron gas.

where j = 0, 1, 2, . . . In Section 14 we will see an ex-
ample of a cuprate for which γ has been measured
experiment ally, with the result γ = 0.18. This implies
that f = 0.13. In other words, in a field effect device
for the cuprates (in this example with a lattice spac-
ing of 0.6 nm) the first layer is expected to receive a
fraction 1 − f = 0.87 of the total charge induced by
the gate of the field effect device.5

12. SINGLE BILAYER

Let us now consider a single bi-layer, with a
bilayer-distance dK and a coupling frequency �1,2 ≡
�K between layers 1 and 2:

d2

dt2
(n1 − n2) = κn2

0�
2
K

d
dt

(ν1 − ν2)

= −κn2
0�

2
K

(
1

κn2
0

+ πe∗2dK

ε∞

)
(ν1 − ν2)

(21)

The first term on the righthand side, �2
K corresponds

to the restoring effect on the nonequilibrium charge
density due to the compressibility term (the second
term in Eq. (14)), whereas the second term, ω2

K =
2πe∗2dKε−1

∞ kn2
0�

2
K is due to the restoring effect of the

electric field (the third term in Eq. (14). We see, that
the resonance frequency of this mode is

�K =
√

�2
K + w2

K = �K

√
1 + 2πe∗2dKκn2

0

ε∞
(22)

The charge and the density appear in the com-
bination (e∗n0)2, the value of which is indepen-
dent of whether one defines n0 and e∗ as the den-
sity and charge of single electrons, or pairs. In
a cuprate superconductor typically d ∼ 6 · 10−8 cm,
κn0 ∼ 1eV−1 = 6 × 1011 erg−1, the electronic density
is n0 ∼ 6 × 1014 cm−2 a nd the background dielectric
constant ε∞ ∼ 10. Without the Coulomb interactions,
i.e. assuming that e∗ = 0 in Eq. (22), the frequency of

5The field-induced charge is the gate voltage devided by the ca-
pacitance of the device, both of which can be measured. Let’s
suppose for example that the superconducting Tc would be sup-
pressed at a doping level of 1/8 hole per a2, i.e. per 2D unit
cell. The toplayer receives the fraction 1 − f of the field induced
charge, and consequently the suppression of Tc will be delayed
to 0.125/(1 − f ) field induced holes per a2. Hence the quanti-
tative analysis of this delay can be used to obtain an indepen-
dent measurement of the electronic compressibility in the CuO2
planes.
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the collective mode is �K. However, the elementary
charge is e = 4.8 × 10−10 erg1/2cm1/2, and after mul-
tiplying all factors we obtain ∼3 for the second term
under the square root. This demonstrates that the
“correction” due to the Coulomb interaction is the
dominant contribution to the internal Josephson res-
onance frequency of the cuprates. In fact in the first
publications on this subject only the Coulomb term
had been taken into account [16], whereas the second
term of Eq. (21) (the term considered by Leggett)
was neglected. However, for a correct quantitative
description of the optical spectra it is important to
take into account all three terms of the Hamiltonian
Eq. (14).

Let us now consider a crystal composed of
a stack of bi-layers of the type described above,
where the bi-layers occupy a volume fraction f. For
example f = 1/6 in Bi2212. Let us for the moment
ignore the inter-bilayer hopping. With the model
above we obtain for the dielectric function [15]

ε(ω) = ε∞
ω2 − �2

K

ω(ω + i0+) − (
�2

K − f ω2
K

) (23)

This expression predicts an optical absorption at a
frequency (�2

K − f ω2
p,K)1/2, which is lower than the

collective mode of a single bi-layer, �K. This re-
duction of the transverse polarized collective mode
is a consequence of the Coulomb coupling be-
tween the bi-layers in the crystal. The longitudi-
nal mode, i.e. the frequency for which ε(ω) = 0, is
at �K.

13. STACK OF ALTERNATING STRONG
AND WEAK JUNCTIONS

Because it was assumed that there is no cou-
pling between the bi-layers, the screening at low
frequencies is not contained in Eq. (23). In. or-
der to describe this effect, Eq. (14) needs to be
solved with an inter-bilayer coupling taken into ac-
count. The result obtained in Refs. [15,109–113] is the
following

ε(ω) = ε∞ (ω2 − ω̃2
+)(ω2 − ω̃2

−)

ω2 (ω(ω + i0+) − ω̃2
T)

(24)

where the frequencies ω̃± and ω̃T can be expressed
in �K,I (defined in Eq. (14)) and �K,I (defined in
Eq. (22)). We use the indices K and I to indicate the
bilayer and the inter-bilayer couplings

ω̃2
± = 1

2

(
�2

K + �2
I

) ± 1
2

√(
�2

K − �2
1

)2 + 4�2
K �2

I

Fig. 10. Snapshot of the currents (arrows) and planar charge fluc-
tuation amplitudes (indicated by gray-scales) of the two sets of
transverse and longitudinal modes with polarization along the
c-direction. On the righthand side of each plot the voltage dis-
tribution is indicated. Copyright (2001) by the American Physical
Society.

ω̃2
T = (1 − f )

(
�2

K + �2
I

) + f
(
�2

I + �2
K

)
(25)

The notation is slightly different from Ref. [15], pro-
viding more transparent expressions. From this ex-
pression we see, that now there are two longitudinal
modes (corresponding to ε(ω) = 0) and one trans-
verse mode (a divergence of ε(ω)) at finite frequency.
The two extra modes are due to the out-of-phase
oscillation of the interplane currents in alternating
junctions. This situation has been sketched in Fig. 10.
In the following sections we will discuss some exam-
ples, based on materials where this behavior has been
observed.

14. TRANSVERSE OPTICAL PLASMON
IN COMPOUNDS WITH WEAK
IN-TERLAYER TUNNELING

The existence of two longitudinal modes and
one associated transverse plasmon mode at finite fre-
quencies has been confirmed experimentally for the
SmLa0.8Sr0.2CuO4−δ in a series of papers [68,76–82]
(see Figs. 11 and 12). Measurements of the magnetic
field and temperature dependencies of the longitudi-
nal and transverse plasmons in SmLa0.8Sr0.2CuO4−δ

could be successfully described by the multilayer
model explained above, as shown in Fig. 13. It is re-
assuring, that fits to the data using this model pro-
vide for a wide range of temperature and magnetic
field the same value for the electronic compressibility
term, γ = ε∞/(4πde∗2κn2

0) = 0.18, where d = 1.3 nm
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Fig. 11. The c-axis optical conductivity and loss-function, of
SmLa0.8Sr0.2CuO4−δ for 4 K (closed symbols), and 20 K (open
symbols). Tc of this sample is 16 K. When the sample enters the
superconducting state, two longitudinal collective modes appear (7
and 12.8 cm−1) and one with transverse polarization (12.1 cm−1).
The two modes near 12 cm−1 correspond to relative phase fluctu-
ations of the two copper-oxygen layers within the unit cell [68].

Fig. 12. Real part of the complex conductivity σ1(ω) and loss func-
tion Im(−1/ε(ω)) of SmLa0.8Sr0.2CuO4−δ along the c-axis for dif-
ferent magnetic fields. The transverse plasmon νT is seen as a peak
in σ1, the longitudinal plasmons νI,K as peaks in Im(−1/ε(ω)). The
data are from Ref. [80]. Copyright (2001) by the American Physi-
cal Society.

Fig. 13. Fit using Eq. (24), with the parameters defined in Eqs. (25)
and (22) (solid line) to (a) the real part of the c-axis optical con-
ductivity, (b) Real part of the c-axis dielectric function, (c) the loss
function of SmLa0.8Sr0.2CuO4−δ at 3 K. The open circles are the
experimental data. The data are from Ref. [68]. Copyright (2001)
by the American Physical Society.

is the lattice constant, which is twice the spacing be-
tween the layers (see Fig. 14). Note, that the sec-
ond factor under the denominator of Eq. (22) is just
dK/(2dγ)  1.4, close to the estimate given earlier in
the discussion. Using the value of ε∞ = 23 in this
compound, and a = 0.38 nm for the copper–copper
distance along the planes, we can use the experimen-
tal value of γ to calculate, that κn2

0a2 = 0.80 eV−1. In

Fig. 14. Upper panels: magnetic field (left) and tempera-
ture (right) dependence of the electronic compressibility, γ =
ε∞/(4πde∗2κn2

0) SmLa0.8Sr0.2CuO4−δ. The data are from Ref. [80].
Copyright (2001) by the American Physical Society.
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a Fermi liquid picture κn2
0a2 is exactly the density of

states at EF per CuO2 unit, N(0). For the cuprates
N(0) = 0.8 eV−1 is a very reasonable value.

15. TRANSVERSE OPTICAL PLASMON
AND BI-LAYER SPLITTING
IN HIGH TC CUPRATES

The c-axis optical conductivity σ1(ω) of YBCO
shows several remarkable features [83–87]: (1) A
very low value compared to band structure calcula-
tions, reflecting the large ρc. (2) A suppression of
spectral weight at low frequencies already above Tc in
underdoped samples referred to as the opening of a
“pseudogap” (which agrees with the upturn in ρc). (3)
The appearance of an intriguing broad “bump” in the
FIR at low T in underdoped samples. The c-axis opti-
cal conductivity of YBCO is one order of magnitude
larger than for LSCO near optimal doping. As a re-
sult the relative importance of the optical phonons in
the spectra is diminished. C-axis optical optical con-
ductivity of underdoped [83] and optimally and over-
doped [69] YBCO are shown in Fig. 15. Above Tc

the optical conductivity is weakly frequency depen-
dent, and does not resemble a Drude peak. Below
Tc the conductivity is depleted for frequencies below
500 cm−1, reminiscent of the opening of a large gap,
but not an s-wave gap, since a relatively large con-
ductivity remains in this range.

There is a slight overshoot of the optical conduc-
tivity in the region between 500 and 700 cm−1, and
the normal state and superconducting state curves
cross at 600 cm−1. Most of the above mentioned
issues can be clarified by modelling the cuprates,
or in particular YBCO, as a stack of coupled
CuO2 layers with alternating weaker and stronger
links. Indeed, the transverse mode in the infrared
spectrum of optimally and overdoped YBCO and the
above mentioned “bump” in underdoped YBCO are
well fitted by the multilayer model. Hence also the
“bump” in the YBCO c-axis spectra may be regarded
as a realization of the “excitons” first considered by
Leggett [14], which involve the relative phase fluc-
tuations of the condensates formed in two different
bands crossing the Fermi surface [58–60,69,94–98].

This assignment is complicated by the fact, that
experimentally the peaks at ω̃T and ω̃K appear at a
temperature higher than the superconducting phase
transition. For the underdoped samples the intensity
of these features has been shown to correlate with
the intensity of the spin-flip resonance at (π, π) seen

Fig. 15. C-axis optical conductivity (left) and energy loss func-
tion (right) as a function of wavenumber (in cm−1) of under
doped (x = 6.6, top panels), optimally doped (x = 6.93, middle)
and overdoped (x = 7.0, bottom panel) YBa2Cu3O7−x. The opti-
cal phonons have been subtracted from the loss-functions for clar-
ity. See Refs. [69,83] for details.

in neutron spectroscopy [88], which is quite far above
Tc. On the other hand it appears to be another mani-
festation of the phenomenon that a strong reduction
of dissipation reveals collective modes, which are
otherwise overdamped. In the optimally and over-
doped cuprate a wide peak is visible in the loss-
function around 1600 cm−1 for all temperatures. The
only effect of the transition into the superconduct-
ing state is in this case, that the peak becomes some-
what narrower. This behavior is reminiscent of a dif-
ficulty which we already encountered in the discus-
sion relating to Figs. 8 and 7: The single-particle cou-
pling term t between the layers, Fig. 8a, should in
principle be revealed in the optical spectrum of the
normal state as a transition between the bands con-
sisting of the symmetric and antisymmetric combina-
tions of the two layers [89–93]. In the underdoped
YBCO this process appears to be overdamped. On
the other hand, the type of process depicted in Fig.
8b can still contribute at low frequencies, at tem-
peratures where the dissipation becomes sufficiently
small. The coherent bi-layer splitting is gradually
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restored as we move to the optimally and overdoped
region. In this case the two types of interlayer trans-
port mdicated in Fig. 8 work in parallel, but there
is still a temperature dependence, like in the other
cases. Note that this does not imply nor require the
simultaneous presence of both single electrons and
pairs: These are just two different forms of charge
transport.

Additional studies of the bi-layer (and trilayer)
materials have provided confirmation of the trans-
verse optical plasmon in these materials. The spec-
tra of the far-infrared c-axis conductivity exhibit
dramatic changes of some of the phonon peaks,
which correlates with the temperature dependence
of the transverse optical plasmon. The most strik-
ing of these anomalies can be naturally explained by
the local fields acting on the ions arising from the
transverse optical plasmon oscillations [58–60,69,94–
97,99].

It is not difficult to extend Eq. (23) for the di-
electric function, to cases where the sequence along
the c-axis is extended to three or more different junc-
tions per period [16]

1
ε(ω)

=
∑

m

zmω2

ε∞(ω2 − ω2
J,m) + 4π iωσm

(26)

where zm is the effective volume fraction of the mth
junction, and σm is a parallel dissipa-tive conductivity
of the mth junction. In trilayer materials such Bi2223
two of the three junctions are identical because one
of the CuO2-layers is a mirror plane. Consequently
the expression above has a degeneracy between
two of the three terms in the summation, and the
c-axis spectrum should still have one transverse op-
tical plasmon. Interestingly in this case an additional
mode exists where the charge oscillations have even
parity around the mirror-plane [100]. This electronic
mode is observable with Raman spectroscopy [100].

If one introduces a single planar defect layer in
an otherwise perfectly periodic stack of Josephson
coupled layers, this results in a pronounced satellite
line in the real part of the complex resistiviy, whose
position and amplitude depend on the critical current
density and on the parameters of the interlayer cou-
pling [101]. The extreme narrowness of this plasma-
peak could in princple be used to probe the pairing
symmetry using a twist grain boundary configuration.

Random variations of the potential barrier, e.g.
due to chemical disorder, can be taken into account
by replacing the summation over m with a weighted
integration over ωJ,m. If one assumes for example a

gaussian distribution, a peak appears in the optical
conductivity, which coincides with the center-value
of the c-axis plasma frequency [16]. This effect is
present in all published data of the optical conduc-
tivity of LSCO, for example also in Fig. 6. The effect
has a strong doping dependence with it’s maximum at
exactly 1/8 doping [102], Suggesting an intriguing cor-
relation between disorder in the interlayer Josephson
coupling and the tendency toward stripe-formation.
This appears to be a manifestation of a more general
tendency where disorder allows optical absorption
by “forbidden” collective modes. Similar phenom-
ena have been observed [103] along the ab-planes of
the cuprates in the THz regime and explained with
a model of a planar disordered array of Josephson
junctions [104].

An alternative way to introduce a more com-
plicated pattern of Josephson couplings allong the
c-axis is obtained by the application of a mag-
netic field parallel to the CuO2 planes, which for
YBa2Cu3O6.6 results in inequivalent insulating lay-
ers with and without Josephson vortices. As a re-
sult one optical (transverse) mode appears at around
40 cm−1, corresponding to the antiphase Joseph-
son current oscillations between two inequivalent
junctions [105].

16. SUMMARY

In superconductors a rich spectrum of collective
modes can be observed using optical techniques. The
simplest case is where there is one layer per unit cell,
for example La2-xSrxCuO4. Here the Josephson-
coupling gives rise to a single c-axis plasmon. This
plasmon is an collective mode of the phase of the
superconducting order parameter. Their coupling to
the electromagnetic field causes a mass-gap of the
photons coupled to the superconductor, providing
a small energy scale (and small budget) demonstra-
tion of the Anderson–Higgs mechanism for gener-
ating massive particles. These modes can be de-
scribed in the context of the Lawrence–Doniach
model. However from the optical experiments on
SmLa0.8Sr0.2CuO4−δ we have seen that it is impor-
tant to take into account the fact that the compress-
ibility of the charge-fluid in the layers is finite. The
compressibility term establishes the connection to
the model considered by Leggett for Josephson cou-
pled bands. A directly observable consequence is the
appearance of several additional collective modes in
the optical spectrum, which are related to the relative
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phase excitons predicted by Leggett. However, their
energy and optical oscillator strength is strongly af-
fected by the interlayer Coulomb interaction. These
excitons have been observed for light polarized along
the c-axis in a number of cuprate superconductors. If
the number of layers per unit cell is 3 or more, col-
lective modes of even symmetry appear, which can
be observed with Raman spectroscopy. In addition
to chemical modulation of the interlayer Josephson-
coupling, magnetic field parallel to the planes can re-
sult in inequivalent insulating layers with and without
Josephson vortices.
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In this paper we discuss decay of superfluid currents in boson lattice systems due to quantum
tunneling and thermal activation mechanisms. We derive asymptotic expressions for the de-
cay rate near the critical current in two regimes, deep in the superfluid phase and close to the
superfluid-Mott insulator transition. The broadening of the transition at the critical current
due to these decay mechanisms is more pronounced at lower dimensions. We also find that
the crossover temperature below which quantum decay dominates is experimentally acces-
sible in most cases. Finally, we discuss the dynamics of the current decay and point out the
difference between low and high currents.
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1. INTRODUCTION

Some of the most intriguing questions in low-
temperature physics concern the ways in which su-
perconductors lose their superconducting properties,
because of thermal or quantum fluctuations. Mike
Tinkham has long been fascinated with these issues,
and has done much to advance our understanding of
the subject.

An early contribution in this area was the work
of Newbower et al. on effects of fluctuations on the
superconducting transition of tin whisker crystals [1].
Experimental data were compared with theories of
thermally activated phase slips, both in the linear
regime and in the nonlinear regime of finite cur-
rent flows. More recently, Tinkham and collabora-
tors studied the loss of superconductivity in very
thin wires of MoGe, deposited on carbon nanotubes,
where quantum fluctuations are involved [2–4]. Re-
lated work from Tinkham’s laboratory, in recent
years, has elucidated the breakdown of supercon-
ductivity in ultrasmall metallic grains, measured by
the even–odd alternation of Coulomb-blockade en-

1Physics Department, Harvard University, Cambridge,
Massachusetts 02138.

ergies [5,6], vortex motion, and resistance in high-
temperature superconductors [7,8], and critical cur-
rents in frustrated arrays of Josephson junctions [9].

The decay of supercurrents in liquid 4He and
in Bose-Einstein condensates of ultracold atoms has
much in common with the decay of superconductiv-
ity. Concepts of flux-line motion, and of phase slips
due to thermal or quantum fluctuations, appear in
both cases. A new dimension has been added to the
subject by recent experimental advances, where cold
atoms have been trapped in a region that contains
a spatially periodic potential, produced by optical
standing waves (see for example [10]). The ability
to vary continuously the parameters of the system,
by changing the strength of the periodic potential,
as well as by varying the number of trapped atoms
and the shape of the overall confining potential, al-
lows one to explore new regimes of parameters and
to make more precise confrontations between the-
ory and experiment. In turn, these developments give
added urgency to the theoretical study of supercur-
rent decay.

In the present paper, we discuss similarities and
differences between the decay of supercurrents in su-
perconductors and systems of trapped atoms, and we
present some new results for the latter. Specifically

577
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we consider certain experimental procedures which
have become standard in systems of ultra cold atoms.
In the first scheme, a condensate is prepared on a lat-
tice with a specified intensity, when the lattice is sud-
denly accelerated to a finite velocity. In other words,
a moving condensate is prepared in the lattice frame,
essentially fixing the phase gradient. A similar exper-
iment in superconductors would involve threading
a flux through a closed superconducting loop. Such
sudden lattice boosts were applied by several groups
to demonstrate a dynamical instability of the super-
fluid when the imposed phase gradient exceeds π/2
per unit cell [11]. A related experiment involves tilt-
ing the lattice, thus subjecting the atoms to a lin-
ear potential. This is equivalent to imposing a con-
stant voltage on a superconductor. The technique
was used, for example, to demonstrate Bloch oscilla-
tions of a condensate [12]. In a third experimental se-
quence, one can prepare a moving condensate, then
continuously increase the depth of the lattice toward
the superfluid-Mott insulator transition.

The response of the atomic system to the per-
turbations, can be measured, by direct observation
of the time evolution. Decay of the current, for ex-
ample, is observed by repeated experiments, where
atoms are released from the trap after varying wait-
ing periods. The phase gradient in the superfluid
at the time of release may be inferred from a time
of flight measurement of the momentum distribu-
tion. This should be contrasted with superconduc-
tors, where measurements probe I–V characteristics.

Besides the differences in the experimental ob-
servation procedures, there are unique features of
trapped atom systems which influence the physics of
supercurrent decay. First, to a very good approxima-
tion such systems can be considered perfectly clean.
Supercurrents decay only due to breaking of Galilean
invariance by the periodic potential.

A second feature that distinguishes the dynam-
ics of ultra cold atoms is their nearly perfect isola-
tion from the environment. Strictly speaking they are
always underdamped. However, we are usually in-
terested in the dynamics of a subset of the system
degrees of freedom, such as the super-current. How
much the dynamics of the the interesting variables
is damped, depends solely on the remaining system
degrees of freedom rather than on external dissipa-
tion sources. In superconductors, effects of quenched
disorder, phonons, fermion degrees of freedom, and
coupling to a substrate can complicate the situation
greatly, and the order parameter dynamics is most
frequently overdamed.

2. CRITICAL CURRENT IN THE
SUPERFLUID PHASE

Ultra cold atoms in an optical lattice, confined
to the lowest Bloch band are described by the well
known Bose-Hubbard Hamiltonan:

H = −J
∑
〈ij 〉

(a†i aj + h.c.) + U
2

∑
i

ni(ni − 1), (1)

where J and U are the hopping amplitude and the on-
site repulsive interaction, 〈ij 〉 denotes pairs of near-
est neighbor sites. Another implicit parameter in this
Hamiltonian is the average number of bosons per
site, N. In this paper we shall be primarily concerned
with the case where N is a large integer. We shall ad-
dress two separate regimes: the first is defined by the
conditions UN2 � JN � U, while the second regime
corresponds to the superfluid near the transition to a
Mott insulator (UN2 � JN ∼ U).

If the condition UN � J holds, then the inter-
actions are sufficiently strong to suppress amplitude
fluctuations of the order parameter, and (1) can be
mapped to the quantum rotor model:

H = −JN
∑
〈ij 〉

cos(ϕi − ϕj ) − U
2

∑
i

(
∂

∂ϕi

)2

(2)

The additional condition JN � U ensures that the
system is far from the superfluid-insulator transition,
and facilitates a semiclassical approximation because
fluctuations in ϕ as well as in the density, are small. In
the classical limit the boson creation and annihilation
operators can be treated as complex numbers subject
to discrete Gross-Pitaevskii equations [13]:

i
dψj

dt
= −J

∑
k∈O

ψk + U|ψj |2ψj , (3)

where the set O contains the nearest neighbors
of site j. In the quantum rotor limit UN � J the
number fluctuations can be integrated out leaving
us with only the equations of motion for the phase
φj = arg ψj :

d2φj

dt2
= −2UJN

∑
k∈O

sin(φk − φj ). (4)

Alternatively Eq. (4) immediately follows from the
Hamiltonian (2). Both Eqs. (3) and (4) can support
stationary current carrying states, ψj ∝ exp(ipxj ). A
simple linear stability analysis of (3) or (4), shows
[14,15] that these states become unstable toward
small perturbations when the phase twist exceeds a
critical value of π/2 per unit cell. The onset of this
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instability is signaled by appearance of imaginary
frequencies. This instability was recently observed
experimentally [12].

In principle, one can identify another type of
instability, characterized by appearance of negative
frequencies, in systems described by Eq. (3) [14]. In
general this occurs at a phase twist p∗ < π/2. How-
ever, in the quantum rotor limit UN � J , where we
work, the two instabilities coincide.

While the modulational instability occurs pre-
cisely at p = π/2 for JN � U, we expect that the
current can decay at smaller momenta due to either
quantum or thermal fluctuations (see also Ref. 16).
We envision the following experimental scheme to
observe this. The condensate is either boosted to a
state with a certain phase gradient or gradually ac-
celerated. Following the boost or while the system is
accelerating we probe the evolution of the phase gra-
dient. If the system is sufficiently close to the mod-
ulational instability, i.e. p is slightly below π/2, the
coherent motion of the condensate is expected to de-
cay. The larger the phase gradient, the faster this de-
cay will occur.

The other regime we shall address, is that of the
superfiuid close to the quantum phase transition to
a Mott insulator at commensurate filling (i.e. JN ∼
U, and for simplicity we still assume that N � 1).
Now the phase fluctuations are large, and (2) can-
not be treated semiclassically. However, one can use
the semiclassical description after coarse graining the
system. Since the coherence length ξ diverges at the
transition, one can use a continuum description of the
static and dynamic properties of the condensate. At
commensurate filling the appropriate quantum ac-
tion written in terms of the superfiuid order parame-
ter reads [17,18]:

S = C
∫

ddx dt

{∣∣∣∣dψ

dt

∣∣∣∣
2

− |∇ψ|2 + |ψ|2 − 1
2
|ψ|4

}
, (5)

where length is measured in units of ξ and time in
units of ξ/c, with c the sound velocity, C is a numeri-
cal prefactor. The bare parameters ξ, c, and C can be
found using a mean-field approximation [19]. For the
cubic d-dimensional lattice they read:

ξ = 1√
2d(1 − u)

, c = 2JN
√

2d,

C = 1
2(2d)d/2

(1 − u)
3−d

2 , (6)

where we introduced the dimensionless interaction
u = U/Uc with Uc = 8JNd being the critical interac-

tion strength in the mean field approximation. The
action (5) correctly describes low-energy dynamics of
the system in the vicinity of the phase transition, only
if the couplings ξ, c, Uc, and C are properly renormal-
ized. While in three dimensions the effects of such
renormalization should be weak, in two- and espe-
cially one-dimensional cases they strongly modify the
couplings and the critical exponents. The bare mean
field parameters can then be used only as an esti-
mate. Note that the dimensionless part of the ac-
tion (5) is general, and so are the conclusions we
reach in this paper, once the renormalized, rather
than mean field parameters are used. The action (5) is
obviously extremized by stationary current-carrying
states: ψp(x) =

√
1 − (pξ)2 eipxξ. It is easy to check

[19] that these states are stable with respect to small
fluctuations for p < pc = 1/(ξ

√
3). Since ξ diverges at

the phase transition, the critical phase twist vanishes
at that point as it should.

A possible experimental procedure to measure
the decay rate at low currents follows. A condensate
with a specified phase gradient is prepared in a weak
lattice (small u). Then, the lattice potential is grad-
ually increased in time, driving the system closer to
the Mott phase. This, in turn, results in the increase
of the correlation length ξ and in decrease of the criti-
cal momentum pc. As pc approaches p the superfluid
current is expected to decay either due to quantum
or thermal fluctuations.

3. DECAY OF THE SUPERFLUID CURRENT

In this section we describe how the superfluid
current decays in a lattice when p is below pc. We
shall consider first the Gross-Pitaevskii regime JN �
U in the quantum rotor limit UN � J and then turn
to the situation in the vicinity of the superfluid insu-
lator transition JN ∼ U. In each case we shall address
the effects of both quantum and thermal fluctuations.

3.1. Gross-Pitaevskii Regime

3.1.1. Quantum Decay

The action corresponding to the quantum rotor
model (2) is given by

S=
∫

dτ


∑

j

1
2U

(
dφj

dτ

)2

−
∑
〈j ,j ′〉

2JN cos(φj − φj ′)


 ,

(7)



580 Polkovnikov, Altman, Demler, Halperin, and Lukin

or after the rescaling τ → τ/
√

UNJ :

S = (JN/U)1/2s, (8)

where

s =
∫

dτ


∑

j

1
2

(
dφj

dτ

)2

−
∑
〈j ,j ′〉

2 cos(φj − φj ′)


 . (9)

To leading order in
√

U/JN, which plays the role of
the effective Planck’s constant for this problem [20],
the tunneling rate depends on the action Sb, associ-
ated with the bounce solution of the classical equa-
tions of motion in the inverted potential [21]:

� ∝ e−Sb, (10)

Clearly the action should vanish at p = π/2, since at
this point the spectrum becomes unstable and the
tunneling barrier disappears. Deep in the superfluid
regime U/JN  1, the tunneling is effective only if p
is close to π/2, where the product s(JN/U)1/2 is not
too large. In this case one can make further progress
in calculating the tunneling action by expanding (9)
up to cubic terms in phase differences φj − φj ′ :

s ≈
∑
j ,k

∫
dτ

[
1
2

(
dφj k

dτ

)2

+ cos(p)(φj +1,k − φj ,k)2

+ (φj ,k+1 − φj ,k)2 − 1
3

(φj +1,k − φj ,k)3

]
. (11)

Here we explicitly split the site index into longitu-
dinal (j ) and transverse (k) components. Also, for
convenience, we shifted the phase φj ,k → φj ,k + pj so
that the metastable state now corresponds to φj ,k =
0. Note that at p → π/2 only longitudinal modes be-
come soft, due to the prefactor cos p in front of the
quadratic term in the action. This implies that we
can safely apply a continuum approximation for the
phases along the transverse directions. Then instead
of (11) we derive:

s ≈
∑

j

∫
dτdd−1x

[
1
2

(
dφj

dτ

)2

+
(

dφj

dx

)2

+ cos(p)(φj +1 − φj )2 − 1
3

(φj +1 − φj )3

]
. (12)

In this equation x denotes transverse coordinates
which reside in a d − 1 dimensional space. Upon
rescaling

φ = cos(p)φ̃, τ = τ̃√
cos(p)

, x = x̃
√

2√
cos p

, (13)

the action (12) simplifies further:

s ≈ (π/2 − p)
6−d

2 sd, (14)

where

s̃d = 2
d−1

2

∑
j

∫
ddξ

[
1
2

(
dφ̃j

dξ

)2

+ (φ̃j − φ̃j +1)2

− 1
3

(φ̃j − φ̃j +1)3

]
(15)

is just a number, which is determined only by the
dimensionality d. We will provide its detailed vari-
ational derivation elsewhere [19] and here just quote
the results: s̃1 ≈ 7, s̃2 ≈ 25, s̃3 ≈ 90. From the scaling
(13) it is obvious that the characteristic transverse di-
mension of the instanton x scales as (π/2 − p)−1/2 �
1, justifying the continuum approximation. Above
d = 6 the tunneling action would experience a dis-
continuous jump at p = π/2. However, since we deal
with d ≤ 3, the action always continuously vanishes
at p → π/2. In this way we derive the asymptotic de-
cay rate of a uniform current state near the modula-
tion instability:

� ∝ exp
[
−s̃d(JN/U)1/2(π/2 − p)

6−d
2

]
(16)

3.1.2. Thermal Decay

To calculate the exponent characterizing the
thermal decay rate, one has to compute the dif-
ference of energies of the metastable state and
the saddle-point which separates two adjacent
metastable minima [22–24]. Both saddle-point and
metastable configurations are the stationary solu-
tions of the equations of motion (4):∑

k∈O

sin(φk − φj ) = 0. (17)

The metastable state corresponds to the uniform
phase twist: φj ,k = jp. The saddle-point state relevant
for the current decay can be easily found in one di-
mension:

φj =
{

p ′j , j < 0

π + p ′(j − 2), j ≥ 1,
(18)

where p ′ ≈ p − (π − 2p)/M if we use periodic
boundary conditions for the system with M sites. The
energy difference between the two states in the limit
M → ∞ is

	E = 2JN(2 cos p − sin p(π − 2p)). (19)
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Correspondingly, the decay rate is proportional to

� ∝ e−β	E = e−2JNβ(2 cos p−(π−2p) sin p). (20)

In particular when p → π/2 we have:

� ∝ e− 4
3 NJβ(π/2−p)3

. (21)

In higher dimensions we cannot find the energy of the
saddle-point explicitly for all values of p. However, in
analogy with the quantum case, at p close to π/2 we
can expand the energy functional up to cubic terms
in phase differences.

Ed ≈ JN
∑

j

∫
dd−1x

[ (
dφj

dx

)2

+ cos(p)

× (φj +1 − φj )2 − 1
3

(φj +1 − φj )3

]
, (22)

where φj (x) is the nontrivial solution of the cor-
responding Euler-Lagrange equations vanishing at
x → ∞. We again shifted the phase φj → φj + pj .
After rescaling φj = cos(p)φ̃j and x = x̃

√
2/

√
cos p

we find:

Ed ≈ JN 2
d−1

2 (pc − p)
7−d

d

∑
j

∫
dd−1x̃

[
1
2

(
dφ̃j

dx̃

)2

+ (φ̃j +1 − φ̃j )2 − 1
3

(φ̃j +1 − φ̃j )3

]
. (23)

Note that the integral in the expression above coin-
cides with s̃d−1 up to a number 2

d−2
2 . So we immedi-

ately conclude that

Ed ≈ s̃d−1JN
√

2(π/2 − p)
7−d

2 . (24)

Note that the activation energy characterizing
the thermal decay vanishes faster than the tunnel-
ing action as p → π/2. It implies that thermal fluc-
tuations become increasingly important and domi-
nate the decay of superfluid current as the system
approaches the dynamical instability. Comparing the
ratio Ed/T and the tunneling action in (16) we obtain
the crossover temperature:

T∗ ≈ c
(

s̃d−1

s̃d

) √
π/2 − p (25)

at which the quantum and thermal decay rates coin-
cide. Here c = √

2UJN is the sound speed in equilib-
rium (i.e. p = 0). Alternatively, we can fix the tem-
perature to obtain the momentum crossover scale p�

at which thermal and quantum decay rates coincide:

π/2 − p∗ ≈
(

s̃d

s̃d−1

)2 (
T
c

)2

. (26)

At phase gradients larger than p∗, thermal decay
dominates. The tunneling action in (16), at this value
of momentum is given by

S∗
d = s̃d

(
s̃d

s̃d−1

)6−d
√

JN
U

(
T
c

)6−d

. (27)

If S∗
d � 1, then at the crossover momentum the cur-

rent decay is exponentially suppressed and will be
nonzero only at p closer to π/2. Then the thermally
activated phase slips will dominate the decay process
and quantum tunneling can be ignored. In the oppo-
site limit S∗

d  1 the current will decay at p < p∗ due
to quantum process and the temperature effects are
unimportant. The characteristic crossover tempera-
ture separating quantum and thermal decay regimes
is thus:

Tq ≈ Ac s̃
− 7−d

6−d
d s̃d−1

(
U
JN

) 1
2(6−d)

, (28)

where A is a numerical constant of the order of one.
Note that for all relevant dimensions d ≤ 3 the last
multiplier is always of the order of one because of the
small exponent 1/(12 − 2d). Therefore, the crossover
temperature Tq is of the order of the sound velocity
(or equivalently, the Josephson energy).

4. CURRENT DECAY IN THE VICINITY
OF THE MOTT TRANSITION

Let us now address decay of supercurrents in
the regime where JN ∼ U and large integer filling N.
As we already argued, in the vicinity of the Mott-
insulator phase transition the correlation length ξ be-
comes large compared to the lattice constant. One
can therefore use a continuum description of the
problem (5). The relativistic dynamics of (5) is a spe-
cial feature of the commensurate transition. Ordi-
nary superfluids are described by a similar action, but
with a kinetic term including first time derivative.

The Euler Lagrange-equations derived from (5)
admit stationary current carrying solutions of the
form

ψ =
√

1 − (pξ)2eipξx, (29)

We emphasize again that x is measured in units
of the correlation length ξ. The current state be-
comes unstable at p > pc = 1/(ξ

√
3). Below pc, the

current can still decay due to quantum or thermal
fluctuations.
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For the thermal decay, only the static part of the
action needs to be considered. Then there is no dif-
ference between our problem and the current decay
in ordinary superfluids described by the Ginzburg-
Landau free energy. In particular, in the context
of super-conducting wires, the exponent character-
izing the current decay rate in one dimension was
computed by Langer and Ambegaokar [23], and the
prefactor setting the time scale was later found by
McCumber and Halperin [24]. In three dimensions,
the asymptotic behavior of the corresponding expo-
nent at p → 0 was obtained by Langer and Fisher
[25]. However, here we are interested in the opposite
limit p → pc.

For both the thermal and the quantum cases we
will use the scaling approach, successfully applied
above for the quantum phase model in the Gross-
Pitaevskii regime. We expand the action to cubic or-
der in the amplitude (η) and phase (φ) fluctuations,
about the metastable minimum, and integrate out the
gapped amplitude mode. After the rescaling:

x → x

2 31/4
√

ξ
√

pc − p
, z → z

6ξ(pc − p)
,

φ → φ33/4 : 2
√

ξ
√

pc − p (30)

the action to leading order in pc − p becomes:

S = C39/4−d : 2dξ5/2−d(pc − p)5/2−d
∫

dz dx(∇φ)2

+ (
∂2

xφ
)2 − (∂xφ)3 ≈ Ad(1 − u)1/4(pc − p)5/2−d

(31)

where z denotes all the transverse coordinates rel-
ative to the current direction, including time. ∇ =
(∂z, ∂x) is the gradient in d + 1 dimensions. Accord-
ingly, the quantum decay rate is given by �Q ∝
exp(−Ad(1 − u)1/4(pc − p)5/2−d). A variational cal-
culation [19], yields A1 ≈ 18.4 and A2 ≈ 8.4. As be-
fore, to calculate the thermal decay rate one simply
has to substitute d → d − 1, so that

�T(d) ∝

exp
(

−JN
T

(2d)−3/4(1 − u)1/4Ad−1(pc − p)7/2−d
)

.

(32)

In the one-dimensional case the relevant constant
A0 ≈ 12.56. It is interesting to contrast these results
with the asymptotic decay rate (16), found in the
Gross-Pitaevskii regime. First we observe that the
tunneling action close to the Mott insulator vanishes

as a smaller power of pc − p. Moreover, for d = 3,
the scaling hypothesis for the quantum decay rate
breaks down, suggesting that S is discontinuous at
the critical current and is dominated by fluctuations
of a finite (rather than diverging as p → pc) length
scale. We therefore expect, that in three dimensions
at zero temperature, the instability marks a sharp lo-
calization transition. At finite T, thermal fluctuations
broaden this transition, because the activation energy
barrier vanishes at pc for d < 7/2.

The quantum-to-thermal crossover for a given
dimensionless interaction and phase gradient is
found by comparing the two decay rates. In one and
two dimensions we find

T∗(p) = JN
(2d)3/4

Ad−1

Ad
(pc − p). (33)

In three dimensions T∗ = 0 because the quantum de-
cay is effectively suppressed. As discussed above for
the quantum rotor model, there is a more useful, p-
independent, crossover temperature scale. Using the
same arguments as in the Gross-Pitaevskii limit, we
can find the temperature separating the quantum and
thermal decay regimes in one and two dimensions:

Tq ∼ JNAd−1A
− 7−2d

5−2d
d (1 − u)− 1

10−4d . (34)

We see that near the Mott transition the crossover
temperature strongly depends on interaction u. Thus
as u → 1, in one and two dimensions Tq → ∞, and
therefore the quantum decay always dominates over
the thermal. In particular, in two dimensions we find
Tq ∼ 0.03 JN/

√
1 − u, and in the one-dimensional

case Tq ∼ 0.1JN/(1 − u)1/6; i.e., the crossover tem-
perature is very high and the thermal decay is unim-
portant.

5. DYNAMICS OF THE CURRENT DECAY

We have seen that except for one case, corre-
sponding to the three-dimensional relativistic model
at T = 0, there is no sharp transition between the
superfluid current-carrying state and the insulating
state with no current. Indeed, in all other cases the
tunneling action and the energy barrier vanish con-
tinuously as the system approaches the modulation
instability. Thus, instead of a sharp transition bound-
ary we can define a broad crossover region, defined
roughly by 1 < Sd < 3, which separates the super-
fluid phase with a relatively slow current decay and
the insulating phase with a fast decay. The fact that
the transition is broad does not imply, however, that
within a single experiment a gradual current decay
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will be detected as the system is slowly tuned through
the crossover region. The tunneling and thermal de-
cay rate define a probability of creating a single phase
slip per lattice site. The subsequent evolution, after a
single phase slip has been created, can take one of
two general routes. In the overdamped scenario, the
phase slip rapidly dissipates its energy into phonon
(Bogoliubov) modes and brings the system to the
next metastable minimum with slightly lower current.
In the second, underdamped scenario, the phase slip
continues to unwind, triggering complete decay of
the current in a single step.

In a closed system, i.e. with no coupling to the
environment, these two regimes are well defined be-
cause the damping of the phase slip comes from the
internal degrees of freedom, which are completely
described by the equations of motion. Furthermore,
near the critical current, whether the phase slip was
thermally activated or induced by quantum tunnel-
ing, should make little difference for the dynamics
that follow. This is because the energy barrier is very
small, so the classically allowed motion following the
tunneling event starts very close to the metsatable
maximum, where it would start following thermal ac-
tivation. To see what type of decay modes are re-
alized in the Gross-Pitaevskii regime, we solve the
classical equations of motion (3) numerically. We
start from a uniform current state in a periodic lat-
tice. To allow for current decay we add small fluc-
tuations to the initial values of the classical fields
ψj (t = 0). This mimics the effect of thermal fluctu-
ations. In Fig. 1 we plot the computed current versus
time for a one-dimensional array of M = 200 sites.
Initially the system is assumed to be noninteracting
(U = 0) and prepared in an eigenstate with a given
phase gradient p (specifically we consider p = 2π/5
and p = π/10). Then, the interaction is gradually in-
creased in time reaching a constant value, and we
follow the time evolution of the current. It is clear
from the figure that the phase slips in the smaller
current case (p = π/10) are overdamped leading to
gradual decay. There are initially 10-phase twists in
the system, and indeed, it is evident that each phase
slip decreases the current by roughly 10%. On the
other hand for the larger current (p = 2π/5) a sin-
gle phase slip generates immediate current decay in
the whole sample consistent with the underdamped
regime. We will not attempt here to find the precise
boundary between the two scenarios. However, we
stress that near the instability the system is always in
the underdamped regime. We checked that a simi-
lar overdamped to underdamped crossover occurs in

Fig. 1. Current (scaled to 1 at t = 0) versus time for a one-
dimensional periodic array of 200 sites with two different initial
phase gradianets. The evolution is determined solving equations
of motion (3) with constant hopping amplitude J = 1 and interac-
tion increasing in time U = 0.01 tanh 0.01t for p = 2π/5 and U =
tanh 0.01 t for p = π/10. To get the current decay we add small
fluctuations to the initial values of the classical fields ψj (t = 0).

other spatial dimensions. So if p is not too small, then
in a given experimental run, one will always see a
sharp transition from the superfluid to the insulating
regime. However the precise point, where the current
decays will vary from run to run. The broadened tran-
sition below the critical current, which was the sub-
ject of this paper, will be evident from accumulated
statistics of the point where the rapid decay occurred.
On the other hand, in the absence of any fluctuations
the transition would seem very sharp, and always oc-
curs at p = π/2.

We did not carry out a similar numerical analysis
for small currents close to the Mott transition. There
are some reasons to anticipate that the decay will be
overdamped in this case even close to the critical cur-
rent. In particular, because the size of the phase slip
in this case is large, it should be able to easily dissi-
pate energy into phonon modes.

It is worth mentioning, that if the motion of
phase slips is underdamped, then in a truly infinite
system the current state is always unstable. Indeed
the probability of a phase slip in the whole system is
proportional to its size M. If a single phase slip trig-
gers the current decay in the whole sample, then ob-
viously a state with a uniform phase gradient cannot
exist. However, in finite size systems these effects are
not so crucial, because the decay probability depends
exponentially on the couplings and current, but only
linearly on the system size.
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6. CONCLUSIONS

The modulational instability can be observed ei-
ther by accelerating the condensate or by increas-
ing the lattice potential and driving the system closer
to the Mott transition, while the condensate is in
motion. We showed that because of quantum or
thermal effects, the current decays before the sys-
tem becomes classically unstable. Therefore instead
of a sharp transition, there is a crossover region
where the decay rate grows from being exponen-
tially small to large. The crossover region becomes
narrower either deep in the superfluid regime (i.e.
JN � U) or in higher dimensions. In particular, in the
three-dimensional case we always expect a very sharp
boundary separating the regions with very weak and
very strong decay rates.

We found that deep in the superfluid regime the
crossover temperature separating quantum and ther-
mal decay is of the order of plasma frequency in
all dimensions. At small currents, close to the Mott
phase, the decay occurs predominantly through ther-
mal fluctuations in three dimensions and through
quantum tunneling in one and two dimensions. In
the two-dimensional case the quantum tunneling be-
comes appreciable only at extremely low tempera-
tures or very close to the Mott transition.

We argue that both overdamped and under-
damped dynamics of the current decay can be real-
ized in these systems. The underdamped regime cor-
responds to high currents close to p = π/2, while at
low currents the dynamics is overdamped.
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The Strong Impact of the Weak Superconductivity
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The Josephson effect offers an unparalleled tool to shed light on aspects of the underlying
physics of phenomena which go also far beyond the field of superconductivity. Some con-
siderations on a few examples of the highlights concerning both exciting achievements and
challenging perspectives of this fascinating topic are briefly outlined “sharing” the attention
on both possible applications and intriguing implications.
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1. INTRODUCTION

Seventy-five years ago two important events
took place in the field of Physics: . . . the second one
was the birth of quantum electrodynamics.

In this paper I shall dwell with aspects related
to the development of superconductivity [1], confin-
ing the attention on the precious combination of the
role of the Josephson effect [2] in the investigations
of a few fundamental issues and on peculiar exam-
ples of realized and potential applications. In doing
so I shall focus on examples that I hope will reflect
the two sides of the coin.

In the next section a brief discussion is given
on just a few aspects of macroscopic quantum phe-
nomena such as Macroscopic Quantum Tunneling
(MQT) and Macroscopic Quantum Coherence.

Section 3 deals with the important issue concern-
ing the role of the Josephson effect as a probe of
essential features of the superconducting state. Fun-
damental in this context, is the identification of the
nature of the order parameter in new classes of su-
perconductors using proper Josephson structure con-
figurations. Some of the “historical” and quite re-
cent results are briefly discussed. As for the applica-
tions based on the Josephson effect a few examples
of great interest and quite different in nature are dis-
cussed in Section 4. Comments and conclusions will
follow.

1INFM—Coherentia—Dipartimento di Scienze Fisiche,
Università di Napoli “Federico II,” Napoli, Italy.

2. MACROSCOPIC QUANTUM PHENOMENA

Let us discuss some aspects of the Josephson
effect of great importance in the context of macro-
scopic quantum phenomena [3,4]. Quantum tun-
nelling on a macroscopic scale was considered by
Sidney Coleman [5] as an essential ingredient of
“ground state metastability” in the cosmological
frame. The fate of the “false vacuum,” namely its
decay through barrier penetration is a fascinating,
though a, hopefully unlikely, dramatic “small bang”
perspective, toward a more stable state of the Uni-
verse.

I shall not dwell here with underlying concepts
of quantum phenomena “at large” [6] nor with a va-
riety of subtle concepts and detailed analysis which
go far beyond the limits of space of the present arti-
cle and those, even narrower, of its author.

Let us refer to experiments dealing with phe-
nomena stemming from the quantum nature of a sin-
gle macroscopic degree of freedom which are quite
different [7] from those resulting in the superposition
of a large number of microscopic variables. In our
frame the macroscopic degree of freedom is the rela-
tive phase ϕ of the two weakly coupled superconduc-
tors of a Josephson junction or the trapped magnetic
flux [�(ϕ = 2π(�/�0)] in a rf SQUID superconduct-
ing loop.

Let us refer to the usual junction washboard po-
tential U(ϕ) (Fig. 1) resulting from the sum of the
free energy associated to the junction barrier and
a term α = I/Ic due to the feeding current I which
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Fig. 1. Qualitative sketch of potential vs. phase. Two values of
the imaginary time ϕ(τ = −∞) and ϕ(τ = 0) are indicated. Dashed
and solid arrows indicate tunnelling paths for small dissipation
(B � 1) and large dissipation (B � 1), respectively.

determines the average slope of U(ϕ) (e.g. Chapter 6
[2]):

U(ϕ) = −(�0Ic/2π)(αϕ − cos ϕ − 1).

The decay probability for thermal activation out of
a potential well (see also [1], Chapter 7) can be ex-
pressed by the classical Kramer theory as

τ−1
c = A exp

[
�U
kBT

]

where �U is the potential barrier height, which
depends on the bias current. There are different ex-
pressions of the prefactor A for the various damping
regimes.

At very low temperature, a regime of quan-
tum activation can occur [8] and Josephson junc-
tions offer the possibility to investigate intriguing as-
pects of quantum mechanics at a macroscopic level.
From the experimental point of view a first funda-
mental signature of the macroscopic quantum nature
of the system lies in the existence of quantized en-
ergy levels (ELQs). Unambiguous evidence of such
a feature was provided by the experiments based on
the microwave irradiation with consequent energy
level hopping [3]. As for the Macroscopic Quantum
Tunneling (MQT), the particle can now escape from
one local minimum by tunnelling through the poten-
tial barrier, and a variety of situations can occur.

At T = 0, the tunnelling probability (WKB)
is τ−1

q = A exp(−B), where A = ωp/2π and B =
7.2�U/hωp, ωp being the plasma frequency. The fac-
tor 7.2 accounts for the cubic shape of the potential
U(ϕ) at current values close to the critical (thinner

barrier) where quantum tunnelling more likely oc-
curs. Comparing this expression with the thermal de-
cay in the underdamped regime, thermal and quan-
tum activation are equal for kBT0 = hωp/7.2 which
defines thereby a “crossover temperature,” T0, be-
low which quantum effects are dominant over ther-
mal ones. In the full quantum mechanical description
of the macroscopic variable it is mandatory to take
into account interactions with the other degrees of
freedom, the irreversible energy transfer between the
system and the environment, namely the dissipation.

Caldeira and Leggett [9] have investigated such
a problem and have found that dissipation pro-
duces a reduction of the tunnelling rate by a factor
exp(−Aη�2

q) where η is the friction coefficient and
�q ≡ �ϕ the “distance in the barrier” (the tunnel
length).

A sketch of U(ϕ) and turning points in the case
of small and large dissipation [10] is given in Fig. 1.
The influence of dissipation on the prefactor in the
expression of the decay via MQT is of interest (see
[11] and references reported therein). The correction
to the prefactor due to the viscosity is smaller than
the correction to the exponent by a factor 1/N (N is
the number of levels in the well). However, the num-
ber of levels in a potential well in actual experimen-
tal conditions for MQT (low temperature) is quite
small (N ∼ 1). Thus, it is necessary to take into ac-
count the correction to the prefactor which is known
only in some special cases (for large viscosity near
the crossover temperature T0, and when the viscos-
ity is equal to zero, at temperature T larger than the
crossover temperature).

A macroscopic quantum phenomenon of great
interest lies in the occurrence of MQT between lev-
els in neighboring wells with very close energy. This
Resonant Macroscopic Quantum Tunneling
(RMQT) effect [12] results in sharp-voltage peaks
as experimentally observed by Rouse et al. [13] in a
SQUID structure.

Going back to the MQT, it is interesting to re-
call that such a macroscopic quantum phenomenon
has been observed [14] also at temperature larger
than the crossover temperature by playing on a
combination of a high current bias sweeping rate
(400 kHz) and low dissipation. Indeed, in these con-
ditions, within the characteristic measurement time,
incoherent mixing of eigenstates is negligible since
the rate of change of the external energy, measured
in terms of the energy level spacing, is fast compared
to thermally activated transition rate between such
levels.
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It is important to stress that the effect of tem-
porally modulated barriers on MQT is an extremely
intriguing subject on which it is focused a great
attention from both theoretical and experimental
side. Mechanisms of barrier penetration in non-
stationary field, such as, phenomena belonging to
photon-assisted tunnelling and Euclidean resonance
deserve great attention [15]. Recently, possible in-
fluence of current bias modulation on the dynam-
ics of Josephson junctions has been also discussed
[16] in connection with the quantum Zeno (QZE)
and anti-Zeno (AZE) effects [17], namely slowdown
and speedup respectively of the decay of quantum
states into an energy continuum due to frequent
measurements.

A further very stimulating topic which has at-
tracted the attention of the scientific community is
the Macroscopic Quantum Coherence. Evidence of
a coherent superposition of states which differ by
the transfer of a single cooper pair was obtained
in an ultra small capacitance tunnel junction device
by Nakamura et al. ([18] and references reported
therein) and quantum coherent charge oscillations by
Nakamura et al. [19].

As for the experimental observation of coher-
ent quantum superposition of macroscopic distinct
quantum states, let us recall the results obtained by
Lukens group at the State University of New York,
Stony Brook [20]. The states were identified with two
magnetic flux states of a SQUID, corresponding to
a pair of excited states |0〉 and |1〉 of the individual
well (see Fig. 2a). Excitation of the |0〉 state from
the lower one |1〉 is realized by microwave irradia-
tion. A series of measurements is performed reach-
ing a condition when the two states in the wells are
in a coherent regime identifying the symmetric and
antisymmetric superpositions of the |0〉 and |1〉 state.
Locations of resonant transitions between the fluxoid
states of a SQUID are reported in Fig. 2b with a shift
of 96 GHz between the excited and the ground state.
Of great relevance is also the observation of the co-
herent superposition of persistent current quantum
states in SQUID systems [21].

Furthermore, evidence of Rabi oscillations [21]
between such macroscopic quantum states have
been found in Josephson junctions [22] and on the
“quantronium” [23] circuit configuration. The stim-
ulating perspective of a quantum computer makes
these types of circuitry quite promising. Indeed the
implementation of proper quantum bits includes the
single [19,24] and coupled [25] Cooper pair box con-
figurations, flux qubits [26], and phase-qubit [21,27].

Among the other relevant results let us mention the
use of rf-sets to probe the island charge perform-
ing thereby the qubit readout [28] and the charge-
flux Josephson qubit discussed in [29]. Let us remem-
ber that also HTS superconductors circuits have been
proposed in the context of a possible implementation
of qubits (e.g. [30]). Potential and drawbacks of these
structures deserve great attention.

3. UNCONVENTIONAL ORDER
PARAMETER SYMMETRY

The potential of the Josephson effect as a probe
of the order parameter symmetry has provided one
of the main breakthrough in the investigations of
unconventional superconductors. The basic idea of
such a possibility was first proposed in Ref. [31] as a
probe for a possible axial p-wave symmetry in heavy-
fermion systems. It was independently considered in
the following [32] in the context of high-Tc cuprate
superconductors to explain properties of these ma-
terials as due to d-wave pairing. A detailed discus-
sion of the following quite interesting experiments
and the related extensive bibliography can be found
in the excellent review by Van Harlingen [33]. A
vortex state characterized by half-flux quantization,
as a consequence of the unconventional symmetry
of the order parameter, was proposed in Ref. [31].
It is interesting to observe that at the end of that
article it was also stated: “It would be of great in-
terest to consider the possibility of a direct exper-
imental observation of such a vortex structure by
using a suitable microscopy technique as any other
possible probe which could be envisaged.” It is in-
deed what was achieved at the IBM Laboratory by
using SQUID scanning microscopy (SSM) in a se-
ries of brilliant experiments on the flux quantiza-
tion in high-Tc rings including two- and three-grain
boundary Josephson junctions (for an extensive re-
view and bibliography See [34]). Recently, further
experiments which appear to confirm unambiguously
the d-wave order parameter symmetry in high-Tc su-
perconductors have been realized using biepitaxial
YBCO Josephson structures with “tunnel-like” fea-
tures and low barrier transparency [35]. The impor-
tance of these new results, obtained by anisotropy
measurements, lies in the “intrinsic” character of the
d-wave effects since observed in a Josephson junction
not inserted in any loop configuration (see also Ref.
[36]). In Fig. 3, the dependence of the Josephson crit-
ical current in a c-axis tilt biepitaxial grain boundary
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Fig. 2. (a) U(�) SQUID potential with the two left and right wells corresponding to the zero
and one-fluxoid state, respectively. (b) Observed Peak Locations Compared to Best Fit Level
Positions (see text). Data from Prof. Lukens group at SUNY Stony Brook [J. Friedman et al.,
Nature 406, 43 (July 2000)].

YBCO junction is reported (dots) as a function of
the angle between the grain boundary line and the
(001) in-plane direction of the substrate. The inset
shows the grain boundary structure with different in-
terface orientations. The excellent agreement with
theoretical prediction of Sigrist and Rice model [32]
(open circles) for a Josephson junction with a pre-
dominantly d-wave order parameter symmetry of the
superconductors electrodes is impressive. For details
see Ref. [35] and references reported therein. There
is a vast literature concerning the debate of d-wave
versus s-wave symmetry in cuprate superconductors

including the possibility of differences in probing sur-
face (d-wave) or bulk (s-wave) properties [37].

4. DEVICE APPLICATIONS
AND IMPLICATIONS

I still remember that during the conference on
Superconducting Devices, held at Charlottesville in
1967, Michel Thinkam, belying the often assumed ab-
stractness of a theoretician, gave a quite unambigu-
ous definition: “A device is an object which can be
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Fig. 3. Ic dependence on the angle is reported; experimental data
(filled circles) are compared with theoretical predictions based on
dx2−y2 wave pairing symmetry (open circles) [35]. Inset—Sketch of
the grain boundary structure with different interface orientations.

sold at a profit.” Accordingly, I shall proceed with
due caution. Actually, I shall confine myself just to a
brief comment on some applications and a short ac-
count of a specific example to stress a few intriguing
implications.

4.1. Some Applications Based
on the Josephson Effect

Although there is a number of stimulating re-
alized and potential applications of the Josephson
effect, it is wise to stress that, so far, these belong
mainly to the so-called niche-type applications. The
impression of some drawbacks in the diffusion of this
technology could be also ascribed, in my opinion,
to the circumstance that, often, tempting promises
largely exceed cautious premises. A more concrete
obstacle which affects superconductivity applications
in general, obviously lies in the associated cryogenic
requirements. In this respect the combination of re-
search toward higher critical temperature materi-
als and the significant improvements of cryocool-
ers technologies is quite promising. In any case, the
widely celebrated existing “cryofobia” should not be
justified for devices of unparalleled performances for
which the benefit/cost ratio remains necessarily quite
favorable. Among the best examples of supercon-
ductive devices based on the Josephson effect, mag-
netic flux sensors, namely the SQUIDs, represent a
cornerstone of this technology (e.g. [38]). SQUIDs
allow an unparalleled tool in the field of biomag-
netism. Indeed, this is an area of growing importance,
especially for the magnetoencephalography (MEG)
which provides functional imaging of fundamental
importance for medical implications. Clinical valida-

tions of the developed techniques and methodologies
legitimate the concreteness of SQUIDs biomedical
applications. For an updating on the trend of the de-
velopments in SQUID-based MEG instrumentation
see [39] and enclosed references.

Another important area of application of
SQUID circuits lies in the nondestructive evaluation
(NDE) [40] which can be performed to investigate
the presence of cracks and corrosion in different ma-
terials and structures (motors, airplanes, cables, etc.).
The magnetic field sensitivity of such sensors over a
wide frequency range and large dynamic range allows
to collect informations often unobtainable by con-
ventional electromagnetic probes. Magnetotellurics
is a also a field which has attracted great interest since
long time (e.g. [41]).

SQUID read out circuitry in different context is
also of great interest. An important role of SQUIDs
can be envisaged also in the implementation of mag-
netic qubits. Finally, let us just mention the use of
a SQUID in the context of the detection of gravita-
tional waves and the early attempts in the search for
the magnetic monopole (e.g. see B. Cabrera review
in Ref. [38]).

It is well known that Josephson effect versus
“applications” to fundamental physics has a long
history in determining fundamental physical con-
stants (see [1,2] and references reported therein). As
for the implementation of superconductive electron-
ics, Josephson junction circuitry has been widely in-
vestigated. Active components have been realized
through the years employing conventional supercon-
ductors. As for high-Tc superconductors, the perspec-
tive is very stimulating although reproducibility and
large scale integration still represent a hard issue.
The potential of superconducting electronics remains
however an extremely challenging issue [42].

4.2. Superconductive Radiation Detectors

Let us now briefly discuss a few peculiar as-
pects in the investigations of superconductive junc-
tion radiation detectors involving a variety of chal-
lenging implications. The small energy gap values of
conventional superconductors (∼1 meV) compared
with that of a semiconductor (∼1 eV) is the main
reason of interest in superconductive tunnel junc-
tion (STJ) detectors [43]. Indeed, crudely speaking,
this implies smaller values of the minimum energy to
create “free carriers” (elementary excitations). Con-
sequently, for a given released energy, in the case
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of a superconductor a larger number of excitations
is produced. This leads to reduced fluctuations and
thus improvement of energy resolution. The elemen-
tary excitations are the quasiparticles created by the
Cooper pairs breaking produced by the absorbed ra-
diation.

Thus, STJ structures employed for high reso-
lution energy spectroscopy work in the quasiparti-
cle tunnelling regime. The junction is therefore bi-
ased at voltage values of the I–V characteristics
in the subgap region. The necessity of high quasi-
particle collection requires a high transparency of
the tunnelling barrier leading to the occurrence of
Josephson tunnelling. In this context however the
Josephson current (and Josephson resonant modes)
is an undesired additional feature which has to be
eliminated. This is ordinarily achieved by applying
a proper magnetic field. A possible clever alterna-
tive solution is to use an annular junction, i.e. a
ring-shaped electrode junction. In this case, in fact
one can take advantage of the ability of a ring
made of superconducting material to stably trap
flux quanta. Once magnetic flux quanta have been
trapped in such a way that the magnetic field lines
thread the tunnel barrier, the Josephson critical cur-
rent is suppressed, and resonant modes are strongly
reduced. Figure 4a reports an I–V characteristic ob-
tained under these circumstances and illustrates how
any presence of Josephson effect is completely dis-
appeared. Figure 4b shows a pulse height spectrum
from the same junction irradiated by X-rays and
demonstrates the capability to detect photons in this
configuration still maintaining a good spectroscopic
response [45].

Annular Josephson junctions deserve a special
place in the context of Josephson effect. In these
structures, the fluxoid quantization phenomenon
manifests in that magnetic flux quanta (fluxons) can
irreversibly be trapped in one electrode during the
normal/superconducting transition. This causes the
superconductive order parameter phases of the two
electrodes to differ by an integer number n of 2π

for the entire time the device remains at a temper-
ature below the critical temperature. This is an ex-
ample of topological quantum number, i.e. a number
characterizing a macroscopic physical system or de-
vice, which does not depend on the particular real-
ization of the system itself, its defects, the particular
shape, the presence of leads, and so on. In particular,
if no trapping occurs, n is zero. In this case fluxons
can still be excited in the annular junction (provided
that the junction is enough extended) in the form

Fig. 4. (a) I–V characteristic of an anular Al STJ at T = 70 mK af-
ter trapping flux quanta. The inset shows a photograph of the junc-
tion. No external magnetic field is applied. The Josephson critical
current appears to be completely suppressed and there is no trace
of resonant structures [45]. (b) Pulse height spectrum from an an-
nular STJ irradiated by a 55Fe radioactive source emitting two
lines at E(Kα) = 5.9 KeV, and E(Kβ) = 6.5 KeV, respectively.
The spectrum was obtained in the same conditions described in
Fig. 4a [45].

of fluxon–antifluxons, such that value of n remains
untouched and equal to zero. Much of the physics
of fluxon propagation in Josephson junctions (i.e.
the sine Gordon soliton physics [46]) has been de-
rived by experiments performed on annular junctions
[47]. The main reason is certainly the circumstance
that fluxons, as well as electromagnetic waves, prop-
agate in these structures without suffering boundary
collisions. Features in the I–V characteristic of these
devices, steps, current peak branches, jumps, mirror
exactly the dynamics of the superconductive order
parameter phases of the two electrodes. They can be
mapped one to one to the presence and the motion
of fluxons, and waves, inside the device. The kind
of nonlinear dynamics characterizing the fluxon mo-
tion in the junctions can be very complex (also in the
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absence of collisions at the boundaries). However,
there are broad classifications, which correspond to
well understood mechanisms. Examples of these are
Fiske steps and zero-field steps. A deep understand-
ing of the rich phenomenology related to the soliton
dynamics is of fundamental relevance.

In fact annular junctions have been considered
as a possible physical system suitable for experi-
ments dealing with a variety of intriguing aspects of
fundamental physics. Among these we remind the
demonstration of the macroscopic quantum nature of
Josephson vortex dynamics related to the tunneling
in real space of vortices and the quantum dissociation
of vortex antivortex pairs [48]. This also in view of the
realization of a flux qubit device [49]. Another po-
tentiality offered by annular-shaped Josephson junc-
tions lies in the possible observation of a direct in-
fluence of the Berry’s geometric phase on Josephson
vortex dynamics [50]. Investigations on these ring-
shaped structures have been considered even toward
the intriguing issue concerning the onset of second
order phase transitions in the early universe sce-
nario. The spontaneous flux generation in annular
Josephson junctions is approached, in this contest,
by resorting the “Kibble-Zurek” mechanism [51].
Finally, let us recall that detectors “based” on the
Josephson effect were proposed as ultra fast thresh-
old detectors [52] and, recently, excellent results have
been obtained on a Josephson device and are able to
provide a simultaneous time and energy radiation de-
tection [53].

5. CONCLUSIONS

A few examples of important issues concerning
the Josephson effect and its potential for both fun-
damental physics and practical “applications” have
been briefly discussed. The attention has been ad-
dressed to the Josephson effect as a probe of macro-
scopic quantum phenomena and of the order param-
eter symmetry of high-Tc superconductors. As for
the applications, just few examples have been men-
tioned, considering both those of practical impact
and those which allow investigations of fundamental
issues in different fields of physics. The occurrence of
possible stimulating links between the two kinds of
“applications” have been briefly analyzed.

Indeed, uniqueness of science does not con-
tradict the combined process of “science push-
technology pull.” Rather, it is of interest how, for in-
stance, the request of advanced solutions posed by

severe technological constrains can produce a sort of
“spin-off” of importance for fundamental issues even
in completely different fields. An example can be that
discussed in Section 4.1 where optimization of a de-
vice geometry for a radiation detector touches prob-
lems concerning even cosmological issues. Inciden-
tally, about the universe in the . . . laboratory, during
the preparation of this article, I learned about a pro-
posal [54] of dark energy to be measured replicat-
ing early measurements of spectral density of cur-
rent noise in Josephson junctions performed by Koch
et al. [55].

Finally, I wish to stress that among the various
topics not considered in this paper, I have fully omit-
ted the fundamental one of mesoscopic superconduc-
tivity, an issue of paramount importance [56] for the
deep theoretical implications and the consequences
in the advance of microelectronics. I confined myself
in giving thereby, rather than a contribution on su-
perconductive nanostructures, a nanocontribution on
superconductive structures.
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The current understanding of the superconducting proximity effect is reviewed taking into
account recent experimental and theoretical results obtained for mesoscopic normal metal-
superconductor junctions as well as superconducting weak links. Although known for 40 years
the phenomenon remained poorly understood. Current insights are the result of theoretical
developments leading to the nonequilibrium quasiclassical theory, getting experimental ac-
cess to proximity structures on a submicron scale as well as by combining it with the knowl-
edge developed in the 80s on quantum transport in disordered and ballistic systems.

KEY WORDS: proximity-effect; Andreev reflection; mesoscopic superconductivity; Michael Tinkham.

1. INTRODUCTION

The proximity-effect is a well-known phe-
nomenon in superconductivity and part of the stan-
dard vocabulary. A summary of early work [l] starts
with the following defining line: If a normal metal
N is deposited on top of a superconductor S, and if
the electrical contact between the two is good, Cooper
pairs can leak from S to N. In some cases a more
specific analysis has emerged in particular for tunnel-
junctions using a NS double-layer as one electrode
[2], which has also entered the standard niobium
junction technology [3]. Nevertheless, despite its fa-
miliarity, the subject hardly appears in textbooks on
superconductivity. In an often-used textbook writ-
ten by Tinkham, Introduction to Superconductivity
[4] one finds, searching the index for proximity effect,
a single sentence: in which Cooper pairs from a su-
perconducting metal in close proximity diffuse into the
normal metal. According to the author [private com-
munication] a more extensive treatment of the sub-
ject is absent because in his view the phenomenon
remained poorly understood. Another textbook by
Waldram [5] puts the subject in a Chapter titled Fur-
ther theory and properties in a paragraph The prox-
imity effect. Interestingly, this paragraph is followed
by one with the title Andreev reflection although no

1Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft
University Technology, Delft, The Netherlands.

connection is made between the two topics. Due to
the more recent studies of transport in mesoscopic
structures it has now become common wisdom that
Andreev reflection and the proximity effect are inti-
mately connected and certainly not two distinct phe-
nomena [6]. The most-cited research paper of Tin-
kham [7], coauthored with G. E. Blonder and the
present author, is on the subject of Andreev reflec-
tions. In a recent citation-study [8] this article ap-
pears as “hot,” meaning that it has been cited at a
remarkable rate in the past few years and belongs
to a group of which some soon might join the top-
100 citation-impact articles. Within this context it
seems appropriate to use this celebratory occasion to
summarize some recent work on the proximity-effect
from an Andreev perspective.

In retrospect a number of developments have
contributed to the present level of understanding.
First, in the 80s a substantial body of knowledge
has been developed on quantum coherent transport
in disordered normal systems. It has elucidated the
role played by the Thouless length and the inelas-
tic scattering length. Conductors have been studied
which are small compared to those length scales even
down to the Fermi wavelength. The crucial role is
played by the single particle phase and the corre-
lation between electrons in the disordered systems.
Secondly, various experiments have been performed
which probe the penetration of the superconducting
properties on submicron length scales and objects are
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constructed which are smaller than the characteris-
tic lengths. Thirdly, various successful attempts have
been made to bridge the gap between the heavy the-
oretical framework of the quasi-classical equations
and the more accessible conceptual framework based
on transmission matrices which assists experimental-
ists in designing and interpreting their experiments.

The aim of this contribution is to sketch a
development since the original Blonder-Tinkham-
Klapwijk article from ballistic Andreev toward dif-
fusive normal metal-superconductor systems. On our
way we highlight a few conceptually important ex-
perimental results. We apologize that the selection
has some personal bias. To correct for that extensive
reference is made to a number of important recent
review articles. We hope that this contribution can
serve as an introduction to the subject to newcomers
in the field. We close with a historical note.

2. EARLY KNOWLEDGE

Most of the early knowledge about the prox-
imity effect has been summarized by Deutscher and
De Gennes [l] in 1969. It is based on the theoreti-
cal treatment developed by De Gennes [9,10] valid
close to the critical temperature. In Fig. 1 the results
are shown for two different NS interfaces and for a
so-called SNS contact. On the vertical axis the pair

Fig. 1. Figure taken from DeGennes [9]. Spatial dependence of the
pair potential �(x) at temperatures close to the critical tempera-
ture in a NS sandwich (a) and in an SNS junction (b). For the NS
sandwich two cases, one for a repulsive and one for an attractive
electron-electron interaction in N are shown (we ignore the f (x)
curve).

potential �(�r) is shown defined as:

�(�r) = VNF(�r) = VN〈ψ(�r ↑)ψ(�r ↓)〉 (1)

with F(�r) the condensation amplitude, the probabil-
ity amplitude of finding two electrons in the con-
densed state at a point �r and VN the electron-electron
interaction constant which may be either negative
(repulsive) or positive (attractive). Obviously, Fig. 1
shows that �(�r) is expected to have a finite value in N
and is depressed in S. The full normal state value of
� = 0 and the full superconducting state of � = �0

are recovered far away from the interface over some
characteristic length.

The basic experimental facts on a NS interface
are:

• The observation that the critical tempera-
ture of a bilayer of a low Tcl superconduc-
tor such as Al and a higher Tch supercon-
ductor, such as Pb, gradually increases from
Tcl to Tch with increasing thickness of the
Pb on the Al film. The same experiment
could be done with a fully normal metal
such as Cu covered by Pb. The effectiveness
of the proximity effect could be influenced
by adding magnetic impurities to the normal
metal.

• The second observation regards tunneling ex-
periments through which one can measure
the excitation spectrum in a normal metal N
backed by a superconducting film S.

• The third observation is the Meissner effect
which accounts for the diamagnetic screening
realized by a “proximitized” normal metal.

An additional body of knowledge results from
the Josephson-effect. It has already been shown by
De Gennes [9] in 1964 that as a consequence of the
proximity-effect a supercurrent should flow through
a normal metal of thickness dN. The maximum su-
percurrent carried by such a normal metal would
depend exponentially on thickness with the normal
metal coherence length ξN as the characteristic length
scale. This prediction has been confirmed in early ex-
periments by Clarke [11] including its relationship
to the Josephson-effect [12]. However, unlike the
Josephson-effect in tunnel junctions, a detailed com-
parison with the microscopic theory has only been
made recently [13]. This is partially due to lack of
practical interest. Josephson junctions based on SNS
junctions have a relatively low impedance, far below
1 �, and are not very useful in any practical appli-
cation where usually 50-� impedances are required.
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Due to the recent advances in microfabrication-
techniques these experimental systems are much
more accessible.

A more fundamental reason is that the origi-
nal proximity-effect theory was much too simple. An
SNS junction forms a problem of inhomogeneous su-
perconductors. A current is driven from S to N and
vice versa and high-frequency time-dependent pro-
cesses may take place. In the early 60s one relied
on the full Gorkov equations or used the simpli-
fied version of the Ginzburg-Landau equations only
valid close to Tc. Subsequent theoretical develop-
ments have provided a much more advanced theoret-
ical framework [14]. The equilibrium theory, known
as the quasi-classical equations, was developed by
Eilenberger [15] and for dirty superconductors by
Usadel [16]. In this approach it is assumed that all rel-
evant variations occur on a length scale larger than
the Fermi wavelength. Hence, dependences on the
scale of the Fermi wavelength can be averaged out.
Usadel simplified the equations further by assum-
ing that the system is dirty and impurity-averaged
Green’s functions can be defined.

This approach came to its full maturity in the
early 70s to describe transport problems and time-
dependent processes by Larkin and Ovchinnikov
[17–19], Eliashberg [20], and Schmid and Schön [21].
We will refer to this theoretical approach as the
“quasi-classical theory,” also when it includes the
nonequilibrium version. In its application to inho-
mogeneous problems, such as the proximity-effect,
these equations have to be supplemented by suitable
boundary conditions. An example are those intro-
duced by Zaitsev [22].

Many of the experimental problems studied
recently can be understood with the help of the
quasi-classical equations. However, some of these
problems, in particular those where one could as-
sume, ballistic electron transport could be under-
stood more readily by using the Bogoliubov-De
Gennes equations and using the concept of An-
dreev reflection [23]. The current understanding of
the proximity effect focuses on the following aspects.
At the boundary between a normal metal and a su-
perconductor Andreev reflection occurs. In this pro-
cess electrons above the Fermi level are converted
into holes below the Fermi level and a Cooper pair
is formed inside the superconductor. This is one cru-
cial ingredient of the proximity effect and describes
how the two electronic reservoirs are communicating
at the boundary itself. The second ingredient is how
in the normal metal this electron-hole pair looses

its correlated properties. The electron and the hole
form phase-conjugated pairs, a property which will
be lost at a certain distance from the interface. The
proximity-effect is now understood as a process at
the interface itself, in essence Andreev reflection,
and how this coherence is propagated and lost due
to dephasing processes in the normal metal. The lat-
ter are in principle identical to processes known from
phase-coherent transport in normal metals. How-
ever, the presence of disorder in the normal metal
influences also the processes at the boundary itself
because incident electron waves may make repeated
attempts which must be added phase-coherently to
find the probability for Andreev reflection. Hence,
the proximity effect is on a microscopic level the in-
timate connection between Andreev reflection at the
interface and the phase coherence maintained over a
certain length scale in the normal metal.

3. BALLISTIC ANDREEV INTERFACE

As a starting point it is apprpriate to recall the
results of Blonder et al. [7] for a ballistic Andreev in-
terface. The microscopic description of the supercon-
ducting state starts with the Bogoliubov-De Gennes
equations [11]. The wave-function ψ is defined as a
2-component wavefunction:

ψ=
(

u

v

)
e

i2Et
h

+φs (2)

with u and v representing the electron-like (k > kF)
and the hole-like (k < kF) component, E the energy
with respect to the Fermi-level, and φs the macro-
scopic phase of the superconducting state.

The Bogoliubov-De Gennes equations, written
in one dimension, are two coupled Schrödinger equa-
tions:

Eψ(x) =
(

− h2

2m
d

dx2
− µ

)
u(x) + �(x)v(x)

Eψ(x) =
(

h2

2m
d

dx2
+ µ

)
v(x) + �(x)u(x) (3)

with �(x) the pair potential of Eq. (1) and µ the
chemical potential, which serves as a reference for
the energy E.

In general Eq. (3) allows for four types of quasi-
particle waves for a given energy:

ψ±k+ =
(

u

v

)
e±ik+x (4)
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and

ψ±k− =
(

u

v

)
e±ik−x (5)

where ψ is the position space representation of the
BCS quasiparticles.

We assume that we will analyze a NS interface
at which plane waves arrive from infinity and return
to infinity. In addition it will be understood that any
real interface of two dissimilar materials will have
different Fermi-momenta, leading to an unavoidable
electronic mismatch. In addition it is very likely that
a practical interface has some level of elastic scat-
tering due to lattice mismatch or excess impurities
due to the fabrication process. The consequence is
that any interface will have some elastic scattering.
In addition we will assume that there is no elastic
scattering in the superconductor nor in the normal
metal itself and only at the interface. This is mod-
elled by a delta-function potential at the interface:
V(x) = Hδ(x). The direction of the particle flow is
determined by the group velocity. At the interface
the appropriate boundary conditions are continuity
of ψ at x = 0 i.e ψS(0) = ψN(0) and in view of the
δ function potential h/2m(ψ ′

S(0) − ψ ′
N(0)) = Hψ(0),

with ψ ′
S,N the spatial derivatives.

With these assumptions we may distinguish an
incident plane wave ψinc, a reflected wave ψrefl con-
sisting of an electron part due to elastic scattering and
a hole part due to interaction with the superconduc-
tor, and a transmitted wave ψtrans into the supercon-
ductor with two possible solution:

ψinc =
(

1

0

)
eiq+x

ψrefl = a

(
0

1

)
eiq−x + b

(
1

0

)
e−iq+x

ψtransm = c

(
u

v

)
eik+x + d

(
v

u

)
e−ik−x (6)

with

hk± =
√

2m
[
µ ± (E2 − �2)1/2]1/2

(7)

and

hq± =
√

2m[µ ± E]1/2. (8)

These three waves have to be matched with
the given boundary conditions to determine the
amplitudes. Working out the algebra the follow-
ing expressions are found for the amplitudes (with

γ = u2 + (u2 − v2)Z2):

a = uv
γ

b = − (u2 − v2)(Z2 + iZ)
γ

c = u(1 − iZ)
γ

d = ivZ
γ

(9)

In determining Eqs. (9) it is assumed that the nor-
mal state Fermi velocities are identical for N and S.
A possible difference is absorbed in the adjustable
parameter Z, defined as Z ≡ H/hvF. In the absence
of elastic scattering at the interface, Z = 0, we ob-
serve that both b and d are zero. Hence, the only
existing reflection is Andreev reflection, conversion
from electron to hole, a condition which can only be
realized with two dissimilar materials with identical
normal state densities of states. The amplitude de-
pends on the energy since u and v are given by:

u2 = 1 − v2 = 1
2

{
1 + (E2 − �2)1/2

E

}
. (10)

This energy-dependence will be one of the impor-
tant ingredients in understanding the relationship be-
tween the proximity-effect and Andreev reflection.
The interaction at an interface cannot be represented
by single parameter �, as in Fig. 1, because the effects
at the interface are different for different energies.

A very important discovery of Blonder et al. [7]
was that the properties of a ballistic Andreev inter-
face can be measured directly in pointcontact experi-
ments. In the current concepts of quantum transport
a mesoscopic conductor, a scatterer, is distinguished
from the equilibrium reservoirs where thermaliza-
tion and phase-randomization occurs. An early ex-
ample is the so-called Sharvin pointcontact, in which
a short narrow conductor is connected to two large
electronic reservoirs. Electrical transport is the dif-
ference between electrons originating from a reser-
voir at voltage V to a reservoir at voltage V = 0 and
vice versa:

I = G0

e

∫ ∞

0
dE[f (E) − f (E + eV)] (11)

with f (E) the Fermi-function and G0 a quantity
which counts the number of modes depending on
the dimensionality of the sample. For 3-dimensional
reservoirs connected by a small hole of area S it is
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given by:

G0 = 2e
h2

kF2 S
4π

(12)

with kF the Fermi momentum. Returning to the im-
portant case of a short channel of zero length Eq. (12)
is now better known as the multichannel Landauer
formula developed for mesoscopic conductors:

G0 = 2e2

h

m∑
n=0

Tn (13)

with Tn the transmission coefficient per mode n and
m the number of modes. Each mode carries a current
e/h, the factor 2 takes care of the two different spin
directions. Equation (11) follows from the Landauer
formula assuming that each mode has a transmission
coefficient equal to unity, the number of modes fol-
lows from the area S compared to kF.

The same reasoning used to derive Eq. (11)
leads to the current-voltage characteristics for a
pointcontact between a normal metal and a super-
conductor. The probabilities A, B, C, and D are de-
termined from the amplitudes, Eq. (9), and used to
calculate their contribution to the currents for a given
applied voltage. Hence the current-voltage charac-
teristic is given by:

I = G0

e

∫ ∞

0
dE[f (E) − f (E + eV)][1 + A(E) − B(E)]

(14)
with A the extra current per incident electron wave
due to the Andreev process and B the reflected elec-
tron current due to elastic scattering. For low tem-
peratures the 1st term in square brackets reduces to
a δ-function around eV. Hence, scanning the voltage
is also a direct probe of the energy-dependent reflec-
tion coefficients:

dI
dV

= GNS = G0[1 + A(eV) − B(eV)] (15)

and the conductivity of the pointcontact is a direct
measure of the reflection coeflicients. Note the simi-
larity with the conventional expression for a NIS tun-
neljunction in which the 2nd term within brackets is
replaced by the BCS density of states, E/

√
E2 − �2,

in the superconductor. Indeed this term reduces to
the BCS density of states for large values of Z i.e. for
the tunnelbarrier regime. It is sometimes convenient
to re-express the quantity Z in terms of a transmis-
sion coefficient for the normal state Tn. Evaluating

Eq. (15) for � = 0 one finds for the conductance:

GN = G0(1 − B(E)) = G0
1

1 + Z2
(16)

which means that Tn is equal to 1/(1 + Z2) and the
conductance in the normal state is given by:

GN = G0Tn (17)

for finite Z.
In the past 20 years Eq. (14) has been used

extensively to study new superconducting materials
with pointcontacts. From Eq. (14) one finds the su-
perconducting energy gap allowing for various in-
terface imperfections with the adjustable parameter
Z, using the relatively simple technique of a point
contact. Previously, the superconducting gap had to
be determined by developing a suitable tunnel bar-
rier [2]. The discovery of many new superconducting
materials and the pointcontact technique accounts
for much of the success of Eq. (14). A recent ex-
ample is the application to the new superconductor
MgB2 with a critical temperature of 38 K [24,25]. In
Fig. 2 temperature-dependent pointcontact conduc-
tance measurements are shown for a single-crystal
MgB2 and comparison with Eq. (14) assuming the

Fig. 2. (a) Temperature dependence of the conductance of a c-axis
junction at a magnetic field of 1 T. (b) Comparison of conductance
at B = 0 T and at 1 T. The full lines are fits to Eq. (14). The bot-
tom panel shows the two energy gaps as a function of temperature.
Taken from Ref. [25].
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existence of two gaps in different crystal directions.
Note the excellent agreement between data and the-
ory over a large temperature range.

A 2nd important extension has been in the field
of spin polarization. De Jong and Beenakker [26]
pointed out that Andreev reflection should be sup-
pressed at an interface between a ferromagnet and
a superconductor. Since one has in general in a fer-
romagnet both spin-up and spin-down channels and
Andreev reflection should still be partially possi-
ble and can become a measure of the degree of
spin-polarization of a ferromagnet. This was recog-
nized and successfully used by Soulen et al. [27] and
Upadhyay et al. [28]. A further theoretical basis of
the technique has been developed by Mazin et al.
[29].

Clearly, rather than being an artificial model sys-
tem the ballistic Andreev interface can be accessed
directly by point contact spectroscopy. This applica-
tion has turned out be very flexible and useful for
a large range of new superconducting materials and
also useful for the determination of the degree of
spin-polarization in ferromagnets or half-metals.

4. SPATIAL EXTENT OF THE
ANDREEV PROCESSES

In a point contact geometry it is assumed that
the reservoirs are three dimensional. The Andreev
interface represents a weak link between the reser-
voirs. The one-dimensional solution of Eq. (3) can
be used provided translational invariance is assumed
in the plane parallel to the interface. In addition the
choice for this geometry made it acceptable to ignore
an important equation which in principle should be
added to Eq. (3):

�(�r) = VN(�r)
∑
E>0

v∗(�r)u(�r)[1 − 2f (E)] (18)

with �(�r) the pair potential which couples the
two Schrodinger equations. It is called the self-
consistency-equation while it is dependent on the
solutions found from Eq. (3). In three-dimensional
reservoirs the induced values for u and v are di-
luted by solutions for the unconnected reservoirs
and therefore one can ignore the spatial decay of
� at both the N and the S-side. In comparison with
Fig. 1 � is a step-function rising from 0 to a finite
bulk-value �0 over a very short distance. To simplify
this problem further one can choose the electron-
electron interaction constant VN = 0.

However, let us now return to the hypothet-
ical situation of a ballistic system in a true one-
dimensional model. The first thing to notice is that
Eq. (18) with Eqs. (6) leads to a finite value for �

in N assuming a finite value for the electron-electron
interaction VN �= 0. For each energy E the coherence
gets lost over a characteristic decay length hvF/E. For
a given energy E above the Fermi energy EF the wave
vector for the electron qe = qF + δk/2 differs slightly
from the Fermi wave vector. The reflected hole also
has a slightly smaller value qh = qF − δk/2. The dif-
ference in momentum of δk is given by qF(E/EF)
which leads to a dephasing length depending on en-
ergy. Equation 18 clearly shows that to determine the
spatial extent of the quantity � one needs to know
u and v, which both are energy-dependent and the
distribution-function. Each energy weighs differently
into the sum and therefore one cannot define a char-
acteristic decay length, except for the limit close to
the critical temperature [9]. The same applies to the
superconducting side, where a gradual rise of � is ex-
pected but again the energy dependence and the oc-
cupation numbers will play a role.

Another quantity of interest is the current car-
ried by quasiparticles. At a normal metal-supercon-
ductor interface current carried by quasiparticles is
converted into current carried by Cooper-pairs. The
charge current carried by Bogoliubov quasiparticles
is the sum of the part carried by the electron part u
and the part carried by the hole part v:

JQ = eh
m

[Im(u∗∇u) + Im(v∗∇v)] (19)

For E < � both k+ and k− have small imaginary parts
which lead to an exponential decay of the quasiparti-
cle amplitude in the superconductor on a length scale
λ given by:

λ = hvF

2�

[
1 −

(
E
�

)2
]1/2

(20)

of which the leading term is hvF/2� ≈ ξ(T). These
evanescent waves carry quasiparticle current, which
is taken over by an increasing supercurrent of this en-
ergy. To determine the full value of the quasiparticle
current the fraction carried by each energy should be
taken together with the probability of these states to
be occupied.

In closing this section we return to the self-
consistency equation. If we assume that in N VN = 0
we will have also �(�r) = 0. However, since we find
at any point close to the interface a finite value for
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the amplitudes of electrons and holes, we will obtain
a finite value for the condensation amplitude F:

F = 〈ψ(�r ↑)ψ(�r ↓)〉 =
∑
E>0

v∗(�r)u(�r)[1 − 2f (E)] (21)

which is known as the order parameter or alternati-
vely the “Cooper pair density.” Hence, we find
that in the absence of any attractive interaction
there is still a finite probability of finding Cooper
pairs in N, which is equivalent to stating that
the Andreev-reflected electrons and holes maintain
phase-coherence over a certain length leading to
a finite contribution to F. This is the “leakage of
Cooper pairs” alluded to in various textbooks on
superconductivity.

5. IMPURITY-SCATTERING AND
TRANSMISSION MATRIX APPROACH

In Section 3 the equivalent of a transmission
matrix for a quantum-coherent scattering problem
was used. A great deal of quantum-coherent trans-
port theory has been developed to understand quan-
tized conductance, Aharonov-Bohm oscillations and
universal conductance fluctuations in, for example,
metallic rings [30]. In recent years a similar approach
has evolved for NS interfaces in which elastic scatter-
ing in N occurs. This approach has been developed
and summarized by Beenakker [31,32] and Lambert
[33]. To appreciate the nature of the problem we re-
call the early work of Van Wees et al. [34].

In Fig. 3 three relevant elements of the geome-
try are shown. We will assume that the inelastic scat-
tering length Linel is always smaller than the device
size. Hence, the single particle phase is conserved

Fig. 3. Interface between a superconductor and a normal metal
reservoir separated by a diffusive scattering region and an inter-
face scatterer (barrier). 
 is the applied magnetic flux.

in crossing the object while being scattered by im-
purities. An equilibrium superconductor is separated
from a normal metal by an interface barrier as used
in Section 3. In the normal metal a contact is indi-
cated, called a reservoir from which waves will emit
and which will absorb waves. The middle region is the
scattering region. It is assumed that � = 0(VN = 0).
An incident electron wave will scatter from the impu-
rities and eventually reach the interface with the su-
perconductor undergoing Andreev reflection. Since
the hole wave is essentially phase-conjugate with
the incident electron wave it will retrace the origi-
nal path. However, since the incident electron wave
is also partially reflected as an electron wave impu-
rity scattering might scatter the partial electron wave
again to the superconductor and so forth. The scat-
tered wave will be the coherent superposition of the
various contributions and since for small energy dif-
ferences phase coherence is maintained the addition
of impurities to the scattering problem of Section 3 is
the enhancement of the Andreev reflection probabil-
ity and hence, enhanced conductance (“reflectionless
tunneling” [31]). Depending on the path length and
the magnetic field a total phase shift of

�φ = 2eL
hvF

+ 4π
BS
φ0

(22)

is accumulated with L the path length, B the ap-
plied magnetic field, S the enclosed area, and 
0

the flux quantum. For increased voltages (increased
energies) or applied magnetic field phase coherence
is destroyed and the enhanced conductance is sup-
pressed. Such a behavior had been first reported by
Kastalsky et al. [35]. In calculating the actual conduc-
tance an energy-average over the available occupied
states is taken. The correlations of these electrons
is determined by the Thouless energy ETh = hD/L2.
Or one can define for a particular energy value E a
decay length �T = √

hD/E , which is analogous to
the phase-correlation length identified in the previ-
ous Section, but now for a dirty system. The corre-
lation between an electron and an Andreev-reflected
hole in a diffusive system is given by the normal metal
coherence length ξN = √

hD/kT if kT would be the
dominant energy.

For small voltages very simple expressions have
been derived by Beenakker [31]. For small voltages
the probabilities of Section 3 A(E) reduces to 1/(1 +
2Z2)2 and B(E) to 2(1 + Z2)/(1 + 2Z2)2 and hence

GNS = G0
2

(1 + 2Z2)2
(23)



600 Klapwijk

which by using our previous observation that Tn =
1/(1 + Z2) leads to

GNS = G0
2T2

n

(2 − Tn)2
(24)

Subsequently Beenakker has generalized this ex-
pression for any arbitrary scatterer such as a meso-
scopic phase-coherent conductor containing elastic
impurities:

GNS = 2e2

h

m∑
n=1

2T2
n

(2 − Tn)2
(25)

which is a generalization of the Landauer formula to
the NS case with Tn the transmission coefficients ap-
plicable to the particular distribution of transmission
channels.

Evidently, impurity scattering has a strong
influence on the Andreev scattering probability and
will also lead to a spatial dependence of the Cooper-
pair density. It is the result of phase-coherent
scattering processes, which interact with a nearby
phase-coherent superconductor. An interesting
extension has been the introduction of so-called An-
dreev interferometry. In Fig. 4 an example is shown.
A T-shaped phase coherent conductor is connected
at the two ends of the T-bar with a superconductor.
The superconductor is part of a loop, which allows
the application of a well-defined macroscopic phase-
difference at both ends of the T-bar. In the Andreev
reflection process the macroscopic superconducting
phase φs appears. The transmitted wave in Eq. (2)

Fig. 4. At the left hand side a schematic picture of a T-shaped
2-dimensional electron gas with an interrupted superconducting
niobium loop. The contacts 1 and 2 are connected to the T-shaped
conductor and the contacts 3 and 4 to the superconducting nio-
bium loop. The indicated dimensions L and W are 0.7 µm and
0.3 µm respectively. The right hand side picture shows a scanning
electron microscope image of the actual device. Taken from Den
Hartog et al. [36]

should read:

ψtransm = c

(
ueiφs1

v

)
eik+x + d

(
veiφs1

u

)
e−ik−x (26)

and analogously for the 2nd superconductor with
φs1 replaced by φs2. Consequently, the reflected
wave amplitude a and b carry the information of
the superconducting phase. The diffusive scattering
leads to coherent superposition of wavelets which
interact with both superconductors and the conduc-
tance will depend on their phase-difference φs1 − φs2.
Den Hartog et al. [36] observed a conductance
which depends on the macroscopic phases of the
superconducting loop, changed by the enclosed
magnetic field. The amplitude of these Aharonov-
Bohm oscillations is shown in Fig. 5. With increasing
magnetic field the main contribution decays until
a field of about 120 G is reached. Subsequently a
random fluctuating amplitude continues to be visible
up to the highest field measured. These two regimes
mark the difference between ensemble-averaged
and sample-specific resistance oscillations, which
have been discussed in detail by Beenakker [31].

Andreev-interferometry has also been used to
identify a phase coherent contribution to the conduc-
tance in normal metal-superconductor tunnel junc-
tions. For low values of the transmission coeffi-
cient the conductance at low voltages or the subgap

Fig. 5. (a) Magnetoresistance R13,24 minus the background re-
sistance at T = 50 mK. (b) Autocorrelation function C(�B) ≡<

δR(B)δR(B + �B) > / < δR(B)2 > between 200 and 3000 G for
the Andreev-mediated conductance oscillations of the trace shown
in (a) (solid line) and for the fluctuations in the background resis-
tance (dashed line). Taken from Den Hartog et al. [36].
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current in a tunnel junction is small. An Andreev
component will be present, although small since it
is 2nd order in the transmission coefficient. Hekking
and Nazarov [37] recognized that the probability for
these 2nd order processes would depend on the im-
purity scattering in the metals used in the experi-
ments. Pothier et al. [38] studied two closely spaced
NIS tunneljunctions with the S electrodes connected
by a superconducting loop. They demonstrated that
the subgap current has a contribution which de-
pends on the applied magnetic flux, which therefore
could be identified as the Andreev-contribution, in
perfect agreement with the theory of Hekking and
Nazarov.

6. DIFFUSIVE USADEL-EQUATIONS

The previous Sections have demonstrated that a
full understanding of the interactions between a nor-
mal metal and a superconductor must face the spa-
tial dependence, the energy dependence, the impurity
scattering, the dependence on the macroscopic super-
conducting phase, and on the occupation-numbers.
This theoretical complexity is dealt with in the theory
of nonequilibrium superconductivity based on impu-
rity averaged Green’s functions. A relatively accessi-
ble introduction has been developed by Estève et al.
[39,40]. Further details of this approach can also be
found in Guéron [41] and Anthore [42].

Rather than by using two-component plane
waves with u and v, the diffusive superconducting
state is described by the impurity-averaged Green
functions introduced by Usadel [16]: ĝR

S , ĝA
S and ĝK

S .
The first two, ĝR

S , and ĝA
S describe the equilibrium

states of the system, whereas the third one ĝK
S de-

scribes the occupation of the states. A convenient
way to proceed with these quantities, first introduced
by Nazarov [43], is the parameterization by two com-
plex parameters θ(x, E) and ϕ(x, E), both being po-
sition dependent and energy dependent. Each of the
functions ĝR

S and ĝA
S is now given by:

ĝR
S =

(
cos θ sin θeiϕ

sin θe−iϕ − cos θ

)
(27)

and

ĝA
S =

(
− cos θ∗ sin θ∗eiϕ∗

sin θ∗e−iϕ∗
cos θ∗

)
(28)

where θ(x, E) represents the complex superconduct-
ing order and ϕ(x, E) is an energy-dependent super-

conducting phase. The third (Keldysh) function ĝK
S is

given by:

ĝK
S = ĝR

S ĥ − ĥĝA
S (29)

with the distribution matrix ĥ defined as:

ĥ =
(

1 − 2f e 0

0 2f h − 1

)
(30)

with f e and f h the distribution functions for electrons
and holes.

Once θ(x, E) and ϕ(x, E) are known a set of ex-
pressions can be used to determine several quantities
characteristic for the superconducting state. The den-
sity of states follows from:

n(x, E) = N(0)Re[cos θ(x, E)] (31)

with N(0) the density of states in the normal state.
For a normal metal θ = 0 and for a bulk superconduc-
tor sin θBCS(E) = �/

√
�2 − E2. As argued by Estève

et al. [39] Im[sin2 θ] can be interpreted as an effective
energy dependent pair density.

Finally, the self-consistency equation for �(x)
depends on θ and ϕ according to:

�(x) = N(0)VN

∫ hωD

0
dE tanh

E
2kBT

Im(sin θ)eiϕ (32)

which can be compared to Eq. (18).
For a normal metal-superconductor interface θ

follows from solving the Usadel-equation:

hD
2

∇2θ +
(

iE − h
τsf

cosθ
)

sin θ + �(x)cos θ = 0

(33)

allowing for spin-flip scattering. In N it is assumed
that � = 0 with no electron-electron interaction,
whereas in S �(x) is given by Eq. (32).

6.1. Induced Local Density of States

This analysis has been performed by Guéron
et al. [44] and applied to experimental results.
Figure 6 shows a superconducting wire (aluminium)
connected to a normal wire (copper). The contacts
labeled F1, F2, and F3 are tunnelcontacts, which en-
able the measurement of the local density of states of
Eq. (31).

Experimental results are shown in the upper
panel of Fig. 7. The inset shows, for reference, a
standard BCS density of states measurement. In the
lower panel the results from the Usadel theory are
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Fig. 6. SEM photograph of a sample used by Guéron et al. [44]
to measure the local density of states in a normal metal in con-
tact with a superconductor. F1, F2, and F3 are tunnel junctions to
measure the density of states.

shown. These results clearly show how the pairing-
correlations manifest themselves over a length of
about 1 µm and are visible in the density of states.
In this experiment, in which equilibrium properties
are measured the agreement between theory and ex-
periment is strikingly good.

Fig. 7. Differential conductance of the tunnel junctions at the lo-
cations F1, F2, and F3. The inset shows the differential conduc-
tance of a reference tunnel junction on a BCS superconductor.
The lower panel shows the calculated density of states, assuming
a small degree of spin flip scattering in the normal metal. Taken
from Guéron et al. [44].

Fig. 8. Conductance of a normal metal wire in direct contact with
a superconductor. Upon approaching T = 0 the full normal resis-
tance is reestablished. The inset shows the actual sample. Taken
from Ref. [45].

6.2. Reentrant Resistance

The position-dependent density of states implies
that the normal metal wire has properties reminis-
cent of a superconductor. It is natural to expect that
a normal wire in contact with a superconductor will
with decreasing temperature become gradually less
resistive. An example of such an experiment is shown
in Fig. 8, which clearly shows counterintuitive non-
monotonous behavior. A short normal metal wire
of copper is attached to the superconductor alu-
minium. At the Tc of aluminium the conductance in-
creases sharply reaching a maximum around 400 mK
and then decreasing again. This reentrant resistiv-
ity was first pointed out by Artemenko et al. [46]
and more recently treated by Stoof and Nazarov
[47,48].

Transport is a nonequilibrium problem, which
means that the occupation-numbers f e and f h need
to be determined. In terms of θ(θ1 and θ2 are the real
and imaginary part, respectively) the following equa-
tions need to be solved:

∇[cos2θ1∇f odd] = 0 (34)

and

D∇[cosh2(θ2)∇f even] − 2δ f even Re[sin θ] = 0 (35)

in which f even and f odd represent the symmetric and
asymmetric parts of the distribution-function. The
2nd term in Eq. (35) is only present in a superconduc-
tor and is needed when there is conversion from nor-
mal current to supercurrent (Section 6.3). In N the
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normal current is given by:

JN(x) = σ

e

∫ ∞

0
dE∇f even cosh2(θ2) (36)

which determines the conductivity for a given volt-
age. The result of such a calculation is shown in Fig. 8.

6.3. Resistance of the Superconductor
Near the Interface

In Section 4 the decay of quasiparticle waves in
a superconductor appeared. These evanescent waves
can scatter from elastic impurities and contribute to
a finite resistance of the superconducting wire. We
have recently studied this resistive contribution [49].
We chose to study samples (Fig. 9) made of super-
conducting (S) aluminium (Al) because of its long
coherence length. Thick and wide normal (N) con-
tacts are used with a negligible contribution to the
normal state resistance. To minimize interface resis-
tances due to electronic mismatch of both materi-
als bilayers of aluminium covered with thick normal
metal (Cu) are used. In such a geometry the super-
conducting aluminium wire is directly connected to
normal aluminium.

Figure 10 shows typical R – T measurements.
Samples with different RRR values show qualita-
tively identical behavior. All wires show a finite re-
maining resistance down to low temperatures as the
most striking result. Similar results have been ob-
tained by Siddiqi et al. [50] in studying hot-electron
bolometers. Obviously, despite the differences in

Fig. 9. SEM picture of a device (slightly misaligned), showing the
coverage of the thin aluminium film with the thick Cu layer (except
for one the measured devices are carefully lined up). The inset
shows a schematic picture of an ideal device.

Fig. 10. Measured R – T curves for four different bridge lengths.
The intrinsic Tc0 is indicated by the vertical dashed line. The in-
set shows the measured critical temperature of the wire vs. 1/L2,
which is used to determine Tc0 by letting L → ∞.

length, the resistances at low temperatures have
identical values and follow the same trace. It indi-
cates that the origin of this remaining resistance is
due to the region in the S-wire attached to the in-
terface with the normal reservoir. The resistance at
600 mK is equal to a normal segment of the supercon-
ductor with a length of about 200 nm. Given the resis-
tivity of the superconductor the coherence length ξ =√

(hD)/(2πkBTc) = 124 nm. Figure 10 (Inset) also
shows that the critical temperature of the wire de-
creases linearly with increasing the inverse square of
the wire length, as expected from a straightforward
Ginzburg-Landau analysis.

Since the studied nanowires show diffusive
transport the Usadel equations should apply to the
system. It is convenient to calculate the normal cur-
rent for a given applied voltage difference (assuming
linear response). The strength of the pairing interac-
tion, the proximity angle θ is determined by solving
Eq. (33) together with the self-consistency equation
Eq. (32). The density of states as a function of posi-
tion is determined with Eq. (31).

Our main interest is the question how the cur-
rent conversion process contributes to the resistance.
First of all, the presence of decaying normal electron
states suppresses the gap in the density of states.

In Fig. 11, the calculated density-of-states
N1(E) = n(E) is shown given for several positions
along the wire of L = 2 µm, D = 160 cm2/s, �0 =
192 µeV, and T/Tc = 0.4. Clearly, moving away from
the normal contacts the density of states resem-
bles more and more the well-known BCS density
of states. Note however, that a finite subgap value
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Fig. 11. The calculated density-of-states N1 at various distances
from the reservoirs (x = 100, 200, 300, 400, 500, 1000 nm) for a 2-
µm long wire (t = 04, D = 160 cm2/s and �0 = 192 µeV). Note
the exponentially small but finite subgap density-of-states in the
middle (at x = 1 µm; see inset).

remains in the middle (x = 1 µm) even for very long
wires. This is an intrinsic result for any NSN system.

The normal current in S is found using Eq. (36)
with the distribution function determined from the
Boltzmann-like Usadel equation Eq. (35). The ap-
plied voltage V, is taken into account via the bound-
ary conditions for Eq. (35):

δ f (0, L; E) = ±eV/2

4kBT cosh2(E/2kBT)
. (37)

Hence, the normal metal leads are taken as equilib-
rium reservoirs.

The local voltage is calculated using:

eV(x) =
∫ L

0
dEf even(E, x)Re[cos θ(x, E)] (38)

In Fig. 12, we show the results of such a cal-
culation as a function of position along the wire
for two different temperatures: t = 0.4. and t = 0.9
with D = 160 cm2/s, and �0 = 192 µeV. At the tem-
perature close to the transition temperature, the
electric field penetrates the sample completely and
the resistance is close to the normal state value.
At low temperatures, the electric field still pene-
trates the superconductor over a finite length, leav-
ing a middle piece with hardly any voltage drop.
The penetration length is of the order of the co-
herence length. The inset shows the position de-
pendent normal currents (full line) and supercur-
rents (dashed line) illustrating the current conversion
processes.

Fig. 12. The voltage in the superconducting wire as a function
of position for two different temperatures (t = 0.4 and 0.9). At
t = 0.9 the wire behaves as a normal metal and for t = 0.4 the
voltage is clearly present to a depth ξ (wire length 2 µm with
D = 160 cm2/s and �0 = 192 µeV. The inset shows the position
dependent normal currents and supercurrents.

In Fig. 13, a comparison is made between the cal-
culated resistance as a function of temperature and
the measurement for a L = 2 µm wire. The calcula-
tion is done with parameters D = 160 cm2/s, as de-
termined from the impurity resistivity, and �(0) =
1.764 kBTc = 192 µeV with Tc = 1.26 K determined
from the length dependence. Without any fitting pa-
rameter, the agreement between the model (dots)
and the experiment (data points: open symbols) is

Fig. 13. The measured R – T curve for the 2-µm bridge together
with the model calculation using the boundary condition θ(x =
0, L) = 0 (dots), and using the boundary condition ∂xθ(x = 0, L) =
θ(x = 0, L)/a (triangles) with a = 75 nm. The value for T = 0 is
found from Eq. (8) to be 0.323 and numerically 0.3255 for the hard
boundary conditions(dots). For the soft boundary conditions we
have numerically 0.2609 (triangles).
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encouragingly good. Only at the lower tempera-
tures the observed resistance is slightly less than
the theoretically predicted values. The most likely
cause is that the rigid boundary conditions imposed
at the interfaces should be relaxed. There is a fi-
nite possibility for superconducting correlations to
extend into the normal metal reservoirs, which would
mean that the boundary condition θ(x = 0, L) = 0 is
too rigid. Since the correlations will extend into a
3-dimensional volume we assume that using the
boundary conditions ∂xθ(x = 0, L) = θ(x = 0, L)/a
i.e. a decay over a fixed characteristic length a, is a
realistic assumption. It assumes a geometric dilution
of the correlations. The result is shown in Fig. 13
by filled triangles. The best agreement between mea-
surement and calculation model is obtained for a =
75 nm. This value appears reasonable for a decay
length since it is comparable to the dimensions (100
nm × 250 nm) of the wire which emits into the
reservoirs.

7. BALLISTIC SUPERCURRENTS

In Section 2 it was pointed out that DeGennes
[9] in 1964 recognized that a Josephson supercur-
rent could flow through a normal metal sandwiched
between two superconductors. The strength of the
Josephson supercurrent was found to be exponen-
tially dependent on the length reflecting the fi-
nite correlation length for penetrating Cooper pairs.
In some of the experiments described above two
superconductors were used to perform Andreev-
interferometry and by doing that it was demonstrated
that the normal conductance has a component which
is phase-dependent. However, a phase-coherent
component should be the Josephson-current. Appar-
ently the normal conductance discussed so far can
be studied without having to consider the supercur-
rent. The reason is that the characteristic length LT

plays its role differently. The supercurrent decays ex-
ponentially with LT, whereas the conductance is pro-
portional to LT. If the length of the normal domain
is short enough the supercurrent will appear. For
larger lengths only the phase-coherent normal con-
ductance is observable. Experimentally, this depen-
dence has been clearly demonstrated in experiments
by Dimoulas et al. [51] and in subsequent work.

In the spirit of Section 3 the supercurrent
through SNS systems has been studied by start-
ing with the concept of Andreev reflections. The
early work was based on a normal domain free of
any elastic scattering, a condition reachable in cur-

rent 2-dimensional semiconductors. The early work
was done by Kulik [52], Ishii [53], and Bardeen
and Johnson [54]. It is assumed that we have per-
fect interfaces between N and S leading to perfect
Andreev-reflection at the interfaces i.e. determined
by Eq. (9) and Eq. (26) with Z = 0. For simplicity a
one-dimensional system is assumed. Because of the
finite length of N discrete energy levels are formed.

For E < � the continuity conditions for the
wavefunctions and their derivatives at x = ±L/2 we
obtain the dispersion relation:

exp(2iα(E)) exp[i(k+ − k−)L] exp(±iφ) = 1 (39)

where k+ and k− are the wave vectors of the elec-
tron and the hole respectively. The phase-factor
φ is equal to the differences of the macroscopic
phases of the two superconductors (φs1 − φs2). The
energy-dependent phase factor α(E) is given by
arccos(E/�). Since the considered energy E is usu-
ally much less than the Fermi-energy, the energy
eigenvalues can be calculated by using the relation
hδk = h(k+ − k−) = 2E/vF. Under this condition the
dispersion relation becomes:

En
± = hvF

2L
[2(πn + α) ± φ], n = 0, 1, 2, . . . (40)

If we specify for the case of low energies E � � we
find:

En
± = hvF

2L

[
2π

(
n + 1

2

)
± φ

]
(41)

Hence we have a set of equally spaced energy
levels until the levels approach �. Note that the po-
sition of the energy level is set by the phase differ-
ence φ.

In recent years this approach has been exten-
sively studied for the limit of very short contacts. The
availability of mechanical break junctions has led to
very detailed studies of both the supercurrent as well
as the voltage carrying state in single-atom point con-
tacts [55]. These junctions consist of adjustable point
contacts in which the distance between the outermost
atoms can be adjusted with a precision in the order
of 0.001 Å. It has therefore become feasible to study
continuously the transition from tunneling to metal-
lic contact in superconducting junctions. These ballis-
tic contacts are short compared to ξ0 = hvF/�0. Since
we are weakly connecting two bulk superconductors
the contact-region itself can be viewed as a normal
metal part. Hence, the dispersion relation (Eq. (39))
has only one solution within the bound E < �:

α = arccos(E/�) = ±(φ/2) (42)
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which leads to the very simple relation that

E = ±� cos(φ/2) (43)

All these expressions have been derived for the case
that elastic scattering is negligible. Beenakker [56]
has extended this approach to the case with finite
transmission eigenvalues. He finds that the energy
levels are given by:

En = �[1 − Tn sin2(φ/2)]1/2 (44)

with n = 1, 2, . . . m the number of allowable modes.
The values for Tn might range between 1 and 0.

The most important aspect of these expressions
in the various limits is that the allowed energy lev-
els depend on the macroscopic phase difference be-
tween the two superconductors. The position of the
levels mediate the information about the different
phases of the two superconductors and form the core
of the Josephson-effect.

Despite their importance a direct experimen-
tal demonstration of these energy-levels is difficult
to provide. Several unpublished attempts have been
made using far-infrared spectroscopy. Alternatively
one would like to use a tunneljunction as a spec-
troscopic tool. The need for ballistic transport is
practically incompatible with needed geometrical ex-
tension to fabricate a tunneljunction on top of the de-
vice. Morpurgo et al. [57] have been able to demon-
strate the precursor of the formation of an Andreev
bound state.

Each energy level carries a contribution to the
current of evF/m either in positive or negative direc-
tion. For φ = 0 there is an equal number of left and
right-movers and the net current is zero. However, if
we now allow a phase-difference between the two su-
perconductors the energy of the levels changes. Some
move upwards and others move downwards. For a
given temperature these energy levels are occupied
determined by the Fermi-Dirac distribution function.
Hence, some levels move out of the occupied range
of energies others move deeper inwards. As a conse-
quence a net supercurrent flows in either the positive
or the negative direction dependent on the applied
phase-difference. The supercurrent carried by these
bound states is determined by the contribution of the
electron- and the hole-component:

I =
m∑

n=0

[I+(En)f +(En) + I−(En)f −(En)] (45)

with I+ and I− the contribution of the hole and the
electron respectively, which are identical with op-

posite sign. In addition by definition f +(En) = 1 −
f −(En), which leads to:

I =
m∑

n=0

I(En)[1 − 2f (En)] (46)

The charge current carried by the allowable energy
states follow from the probability-current-density:

Jq = h
m

Im(u∗(r)∇u(r) − v∗(r)∇v(r)) (47)

Using this expression one finds for the supercur-
rent, taking the equilibrium Fermi-functions for the
occupations:

I(φ) = 2e
h

m∑
n=0

∂En

∂φ
tanh

En

2kT
(48)

which for a short junction with a transmission coeffi-
cient 1 using Eq. (43) we find:

I(φ) = e
h

N�(T) sin (φ/2) tanh
�(T)cos(φ/2)

2kT
(49)

Knowing the number of modes one also knows the
normal state conductance, the Sharvin-conductance
G0 = N(e2/πh), which leads to the expression first
derived by Kulik and Omelyanchuk [58]:

I(φ) = πG0
�(T)

e
sin (φ/2) tanh

�(T)cos(φ/2)
2kT

(50)

In the same spirit one finds [58] for systems with
a finite transmission coefficient using Eq. (44) that
the supercurrent is governed by:

I(φ) = e�2

2h
sin(φ)

m∑
n=0

Tn

En
tanh

En

2kT
(51)

In many cases the transmission coefficients are
energy dependent. For the well-known case of a tun-
neljunction we have a single transmissioncoefficient
for all energies and one obtains En = � and hence:

I(φ) = πG0

4e
sin φ tanh

�

2kT
(52)

the well-known expression first derived by
Ambegaokar and Baratoff [59] with G0 = e2NTn.

This set of equations clearly shows that start-
ing with the Andreev bound states one obtains well-
known expressions for the supercurrent carried by
these systems. It also shows that the total supercur-
rent is determined by the relative contribution of the
electron and the hole-like component.
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Fig. 14. Two SNS junctions in parallel. Each SNS junction can
be individually controlled with a normal control wire in which a
nonequilibrium electron distribution can be realized. Taken from
Baselmans et al. [61].

8. DIFFUSIVE AND CONTROLLABLE
SUPERCURRENTS

An important ingredient of the supercurrent-
carrying capacity appearing in Eq. (46) is the
dependence on the distribution-function f(E). It con-
trols the temperature dependence and it might en-
able the control through a nonequilibrium distribu-
tion function [60]. Figure 14 shows a recently studied
sample lay-out consisting of two SNS junctions in
parallel in which each of them can be individually
controlled with a nonequilibrium distribution func-
tion [61,62]. In earlier work a thermal control was re-
alized with hot electrons by Morpurgo et al. [60]. This
led Wilhelm et al. [63] to a nonequilibrium analysis,
using a nonequilibrium distribution as measured by
Pothier et al. [64].

In a diffusive system the proximity-effect is
again expressed in the two parameters θ and φ intro-
duced in Section 6. The supercurrent is given by:

�Js(x) = σ

e

∫ ∞

0
dE[1 − 2f (E)]Im(sin2 θ(∇ϕ)) (53)

By solving the Usadel equations for θ and φ with
the appropriate boundary conditions at the interfaces
one finds �Js. This program has been carried out by
Wilhelm et al. [63] in which a supercurrent-carrying

Fig. 15. Supercurrent-carrying density of states and distribution
function. Left panel for thermal distribution and right panel for
a steplike nonequilibrium function. The shaded area indicates the
contribution to the integral Eq. (54).

density of states is introduced Im(j E).

Is = d
2Rd

∫ +∞

−∞
dE[1 − 2f (E)]Im( jE) (54)

It means that for a dirty superconductor the energy
dependent spectral current Im(j E) replaces the dis-
crete Andreev bound states of Eq. (46). It is also de-
pendent on the phase difference φ. For φ = 0 there
is a minigap Eg given by Eg �= 3.2ETh with ETh the
Thouless energy associated with the length of N. This
energy-dependent current rises sharply at this mini-
gap and oscillates for increasing energy around zero
with an exponentially decaying amplitude (Fig. 15).
For increasing phase-difference the mini-gap closes
for φ = π. Evidently one way to vary the supercur-
rent is to increase the temperature, which is modeled
by replacing 1 − 2f (E) by tanh(E/2kT).

Wilhelm et al. [63] predicted that a suitably cho-
sen distribution function would lead to a reversal of
the direction of the supercurrent. In essence the left-
moving parts of the contribution to the supercurrent
weigh more heavily in the integral than the right-
moving parts as illustrated in Fig. 15. This rever-
sal of the direction of the supercurrent was demon-
strated by Baselmans et al. [65]. The reversal of the
supercurrent implies a shift of the phase-difference
by π and the device is therefore called a control-
lable π-junction. A detailed comparison of exper-
iment and theory [66] is shown in Fig. 16. As a
function of control voltage (dots) the supercurrent-
amplitude decreases, passes through zero, and con-
tinues with a small negative amplitude. The Inset
shows the distribution-functions assumed in the com-
parison with theory. This experiment clearly illus-
trates the importance of the distribution-function in
controlling the superconducting state in N.
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Fig. 16. Reversal of the direction of the supercurrent induced by a
nonequilibrium distribution function and comparison with theory.
The inset shows the two-step distribution-functions used in the
fits.

9. CONCLUDING HISTORICAL NOTE

The examples shown above illustrate the intri-
cate interplay between energies, correlation-lengths,
phase-dependence, and distribution-functions. Col-
lectively they constitute the relationship between
the proximity-effect and Andreev-reflections. For me
this interplay started in 1980 when I was a postdoc in
Mike Tinkham’s group.

When I arrived in Tinkham’s group in 1979 he
had just returned from a sabbatical in Karlsruhe.
During this sabbatical he had also travelled to
Moscow to visit the Institute of Radio Engineer-
ing and Electronics (IREE), in particular Anatoly
Volkov, Sergey Artemenko, and Sacha Zaitsev.
From this visit he had picked up the understand-
ing that in their difficult to digest theoretical work
Andreev reflection was an important concept to
understand constrictions between superconductors
and between superconductors and normal metals.
In Josephson contacts the voltage-carrying state
was mostly dominated by time-averaged quantities
such as in the celebrated resistively-shunted-junction
(RSJ) model. However, the fact that quantities like
an excess current appeared in both S-c-S as well as
S-c-N contacts was attributed to a static process like
Andreev reflection. Tinkham had written a note for
discussion in which he summarized his thinking on
this subject by starting with charge imbalance and
how that would be changed at lower temperatures.

My experimental work at Harvard was ini-
tially directed to make and study one of the first
Josephson-arrays, in collaboration with Chris Lobb,

to mimic the Kosterlitz-Thouless phase transition. It
was to be based on SNS junctions using a commer-
cially available mesh as a shadow mask [67]. As a
family we kept a diary during our stay in the US to
remember the responses of our kids to the new en-
vironment. In this diary I find that Chris reports on
our work in a Tinkham-group seminar on January
29, 1980. But more importantly I write for the first
time about the “bouncing ball picture.” That day I
had been chatting with Greg Blonder who was try-
ing to measure niobium point contacts as a func-
tion of temperature. And again, as in so many pre-
vious experiments including my own thesis work on
microbridges, a phenomenon called “subharmonic
gap structure” popped up abundantly. It had been
reported extensively since at least 1964 and was
never conclusively explained. In retrospect multipar-
ticle tunnelling was the correct track but there were
no experimental systems which allowed us to study
this phenomenon in sufficient isolation, neither was
the theory sufficiently developed. This experimental
problem was eventually resolved when the mechani-
cal break junctions [55] became available, which also
stimulated a thorough theoretical treatment which
still continues to the present day [68].

During my ride home on the Harvard Express
Bus to Lexington on the 29th I realized suddenly
that with two superconductors connected by a lit-
tle Sharvin-like hole Andreev-reflection should take
place at both superconductors and electron/hole par-
ticles should bounce back and forth picking up the
voltage difference at each passage. With our kids I
shared my enthusiasm over dinner referring to balls
changing color upon reflection of the walls and ris-
ing higher and higher until they would go over the
roof. The next day on the 30th the discussion with
Greg started followed by a discussion over lunch with
Mike, both of them swallowing the elementary idea
rather quickly.

We worked out the idea in more details by mak-
ing lots of pictures illustrating various bias condi-
tions and illustrating what would happen for 2�/n.
It was obvious that the transition from higher order
to lower order multiple transitions was at the heart
of the observed subharmonic gap structure. Most
satisfying was the application to asymmetric junc-
tions, contacts between superconductors with differ-
ent gaps. The experiments had shown a peculiar se-
ries of structure at the large gap, the sum gap and
only the even series of the smaller gap. The pictures
clearly showed that this was naturally explained with
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the concept of multiple Andreev reflections. This was
completely convincing even without any mathemati-
cal formulation.

It was our hope to get a paper written before my
return to The Netherlands, early July 1980. Several
attempts were made, mostly descriptive and unsatis-
fying. Computer simulations with an ad hoc reflec-
tion coefficient at the interfaces looked encouraging
but we were not sure how much of the Josephson-
effect one could throw out and the concept of dif-
ferent chemical potentials associated with the charge
imbalance was still confusing us. We had been gradu-
ally looking more and more into the Bogoliubov-De
Gennes equations, which had been the vehicle to in-
troduce the concept of Andreev reflections back in
1964. We realized that we were using a reflection-
coefficient for number current and not for charge
current.

A note was written by Greg Blonder, dated
Aug. 20, 1980, which summarized the relevant as-
pects under the title A Bogoliubov Equation Primer.
To this note he added an Appendix where he showed
how the matching of the wave functions at an in-
terface with a δ-function worked (Section 3). This
was used to perform a computercalculation using the
bouncing-ball picture, which we subsequently called
the “trajectory method.” Everything worked fine and
beautiful, except for the fact that the subharmonic
gap structure disappeared at low temperatures. In
the computer calculations the reflection-coefficients
without the δ-function were used and therefore there
was no cut-off for higher order processes. All orders
weighed equally heavy. But the δ-function was intro-
duced to find some mechanism to cut off these higher
order processes. Since we modelled the SS contact
with S-c-S with c a normal metal like constriction
we had two δ-functions at each interface. With the
trajectory method this led to the impossible task to
keep track of multiple elastic scattering paths and
multiple Andreev scattering paths. So we were stuck
except that we were able to correctly describe in its
full glory the NS contact with the trajectory method
and also the SS contacts provided we were willing to
accept that there was no cut-off for higher order pro-
cesses. Having been impressed by the depth of the
Russian theoretical work we were extremely pleased
to obtain for NS contacts exactly the same result as
Zaitsev had published in the course of 1980, even be-
ing able to point out that his expressions must contain
a mistake. Moreover we were able to describe the NS
contacts with an arbitrary transmission coefficient, an

accomplishment which Zaitsev [22] stimulated to de-
velop his boundary conditions.

These results were included in a submitted con-
tribution to LT16, in early 1981. The contribution got
upgraded to an invited talk held during this confer-
ence in Los Angeles (Aug. 19–25, 1981) and pub-
lished in the Proceedings [69]. On Oct. 19, 1981 the
BTK paper was submitted. In parallel Mike devel-
oped the Boltzmann equation approach to attack the
SNS problem with elastic scattering at the interfaces
for which the trajectory method had turned out to
be too clumsy. The original note on this issue was
dated Feb. 18, 1981. It was further worked out with
the help of Miguel Octavio and submitted on Feb. 18,
1983.

We believed that we had solved the last remain-
ing puzzle in understanding superconducting con-
tacts and that the subject was now closed. In retro-
spect we did not anticipate that the BTK paper would
become so popular because of pointcontact spec-
troscopy of superconducting and magnetic materials.
We neither did realize that it was an early example of
dealing with quantum transport problems in the spirit
of the Landauer-Büttiker formalism [31]. We also
did not realize that the mechanical break junctions
[55] would provide such rich and detailed experimen-
tal data, which stimulated a lot of theoretical work
and which also clearly connected the multiple An-
dreev concept with multiparticle tunneling. The idea
of multiple charge quanta have found strong sup-
port through recent shot noise measruements [70,71].
In view of the historical account in which exper-
imental results on subharmonic gap structure be-
tween dissimilar superconductors played such an en-
couraging role it would be nice to see experiments
with controllable break junctions of two dissimilar
superconductors.
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I describe the magnetic-field and current-density distributions generated by two-dimensional
(2D) pancake vortices in infinite, semi-infinite, and finite-thickness stacks of Josephson-
decoupled superconducting layers. Arrays of such vortices have been used to model the
magnetic structure in highly anisotropic layered cuprate high-temperature superconductors.
I show how the electromagnetic forces between pancake vortices can be calculatated, and I
briefly discuss the effects of interlayer Josephson coupling.
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1. INTRODUCTION

Since this paper is intended for publication in a
special Festschrift issue honoring Mike Tinkham, I
have been invited to include some personal reflec-
tions in the introduction. I believe I first heard his
name when I was a graduate student in the early
1960s at the University of Illinois-Urbana, work-
ing on extensions of the BCS theory [1] to include
anisotropy of the superconducting energy gap [2,3].
A paper by Ginsberg, Richards, and Tinkham [4]
had reported results on the far-infrared absorption
in superconducting lead, which showed a precursor
hump in the real part of the complex conductivity,
σ1(ω)/σN. I tried to explain this feature in terms of
gap anisotropy but was unsuccessful.

Throughout subsequent years, I have followed
Mike Tinkham’s career with considerable interest. I
have admired his research style, which consistently
has resulted in new and interesting experimental re-
sults and theoretical interpretations that advance the
theory. I also admire anyone who can write carefully
prepared books, and I have found his books on su-
perconductivity (in both editions [5,6]) to be particu-
larly useful. I have asked students beginning research
with me to work diligently through these books to
learn the fundamentals of superconductivity.

1Ames Laboratory and Department of Physics and Astronomy,
Iowa State University, Ames, Iowa 50011-3160.

One of the topics that Mike Tinkham finds inter-
esting is vortex physics, and since this has been one
of my main research interests, I would like to focus
here on one aspect: two-dimensional (2D) pancake
vortices. This is a favorite subtopic of mine, partly be-
cause I coined the name and partly because my 1991
paper on this subject [7] has been so well received by
the superconductivity community (over 600 citations
to date). Incidentally, although I wanted to put “2D
pancake vortex” in the title of this paper, the editors
of Physical Review B forbid this but did allow me to
use these words in the abstract and the rest of the
paper. I first reported on my work on 2D pancake
vortices at a Gordon Research Conference chaired
by Mike Tinkham in June 1989, but (as has too often
been the case with me) I was slow to publish, and
some of the key results were published in 1990 by
Artemenko and Kruglov [8] and by Buzdin and Fein-
berg [9]. I later discovered that the basic solution had
even been published in 1979 by Efetov [10], but his
work unfortunately had gone largely unnoticed.

This paper is organized as follows. In Sec. 2, I
calculate the properties of 2D pancake vortices in an
infinite stack of Josephson-decoupled superconduct-
ing layers, first by considering all the layers as being
very thin and then by considering the layers above
and below the pancake layer as a continuum [11]. In
Sec. 3, I use the continuum approach to calculate the
properties of 2D pancake vortices in a semi-infinite
stack of Josephson-decoupled superconducting
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layers. In Sec. 4, I again use the continuum approach
to calculate the properties of 2D pancake vortices in
a finite stack of Josephson-decoupled superconduct-
ing layers [12], first for arbitrary thickness and then
for a thickness much less than the in-plane penetra-
tion depth, where the results bear some similarities
to those of Pearl [13–15] for vortices in thin films. In
Sec. 5, I show how to calculate the electromagnetic
forces between pancake vortices, and in Sec. 6, I
discuss some consequences of Josephson coupling. I
conclude with a brief summary in Sec. 7.

2. PANCAKE VORTEX IN AN INFINITE
STACK OF SUPERCONDUCTING LAYERS

The chief motivation for my work that led to
the idea of the 2D pancake vortex was the ques-
tion of how to describe the vortex structure of highly
anisotropic layered cuprate high-temperature super-
conductors, with Bi-2212 (Bi2Sr2CaCu2O8−δ) being
the best-known example. Applying the anisotropic
Ginzburg-Landau equations [16–29] to this material,
it could easily be seen that the calculated value of
the coherence length ξc (the length scale describing
spatial variation of the order parameter in the c di-
rection perpendicular to the layers) was less than the
center-to-center distance s between the CuO2 bilay-
ers. Since the Ginzburg-Landau theory assumes that
all the characteristic lengths of superconductivity are
large by comparison with atomic length scales, this
fact indicated that some other theory was needed to
describe details of the vortex structure in the most
anisotropic high-Tc superconductors.

The natural way to incorporate the existence of
discrete layers was to make use of the Lawrence-
Doniach theory [30], which treats the intralayer be-
havior using Ginzburg-Landau theory but interlayer
coupling via the Josephson effect [31]. In this the-
ory the coherence length ξc plays no role when its
value is less than s, and the penetration depth λc de-
scribing the length scale of the spatial variation of
supercurrents parallel to the c direction can be re-
lated to the maximum Josephson supercurrent J0 via
[32] λc = (cφ0/8π2sJ0)1/2 in Gaussian units. The pa-
rameter usually used to characterize the degree of
anisotropy is γ = λc/λab, where λab is the penetration
depth describing the length scale of the spatial varia-
tion of supercurrents parallel to the layers (neglect-
ing the anisotropy between the a and b directions,
i.e., assuming for simplicity that λa ≈ λb ≈ λab). For
Bi-2212, the value of γ is so large that it is difficult

to measure [33]; γ was found in Ref. [34] to be larger
than 150, but a more recent quantitative determina-
tion [35] has yielded γ = 640 ± 25.

For such highly anisotropic materials, it seemed
sensible to me to take the limit γ → ∞ (λc = ∞
or J0 = 0) as the starting point to describe vortex
structure. The essential idea was that in a model of
identical superconducting layers separated by insu-
lating layers, one could solve for the magnetic field
and current density generated by a 2D pancake vor-
tex in one of the superconducting layers when the
other layers contained no vortices but served only
to screen the magnetic field generated by the pan-
cake vortex. With this solution as a building block,
one could then find the magnetic field produced by
a stack of such pancake vortices, even if misaligned,
by the process of linear superposition. This was basi-
cally the approach I had used in developing the the-
ory that quantitatively explains the coupling forces
between misaligned vortices in just two layers [36,37],
the primary and secondary superconducting layers
of the dc transformer studied experimentally first by
Giaever [38,39], and later by Solomon [40], Sherrill
[41], Deltour and Tinkham [42], and Cladis et al.
[43,44], but in greatest detail by Ekin et al. [45,46].

2.1. Model of Very Thin Discrete
Superconducting Layers

To calculate the magnetic-field and current-
density distributions generated by a pancake vor-
tex in an infinite stack of Josephson-decoupled su-
perconducting layers, in Ref. [7] I used the model
in which the superconducting layers, all of thick-
ness d, are centered on the planes z = zn = ns (n =
0,±1,±2, . . .), as sketched in Fig. 1. The London
penetration depth within each layer is λs such that
the average penetration depth for currents parallel to
the layers is [32] λ‖ = λs(s/d)1/2, which corresponds
to the penetration depth λab in the high-temperature
superconductors. When the central layer (z = 0) con-
tains a vortex at the origin but all other layers are
vortex-free, the London fluxoid quantization condi-
tion [47] in layer n can be expressed as

2πρ[aφ(ρ, zn) + (2π
s/c)Kφ(ρ, zn)] = φ0δn0, (1)

where in cylindrical coordinates a(ρ, z) = φ̂aφ(ρ, z)
is the vector potential, K(ρ, zn) = φ̂Kφ(ρ, zn) =
φ̂j̄ φ(ρ, zn)s is the sheet-current density in layer n av-
eraged over the periodicity length s, 
s = 2λ2

‖/s =
2λ2

s /d is the 2D screening length, and φ0 = hc/2e
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Fig. 1. Infinite stack of thin superconducting layers with a pancake
vortex at the origin (bold arrow).

is the superconducting flux quantum. Equation (1)
inevitably leads to a description of vortices in the
London model [48], which is characterized by un-
physical current-density and magnetic-field singular-
ities on the vortex axis. The pioneering work on vor-
tices by Abrikosov [49] showed that such singulari-
ties are cut off at a distance of the order of the in-
plane coherence length ξab. A simple model for the
vortex core, employing a variational core-radius pa-
rameter ξv ∼ ξab, has been used to describe straight
vortices in isotropic [50] and anisotropic [51] super-
conductors, as well as in films of arbitrary thickness,
whether isolated [52] or in superconducting dc trans-
formers [37]. This model also could be used to cure
the vortex-core singularities that are present in all the
following results of this paper.

If one takes the thickness d of each layer to be
very small, as in Ref. [7], the vector potential can be
expressed in the form

aφ(ρ, z) =
∫ ∞

0
dqA(q)J1(qρ)Z(q, z), (2)

where J1(qρ) is a Bessel function and Z(q, z) has
scallops as a function of z that are necessary to de-
scribe the discontinuities of bρ(ρ, z) arising from the
induced sheet currents Kφ(ρ, zn) for n �= 0. Note that
b(ρ, z) = ∇ × a(ρ, z), such that

bρ(ρ, z) = −∂aφ(ρ, z)
∂z

(3)

and

bz(ρ, z) = 1
ρ

∂[ρaφ(ρ, z)]
∂ρ

. (4)

Inserting the exact expression for A(q) into Eq. (2)
yields a complicated integral that cannot be inte-
grated analytically. However, a close approxima-
tion to the exact result can be obtained by writing
Z(q, z) = exp(−Q|z|), where Q = (q2 + λ−2

‖ )1/2 and
A(q) = φ0/2π
sQ; this approximation, which is valid
for s 	 λ‖, corresponds to retaining information on
the scale of λ‖ but giving up detailed information on
the finer scale of s. The resulting vector potential and
magnetic field components are

aφ(ρ, z) = φ0λ‖
2π
sρ

(e−|z|/λ‖ − e−r/λ‖), (5)

bz(ρ, z) = φ0

2π
sr
e−r/λ‖ , (6)

bρ(ρ, z) = φ0

2π
sρ

[
z
|z| e−|z|/λ‖ − z

r
e−r/λ‖

]
, (7)

where r = (ρ2 + z2)1/2. Since in the high-temperature
superconductors s/2λ‖ = λ‖/
s ≈ 10−2, the vector
potential term in Eq. (1) of order λ‖/
s can be ne-
glected in the central layer (n = 0) and we obtain to
good approximation

Kφ(ρ, z0) = cφ0

4π2
sρ
. (8)

However, for all the other layers (n �= 0) we obtain

Kφ(ρ, zn) = − cφ0λ‖
4π2
2

s ρ
(e−|zn|/λ‖ − e−rn/λ‖), (9)

where zn = ns and rn = (ρ2 + z2
n)1/2. Note that the

magnitude of the sheet-current density in the n = 0
central layer is much larger, by a factor of order 102,
than the sheet-current density in one of the n �= 0 lay-
ers. It is for this reason that I gave the name pancake
vortex to this field and current distribution.

An interesting property of the above solutions
is that the pancake-vortex-generated magnetic flux
�z(ρ, z) = 2πρaφ(ρ, z) up through a circle of radius
ρ at height z is (using 
s = 2λ2

‖/s)

�z(ρ, z) = φ0(s/2λ‖)(e−|z|/λ‖ − e−r/λ‖), (10)

such that the magnetic flux up through a layer at
height z is

�z(∞, z) = φ0(s/2λ‖)e−|z|/λ‖ , (11)

and the magnetic flux up through the central layer at
z = 0 is

�z(∞, 0) = φ0(s/2λ‖). (12)

When s 	 λ‖, as in the high-temperature supercon-
ductors, we see that �z(∞, 0) 	 φ0. This is at first
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surprising until one realizes that fluxoids are quan-
tized in superconductors but flux is not [47]. In the
present problem, the fluxoid is the quantity on the
left-hand side of Eq. (1), and since (2π
s/c)Kφ(ρ, z0)
is proportional to 1/ρ and aφ(ρ, z0) is very small, the
fluxoid is due almost entirely to the current term.
Note also that �z(∞,∞) = 0; this occurs because all
the magnetic flux up through the central layer z = 0
is directed radially outward by the screening currents
in the layers with z > 0.

On the other hand, an infinite stack of pancake
vortices, whether straight or not, has quite different
magnetic-flux properties. If there is one pancake vor-
tex in every layer at z = zn = ns (n = 0,±1,±2, . . .),
then the magnetic flux up through the central layer
(and by symmetry any other layer) is

�z(∞, 0) = φ0(s/2λ‖)
∞∑

n=−∞
e−|zn|/λ‖ = φ0, (13)

where the last equality is obtained by evaluating the
sum and making use of the property that s 	 λ‖. Sim-
ilarly, the radial magnetic field at ρ = ∞ and z = 0
is now zero, since the positive contributions from all
the pancake vortices below the central layer are can-
celed by the negative contributions from the pancake
vortices above this layer.

2.2. Continuum Model

The solutions given in Eqs. (5)–(9) can be ob-
tained more easily by regarding the n �= 0 layers as
a continuum, characterized by the penetration depth
λ‖ for currents parallel to the layers [11]. Moreover,
for a realistic treatment of stacks of just a few super-
conducting layers, a model accounting for finite layer
thickness s is needed. We therefore use the model
sketched in Fig. 2 and write the London equation [47]
in cylindrical coordinates in the form

2πρ[aφ(ρ, z) + (4πλ2
‖/c)j φ(ρ, z)] = φ0δn0, (14)

where the delta function on the right-hand side ac-
counts for the presence of a vortex aligned along the
z axis in the n = 0 layer (|z| < s/2). Combining this
equation with Ampere’s law, j φ = (c/4π)(∂bρ/∂z −
∂bz/∂ρ), and making use of Eqs. (3) and (4), we ob-
tain the partial differential equation

∂2aφ

∂z2
+ ∂2aφ

∂ρ2
+ 1

ρ

∂aφ

∂ρ
−

(
1
ρ2

+ 1

λ2
‖

)
aφ = − φ0

2πλ2
‖ρ

δn0,

(15)

Fig. 2. Continuum model of an infinite stack of superconducting
layers with a pancake vortex (bold arrow at the origin) in the layer
at z = z0 = 0.

which can be solved by writing aφ(ρ, z) in the
three regions z > s/2,−s/2 < z < s/2, and z < −s/2
in terms of Hankel components [53] as follows:

aφ(ρ, z) =
∫ ∞

0
dqAa(q)J1(qρ)e−Qz, z ≥ s/2,

(16)

aφ(ρ, z) =
∫ ∞

0
dq

[
φ0

2πλ2
‖Q2

+ A0−(q)e−Qz

+A0+(q)eQz] J1(qρ), −s/2 ≤ z ≤ s/2,

(17)

aφ(ρ, z) =
∫ ∞

0
dqAb(q)J1(qρ)e−z, z ≤ −s/2,

(18)

where Q = (q2 + 1/λ2
‖)1/2. The four unknown func-

tions Aa(q), A0−(q), A0+(q), and Ab(q) can be ob-
tained by applying the boundary conditions of con-
tinuity of aφ(ρ, z) and bρ(ρ, z) [Eq. (3)] at the two
interfaces z = ±s/2, carrying out the Hankel trans-
forms using [54]∫ ∞

0
dρρJ1(qρ)J1(q′ρ) = (1/q)δ(q − q′), (19)

and solving the four resulting linear equations. The
results are

A0−(q) = A0+(q) = − φ0

4πλ2
‖Q2

e−Qs/2, (20)
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Aa(q) = Ab(q) = φ0 sinh (Qs/2)

2πλ2
‖Q2

. (21)

Note that s 	 λ‖, such that if we confine our atten-
tion to values of ρ  s, the integrals in Eqs. (16)–(18)
are dominated by values of q 	 1/s. We then may
make the replacement sinh(Qs/2) → Qs/2, which
makes Aa = Ab = φ0/2π
sQ, the same as A(q) in
Ref. [7] and Sec. 2.1.

The magnetic flux up through a circle of ra-
dius ρ in the plane with coordinate z is �z(ρ, z) =
2πρaφ(ρ, z). Evaluating the integrals for aφ(ρ, z) [Eqs.
(16)–(18)] in the limit ρ → ∞, we can show with-
out making the approximation that s 	 λ‖ that the
pancake-vortex-generated magnetic flux through a
layer at height z, where |z| > s/2, is

�z(∞, z) = φ0 sinh (s/2λ‖)e−|z|/λ‖ , (22)

and the total magnetic flux up through the central
layer at z = 0 is

�z(∞, 0) = φ0(1 − e−s/2λ‖) ≈ φ0(s/2λ‖). (23)

If there is one pancake vortex in every layer
at z = zn = ns (n = 0,±1,±, 2, . . .), even if they are
misaligned, then by summing the contributions given
in Eqs. (22) and (23) we find that the magnetic
flux up through the central layer (and by symme-
try any other layer) is exactly φ0. If all the vortices
are aligned along the z axis, the magnetic-field and
current-density distributions reduce to those of the
London model [48], for which

aφ(ρ) = �z(ρ)
2πρ

= φ0

2πρ

[
1 − ρ

λ‖
K1

(
ρ

λ‖

)]
, (24)

bz(ρ) = φ0

2πλ2
‖

K0

(
ρ

λ‖

)
, (25)

j φ(ρ) = cφ0

8πλ3
‖

K1

(
ρ

λ‖

)
, (26)

and bρ(ρ) = 0, where Kn(x) is a modified Bessel
function.

3. PANCAKE VORTEX IN A SEMI-INFINITE
STACK OF SUPERCONDUCTING LAYERS

In Sec. 2, I reviewed the results found in Ref. [7]
for a pancake vortex in an infinite stack of supercon-
ducting layers, where it is seen that the fields and cur-
rents decay exponentially on the scale of λ‖ above
and below the layer containing the pancake vortex.

For a sample of thickness D  λ‖ it is therefore clear
that the fields and currents generated by pancake
vortices that are many λ‖ from either surface are es-
sentially the same as in Sec. 2. However, the fields
and currents are significantly altered when a pancake
vortex is less than λ‖ from the surface of a sample
of thickness D  λ‖ or when the sample thickness
D is comparable with or smaller than λ‖. In this sec-
tion I use the continuum approximation described in
Sec. 2.2 to obtain solutions describing the field and
currents generated by a vortex in an arbitrary layer
of a semi-infinite stack of superconducting layers. In
the next section (Sec. 4) I present solutions for a pan-
cake vortex in a finite stack of arbitrary thickness D.

Consider a semi-infinite stack of superconduct-
ing layers, with the top surface on the xy plane, such
that all the layers are in the region z < 0, as sketched
in Fig 3. We number the superconducting layers such
that the layer n = 0 in the region z0− < z < z0+, cen-
tered at z = z0 < 0, is the one containing the pan-
cake vortex. The other layers are centered at z =
zn = z0 + ns, where positive (negative) n labels lay-
ers above (below) the pancake vortex. If there are
N+ layers above the pancake vortex, then the top
layer is centered at z = z0 + N+s = D/2 − s/2. By so
numbering the layers, we still can use Eq. (14) as the
London fluxoid quantization condition.

As in Sec. 2, we may write the vector potential in
cylindrical coordinates as a(ρ, z) = φ̂aφ(ρ, z). How-
ever, we now have different expressions for aφ(ρ, z)

Fig. 3. Continuum model of a semi-infinite stack of superconduct-
ing layers in the space z < 0 with a pancake vortex (bold arrow) in
the layer at z = z0.
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in four regions:

aφ(ρ, z) =
∫ ∞

0
dqA>(q)J1(qρ)e−qz, z ≥ 0, (27)

aφ(ρ, z) =
∫ ∞

0
dq

[
Aa−(q)e−Q(z−z0) + Aa+(q)eQ(z−zo)

]
× J1(qρ), z0+ ≤ z ≤ 0, (28)

aφ(ρ, z) =
∫ ∞

0
dq

[
�0

2πλ2
‖Q2

+ A0−(q)e−Q(z−zo)

+ A0+(q)eQ(z−z0)
]

J1(qρ), z0− ≤ z ≤ z0+,

(29)

aφ(ρ, z) =
∫ ∞

0
dqAb(q)J1(qρ)eQ(z−z0), z ≤ z0−, (30)

where Q = (q2 + λ−2
‖ )1/2 and z0± = z0 ± s/2. The six

functions A>(q), Aa−(q), Aa+(q), A0−(q), A0+(q), and
Ab(q), obtained by applying the six boundary condi-
tions of continuity of aφ(ρ, z) and bρ(ρ, z) [calculated
from Eq. (3)] at z = 0, z0+, and z0−, are

A>(q) = φ0 sinh(Qs/2)

πλ2
‖Q2(1 + q/Q)

eQz0 , (31)

Aa−(q) = φ0 sinh(Qs/2)

2πλ2
‖Q2

, (32)

Aa+(q) = φ0 sinh(Qs/2)

2πλ2
‖Q2

(
1 − q/Q
1 + q/Q

)
e2Qz0 , (33)

A0−(q) = − φ0

4πλ2
‖Q2

e−Qs/2, (34)

A0+(q) = − φ0

4πλ2
‖Q2

[
e−Qs/2 − 2 sinh(Qs/2)

×
(

1 − q/Q
1 + q/Q

)
e2Qz0

]
, (35)

Ab(q) = φ0 sinh(Qs/2)

2πλ2
‖Q2

[
1 +

(
1 − q/Q
1 + q/Q

)
e2Qz0

]
.

(36)

Although the resulting integrals for aφ(ρ, z) and
those [via Eqs. (3) and (4)] for bρ(ρ, z) and bz(ρ, z)
can easily be calculated numerically, they are too
complicated to evaluate analytically for arbitrary ρ

and z. On the other hand, we can evaluate them ap-
proximately for large ρ. When ρ  λ‖, the values of q
that dominate the integrals in Eqs. (27)–(30) via the
Bessel function J1(qρ) are those of order 1/ρ 	 1/λ‖,

such that we may replace all quantities under the in-
tegral except J1(qρ) by their values at q = 0. Sim-
ilarly, because of the factor exp(−qz) in Eq. (16)
we may replace A>(q) by A>(0) to evaluate aφ(ρ, z)
when ρ is small but z  λ‖.

The magnetic flux up through a circle of ra-
dius ρ in the plane with coordinate z is �z(ρ, z) =
2πρaφ(ρ, z). Evaluating the integrals as indicated
above for aφ(ρ, z) in the limit as ρ → ∞, we obtain
for the total magnetic flux up through the plane with
coordinate z:

�z(∞, z) = 2φ0 sinh(s/2λ‖)ez0/λ‖ , z ≥ 0, (37)

�z(∞, z) = 2φ0 sinh(s/2λ‖) cosh(z/λ‖)ez0/λ‖ ,

z0+ ≤ z ≤ 0, (38)

�z(∞, z) = φ0{1 − cosh[(z − z0)/λ‖]e−s/2λ‖

+ sinh(s/2λ‖)e(z+z0)/λ‖ },
z0− ≤ z ≤ z0+, (39)

�z(∞, z) = 2φ0 sinh(s/2λ‖)

× cosh(z0/λ‖)ez/λ‖ ,

z ≤ z0−. (40)

When the pancake vortex is in the top layer (i.e.,
when z0 = −s/2), the magnetic flux �z(∞, 0) up
through the top surface is approximately φ0(s/λ‖),
since s/λ‖ ∼ 10−2 	 1. When the pancake vortex is
in a layer much farther than λ‖ from the top sur-
face, the amount of magnetic flux up through the top
surface �z(∞, 0) [Eq. (37)] becomes exponentially
small (recall that z0 < 0). The precise magnetic field
distribution generated in the space above the super-
conductor within λ‖ of the origin can be calculated
numerically for a given pancake-vortex position z0

from Eqs. (3), (4), and (27). However, at distances
r =

√
ρ2 + z2 somewhat larger than λ‖ from the ori-

gin, we have to good approximation for z ≥ 0.

aφ(ρ, z) = �z(∞, 0)
2πρ

(
1 − z

r

)
, (41)

bρ(ρ, z) = �z(∞, 0)
2π

ρ

r3
, (42)

bz(ρ, z) = �z(∞, 0)
2π

z
r3

. (43)

In other words, the magnetic field generated by the
pancake vortex appears as if generated by a magnetic
monopole, with the flux �z(∞, 0) [Eq. (37)] spread-
ing out evenly into the hemisphere above the surface.
It is important to note that only pancake vortices
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within about λ‖ (or λab in the high-temperature su-
perconductors) are visible using Bitter decoration,
scanning Hall-probe microscopy, scanning SQUID
microscopy, or magneto-optical techniques; pancake
vortices deeper than this make an exponentially
small contribution to the magnetic field above the
surface.

From Eq. (39) we see that the magnetic flux up
through the plane z = z0 in the layer containing the
pancake vortex is

�z(∞, z0) = φ0[1 − e−s/2λ‖ + sinh(s/2λ‖)e2z0/λ‖]

≈ φ0(s/2λ‖)(1 + e2z0/λ‖). (44)

When the pancake vortex is in the top layer (i.e., if
z0 = −s/2), the magnetic flux up through this layer is
approximately φ0(s/λ‖), and when the pancake vor-
tex is deep inside the superconductor (i.e., if −z0 
λ‖), the magnetic flux up through the pancake layer
is approximately φ0(s/2λ‖), as found in Sec. 2 for the
infinite superconductor [Eqs. (12) and (23)].

If there is a pancake vortex in every layer, even
if they are misaligned, the total magnetic flux up
through any plane with coordinate z is exactly equal
to φ0. This can be shown by replacing z0 by zn =
z0 + ns, noting that the top layer is centered at −s/2,
and summing over all n, using Eq. (37) if z > 0. On
the other hand, if z < 0, one must use Eq. (40) for
the top layers for which zn − s/2 ≥ z, Eq. (39) for
the layer containing z for which zn − s/2 ≤ z ≤ zn +
s/2, and Eq. (38) for the remaining layers for which
zn + s/2 ≤ z. If all the pancake vortices are aligned
along the z axis, the magnetic-field and current-
density distributions reduce to those calculated by
Pearl [11,53,55] for a vortex in a semi-infinite super-
conductor.

Scanning Hall-probe experiments visualizing
vortices in underdoped, highly anisotropic YBa2

Cu3O6+x (YBCO) single crystals, where x = 0.35 −
0.375, recently have been carried out by Guikema
[56]. In the most underdoped crystals, the ob-
servations revealed what at first appeared to be
“partial vortices” carrying magnetic flux less than
φ0. Guikema concluded, however, that such images
are caused by a full vortex that is partially displaced
horizontally, i.e., a “split pancake-vortex stack.” The
magnetic flux generated above the surface by the
two parts of the vortex stack can be calculated as
follows. Suppose the bottom portion, consisting of
pancake vortices below the plane z = −d, is aligned
along the z axis, and the top portion, consisting of
pancake vortices above the plane z = −d, is aligned

parallel to the z axis but at (x, y) = (x0, 0). Using
Eq. (37) to sum the contributions from the pan-
cake vortices in the two portions, one finds that
the magnetic flux �bot = φ0 exp(−d/λ‖) generated
by the bottom portion emerges from the vicinity of
the origin (x, y, z) = (0, 0, 0), and the magnetic flux
�top = φ0[1 − exp(−d/λ‖)] generated by the top por-
tion emerges from the vicinity of the point (x, y, z) =
(x0, 0, 0). The two flux contributions should be re-
solvable when the displacement x0 exceeds the Hall-
probe size and the probe’s field sensitivity allows de-
tection of both contributions.

4. PANCAKE VORTEX IN A FINITE STACK
OF SUPERCONDUCTING LAYERS

Since all laboratory samples of the high-
temperature superconductors are of finite thickness,
it is important to examine how the properties of pan-
cake vortices discussed in Sec. 2 are modified when
we take the finite thickness into account, including
the possibility that the thickness D may be less than
the penetration λ‖. Let us begin by considering a pan-
cake vortex centered on the z axis in a stack of su-
perconducting layers, each of thickness s, in the re-
gion −D/2 < z < D/2, as sketched in Fig. 4. As in
the previous section, we number the layers such that
the layer n = 0 at z = z0, where |z0| ≤ (D/2 − s/2), is
the one containing the pancake vortex. The other
layers are centered at z = zn = z0 + ns, where pos-
itive (negative) n labels layers above (below) the
pancake vortex. If there are N+ layers above the

Fig. 4. Continuum model of a stack of superconducting layers in
the space |z| < D/2 with a pancake vortex (bold arrow) in the layer
at z = z0.
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pancake vortex, then the top layer is centered at
z = z0 + N+s = D/2 − s/2, and if there are N− layers
below the pancake vortex, then the bottom layer is
centered at z = z0 − N−s = −D/2 + s/2. As in Sec.
2.2, I treat all the layers using the continuum ap-
proximation and use Eq. (14) as the London flux-
oid quantization condition. In Sec. 4.1, I show how
to calculate the fields generated by a pancake vortex
in a finite stack of Josephson-decoupled supercon-
ducting layers, each of thickness s, with an arbitrary
total stack thickness D relative to λ‖. In Sec. 4.2, I
consider the simplifications that arise when D 	 λ‖,
which corresponds to the case of high-temperature
superconducting samples consisting of roughly 10 or
fewer unit cells along the c direction.

4.1. Finite Stack of Arbitrary Thickness

As in Secs. 2.2 and 3, we write the vector poten-
tial in cylindrical coordinates as a(ρ, z) = φ̂aφ(ρ, z).
However, we now have different expressions for
aφ(ρ, z) in five regions:

aφ(ρ, z) =
∫ ∞

0
dqA>(q)J1(qρ)e−q(z−D/2), z ≥ D/2,

(45)

aφ(ρ, z) =
∫ ∞

0
dq[Aa−(q)e−Q(z−D/2)

+ Aa+(q)eQ(z−D/2)]J1(qρ), z0+ ≤ z ≤ D/2,

(46)

aφ(ρ, z) =
∫ ∞

0
dq

[
φ0

2πλ2
‖Q2

+ A0−(q)e−Q(z−z0)

+ A0+(q)eQ(z−z0)
]

J1(qρ), z0− ≤ z ≤ z0+,

(47)

aφ(ρ, z) =
∫ ∞

0
dq[Ab−(q)e−Q(z+D/2)

+ Ab+(q)eQ(z+D/2)]J1(qρ),

− D/2 ≤ z ≤ z0−, (48)

aφ(ρ, z) =
∫ ∞

0
dqA<(q)J1(qρ)eq(z+D/2), z ≤ −D/2,

(49)

where Q = (q2 + λ−2
‖ )1/2, the subscript a and (b) de-

notes the layered region above (below) the pan-

cake vortex, and z0± = z0 ± s/2. The eight func-
tions A>(q), Aa−(q), Aa+(q), A0−(q), A0+(q), Ab−(q),
Ab+(q), and A<(q), obtained by applying the eight
boundary conditions of continuity of aφ(ρ, z) and
bρ(ρ, z) [calculated from Eq. (3)] at z = D/2, z0−, z0+,
and −D/2, are

A>(q) = φ0

πλ2
‖Q2

sinh(Qs/2)G(q, z0), (50)

Aa−(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 + q/Q)G(q, z0),

(51)

Aa+(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 − q/Q)G(q, z0),

(52)

A0−(q) = − φ0

4πλ2
‖Q2

[eQs/2−2 sinh(Qs/2)(1 + q/Q)

×G(q, z0)eQD/2e−Qz0 ]

= − φ0

4πλ2
‖Q2

[e−Qs/2−2 sinh(Qs/2)(1 − q/Q)

×G(q,−z0)e−QD/2e−Qz0 ], (53)

A0+(q) = − φ0

4πλ2
‖Q2

[e−Qs/2−2 sinh(Qs/2)(1 − q/Q)

×G(q, z0)e−QD/2eQz0 ]

= − φ0

4πλ2
‖Q2

[eQs/2 −2 sinh(Qs/2)(1 + q/Q)

×G(q,−z0)eQD/2eQz0 ], (54)

Ab−(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 − q/Q)G(q,−z0),

(55)

Ab+(q) = φ0

2πλ2
‖Q2

sinh(Qs/2)(1 + q/Q)G(q,−z0),

(56)

A<(q) = φ0

πλ2
‖Q2

sinh(Qs/2)G(q,−z0), (57)

where

G(q, z) = (1 + q/Q) + (1 − q/Q)e−QDe−2Qz

(1 + q/Q)2 − (1 − q/Q)2e−2QD

×e−QD/2eQz. (58)



Pancake Vortices 621

Although the resulting integrals for aφ(ρ, z) and
those [via Eqs. (3) and (4)] for bρ(ρ, z) and bz(ρ, z)
can easily be calculated numerically, they are too
complicated to evaluate analytically for arbitrary ρ

and z. On the other hand, we can evaluate them ap-
proximately for large ρ. When ρ  λ‖, the values of
q that dominate the integrals in Eqs. (45)–(49) via the
Bessel function J1(qρ) are those of order 1/ρ 	 1/λ‖,
such that we may replace all quantities under the in-
tegral except J1(qρ) by their values at q = 0. Simi-
larly, because of the factors exp(−qz) and exp(qz) in
Eqs. (45) and (49) we may replace A>(q) by A>(0)
and A<(q) by A<(0) to evaluate aφ(ρ, z) when ρ is
small but |z| − D/2  λ‖.

The magnetic flux up through a circle of ra-
dius ρ in the plane with coordinate z is �z(ρ, z) =
2πρaφ(ρ, z). Evaluating the integrals as indicated
above for aφ(ρ, z) in the limit as ρ → ∞, we obtain
for the total magnetic flux up through the plane with
coordinate z [12]:

�z(∞, z) = 2φ0 sinh
(

s
2λ‖

)
cosh

(
D/2 + z0

λ‖

)
/

sinh
(

D
λ‖

)
, z ≥ D/2, (59)

�z(∞, z) = 2φ0 sinh
(

s
2λ‖

)
cosh

(
D/2 + z0

λ‖

)

× cosh
(

D/2 − z
λ‖

)
/sinh

(
D
λ‖

)
,

z0+ ≤ z ≤ D/2, (60)

�z(∞, z) = φ0

{
1 −

[
e(D−s)/2λ‖cosh

(
D/2 − z0

λ‖

)

− e−(D−s)/2λ‖cosh
(

D/2 + z0

λ‖

)]

× ez/λ‖/2sinh
(

D
λ‖

)

−
[

e(D−s)/2λ‖cosh
(

D/2 + z0

λ‖

)

− e−(D−s)/2λ‖cosh
(

D/2 − z0

λ‖

)]

× e−z/λ‖/2sinh
(

D
λ‖

) }
, z0− ≤ z ≤ z0+,

(61)

�z(∞, z) = 2φ0 sinh
(

s
2λ‖

)
cosh

(
D/2 − z0

λ‖

)

× cosh
(

D/2 + z
λ‖

)
/sinh

(
D
λ‖

)
,

−D/2 ≤ z ≤ z0−, (62)

�z(∞, z) = 2φ0sinh
(

s
2λ‖

)
cosh

(
D/2 − z0

λ‖

)
/

sinh
(

D
λ‖

)
, z ≤ −D/2. (63)

The magnetic flux �z(∞, D/2) up through the
top surface is given by Eq. (59). When D  λ‖ and
a pancake vortex is in the top layer (i.e., when z0 =
D/2 − s/2), we obtain �z(∞, D/2) ≈ φ0(s/λ‖), which
is a tiny fraction of φ0, since s/λ‖ ∼ 10−2 	 1. As a
function of the distance D/2 − z0 of the pancake vor-
tex from the top surface, we see that �z(∞, D/2) ≈
φ0(s/λ‖)exp[−(D/2 − z0)/λ‖]. When D 	 λ‖, we find
that �z(∞, D/2) ≈ φ0(s/D) = φ0/N, independent of
the position z0 of the pancake vortex within the stack,
where N = D/s is the number of layers in the sam-
ple. When N = D/s = 1,�z(∞, D/2) = φ0, because
our results then reduce to those of Pearl [13–15], who
calculated the field and current distribution gener-
ated by a vortex in a film of thickness much less than
the London penetration depth. The precise magnetic
field distribution generated in the space above the
superconductor can be calculated numerically for a
given z0 from Eqs. (3), (4), and (45). However, at
distances r+ =

√
ρ2 + (z − D/2)2 from the point on

the surface directly above the pancake vortex that
are larger than λ‖ when D > 2λ‖ or larger than the
two-dimensional screening length 
D = 2λ2

‖/D when
D < 2λ‖, we have to good approximation for z ≥ D/2

aφ(ρ, z) = �z(∞, D/2)
2πρ

[
1 − (z − D/2)

r+

]
, (64)

bρ(ρ, z) = �z(∞, D/2)
2π

ρ

r3+
, (65)

bz(ρ, z) = �z(∞, D/2)
2π

(z − D/2)

r3+
. (66)

In other words, the magnetic field generated by the
pancake vortex appears as if generated by a posi-
tive magnetic monopole, with the flux �z(∞, D/2)
[Eq. (59)] spreading out into the hemisphere above
the surface.

Similar statements can be made about the
magnetic flux �z(∞,−D/2) up through the bot-
tom surface [Eq. (63)]. At large distances r− =√

ρ2 + (z + D/2)2 from the point on the surface di-
rectly below the pancake vortex, the magnetic field
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appears as if generated by a negative magnetic
monopole.

From Eq. (61), we see that the magnetic flux up
through the plane z = z0 in the layer containing the
pancake vortex is

�z(∞, z0) = φ0

{
1 −

[
sinh

(
D − s/2

λ‖

)
− sinh

(
s

2λ‖

)

× cosh
(

2z0

λ‖

)]
/sinh

(
D
λ‖

)}
. (67)

When D  λ‖, the dependence of this magnetic flux
upon the distance (D/2 − |z0|) from the top or bot-
tom surface is given by �z(∞, z0) ≈ φ0(s/2λ‖){1 +
exp [−2(D/2 − |z0|)/λ‖]}. When the pancake vortex
is in the top or bottom layer (i.e., if |z0| = D/2 − s/2),
the magnetic flux up through this layer is approxi-
mately φ0(s/λ‖), and when the pancake vortex is deep
inside the superconductor (i.e., if D/2 − |z0|  λ‖),
the magnetic flux up through the pancake layer is
approximately φ0(s/2λ‖) as found in Sec. 2 for the
infinite superconductor [Eqs. (12) and (23)]. When
D 	 λ‖, we see that �z(∞, z0) ≈ φ0(s/D) = φ0/N,

independent of the position z0 of the pancake vor-
tex within the stack, where N = D/s is the number of
layers in the sample.

If there is a pancake vortex in every layer, even
if they are misaligned, the total magnetic flux up
through any plane with coordinate z is exactly equal
to φ0. This can be shown by replacing z0 by zn =
z0 + ns and summing over all n, using Eq. (59) if
z > D/2 or Eq. (63) if z < −D/2. On the other hand,
if |z| < D/2, one must use Eq. (62) for the top lay-
ers for which zn − s/2 ≥ z, Eq. (61) for the layer
containing z for which zn − s/2 ≤ z ≤ zn + s/2, and
Eq. (60) for the remaining layers for which zn + s/2 ≤
z. If all the vortices are aligned along the z axis,
the magnetic-field and current-density distributions
reduce to those given in Ref. [52] when ξv = 0.

It is possible that scanning Hall-probe or
magneto-optical experiments may be able to detect
partial vortices or split pancake-vortex stacks [56]
carrying magnetic flux less than φ0 in samples of
highly anisotropic layered superconductors of thick-
ness D < λ‖. The magnetic flux generated above the
surface z = D/2 by the two parts of the vortex stack
can be calculated as follows. Suppose the bottom
portion, consisting of pancake vortices below the
plane z = D/2 − d, is aligned along the z axis, and
the top portion, consisting of pancake vortices above
the plane z = D/2 − d, is aligned parallel to the z
axis but at (x, y) = (x0, 0). Using Eq. (59) to sum

the contributions from the pancake vortices in the
two portions, one finds that the magnetic flux �bot =
φ0 sinh [(D − d)/λ‖]/ sinh(D/λ‖) generated by the
bottom portion emerges from the vicinity of the point
(x, y, z) = (0, 0, D/2), and the magnetic flux �top =
φ0{1 − sinh [(D − d)/λ‖]/ sinh (D/λ‖)} generated by
the top portion emerges from the vicinity of the
point (x, y, z) = (x0, 0, D/2), The two flux contribu-
tions should be resolvable when the displacement x0

exceeds the Hall-probe size and the probe’s field sen-
sitivity allows detection of both contributions. Note
that �bot = �top = φ0/2 when d = D/2 	 λ‖.

4.2. Finite Stack of Thickness D � λ‖

Considerable simplifications occur when the
thickness D = Ns of the stack is much less than
the in-plane penetration depth λ‖ [11]. It is well
known from the work of Refs. [13] and [14] that
when D 	 λ‖ the characteristic screening length in
isolated films is not λ‖ but rather the 2D screen-
ing length 
D = 2λ2

‖/D. This is also true for the
case of Josephson-decoupled stacks of total thick-
ness D considered here. We may derive equations
for aφ(ρ, z), bρ(ρ, z), and bz(ρ, z) valid for D 	 λ‖
and ρ  λ‖ by starting with Eqs. (45)–(49), apply-
ing Eqs. (3) and (4), and making the replacement
e±Qz = cosh(Qz) ± sinh(Qz). Since we are most in-
terested in values of ρ of the order of 
D or larger,
because of the presence of J1(qρ) the dominant val-
ues of q in the resulting integrals are of the order
of q ∼ 1/
D 	 1/λ‖, such that Q can be replaced by
1/
‖, and small quantities of the order of D/λ‖ and
qλ‖ are of the same order of magnitude. Expanding
in powers of the small quantities (D/λ‖ and qλ‖), we
find that both aφ(ρ, z) and bz(ρ, z) are to lowest order
independent of z, with small correction terms of the
order of D/λ‖, such that to good approximation we
may write these quantities as

aφ(ρ, z) = φ0

2πN

∫ ∞

0
dq

J1(qρ)
1 + q
D

e−q(z−D/2), z ≥ D/2,

(68)

aφ(ρ, z) = φ0

2πN

∫ ∞

0
dq

J1(qρ)
1 + q
D

, −D/2 ≤ z ≤ D/2,

(69)

aφ(ρ, z) = φ0

2πN

∫ ∞

0
dq

J1(qρ)
1 + q
D

eq(z+D/2), z ≤ −D/2,

(70)
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bz(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ0(qρ)
1 + q
D

e−q(z−D/2), z ≥ D/2,

(71)

bz(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ0(qρ)
1 + q
D

, −D/2 ≤ z ≤ D/2,

(72)

bz(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ0(qρ)
1 + q
D

eq(z+D/2), z ≤ −D/2.

(73)

On the other hand, the radial component of the
magnetic field varies strongly with z :

bρ(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ1(qρ)
1 + q
D

e−q(z−D/2), z ≥ D/2,

(74)

bρ(ρ, z) = φ0

2πN

∫ ∞

0
dq

qJ1(qρ)
1 + q
D

, z = D/2, (75)

bρ(ρ, z) = bρ(ρ, D/2) + (D/2 − z)
(D/2)

aφ(ρ)

D

,

z0+ ≤ z ≤ D/2, (76)

bρ(ρ, z) = bρ(ρ, D/2) + (D/2 − z)
(D/2)

aφ(ρ)

D

− (z0+ − z)
(D/2)

φ0

2π
Dρ
, z0− ≤ z ≤ z0+, (77)

bρ(ρ, z) = bρ(ρ, D/2) + (D/2 − z)
(D/2)

aφ(ρ)

D

− s
(D/2)

φ0

2π
Dρ
, −D/2 ≤ z ≤ z0−, (78)

bρ(ρ, z) = bρ(ρ, D/2) − 2

D

[
φ0

2πNρ
− aφ(ρ)

]

= bρ(ρ,−D/2), z = −D/2, (79)

bρ(ρ, z) = − φ0

2πN

∫ ∞

0
dq

qJ1(qρ)
1 + q
D

eq(z+D/2),

× z ≤ −D/2, (80)

where we use aφ(ρ) to denote the vector poten-
tial in the region |z| ≤ D/2, since aφ(ρ, z) is very
nearly independent of z. The sheet current Kn(ρ) =
Kφ(ρ, zn) = s j φ(ρ, zn) in layer n can be obtained
from either j φ(ρ, z) = (c/4π)∂bρ(ρ, z)/∂z or the flux-
oid quantization condition [Eq. (14)]:

Kn(ρ) = c
2π
s

[
φ0

2πρ
δn0 − aφ(ρ)

]
, (81)

Table I. Results for One Pancake Vortex in a Stack of N Super-
conducting Layers of Total Thickness D = Ns 	 λ‖ in the Lim-
its D 	 ρ 	 
D = 2λ2

‖/D and ρ  
D [Since D is very small,

r = (ρ2 + z2)1/2 may be regarded as the distance from the pan-
cake vortex, and |z| may be regarded as the distance from the top

or bottom surface]

Physical quantity ρ 	 
D ρ  
D

aφ(ρ, z) φ0(r − |z|)/ φ0(r − |z|)/2πNρr
2πN
Dρ

aφ(ρ, 0) φ0/2πN
D φ0/2πNρ

�z(ρ, z) = φ0(r − |z|)/N
D �0(r − |z|)/Nr
2πρaφ(ρ, z)

�z(ρ, z) = φ0ρ/N
D φ0/N
2πρaφ(ρ, 0)

bρ(ρ, z), z = ±|z| ±φ0(r − |z|)/ ±φ0ρ/2πNr3

2πN
Dρr
bρ(ρ, ±D/2) ±φ0/2πN
Dρ ±φ0/2πNρ2

bz(ρ, z) φ0/2πN
Dr φ0z/2πNr3

bz(ρ, 0) φ0/2πN
Dρ φ0λD/2πNρ3

K0(ρ) = Kφ(ρ, z0) cφ0/4π2N
Dρ cφ0(N − 1)/4π2N2
Dρ

Kn(ρ) = Kφ(ρ, zn), −cφ0/4π2N2
2
D −cφ0/4π2N2
Dρ

n �= 0
KD(ρ) cφ0/4π2N
Dρ cφ0/4π2Nρ2

where 
s = 2λ2
‖/s = N
D. The net sheet current

through the thickness D is the sum of the Kn:

KD(ρ) =
N+∑

n=−N−

Kn(ρ) = c
2π
D

[
φ0

2πNρ
− aφ(ρ)

]
.

(82)

The integrals appearing in Eqs. (68)–(82), which
are evaluated in the Appendix, have simple forms
in the limits D 	 ρ 	 
D and ρ  
D. The corre-
sponding expressions for the physical quantities we
have calculated in this section are given in Table
I. The magnetic-field and current-density distribu-
tions reduce to the thin-film results of Pearl [13,14]
when N = 1 and D = s or when each of the N layers
contains a pancake vortex on the z axis.

5. FORCES

The force on a second pancake vortex at the po-
sition (ρ, zn) due to a pancake vortex centered on the
z axis at (0, z0) can be calculated from the Lorentz
force [57]. Since pancake vortices cannot move out
of their planes, the force is directed parallel to the
planes in the radial ρ̂ direction:

Fρ(ρ) = Kφ(ρ, zn)φ0/c, (83)

where

Kφ(ρ, zn) = c
2π
s

[
φ0

2πρ
δn0 − aφ(ρ, zn)

]
(84)
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is the sheet-current density and aφ(ρ, zn) is the vector
potential at (ρ, zn) generated by the pancake vortex
at (0, z0), and 
s = 2λ2

‖/s = N
D.
If both pancake vortices are in the same plane,

the interaction force is always repulsive and in an
infinite or semi-infinite stack of superconducting
layers is given to excellent approximation by

Fρ(ρ) = φ2
0

4π2
sρ
(85)

for all ρ. The reason for this is that the vector poten-
tial in Eq. (84) obeys aφ(ρ, z0) ≤ (s/λ‖)(φ0/2πρ) 	
φ0/2πρ, as shown in Secs. 2 and 3. However, for a
finite stack of thickness D 	 λ‖ consisting of N lay-
ers, Eq. (85) holds only for small ρ (ρ 	 
D), where
the vector potential in Eq. (84) is much smaller than
φ0/2πρ. As discussed in Sec. 4.1, the magnetic flux
at infinite radius �z(∞, z0) up through the pancake-
vortex layer is approximately φ0/N, which means that
aφ(ρ, z0) ≈ φ0/2πNρ for large ρ, and

Fρ(ρ) = (N − 1)
N

φ2
0

4π2
sρ
, ρ  
D. (86)

In the special case when N = 2, the repulsive force
given in Eq. (86) is half that in Eq. (85).

If the two pancake vortices are in different
planes, the φ0/2πρ term in Eq. (84) is absent, and the
interaction force is given by

Fρ(ρ) = −φ0aφ(ρ, zn)
2π
s

. (87)

Because aφ(ρ, zn) is always positive, the interaction
force is always negative, i.e., in a direction so as to
cause the two pancake vortices to become aligned
along the same vertical axis. For the general case,
it is not a simple matter to calculate the spatial de-
pendence of the attractive force between pancake
vortices in different layers, as can be seen from the
expressions for aφ(ρ, z) given in previous sections.
However, we can say that for an infinite or semi-
infinite stack of superconducting layers, the magni-
tude of this attractive force is orders of magnitude
smaller than the repulsive force between pancake
vortices in the same layer. The attractive force be-
tween vortices in different layers in an infinite stack
(or deep inside a semi-infinite stack) has a range λ‖
in the z direction. Equation (5) shows that the at-
tractive force in the infinite stack vanishes exponen-
tially when the interplanar separation of the pan-
cakes along the z direction exceeds λ‖. For a finite
stack of thickness D = Ns 	 λ‖, we find that the at-
tractive force between pancake vortices in different

layers is

Fρ(ρ) = − φ2
0

4π2
2
s

= − φ2
0

4π2N2
2
D

, D 	 ρ 	 
D,

(88)

which agrees with the force in the infinite stack
calculated from Eq. (9) when |zn| 	 ρ 	 λ‖,
and

Fρ(ρ) = − φ2
0

4π2N2
Dρ
, ρ  
D. (89)

For the special case of two layers (N = 2) and a sepa-
ration ρ  
D, the magnitude of the attractive force
exerted by a pancake vortex in one layer upon a pan-
cake vortex in the other layer [Eq. (89)] is equal to
the magnitude of the repulsive force between two
pancake vortices in the same layer [Eq. (86) with

s = N
D].

The energy per unit length of a uniformly tilted
infinite stack of pancake vortices in an infinite stack
of superconducting layers was calculated in Ref. [7].
The corresponding line tension T(θ) was calculated
in Ref. [58] as a function of the angle θ relative to
the z axis and found to be positive only for θ < 51.8◦,
indicating an instability beginning at 51.8◦. Further
calculations [58] showed that, because pancake vor-
tices energetically prefer to line up parallel to the z
axis, the energy for an infinite stack of pancake vor-
tices with a large average tilt angle is reduced when
the stack breaks up into shorter stacks parallel to the
z axis with kinks between them. Pe et al. [59] calcu-
lated the equilibrium positions of a stack of pancake
vortices in a finite stack of Josephson-decoupled lay-
ers when equal and opposite transport currents are
applied to the top and bottom layers. They found that
the pancake vortices in the top and bottom layers
have large displacements to the left and right, while
the other vortices all remain close to the z axis. Re-
lated model calculations were carried out in Ref. [60]
for moving two-dimensional pancake vortex lattices
in a finite stack of magnetically coupled supercon-
ducting thin films with transport current only in the
top layer. For small currents, the entire electromag-
netically coupled vortex array moves uniformly in the
direction of the Lorentz force but with a large dis-
placement of the pancake vortices in the top layer
relative to the others, which remain in nearly straight
lines perpendicular to the layers. Above a critical de-
coupling current, the 2D vortex array in the top layer
periodically slips relative to the arrays in the other
layers, and the dc current–voltage characteristics for
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the top and bottom layers resemble those reported in
Refs. [45] and [46] for the dc transformer.

6. JOSEPHSON COUPLING

The equations underlying the solutions pre-
sented in Secs. 2, 3, and 4 assume no interlayer
Josephson coupling. Implicit in these solutions is the
assumption that the component of the magnetic field
parallel to the layers spreads out uniformly in the ra-
dial direction. This is consistent with the idea that
if a magnetic field is applied parallel to a stack of
Josephson-decoupled layers, the field will penetrate
uniformly between the layers.

When the layers are Josephson-coupled, how-
ever, parallel magnetic fields penetrate the structure
in the form of quantized Josephson vortices [61,62].
As discussed in Ref. [62], Josephson vortices in the
high-temperature superconductors have highly ellip-
tical current and field patterns. Since the decay length
for currents perpendicular to the layers is λc and that
for currents parallel to the layers is λab, the ratio of
the width of the pattern parallel to the layers to the
height perpendicular to the layers is γ = λc/λab at
large distances from the nonlinear Josephson core.
For a high-κ Abrikosov vortex [49] in an isotropic su-
perconductor, the decay length at large distances is
the penetration depth λ, and the currents in the non-
linear core vary on the much smaller length scale of
the coherence length ξ. The behavior in a Josephson
vortex is analogous. The small length scale for spa-
tial variation of the Josephson currents in the vortex
core (whose axis is centered in the insulating layer
between two adjacent superconducting layers) is the
Josephson length [62,63] λJ = γ s, while the corre-
sponding length scale for the return of these cur-
rents parallel to the layers is s, such that the ratio
of the width to the height of the Josephson core is
γ = λJ/s = λc/λab.

In the presence of interlayer Josephson cou-
pling, the magnetic-field and current-density distri-
butions generated by a pancake vortex are unaltered
at short distances but are strongly affected at dis-
tances of the order of λJ and λc. To give an example,
imagine an infinite stack of semi-infinite Josephson-
coupled superconducting layers, all parallel to the xy
plane, filling the half-space x > 0, such that the sur-
face coincides with the plane x = 0. Imagine creat-
ing a pancake vortex at the origin in the supercon-
ducting layer n = 0 and moving it in to a distance x0.
The magnetic-field and current-density distributions,

including the effects of a dipole-like stray field that
leaks out into the space x < 0, have been calculated
as a function of x0 in Ref. [64] under the assumption
of very weak Josephson coupling. In the presence
of Josephson coupling, however, the component of
the magnetic field parallel to the layers cannot pene-
trate with a power-law dependence to large distances
but rather must decay exponentially with the decay
length λc, because this component of the field in-
duces Josephson currents to flow perpendicular to
the layers. As the pancake vortex moves deeper into
the stack, the Josephson coupling begins to play a
greater role. When the pancake vortex is a distance
λJ or greater from the surface, a Josephson core
region of width 2λJ appears in the region between
the vortex axis and the surface. Finally, at distances
such that x0  λc, the current and field distribution
can be characterized as a pancake vortex in which
the fields at distances less than λJ from the axis are
nearly the same as in the Josephson-decoupled case,
and the magnetic flux carried up through the pan-
cake layer z = 0 is φ0 (s/2λ‖). However, this magnetic
flux does not flow radially outward to infinity as in
the Josephson-decoupled case but instead is confined
within a highly elliptical field distribution consisting
of an overlapping Josephson vortex–antivortex pair,
which links the pancake vortex to the surface. Recall
that when a straight vortex is at a distance x from the
surface of an isotropic superconductor of penetration
depth λ, the magnetic flux inside the superconductor,
calculated accounting for the image vortex at −x, is
φ0[1 − exp(−x/λ)]. As a pancake vortex moves from
the surface to a position x0 deep within the supercon-
ductor, it drags along a Josephson vortex (carrying
magnetic flux in the +x direction) whose axis is in the
insulating layer at z = −s/2, and it also drags along a
Josephson antivortex (carrying magnetic flux in the
−x direction) whose axis is in the insulating layer at
z = +s/2. Accounting for the overlapping field dis-
tributions, which nearly cancel each other, we find
that the magnetic flux carried in the +x direction
through the space z < 0 is φ0[1 − exp(−s/2λ‖)] ≈
φ0(s/2λ‖); the same amount of magnetic flux is
carried back in the −x direction through the
space z > 0.

To give another example, consider an infinite
stack of pancake vortices initially aligned along the
z axis in an infinite stack of Josephson-decoupled
superconducting layers. As discussed at the end of
Sec. 2, the field and current distributions reduce to
those of a line vortex in an isotropic superconduc-
tor of penetration depth λ‖ [48]. The magnetic field is
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everywhere perpendicular to the layers. Now imag-
ine displacing all of the pancake vortices in the space
z > s/2 by a distance x0 in the x direction, such that
the pancake vortex stack now has a kink at z = s/2.
In the absence of Josephson coupling, the resulting
field and current distributions can be obtained by
superposing those given in Sec. 2. A component of
the field parallel to the layers must arise in order to
displace the magnetic flux φ0 whose distribution is
centered on the z axis for z 	 −λ‖ to a distribution
centered on the line (x, y) = (x0, 0) for z  λ‖. The
component of the field parallel to the layers has a
dipole-like distribution in any plane z = const, with
a power-law dependence at large distances, but it
decreases exponentially for |z| > λ‖ because of the
screening currents that flow parallel to the layers.
In the presence of interlayer Josephson coupling,
the above picture is altered, and it is now useful to
think of kinked vortices as stacks of pancake vor-
tices connected by Josephson strings (short pieces
of Josephson vortices). The axes of the Josephson
strings are confined to the insulating regions be-
tween superconducting layers. As a consequence of
the Josephson coupling, the radial component of the
magnetic field is screened on the length scale of λc by
the induced Josephson currents, which flow perpen-
dicular to the layers. Although there is little pertur-
bation of the original field distribution when x0 < λJ,
the Josephson length, this situation is altered when
x0 > λJ, because in this case a nonlinear Joseph-
son core appears along the string connecting the
two pancake vortices centered at (x, y, z) = (0, 0, 0)
and (x, y, z) = (x0, 0, s). The Josephson-energy cost
of the Josephson string coupling the two semi-infinite
stacks of pancake vortices is approximately (taking
logarithmic terms to be of order unity) [11,63,65–68]

Eshort(x0) ≈ (φ0/4π)2x2
0/sλ2

c, x0 < λJ = (λc/λab)s,

(90)
when the Josephson string is short and its core is
not fully formed. The Josephson-energy cost is of the
order of [11,61–63,65–69]

Elong(x0) ≈ (φ0/4π)2x0/λabλc, x0 > λJ = (λc/λab)s,

(91)
when the Josephson string is long and its core is more
fully formed. However, it is not until x0  λc that a
fully formed Josephson vortex (with width 2λc and
height 2λab) can stretch out between the upper and
lower parts of the split stack of pancake vortices.
In this case the energy cost of the Josephson string

coupling the two semi-infinite stacks of pancake vor-
tices reduces to (φ0Hc1,ab/4π)x0, where φ0Hc1,ab/4π is
the energy per unit length of an isolated Josephson
vortex parallel to the layers [61,67,69,70] and

Hcl,ab = φ0

4πλabλc

[
ln

(
λab

s

)
+ 1.55

]
. (92)

is the lower critical field parallel to the layers.
In anisotropic superconductors consisting of

Josephson-coupled superconducting layers, one may
always regard the vortex structure as consisting of
a superposition of 2D pancake vortices, which carry
magnetic flux up through the layers, and Joseph-
son vortices (or strings), which carry magnetic flux
parallel to the layers but no net flux perpendicu-
lar to the layers. In transport experiments involv-
ing vortex motion, the voltages are given by the
Josephson relations [31]. The dc voltage parallel to
the layers is V‖ = (h/2e)ν‖, where ν‖ is the time-
averaged rate with which 2D pancake vortices cross
a line between the contacts, and the dc voltage per-
pendicular to the layers is proportional to V⊥ =
(h/2e)ν⊥, where ν⊥ is the time-averaged rate with
which the axes of Josephson vortices (or strings)
cross a line between the contacts.

When the Josephson coupling is strong, vortex
lines tilted with respect to the z (or c) axis can be
described as tilted stacks of 2D pancake vortices or
as a tilted lattice, where pancakes in adjacent layers
are connected by Josephson strings. Such vortices,
sometimes called kinked vortex lines [71,72] have
been studied by numerous authors [70,73–76] How-
ever, when the Josephson coupling is very weak, a
magnetic field applied at a small angle relative to the
layers can produce a structure consisting of two per-
pendicular interpenetrating lattices [63,77,78] (called
a combined lattice [63] or crossing lattices [78]): a
lattice of pancake vortices aligned nearly perpendic-
ular to the layers and a lattice of Josephson vor-
tices parallel to the layers. The interaction between
the two kinds of vortices leads to striking chain-like
vortex patterns in highly anisotropic Bi-2212, which
have been observed by Bitter decoration [79,80]
and scanning Hall-probe microscopy [35,81,82]. Both
techniques reveal the positions of 2D pancake vor-
tices within about λab of the surface. As shown by
Koshelev [83], in highly anisotropic layered super-
conductors the interactions between pancake vor-
tices and Josephson vortices lead to deformations of
both the pancake-vortex and Josephson-vortex crys-
tals and to pinning of Josephson vortices by pancake
vortices.
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At high temperatures and applied magnetic
fields, the vortex lattice melts [84–88], and this pro-
cess has even been directly visualized in Bi-2212 by
scanning Hall-probe microscopy [89,90]. The authors
of Ref. [90] used the formalism of Sec. 4.1 A to in-
fer the Lindemann parameter from the rms thermal
fluctuations of pancake vortices versus magnetic field
just below the melting transition. Much experimental
and theoretical research has been devoted to vortex-
lattice melting, and the reader is referred to reviews
by Blatter et al. [91] and Brandt [92] for a more com-
plete discussion of this topic.

The pinning of vortices by point defects is an-
other topic where the interactions between pan-
cake vortices and Josephson vortices play a key
role. This difficult subject is further complicated by
the effects of thermal fluctuations, especially in the
high-temperature superconductors at the elevated
temperatures where potential applications are most
interesting. The reader is referred to the above re-
views [91,92] and the recent paper by Kierfeld [93]
for further details about this subject.

7. SUMMARY

In this paper, I have presented solutions that
permit the calculation of the magnetic-field and
current-density distributions generated by a single
2D pancake vortex in an infinite stack (Sec. 2), semi-
infinite stack (Sec. 3), or a finite-thickness stack (Sec.
4) of Josephson-decoupled superconducting layers. I
have shown in Sec. 5 how to calculate the electro-
magnetic forces between two pancake vortices, and
in Sec. 6, I have discussed some of the ways that in-
terlayer Josephson coupling modifies the results.

The results of this paper should be useful to
those using probes (such as scanning Hall-probe mi-
croscopy, scanning SQUID microscopy, Bitter deco-
ration, and magneto-optics) of the vortex-generated
magnetic-field distributions above anisotropic high-
temperature superconductors. If the sample surface
is parallel to the cuprate planes, these probes mea-
sure chiefly the magnetic fields generated by pan-
cake vortices within about λab of the top surface. Al-
though Josephson vortices (or strings) produce no
net magnetic flux through the top surface, they can
produce dipole-like stray fields if they are within
λab of the surface. On the other hand, if the sam-
ple surface is normal to the cuprate planes, such
probes measure chiefly the magnetic fields generated
by Josephson vortices within about λc of the sample

surface, although pancake vortices within λab of the
surface can produce dipole-like stray fields outside
the sample [64].

The pancake-vortex field and current distribu-
tions given in Secs. 2–4 also could be useful in analyz-
ing experiments such as Lorentz microscopy [94–100]
that probe the magnetic-field distribution throughout
the sample thickness.

Since the London model is at the heart of the
above pancake-vortex calculations, the resulting the-
oretical field and current distributions have unphysi-
cal singularities at the pancake-vortex core, which is
of size ∼ξab. Such singularities should have no exper-
imental consequences for the above probes, which
have insufficient resolution to reveal details at this
length scale. However, for probes of higher resolu-
tion it may be necessary to take into account the
fact that the circulating current density reaches a
maximum at ρ ≈ ξab, and vanishes linearly as ρ → 0,
such that the singularity of the magnetic field at the
pancake-vortex core is removed. The core effects
could be treated approximately by using a vortex-
core model that employs a variational core-radius pa-
rameter ξν ∼ ξab, as in Refs. [37,50–52].

APPENDIX: INTEGRALS
USEFUL FOR D � λ‖

Several integrals appear in Sec. 4.2. All may be
evaluated by starting from [101,102]∫ ∞

0
du

J0(zu)
1 + u

= π

2
[H0(z) − Y0(z)], (A.1)

where Hn(z) is the Struve function and Yn(z) is the
Bessel function of the second kind (Weber’s func-
tion), differentiating with respect to z, making use
of recurrence relations, integrating by parts, and
making use of the properties that [101,102]∫ ∞

0
duJ0(zu) =

∫ ∞

0
duJ1(zu) = 1

z
, (A.2)

∫ ∞

0
du

J1(zu)
u

= 1. (A.3)

The vector potential aφ(ρ, 0) is proportional to∫ ∞

0
du

J1(zu)
1 + u

= 1
z

+ 1 − π

2
[H1(z) − Y1(z)]

(A.4)

≈ 1, z 	 1, (A.5)



628 Clem

≈ 1
z
, z  1, (A.6)

where the limiting forms for z 	 1 and z  1 are ob-
tained from expansions given in Refs. [101] and [102].
However, Eq. (A.5) may be obtained more simply by
noting that, because of the properties of J1(uz), the
integral when z 	 1 is dominated by values of u  1,
such that 1 + u may be replaced by u; the resulting
integral then takes the form of Eq. (A.3). Similarly,
Eq. (A.6) may be obtained by noting that when z  1
the integral is dominated by values of u 	 1, such
that 1 + u may be replaced by 1; the resulting inte-
gral may be evaluated using Eq. (A.2). The limiting
forms of the following integrals also may be obtained
in a similar fashion.

The magnetic field component bz(ρ, 0) is propor-
tional to∫ ∞

0
du

uJ0(zu)
1 + u

= 1
z

∫ ∞

0
du

uJ1(zu)
(1 + u)2

= 1
z2

∫ ∞

0
du

(1 − u)J0(zu)
(1 + u)3

(A.7)

= 1
z

− π

2
[H0(z) − Y0(z)] (A.8)

≈ 1
z
, z 	 1, (A.9)

≈ 1
z3

, z  1, (A.10)

and the net sheet current KD(ρ) is proportional to∫ ∞

0
du

uJ1(zu)
1 + u

= 1
z

∫ ∞

0
du

J0(zu)
(1 + u)2

(A.11)

= π

2
[H1(z) − Y1(z)] (A.12)

≈ 1
z
, z 	 1, (A.13)

≈ 1
z2

, z  1. (A.14)
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It is demonstrated that the occurring of superconductivity in UPd2Al3 can be understood
within the dual model for 5f electrons. Due to strong intra-atomic or Hund’s rule correlations
two of the 5f electrons remain localized while the remaining 5f part is delocalized and part of
the conduction electrons. Cooper-pair formation of the latter takes place due to the exchange
of magnetic excitations within the localized 5f subsystem. By solving Eliashberg’s equations,
it is shown that a consistent description can be obtained of the superconducting transition
temperature and of the strong mass anisotropies of the semi-heavy quasiparticles.
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1. INTRODUCTION

Since the work of Fröhlich [1] on electron–
phonon interactions and the discovery of the iso-
tope effect [2], this particular interaction has been
considered the main source of electron–electron at-
traction and Cooper-pair formation. It is known that
an effective electron attraction is not necessarily re-
quired for superconductivity to occur. Instead, what
is required is that the BCS ground state has a lower
energy than the normal state, i.e., a state without
pair formation. As discussed, e.g., by Bogoliubov
et al. [3], Cooper pairs may form even when the
electron interactions are purely repulsive. They may
lead to an energy gain, provided the variation of
the repulsive interaction in momentum space is ap-
propriate. Despite all these considerations, the gen-
eral belief has been, at least until the discovery
of heavy-fermion and high-temperature supercon-
ductivity, that electron-pair formation is caused by
the exchange of phonons. The high superconduct-
ing transition temperatures observed in some of the
cuprate perovskites have called that belief into ques-
tion and have led to a number of suggestions as
regards nonphononic pairing interactions. But they
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have been mainly qualitative and not quantitative
and therefore remained inconclusive.

The aim of the present paper was to draw atten-
tion to a particular nonphononic interaction which
has led to quantitative and experimentally confirmed
predictions as regards its influence on the forma-
tion of a superconducting state. It concerns intra-
atomic or crystal field excitations of strongly cor-
related 4f or 5f electrons and applies in particular
to systems with rare-earth or U ions. When those
ions are put as impurities into a superconductor, the
inelastic intra-atomic excitations caused by conduc-
tion electrons can be either pair-breaking or pair-
forming, depending on the relative size of the respec-
tive matrix elements. When the latter involves time
reversal invariant interactions between the conduc-
tion electrons and localized f electrons they act as
pair formers [4]. But they act as pair breakers when
the interactions break time-reversal symmetry [5].
This may change when, e.g., the U ions form a lat-
tice. In that case, the intra-atomic excitations form
a band of magnetic excitations, i.e., magnetic exci-
tons. When the interactions of the conduction elec-
trons with the magnetic excitations are largest near
the zone-bounding (implying antiferromagnetic cor-
relations) Cooper pairs can form even when the lo-
cal interactions break time-reversal symmetry. But in
this case, the resulting superconducting order param-
eter has necessarily to have node lines, i.e., it must be
of an anisotropic form. We shall show that UPd2Al3
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belongs to that category [6,7]. The superconducting
transition temperature as well the enhanced quasi-
particle mass can be well explained this way [6]. The
same holds true for the observed node structure of
the order parameter [8].

The paper is organized as follows: In the next
section, we recapitulate the effects on superconduc-
tivity of impurities containing 4f electrons. Section 3
describes the dual model of 5f electrons as applied
and tested for U ions in a given chemical envi-
ronment and in Section 4 we apply that model to
UPd2Al3. A summary and the conclusions are con-
tained in Section 5.

2. EFFECTS OF CRYSTAL-FIELD
EXCITATION ON SUPERCONDUCTIVITY

We consider rare-earth impurities with crys-
talline electric field (CEF) split energy levels and
study their effect on a superconducting matrix. Ac-
cording to Hirst [4], the different interactions be-
tween conduction electrons and such impurities can
be classified with respect to their transformation
properties under rotations and spin rotations. He
showed that their total number is 2 · (2� + 1) and
equals 14, because for f electrons � = 3. Among
them, the isotropic Coulomb interaction is of no
interest. The most important interactions are the
isotropic exchange interaction and the aspherical
Coulomb charge scattering. The former is written in
the form

Hex = −2(g − 1)Jex

∑
i

s(r)Jiδ(r − Ri) (1)

where g is the Landè factor, s(r) the conduction elec-
tron spin, Ji the total angular momentum of the in-
complete 4f shell of the i-th ion and Ri is its position.
The aspherical Coulomb scattering is of the form

HAC =
∑

σ

+2∑
m= −2

I2(k′s; kd)
(

5
4π

) 1
2

·Q2[Ym
2 (J )c+

k′sσckdmσ + h.c.]. (2)

Here I2 is a Coulomb integral, the explicit form of
which is found in Ref. [4] and Q2 is the quadrupole
moment of the rare-earth ion. A list of Q2 values for
rare-earth ions is also found in Ref. [4]. The opera-
tors Y m

2 (J ) act on the incomplete 4 f shell as

Y2
±2 = (J ±)2/N

Y2
±1 = ∓(JzJ ± + J ±Jz)/N

Y2
0 =

(
2
3

) 1
2

(3J 2
z − J (J + 1))/N (3)

where the normalization factor is N = (2/3)1/2(2J 2 −
J ). The conduction electrons are specified by the four
quantum numbers k, �, m, σ when a decomposition of
their states in terms of spherical harmonics is used.
For simplicity, we have included in Eq. (3) scattering
of s- into d-waves only and vice versa. A complete
expression for aspherical Coulomb charge scattering
must also include p- into p-wave, d- into d-wave scat-
tering, etc.

It is noticed that Hex is not time-reversal invari-
ant while HAC is. Note that a time-reversal operation
refers only to the conduction electrons and excludes
the impurity ions. The latter are treated like an ex-
ternal perturbation. Otherwise, a time-reversal oper-
ation would be irrelevant for deciding which interac-
tions lead to pair formation and which result in pair
breaking.

A CEF-split incomplete 4f shell or, in the case of
U, 5f subshell (see later) gives rise to a frequency de-
pendent magnetic or quadrupolar susceptibility, de-
pending on the particular form of the interaction. In
the finite temperatures formalism, it has the form

R(ωn, ωm) = −
∑

ij

|Mij |2δij (ni − nj ) sgnωn

(ωn − ωm)2 + δ2
ij

= −
∑

ij

|Mij |2rij (ωn, ωm). (4)

The different CEF states |i〉 have energies δi and
δij = δi − δj . The thermal populations of the levels
are given by ni. The matrix elements Mij describe
transitions between states |i〉 and |j 〉 caused by either
Hex or HAC. Associated with them is a scattering rate
of conduction electrons

1
τij

= 2πnIN(EF)|Mij |2 (5)

where N(EF) is the conduction electron density of
states per spin and nI is the impurity concentration.
The Matsubara frequencies are ωn = 2πT(n + 1/2)
with n being an integer and T is the temperature. The
dependence of the superconducting transition tem-
perature Tc on impurity concentration nI is obtained
from the following set of equations:

ln
Tc

Tc0

= 2πTc

∑
ωn>0

{
1
�

�̃n

ω̃n
− 1

ωn

}
(6)
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where Tc0 denotes the transition temperature when
nI = 0 and

ω̃n = ωn + Tc

∑
i,j ,ωm

1
τij

rij (ωn, ωm) (7)

�̃n = � + Tcη
∑

i,j ,ωm

1
τij

�̃m

ω̃m
rij (ωn, ωm). (8)

The prefactor η is η = 1 when HAC is considered while
η = −1 when Hex is used. The last terms in Eqs. (7)
and (8) describe the effect of the impurities. They
have the same sign when η = 1, i.e., when HAC is
acting and contribute to pairing. But when η = −1
they have different signs and lead to pair breaking
and a reduction of Tc. This is the case when Hex is
considered.

For a better understanding of the solutions of
Eqs. (6)–(8) we consider a CEF-level scheme consist-
ing of two singlets only, with energy difference δ. This
situation may occur in non-Kramers ions like Pr3+

with 4f 2 and a J = 4 lowest multiplet. Those ions
may have a number of singlet levels. When the re-
maining energy levels are sufficiently high, it may suf-
fice to take only the lowest two singlets into account.
A two-level description applies also to the localized
5f electrons of a U ion (see Section 3). In that case,
the expression for the susceptibility simplifies to

R(ωn, ωm) = |M|2 2δ tanh δ/2T
(ωn − ωm)2 + δ

sgn ωm (9)

where tanh(δ/2T) describes the difference in the
thermal population of the two levels. The scattering
rates τ−1

ij reduce to τ−1 = 2πnIN(EF)|M|2, where |M|
is computed either from HAC or Hex. When the tran-
sitions between the two levels are caused by HAC (or
Hex), the increase (or decrease) of the transition tem-
perature as function of impurity concentration is de-
termined by a function y( δ

2Tc
). The dependence Tc(nI)

is obtained from the solution of the Eqs. (6)–(8)

ln
Tc

Tc0
+ ψ

(
1
2

+ 2
π2Tcτ

y(δ/2Tc)
y(δ/2Tc0)

)
(10)

−ψ

(
1
2

)
= 0

where ψ(x) is the digamma function. The function
y(δ/2T) is plotted in Fig. la,b for the cases of pair for-
mation due to HAC (Fig. la) and pair breaking when
Hex is operative (Fig. 1b).

It is seen from Fig. 1a that CEF energy levels
with an excitation energy much larger than T can
contribute to pair formation, because the virtual pair

Fig. 1. (a) Function y(x) vs. x = δ/2T for aspherical Coulomb scat-
tering HAC by a two-level system. (b) The same as in (a) but for
exchange scattering Hex (from Ref. [4]).

scattering of Cooper pairs involves states far from the
Fermi surface. An analogy to optical phonons is ap-
parent. Those phonons also can cause Cooper pairing
when their excitation energy is much higher than the
binding energy of a Cooper pair. A similar argument
holds for pair breaking. High-lying CEF states can
still break efficiently Cooper pairs. Usually, the pair-
breaking processes dominate the pair-forming ones.
Take Pr3+ ions as an example. When added to the su-
perconductor LaPb3 they reduce Tc despite the fact
that through HAC some pair-forming processes take
place. But the effect of Hex is stronger. This is shown
in Fig. 2 where also the drop in Tc is shown which
would take place without a CEF splitting [5]. (La, Pr)
Sn3 [11] is the only example where pair-forming pro-
cesses have shown up.

The reason that we have discussed the known
effects of CEF-split impurities on superconductivity
in such details is that for a lattice of CEF split ions
the situation is different. Then processes acting in the
impurity case as pair breakers may cause pair forma-
tion. As we shall show later, that is precisely the sit-
uation met in UPd2Al3. This has led to the explana-
tion of a number of experiments for this intermetallic
compound.

3. DUAL MODEL APPLIED TO UPd2Al3

There is growing evidence that actinide ions
may have itinerant as well as localized 5f electrons.
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Fig. 2. Tc as function of Pr concentration for La1−xPrxSn3 [9]. Solid
line: Abrikosov–Gorkov theory [5]. The dashed line is the theoret-
ical curve for δ/Tc0 = 4.4. The point marked by an arrow has been
fitted (from Ref. [9]).

Model calculations show that the dual nature of the
U 5f states ultimately arises from intra-atomic cor-
relations as described by Hund’s rules [12]. The un-
derlying physics can be understood as follows: The
U compound under consideration is in the mixed-
valent regime with nf � 2.5. Therefore, the low-
energy states will be formed by the 5f 2 and 5f 3 con-
figurations. As there should be either two or three
5f electrons at a site, there will be only one of them
hopping from site to site. The selection of the delo-
calized orbital, on the other hand, is determined by
intra-atomic correlations. To see how this happens, it
is important to note that the energy gain due to mul-
tiplet formation exceeds the one obtained from the
kinetic energy. As a consequence, a coherent 5f band
will form only if the local intra-atomic correlations
are preserved. This constraint selects the symmetry
of the delocalized 5f orbital in an anisotropic crystal.
To illustrate this point, we consider the elementary
hopping process between two neighboring sites. For
hopping to occur, one site has to be occupied by three
5f electrons (site a), while there are two at the other
site b. We assume that the initial state locally satisfies
Hund’s rules, i.e., the 5f shells are in their respective
ground states. Transferring a 5f electron from site a
to site b will usually lead to a final state where both
i.e., the remaining doubly occupied 5f shell at site a
as well as the triply occupied 5f shell at site b are in
excited states. Depending on the initial state, Hund’s
rule can be (approximately) preserved only for spe-
cific symmetries of the transferred orbital. The sym-
metry of the delocalized 5f orbital is finally selected

so as to maximize the energy gain due to band forma-
tion under the constraint that the local intra-atomic
correlations are preserved. The localized and delo-
calized 5f subsystems interact which leads to the mass
enhancement of the delocalized quasiparticles. The
situation resembles that in Pr metal where a mass en-
hancement of the conduction electrons by a factor
of 5 results from virtual crystal field (CEF) excita-
tions of localized 4f 2 electrons [13]. The underlying
hypothesis is supported by a number of experiments
including susceptibility measurements [14], photoe-
mission and neutron inelastic scattering experiments
on UPd2Al3 [15–17].

The dual nature of the 5f electrons is strongly
evident in UPd2Al3 [18]. The presence of localized
5f 2 configurations is suggested by the temperature
dependence of the paramagnetic susceptibility and
of the antiferromagnetic order which develops be-
low TN = 14.3 K and which is characterized by an
almost atomic size ordered moment µ = 0.85µB. On
the other hand, the itinerant 5f states forming bands
by hybridization with the conduction electrons, give
rise to a low-temperature specific heat C ∼ γT with
γ = 120 mJ/mol K2. At Tc = 1.8 K, the normal heavy
Fermi liquid becomes unstable and a superconduct-
ing phase forms with Cooper pairs consisting of the
heavy quasiparticles. The two ordering phenomena,
i.e., superconductivity and antiferromagnetic order
coexist down to lowest temperatures.

A direct confirmation of this dual nature of
5f electrons in UPd2Al3 was obtained from neu-
tron inelastic scattering [17, 19–22]. The data ex-
hibit a resonance-like structure in the dynamical
structure function of localised moments which ap-
pears below Tc and is linked to the supercon-
ducting quasiparticles. The coupling between the
heavy quasiparticles and the local magnetic mo-
ments give rise to structures in the tunneling DOS
[23].

3.1. Normal State Quasiparticles

The dual model provides a method to micro-
scopically calculate the heavy quasiparticle bands in
real U-based heavy fermion compounds. The conjec-
ture that the two localized atomic-like 5f electrons of
the U ions coexist with an itinerant 5f electron sug-
gests the following scheme which proceeds in three
steps [24,25]. First, the dispersion of the itinerant 5f
state is determined by solving Dirac’s equation for
the selfconsistent LDA potentials but excluding two
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Fig. 3. Conventional unit cell of UPd2Al3 ((a), upper panel)
and simple AF magnetic structure with propagation vector Q̌ =
(0, 0, 1

2 ) ((b) lower panel). Large and small spheres in hexagonal
planes correspond to U and Pt atoms respectively, intercalated by
Al atoms.

U 5f (j = 5
2 , j z = ± 5

2 and j z = ± 1
2 ) states from form-

ing bands. The choice of the itinerant and localized
orbitals depends upon the symmetry of the crystal
and the hybridization strengths. For UPd2Al3, the f
occupancy per U atom for the delocalized 5f elec-
trons amounts to 0.65, indicating that we are dealing
with a mixed valent situation. The density of states
at the Fermi level N(EF) = 2.76 states/(eV cell spin)
corresponds to the one found in Ref. [26]. The LDA
parameters will be used later in the calculation of the
effective mass.

The ab initio calculations are performed for the
paramagnetic state in the PrNi2Al3 structure dis-
played in Fig. 3. The relevant structural elements
are the hexagonal UPd2-planes which are stacked
along the hexagonal c-axis. These planes are inter-
calated with Al layers which play a minor role for
the electronic bands in the vicinity of the Fermi
surface. The quasi-two-dimensional character of the
U-sublattice is reflected in the dispersion of the 5f
bands. In the paramagnetic state, there are two bands
intersecting the Fermi energy. The dHvA experi-
ments which probe the topology of the Fermi sur-
face are performed at very low temperatures, i. e.,
in the antiferromagnetic phase displayed in Fig. 3.
The magnetic superstructure introduces small gaps in
the planes qz = ± π

2c . Although the absolute values of
these gaps are rather small, they nevertheless change

Fig. 4. Upper panel: Fermi surface of UPd2AI3 calculated within
the dual approach. The main cylinder part has also a heavy mass
with m∗ = 19–33 m. The torus depends sensitively on the posi-
tion of the Fermi energy. Lower panel: Comparison of experimen-
tal dHvA frequencies (black symbols) (from Ref. [27]) and calcu-
lated frequencies (open symbols) from the dual approach (from
Ref. [25]). Large parabola corresponds to the main FS cylinder.

the topology of the Fermi surface dramatically. The
thermodynamically most relevant parts displayed in
Fig. 4 originate from a single paramagnetic band. In
addition to these two sheets, there are small ellip-
soids centered at K which are not shown here. The
calculated variation of the dHvA frequencies with
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the orientation of the magnetic field agree very well
with experiment as shown in Fig. 4.

Having shown that the assumption of a single
itinerant 5f electron reproduces the Fermi surface,
we next turn to the localized 5f 2 configurations. Ac-
counting for the fact that the 5f state with j = 5

2 , j z =
± 3

2 are hybridized away, we diagonalize the Coulomb
matrix in the restricted subspace of the remaining lo-
calized 5f states. Assuming the jj-coupling scheme,
the Coulomb matrix elements are calculated from the
radial functions of the ab initio band structure poten-
tials. The anisotropic hybridization lifts the rotational
symmetry. As a consequence, the resulting eigen-
states of the Coulomb matrix are not necessarily
eigenstates of the total angular momentum J but re-
main eigenstates of Jz. We find a doubly degenerate
ground state with Jz = ±3 which must be a simulta-
neous eigenstate of J = 4. In a crystal, the degenera-
cies of the ground state may be lifted by a CEF. This
is in fact the case for UPd2Al3 where the resulting
singlet ground state of the localized 5f 2 is given by
|�4〉 = (1/

√
2)(|Jz = 3〉 − |Jz − 3〉) in the J = 4 sub-

space with a first excited state |�3〉 = (1/
√

2)(|Jz =
3〉 + |Jz = −3〉). We neglect the next-higher excited
eigenstates of the Coulomb matrix and consider the
two singlets |�4〉 and |�3〉. For the energy splitting,
we assume a value of δ̃ � 7 meV in agreement with
recent neutron experiments [28].

The matrix element for the transition between
the localized states |�4〉 and |�3〉 due to the Coulomb
interaction with the delocalized 5f state is directly ob-
tained from the expectation values of the Coulomb
interaction in the 5f 3 states. From this we find the
value |M| = 0.19 eV. This value calculated in the jj-
coupling scheme can be expressed in terms of a usual
exchange Hamiltonian. We first calculate the effec-
tive Landé factor geff(f 2) of the localized jj-coupled
5f 2 ground state J = 4 manifold by decomposing the
states in terms of LS states. This yields

geff(f 2) = 31
49

� 0.63. (11)

The Landé factor of the itinerant 5f electron
with j = 5/2 is g5/2 = 6/7. Inserting these numbers,
we find the following matrix element for the ex-
change interaction between the localized 5f 2 system
and the delocalized 5f electron

|M| = |Ieff(geff(f 2) − 1)Jz(g5/2 − 1)j z| (12)

which implies for the effective exchange coupling

Ieff � 0.8 eV. (13)

This is of the correct size for 5f electrons.
Finally, the renormalization of the effective

masses which results from the coupling between the
two 5f subsystems is determined. The enhancement
of the band mass is calculated from the self-consistent
solution of the self-energy equation [13] with the in-
put taken from the ab initio electronic structure cal-
culations for the delocalized and the localized 5f elec-
trons. The renormalization of the band mass mb is
given by

m∗

mb
= 1 − ∂

∂ω

∣∣∣∣
ω=0

(14)

where (ω) denotes the local self-energy of the de-
localized 5f states. The latter is obtained by analytic
continuation from the Matsubara frequencies ωn = π

T(2n + 1) at the temperature T where it is given by

(iωn) = a2M2T
∑

n′
χ(iωn − iωn′)g(iωn′) (15)

in terms of the local susceptibility

χ(iωn − iωn′) = −tanh
δ̃

2T
2δ̃

(iωn − iωn′)2 − δ̃2
(16)

and the local propagator

g(iωn) =
∫

dE
N(E)

iωn − E − (iωn)
. (17)

Here 2N(E) is the total density of states at the energy
E as obtained from the bandstructure, when two 5f
electrons are kept localized. The prefactor a denotes
the 5f weight per spin and U atom of the conduction
electron states near EF. The local propagator reduces
to g(iωn) → −iπN(EF)sgn(ωn) if the variation with
energy of the DOS can be neglected. In the present
case, however, this simplification cannot be justified.

The self-consistent calculation yields a mass en-
hancement of 9.6. The resulting calculated quasipar-
ticle masses are in excellent agreement with experi-
ment (see Table I).

Table I. Effective Masses for Ȟ ‖ c. Notation for
FS Sheets and Experimental values from Ref. [27]

FS sheet m∗/m (exp.) m∗/m (Theory)

ζ 65 59.6
γ 33 31.9
β 19 25.1
ε2 18 17.4
ε3 12 13.4
β 5.7 9.6

Note: Theoretical values from Ref. [25].
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3.2. Superconductivity

Strong evidence for an interplay of CEF
excitations and superconductivity comes from
tunnelling [23] and inelastic neutron scattering
experiments [19–22,28]. The pioneering tunnelling
experiments were performed on UPd2Al3/Al2O3/Pb
tunnel junctions. Thereby, a structure in the
frequency-dependent order parameter �(ω) was
observed around 1 meV. This strong coupling
feature can be related to dispersive spin-wave like
excitations (magnetic excitons) in the AF phase
of UPd2Al3. They are seen in inelastic neutron
scattering experiments. The measured magnetic
excitation energy at the antiferromagnetic zone
center Q0 is only slightly larger than 2� � 6Tc and
results in observable resonance structures when
superconductivity sets in [28].

For a consistent description of superconductiv-
ity and the enhanced effective mass, a model calcu-
lation has been performed in Ref. [6] that uses a fit
of the three-dimensional magnetic exciton dispersion
derived from inelastic neutron scattering. The disper-
sion is most pronounced in the c-direction and we
shall approximate it by [7]

ω(qz) = ωex[1 + β cos(cqz)] (18)

with ωex = 5 meV, β = 0.8 and c denoting the lattice
constant perpendicular to the hexagonal planes. The
form (18) of the magnetic exciton spectrum simpli-
fies solving Eliashberg’s equations for the conduction
electron self-energy

∑
(pz, ωn) and order parameter

�(pz, ωn). They are of the form

(pz, ωn) = T
Nz

∑
p ′

z,m

K(pz − p ′
z; ωn − ωm)

∫
d p ′

⊥
(2π)2

G(p ′
⊥, p ′

z, ωm)

�(pz, ωn) = − T
Nz

∑
p ′

z,m

K(pz − p ′
z; ωn − ωm)

�(P′
z, ωm)

∫
d p ′

⊥
(2π)2

|G(p ′
⊥, p ′

z, ωm)|2 (19)

and the integration over d p ′
⊥ can be done first. Note

that Nz is the number of lattice sites along the c-axis.
Equation (19) assumes that the order parameter has
even parity (singlet channel). The self-energy enters

Green’s function in the well-known way

G−1(p, ωn) = iωn − εp + µ − (pz, ωn). (20)

The boson propagator K(pz, ων)(ων = 2πTν, ν =
integer) describes the magnetic-exciton exchange be-
tween the quasiparticles which form Cooper pairs. It
is of the form

K(qz, ων) = g
ω2

ex

(ω(qz))2 + ω2
ν

(21)

with a coupling constant g given by

g = I2

4

(
1
c

p2
0

2π

)
1

ωex
. (22)

Here the coupling constant I refers to the interaction
between the conduction electrons having partially 5f
character and the localized 5f 2 electrons. The two
levels |�3〉i and |�4〉i at a uranium site i are described
by a pseudospin τiz so that τiz|�3(4)〉i = ± δ

2 |�3(4)〉i.
For the interaction Hamiltonian we assume a simple
Ising-like form

Hc−f = I
∑

i

σizτix (23)

where σi refers to the spin of the delocalized 5f elec-
tron which is part of the conduction electrons. Fur-
thermore, in Eq. (22) p0 is the radius of a circle in
the (px, py) plane containing the same area as the
hexagon and c is the lattice constant in z direction.

The Fermi surface of the antiferromagnetic
ground state consists of a cylindrical part and a torus
(see Fig. 4). In the paramagnetic state, both sheets
result from the same band. For simplicity we will do
the calculations for a paramagnetic state and approx-
imate the Fermi surface by a weakly corrugated cylin-
der. The latter is described by a parabolic disper-
sion εp⊥ = ε⊥(p⊥/pF)2. This seems justified in view
of the fact that AF order opens small gaps at the
corresponding symmetry points which have a com-
paratively small influence on the superconducting
transition temperature Tc. This was studied before on
systems like TbMo6S8 [29] or HoNi2B2C [30].

After the dp ′
⊥ integrations are done, solving the

Eliashberg equations reduces to a one-dimensional
problem. The following point is essential and should
be stressed: the kernel K(q, ων) is strongly peaked
at qz = π/c and ων = 0. Therefore, roughly speaking,
for the singlet channel the gap equation is of the type
[6]

�(pz, πT) = −C (pz)�
(

pz − π

c
, πT

)
(24)
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This suggests the form

�(pz) ∼ cos(cpz) (25)

with lines of nodes perpendicular to the c-axis. Note
that they are situated at the AF Brillouin zone
boundary. Such a node structure was recently found
in experiments on the directional dependence of the
thermal conductivity in an applied magnetic field [8].

We want to point out that rotational symmetry
in spin space is broken in the case under considera-
tion because of the Ising-like interaction (23). Solv-
ing the Eliashberg equations, one finds also an odd-
parity solution with the same Tc

�(pz) ∼ sin(cpz) (26)

and a spin part |χ〉 = (2)−1/2(| ↑↓〉 + | ↑↓〉). We dis-
card this solution. For a spin rotational invariant in-
teraction, it would be part of a spin triplet order
parameter. The reader should realize that we ob-
tain here superconducting pairing from an interac-
tion Hc−f which is not time-reversal invariant. This
is possible because of the dispersion of the magnetic
excitations and a required sign change of the order
parameter as expressed in Eq. (24). The order pa-
rameter (25) is conventional in the sense that it has
the same symmetry properties as the AF ordered lat-
tice while the one in Eq. (26) has a lower symmetry
and therefore is unconventional.

3.3. Comparison of the Parameters

In the following we compare the parameters
which were used in the calculation of the anisotropic
effective mass in Section 3.1. and when Eliashberg’s
equations were solved.

First of all, there is a difference in the bare band-
structure DOS at the Fermi level. In the calculation
of the effective mass, the sum over the intermediate
states in the self-energy Eq. (15) runs over all states
in the vicinity of the Fermi energy, i.e., all sheets are
included in the calculation. As a result, the full DOS
of the paramagnetic state, N(EF) = 2.76 states/ (eV
cell spin) was inserted into the self-consistency equa-
tion. The volume enclosed by the Fermi surface cor-
responds to one electron, the f content of the strongly
hybridized states being ∼0.65. The solution of the
Eliashberg equations for the superconducting tran-
sition, on the other hand, approximated the Fermi
surface of the paramagnetic phase by a cylinder. This
choice for the most relevant part of the Fermi surface
was suggested by conventional band structure calcu-

lations based on the LDA [31] which assumes three
5f electrons to be itinerant. The DOS at the Fermi en-
ergy is chosen to be NP(EF) � 2 state/(eV cell spin)
which corresponds to the contribution of the cylinder
plus torus in Fig. 4. In the paramagnetic state, these
two pieces are joint. In Ref. [6] a value of NP(EF) = 1
state/(eV cell spin) was chosen which in retrospect
seems too small.

The local excitations responsible for the mass
enhancement and the quasiparticle interaction are
characterized by the energies δ̃ � 7 meV [25] and
ωex � 5 meV [6], respectively, where I has been de-
fined in Eq. (23). For ab initio calculations a value of
[25]

(af M)2N(EF) = 0.041 eV (27)

is derived. In the other hand, the product I2NP(EF)
is adjusted to reproduce the experimentally observed
mass enhancement within the simplified scheme ap-
plied in solving Eliashberg’s equations. This yields a
value of [6]

I2NP(EF) = 0.026 eV. (28)

With it the superconducting transition temperature
comes out by a factor 1.6 too large, i.e., Tc = 2.9 K
instead of 1.8 K.

It is noticed that the two values (27) and (28),
which should be the same, do not completely agree.
This is not too surprising in view of the different ap-
proximations which were made in Sections 3.1 and
3.2. The agreement is better when the coupling con-
stants I = 0.16 eV and (af |M|) = 0.12 eV are directly
compared. Furthermore, it is unrealistic to expect
that Tc can be accurately determined. But we have
shown that the proposed non-phononic mechanism
gives a value of the right size.

4. CONCLUSIONS

Based on the dual model for 5f electrons in U
compounds our microscopic understanding of those
materials has considerably improved. UPd2Al3 is a
model example for that. Not only can the strong
anisotropy of the semi-heavy quasiparticle mass be
explained without adjustable parameter, but also the
size of the superconducting transition temperature is
obtained in good approximation. The latter is caused
by the exchange of intra-atomic excitations between
the conduction electrons leading to Cooper-pair
formation. The intra-atomic excitations take place
within the subsystem of localized 5f electrons. They
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form a band of magnetic excitons which has been ex-
plored and characterized by inelastic neutron scatter-
ing. In most cases the exchange of magnetic excita-
tions between conduction electrons is pair breaking.
Here it is pair-forming as we have shown in detail.
But this requires a superconducting order-parameter
which has a line of nodes in the hexagonal plane. A
node structure of this form was recently observed
experimentally by studying the behavior of the
anisotropic thermal conductivity ion magnetic fields.
Therefore, the indications are strong that UPd2Al3 is
indeed a superconductor with a non-phononic inter-
action being the cause of pair formation.
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When are Superconductors Really Superconducting?
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While the most striking aspect of superconductivity is dissipation-free current flow, it is
not straightforward to experimentally demonstrate whether the resistance is truly zero or
“merely” immeasurably small. The distinction between zero or very small resistance is im-
portant, because the true superconducting state can be destroyed by thermodynamic fluctu-
ations. This paper discusses a variety of different superconducting systems: two-dimensional
superconductors, Josephson-junction arrays, and three-dimensional superconductors in zero
and nonzero magnetic field, and the experiments conducted to determine which, and under
what conditions, systems are really superconducting.

KEY WORDS: superconductivity; phase transitions; Kosterlitz-Thouless transition; vortex-glass
transition.

1. INTRODUCTION

The hallmark of superconductivity, and the basis
of its name, is zero resistance for temperature T be-
low a transition temperature Tc. Since the discovery
of superconductivity, much research has been done
to understand the limits of this zero resistance state
[1]. It is known, for example, that a magnetic field
greater than the critical field Hc(T) will destroy su-
perconductivity in a type-I superconductor, as will a
current density greater than the critical current den-
sity Jc(T).

One other property that determines whether the
resistance goes to zero, or is, perhaps, just very small,
is the spatial dimensionality of the system, D. In zero
magnetic field, and for small currents, we know that
the resistance is not strictly zero for one-dimensional
systems. The resistance is zero for D = 3, and for
D = 2, some systems do not have zero resistance,
while others will. Interestingly, the two-dimensional
superconductors that have zero resistance also have
zero critical current.

Roughly 50 years ago, two remarkable theo-
ries provided us with an understanding of supercon-
ductivity. The phenomenological Ginzburg-Landau

1Center for Superconductivity Research, Department of Physics,
University of Maryland, College Park, Maryland 20742.

theory assumed a superconducting order parameter
analogous to the order parameter in other second-
order phase transitions. The Ginzburg-Landau the-
ory has been very successful in describing the be-
havior of superconductors on the macroscopic level.
The microscopic Bardeen-Cooper-Schrieffer theory
showed that a weak attractive electron–electron in-
teraction leads to a superconducting state. Both the-
ories, however, make mean-field assumptions [1]. Be-
cause of this, thermal fluctuations are not taken into
account, and fluctuations make the existence of zero
resistance a subtle and interesting question.

At any nonzero temperature, fluctuations occur
because a system can borrow an energy kT from
its environment. For T < Tc, this makes it possible
to temporarily increase the energy of a small vol-
ume of superconductor, perhaps enough to drive the
small volume into the normal state. The effects of
such fluctuations may be relatively benign, perhaps
weakening superconductivity without destroying it.
Under the right circumstances, however, fluctuations
can destroy the superconducting state.

There are two key physical quantities, the
correlation length ξ, and the correlation time τ, that
together characterize the fluctuations [2]. In three
dimensions, the correlation length diverges at Tc,
varying as

ξ ∼ ε−ν (1)
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Fig. 1. Schematic picture of a superconducting wire, shown in gray.
The fluctuation (shown in black) is large enough to cross the entire
wire, making the system essentially one dimensional and destroy-
ing the superconductivity.

where ε = |T − Tc|/Tc and ξ is the size of a typical
fluctuation. Above Tc, ξ is the size of superconducting
regions that occur as fluctuations in the normal back-
ground, and below Tc, ξ is the size of normal fluctua-
tions in the superconducting background. The corre-
lation time varies as

τ ∼ ξz ∼ ε−zν (2)

and is a measure of the lifetime of fluctuations.
Eqs. (1) and (2) contain the static and dynamic criti-
cal exponents ν and z which characterize the diverg-
ing length and time scales. Note that for the special
case of D = 2, the correlation length diverges, but not
as a power of ε. For D = 2, however, τ will still vary
as ξz.

It is instructive to briefly consider the case where
D = 1. In order to be in the one-dimensional limit,
a superconducting wire must be close enough to Tc

for the correlation length, ξ(T), to be larger than
the diameter of the wire. In this limit, at nonzero
temperature there will be fluctuations that are large
enough to drive the entire cross section of the sam-
ple normal, as shown schematically in Fig. 1. This will
cause a nonzero resistance, and will destroy the long-
range coherence in the sample. Since the probability
of such a fluctuation is given by a Boltzmann factor,
it is nonzero (although perhaps very small), so for
T > 0 the resistance will be greater than zero. Mike
Tinkham and his collaborators studied superconduc-
tors in D = 1 extensively, as discussed in Refs. 1
and 3.

I first worked on this type of problem in the
early 1980s with David Abraham, Teun Klapwijk,
and Mike Tinkham [4,5]. At the time, there was
much interest in the Kosterlitz-Thouless transition,
which was proposed as a theoretical description of
the phase transition in D = 2 neutral superfluids [6].
While it was at first thought that the Kosterlitz-
Thouless transition should not occur in superconduc-
tors, it was later shown theoretically that it should oc-
cur in large but finite samples if the two-dimensional

penetration depth were large enough [7]. As de-
scribed in Section 2, we studied this problem in two-
dimensional square lattices of Josephson junctions
with zero external magnetic field, and were able
to observe a key signature of the transition in our
experiments.

The discovery of high-temperature supercon-
ductors brought about renewed interest in the
Kosterlitz-Thouless transition. Many papers repor-
ted a Kosterlitz-Thouless transition in high-tempera-
ture superconductors. The transition was sometimes
reported in quite thick samples, presumably because
the materials are sufficiently anisotropic to decou-
ple the Cu----O planes from each other, making even
thick samples effectively two dimensional. Section 3
of this paper describes work done by Max Repaci and
other members of my group at Maryland on single-
unit-cell films of YBa2Cu3O7−δ in zero magnetic field
[8]. These samples are presumably as two dimen-
sional as you can get in a cuprate, yet we showed
that they did not undergo a Kosterlitz-Thouless tran-
sition. The resistance of these unit-cell thick films re-
mained nonzero (but very small) to very low tem-
peratures because their two-dimensional penetration
depths are too small, in marked contrast with the
Josephson arrays of Section 2.

It seemed natural to next study the D = 3 su-
perconducting phase transition in thick high-Tc films.
Because of their short coherence lengths, long pen-
etration depths, and high-transition temperatures,
fluctuations play a much greater role in high-Tc su-
perconductors than in low-Tc superconductors [9].
Given our work in D = 2, the D = 3 transition in
zero magnetic field seemed like a good place to start.
Doug Strachan began this work, but found, surpris-
ingly, that results disagreed with theory. We decided
to try our experiment in a magnetic field, because
there were a very large number of recent theoreti-
cal and experimental papers on the topic, with theory
and experiment agreeing that a new type of phase
transition (depending on the type of pining in the
sample, a vortex-glass [2] or a Bose-glass [10] tran-
sition) occurred in a field. Our experimental results
in magnetic field were very similar to other people’s
results. When analyzing our data, however, our con-
clusions were not in agreement with most others’:
The resistance did not go to zero, suggesting that the
superconducting phase transition does not occur in
magnetic field for D = 3 [11]. These results are dis-
cussed in Section 4.

Building on the results obtained in mag-
netic field, we returned to the D = 3 zero field



When are Superconductors Really Superconducting? 643

experiments. The results were disturbing: The zero-
field results were very similar to the nonzero field
results. In particular, the resistance did not appear
to be going to zero in the manner expected as tem-
perature was lowered. Matt Sullivan showed [12]
that our samples were not sufficiently three dimen-
sional: Even in very thick films (0.32 µm), the exper-
iment’s length scales were limited by the film thick-
ness. These results are discussed in Section 5.

2. KOSTERLITZ-THOULESS TRANSITION
IN JOSEPHSON-JUNCTION ARRAYS

As discussed briefly in Section 1, thermal fluctu-
ations will cause resistance below Tc in a supercon-
ductor if the correlation length, ξ, is larger than the
diameter of a superconducting wire. The situation is
subtler in two dimensions.

To study superconductivity in D = 2, one can
make very thin films. While this approach works [13],
it can be difficult to make films that are very thin and
very uniform.

Another approach is to make square lattices of
Josephson junctions. As discussed in Refs. 1, 5, 14,
and 15, square Josephson-junction arrays are a dis-
crete version of a two-dimensional superconductor,
with the advantage that properties such as the pen-
etration depth can be varied by changing the critical
currents of the junctions.

As shown by Kosterlitz and Thouless (KT) [6],
the essential fluctuations to consider are vortex–
antivortex pairs. Since we are considering zero exter-
nal magnetic field here, there will be an equal number
of vortices and antivortices. KT showed that if the
vortex–antivortex interaction is logarithmic in sepa-
ration, a vortex-unbinding transition occurs. Below a
characteristic temperature TKT, each vortex is bound
to an antivortex, while above TKT, some vortices will
thermally unbind.

In a two-dimensional Josephson-junction array,
vortex–antivortex pairs interact via

U = �oic ln
(

r
a

)
(3)

where �o = h/2e is the flux quantum, ic is the
temperature-dependent critical current of one junc-
tion, r is the distance between the vortex and the an-
tivortex centers, and a is the lattice spacing of the
array [15]. Eq. (3) is true only if

r < λ⊥, (4)

where λ⊥ is the penetration depth for two-dimensio-
nal samples, given by

λ⊥ = �o

2πµoic
. (5)

As long as the sample size is greater than λ⊥, Eq. (4)
will always be satisfied, and a KT transition can be
observed, as first shown in Refs. 7. Note that, by mak-
ing ic smaller, λ⊥ can be made as large as needed to
guarantee that Eq. (4) is true.

Given that the KT transition was predicted to
occur, how would one observe it in a Josephson ar-
ray? Since there are free vortices present for T > TKT,
there will be a flux-flow resistance. The prediction for
this is

RHN = c1Rn e−
[

c2TKT
T−TKT

]1/2

. (6)

Here Rn is the normal-state resistance of the array,
and c1 and c2 are constants of order unity [7,16]. (The
formula for arrays is more complicated, but this thin-
film Halperin-Nelson version is sufficient for the dis-
cussion here. See Ref. 15.) There are subtle prob-
lems with the formula, however: It is only correct
for small currents, and for temperatures close to TKT,
though the definitions of “close to” and “small” are
nontrivial. Nevertheless, as other people measuring
thin films and arrays before us had found [17], Eq. (6)
seemed to agree with the data. This is shown in Fig. 2.

Fig. 2. Voltage vs. temperature at a constant 10 µA current for a
1000 × 1000 Josephson-junction array. Data are open circles, and
solid labeled H-N (Halperin-Nelson) theory is a fit to the complete
form of Eq. 6. From Ref. 4.
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When we arrived at this point in the research,
Mike Tinkham made a typical Tinkham comment.
He told us that it is easy to fit data to reasonable
three-parameter functions, and that Eq. (6) was rea-
sonable: It predicted that the resistance should drop
as the temperature was lowered. He reminded us that
a single overdamped junction with small critical cur-
rent would have a measurable resistance due to ther-
mal fluctuations that also dropped rapidly as the tem-
perature was lowered. In the limit of small current,
the prediction for this is [18]

RAH = Rn

[
Io

(
�oic

πkT

)]−2

≈ Rn
2�oic

kT
e− 2�o ic

πkT . (7)

Here Io is the zeroth-order-modified Bessel function,
and the approximate version holds when the argu-
ment of the Bessel function is much greater than
one.

While Eq. (7) is nonzero for T > 0, it does pre-
dict a rapid drop in resistance as the temperature is
lowered. At first sight, in fact, it was hard to prove
that Eq. (7) did not explain the data, especially since
ic depended on T in a manner that was not precisely
known from experiment.

Fortunately, Ref. 16 provided a more demand-
ing way to test the KT theory. For T ≤ TKT, they
showed that the voltage should be a power of the
current, of the form

V ∝ Ia(T). (8)

where Eq. (8) is also restricted to small currents. A
striking prediction of the Halperin-Nelson theory is
that just below TKT,

a(TKT−) = 3. (9)

Eq. (6) predicts ohmic behavior just above TKT, so
that V is proportional to I, or

a(TKT+) = 1. (10)

The KT transition should thus cause a discontinu-
ous change in the power-law behavior at TKT. By
contrast, Eq. (7) predicts ohmic behavior for all
temperatures.

The way to see this behavior is to plot current–
voltage (IV) curves on a log–log plot, as is done
in Fig. 3. Since log(V) = a(T) log(I) + constant, the
slope of the log–log IV curves should change from
3 to 1 at TKT. The result of this is shown in Fig. 4,
where a slightly broadened jump from 3 to 1 can be
seen around T = 2.4 K. Note that Eq. (8) not only

Fig. 3. Log voltage vs. log current for a square Josephson-junction
array. These data represent a small subset of the actual data, and
were generated by reading points off of continuous IV curves orig-
inally made on an XY plotter. Curve at upper left has T = 2.75 K,
right most curve has T = 1.95 K.

implies zero resistance, but also zero critical current,
for T < TKT.

As further proof that Eq. (7) does not account
for the data, Ref. 5 shows that RAH(TKT) = 0.82RN,
while, of course, RHN(TKT) = 0. The evidence for a
KT transition in our arrays was thus very strong, indi-
cating that these two-dimensional samples are indeed
superconducting.

Fig. 4. a(T) vs. T taken from the slopes of log I–log V plots for
voltages in the 10-nV range. From data in Ref. 4.
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3. ABSENCE OF A KOSTERLITZ-THOULESS
TRANSITION IN CUPRATE
SUPERCONDUCTORS

At the University of Maryland, Max Repaci
made and measured single-unit-cell-thick films of
YBa2Cu3O7−δ to see if a Kosterlitz-Thouless tran-
sition occurred [8]. In such films, vortex–antivortex
pairs interact via a potential

U = 2πn∗
s

h2

m∗ ln
(

r
ξ

)
(11)

where n∗
s is the number of Cooper pairs per unit area

[5]. Note that Eq. (11) is of the same form as Eq. (3).
Like Eq. (3), Eq. 11 is true only if r < λ⊥, where in a
superconductor of thickness d,

λ⊥ = λ2

d
, (12)

where λ is the bulk penetration depth for the material
[18].

The passage of a decade allowed us the signifi-
cant advantage of easily acquiring data with a com-
puter. IV curves for a typical sample are shown in
Fig. 5. (The advantages of Fig. 5 over Fig. 3 are very
great indeed!)

Figure 5 certainly appears to show a supercon-
ducting transition. At the highest temperatures, the
IV curves are ohmic, with slope 1 on a log–log plot.
At the lowest temperatures, the voltage drops very
rapidly as a function of current, with no indication
of ohmic behavior. At intermediate temperatures,
the voltage drops rapidly as a function of current at
high currents, and is ohmic at low currents. The low-
current ohmic “tails” are no longer visible for tem-
peratures below about 22 K on the plot.

The question is, do the ohmic tails disappear be-
cause the sample becomes superconducting (presum-
ably by undergoing a KT transition), or do they con-
tinue to occur at voltages below the resolution of the
voltmeter? A good way to explore this issue is to plot
d log(V)/d log(I) vs. log(I), as is done in Fig. 6. From
Eqs. (6) and (8), we expect that d log(V)/d log(I) = 1
for T > TKT, d log(V)/d log(I) = 3 for T = TKT, and
d log(V)/d log(I) = a(T), with a(T) > 3, for T < TKT,
all at low currents.

Rather than showing a KT transition, Fig. (6) in-
dicates that there is not a phase transition at all. At
the highest temperatures, d log(V)/d log(I) = 1 for
all currents, indicating the normal state. As the tem-
perature is lowered, d log(V)/d log(I) > 1 at interme-
diate currents, but bends back down toward 1 at low

Fig. 5. Current–voltage characteristics plotted on a log–log scale
for a unit-cell thick YBa2Cu3O7−δ film in zero magnetic field.
Lines connecting the points are guides for the eye. The dashed line
near the bottom of the plot has a slope of 1, representing ohmic
behavior. Temperatures range from 40 K at the top to 10 K at the
bottom. From Ref. 8.

currents. As the temperature is lowered further, the
trend down is still evident, but d log(V)/d log(I) does
not reach 1 because of limited voltmeter sensitiv-
ity. Furthermore, it is clear that there is no isotherm
where d log(V)/d log(I) = 3 or any other larger con-
stant over any appreciable range of current.

The simplest explanation for Fig. (6) is that there
is not a KT transition, perhaps because λ⊥ is smaller
than the sample size. As discussed in Ref. 8, the
data imply that λ⊥(T = 0) ≈ 160 µm. Equation (12),
combined with single-crystal measurements of λ(0),
imply a value of λ⊥(T = 0) which is a factor of 4
smaller than the estimate in Ref. 8, as might be ex-
pected given that single crystals are cleaner and have
much higher transition temperatures than unit-cell
films. Both estimates are smaller than the 200 µm
sample width, so that Eq. (11) is not valid for all
vortex–antivortex pairs in the sample. Indeed, when
r > λ⊥, the interaction energy approaches a con-
stant, which guarantees that more widely separated
vortex–antivortex pairs will be thermally unbound
at all nonzero temperatures [8,15]. The absence of
a KT transition, and the occurrence of nonzero re-
sistance at low temperatures, are thus in agreement
with theory.
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Fig. 6. d log(V)/d log(I) as a function of current. Temperatures
range from 10 K at the upper right to 60 K at the bottom. Lines
connecting the points are guides for the eye. From Ref. 8.

Note that Eq. (12) implies that thicker samples
are even less likely to undergo a KT transition. We
concluded that YBa2Cu3O7−δ does not undergo a
KT transition—earlier work failed to distinguish be-
tween very small resistance and zero resistance.

4. THREE-DIMENSIONAL
SUPERCONDUCTORS IN A
MAGNETIC FIELD

Starting with the pioneering theoretical work of
Fisher [19] and experimental work of Koch et al. [20],
a new picture of the transition for bulk type-II super-
conductors in a magnetic field emerged in the early
1990s [21]. On the basis of work done on conven-
tional superconductors, it had been believed that a
magnetic field led to nonzero (although possibly ex-
tremely small) resistance [1]. The new consensus was
that a transition to a true zero-resistivity state occurs
in the presence of a magnetic field. Various theories
have been proposed for this phase transition, includ-
ing a vortex-glass transition [2,19], which is predicted
to occur when disorder in the superconductor is un-
correlated, and a Bose-glass transition [10], which is
predicted to occur in the presence of correlated dis-
order. While these theories apply to different situa-

Fig. 7. Current–voltage characteristics plotted on a log–log scale
for a 220-nm-thick YBa2Cu3O7−δ film in 4 tesla magnetic field.
The dashed line at the lower left has slope 1, while the solid lines
at 81, 75, and 70 K are fits to simple power laws. The inset is R(T)
vs. T in ambient field. From Ref. 11.

tions, both predict that the resistivity should be zero
below a transition temperature.

Doug Strachan at Maryland decided to take an-
other look at this problem [11,21], based on difficul-
ties in understanding our measurements of bulk sam-
ples in zero field. Figure 7 shows IV curves from a
typical high-quality YBa2Cu3O7−δ thick film. (This
film was laser ablated onto a SrTiO3 substrate and
had a thickness of 220 nm.) The pinning in such sam-
ples is uncorrelated, so theory predicted, and many
earlier experiments seemed to confirm, that a vortex-
glass transition should occur.

Qualitatively, Fig. 7 is very similar to Fig. 5. We
used the same approach to examine the data more
carefully, by plotting a d log(V)/d log(I) vs. log(I)
plot, shown in Fig. 8. This graph is very similar to
Fig. 6.

It is important, however, to remember that this is
a three-dimensional sample, while the data shown in
Figs. 5 and 6 come from a two-dimensional sample,
so one cannot draw conclusions about the presence
or absence of a phase transition based on Eqs. (8)–
(10). Fortunately, scaling [2,21] leads to testable pre-
dictions for the behavior of IV curves.

The basic prediction is that

V
I

= ξD−2−zχ±

(
IξD−1

T

)
, (13)
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Fig. 8. Small solid circles are d log(V)/d log(I) as a function of cur-
rent. The open symbols are extrapolated data based on scaling
showing a change in slope from positive to negative as temper-
ature is lowered—a signature of the phase transition that is not
present in the actual data. From Ref. 11.

where ξ and z are defined in Eqs. (1) and (2), and χ±
are two unknown functions, one (+) for above Tc, the
other (−) below Tc.

Eq. (13) has two useful limiting forms. For small
currents and T ≥ Tc, it can be shown that

V
I

∼ ξD−2−z ∼ εν(2+z−D), (14)

where ε is defined below Eq. (1). We thus see that
samples should be ohmic for small currents above Tc.
Note that if D = 2 and z = 2, this reproduces Eq. (6)
when the two-dimensional equation for ξ is used, see
Refs. 5,7, and 16.

The second useful limiting form applies for T =
Tc (and only at T = Tc), where Eq. (13) implies that

V ∼ I(z+1)/(D−1). (15)

Note that, for z = 2 and D = 2, Eq. (15) agrees with
the KT result, Eq. (8).

Standard scaling analysis assumes that a transi-
tion does occur. Assuming this to be correct for the
time being, Eq. (15) predicts that the IV curve at
T = Tg should be a straight line on a log–log plot,
with slope given by (z + 1)/(D − 1). (I use Tg here in
place of Tc to indicate that the measurements are in
field.) The dark solid line drawn in Fig. 7 is a power-
law fit to the IV curve at 81 K which looks closest to

a power law (i.e., it looks straight on a log–log plot.).
Using D = 3 and Eq. (15), this determines a value of
z = 5.46.

Following the standard analysis, we next use
Tg = 81 K, z = 5.46, and Eq. (14) to determine ν. The
resistances RL are read off of the low-current tails in
Fig. 7, and plotted on a log–log plot, as shown in the
inset to Fig. 9a. It is seen that below about 87 K, a

Fig. 9. Collapses of the data from Fig. 7 using Eq. (16), using dif-
ferent values for Tg. All of the data collapses look good, which
demonstrates that the technique can be too flexible if used uncrit-
ically. From Ref. 11.
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good fit is obtained, with deviations at higher tem-
peratures. Equation (14) yields a value ν = 1.5, again
consistent with other values in the literature.

Equation (13) can be rewritten as

V
I

ξ2+z−D = χ±

(
IξD−1

T

)
. (16)

Equation (16) predicts that a plot of Vξ2+z−D/I
against IξD−1/T should “collapse” all of the data in
the critical regime onto one of two curves, χ+ for
T ≥ Tg and χ− for T ≤ Tg. This data collapse is shown
in Fig. 9a.

The data collapse shown in Fig. 9a is very im-
pressive to the eye. The apparent success of the data
collapse is widely taken to indicate the data scale.
This, in turn, would indicate that a phase transition
has taken place.

Unfortunately, Fig. 8 and Eq. (15) taken to-
gether indicate that a phase transition has not taken
place. No nonnormal state data in Fig. 8 fall on a
straight horizontal line, as predicted by Eq. (15).

The problem is that the scaling approach must
be applied with more caution. Note that qualitatively,
at least, all the isotherms with T ≤ 81 K appear to be
straight over some range in V in Fig. 7. (Note, how-
ever, that Fig. 8 indicates that this is not true.) They
would thus all appear to satisfy Eq. (15), which sug-
gests that Tg may not be uniquely determined by the
standard procedure. To test this idea, we did the stan-
dard scaling analysis with a different value of Tg =
75 K. The result of this scaling analysis is graphed
in Fig. 9b. Remarkably, this data collapse also looks
very good.

Taking this to the extreme case, Fig. 9c shows
the result of choosing Tg = 70 K, the lowest tempera-
ture measured in the experiment. Here, since all the
data are from temperatures above the nominal Tg, all
the data collapse onto only one curve, corresponding
to χ+ in Eq. (9). Once again, the collapse appears to
be quite good.

The problem with the conventional scaling col-
lapse approach is that it is too flexible, as Fig. 9 shows.
A more stringent test of scaling is to use Eq. (13)
to generate predictions based on extrapolation of
the actual data, as is done in the open symbols in
Fig. 8. These extrapolations show a clear signature
of the phase transition which is not present in the ac-
tual data: All curves tend toward ohmic behavior at
low currents for T > Tg, while all curves diverge for
T < Tg, with a break at at the critical isotherm. On
the basis of this analysis, we concluded that the data

are inconsistent with the occurrence of a supercon-
ducting phase transition.

5. THREE-DIMENSIONAL
SUPERCONDUCTORS IN ZERO
MAGNETIC FIELD

While the data discussed in the previous section
strongly indicated that the resistance became small
but not zero at lower temperatures, they did not tell
us why there was no superconducting phase transi-
tion. Were the old theories, which predicted small
but nonzero resistance in a magnetic field, correct af-
ter all? Or was something else going on?

It seemed like a good time to return to the D = 3
zero magnetic field experiment, which Matt Sullivan
did [12]. The existence of a superconducting phase
transition in this case is not in doubt, and further-
more, there are theoretical estimates for the critical
exponents ν and z. Very close to Tc(|T − Tc| smaller
than about 2 K [9]), the transition is expected to be
of the three-dimensional XY type, with ν ∼= 0.67 and
z = 2 for diffusive dynamics [2]. Interestingly, how-
ever, researchers have found vortex-glass like expo-
nents ν ∼= 1.1 and z ∼= 8.3 in small fields (<10 mT)
[22] while others find three-dimensional XY expo-
nents when extrapolating to zero field from higher
fields [23] and in crystals [24].

Figure 10 is a log(V)–log(I) plot for a 210-
nm-thick YBa2Cu3O7−δ film in zero magnetic field

Fig. 10. Current–voltage characteristics for a 210-nm YBa2Cu3
O7−δ film in zero magnetic field. Curves are separated by 60 mK.
The dashed line indicates a slope of 1, or ohmic behavior. Inset
shows R(T) at 10 µA. From Ref. 12.
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Fig. 11. d log(E)/d log(J ) vs. I for the IV curves of Fig. 10. The
inset shows the 91.26 K isotherm for three-bridges widths on the
same film, 20 µm (solid line), 50 µm (dashed line), and 100 µm
(dotted line), which do not agree as a function of I. From Ref. 12.

[12]. Once again, the data are qualitatively consistent
with a transition occurring, with ohmic low-current
tails being visible for T > 91.26 K, and not being visi-
ble at lower temperatures.

Figure 11 is a derivative plot for the data in
Fig. 10. It is qualitatively similar to Eqs. (6) and (8).
In particular, if a phase transition were present, there
would be one curve, at T = Tc, that is straight and
horizontal, separating curves at higher temperature
with positive derivative from those at lower tem-
perature with negative derivative. As with the other
derivative plots in this paper, this is not what is seen
here: A simpler explanation of the data is that all of
the underlying curves are the same, with the only dif-
ferences being due to voltmeter resolution.

Earlier work had pointed out the possibility that
in thin films, fluctuation dynamics can cross over
from three-dimensional to two-dimensional behavior
[2,25,26]. The idea is that a current density J probes
fluctuations of a typical size LJ given by [2]

LJ =
(

ckT
�oJ

)1/2

(17)

where c is a constant of order the YBa2Cu3O7−δ

film anisotropy parameter, about 0.2. As long as
LJ < d, the film thickness, the measurements will be
probing three-dimensional fluctuations. Once LJ >

d, however, the measurements will be probing two-
dimensional fluctuations.

Fig. 12. d log(E)/d log(J ) vs. J for three different-width samples
fabricated from the same film. The crossover from nonohmic to
ohmic behavior clearly depends on J . From Ref. 12.

This crossover from three dimensions to two
dimensions provides a qualitative explanation for the
behavior seen in Fig. 11, and can also be checked
quantitatively. The inset to Fig. 12 shows derivative
plots taken on samples with three different widths
made from the same film and measured at the same
temperature, and it is seen that the curves do not
lie on top of each other. (They would fall on top of
each other if the effect depended on current instead
of current density.) By contrast, Fig. 13 plots data

Fig. 13. 1/
√

Jmin vs. d for eight different thickness films. The
straight line fit indicates quantitatve agreement with Eq. (18).
From Ref. 12.
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from the same three samples using current density
J as a variable, rather than current I. Within experi-
mental uncertainty, all three curves at any given tem-
perature lie on top of each other, in agreement with
Eq. (17).

To further test Eq. (17), Matt Sullivan made
films with thicknesses varying between 95 nm and
320 nm. Using a method described in Ref. 12, he in-
ferred a value of the current, Jmin, at which deviations
from three-dimensional behavior first occur. If this
deviation occurs when LJ = d, then Eq. (17) predicts
that

Jmin = ckT
�od2

. (18)

Figure 13 shows that this is indeed the case. Quite
remarkably, the IV curves are dominated by finite-
thickness effects, even in quite thick films.

6. SUMMARY AND CONCLUSIONS

I have discussed a number of different systems—
two-dimensional Josephson-junction arrays, two-
dimensional unit-cell YBa2Cu3O7−δ films, and three-
dimensional thick (fractions of a micrometer)
YBa2Cu3O7−δ films. In two dimensions, whether or
not the KT transition occurs depends on the width W
of the sample relative to λ⊥. In the arrays, W < λ⊥,
and the signature of the KT transition, a change from
cubic to linear IV curves at TKT, can be seen. In unit-
cell YBa2Cu3O7−δ films, W > λ⊥, and the transition
is not seen.

In three-dimensional samples, scaling provides a
powerful tool for determining whether or not sam-
ples are truly superconducting. While a “by eye” data
collapse such as those shown in Fig. 9 can lead to the
mistaken conclusion that a transition has occurred,
when the technique is used carefully it is very power-
ful. Our in-field data were not consistent with a tran-
sition to a state of zero resistance, which led us to
suggest that a vortex-glass transition may not occur.
Quite alarmingly, our zero-field data led us to a simi-
lar conclusion. In the latter case, however, we believe
that ubiquitous finite-size effects interrupt the transi-
tion, even in our thickest films.

An important question is whether finite-thick-
ness effects are causing the samples to not become
superconducting in field, or something else is hap-
pening. This question is currently being pursued
at Maryland. In addition, we are making measure-
ments on single crystals, which are very much thicker
than films. Our initial results indicate that finite size

effects are not visible in the crystals, but more work
is needed. Finally, we are measuring other proper-
ties, such as microwave response and heat capacity,
which are independent ways of studying whether or
not samples are really superconducting.
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Effect of Nuclear Field on Magnetotransport
Quantum Oscillations in InSb1
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In combining magneto-transport investigations with NMR (nuclear magnetic resonance) we
measured the effect of the nuclear hyperfine field BHF on quantum oscillations in the trans-
verse magneto-resistivity ρxx and in the Hall resistivity ρxy of metallically doped n-InSb.
Quantitative analysis of the BHF-induced change in ρxx demonstrates that this experiment
allows to separate spin splitting phenomena in magneto-transport from effects due to the
external magnetic field B. This is used to show that an oscillatory structure in RH = ρxy/B
is directly related to a redistribution in the occupation of the two spin states in the lowest
Landau level.

KEY WORDS: magnetotransport; NMR; Shubnikov–de Haas effect; InSb.

1. INTRODUCTION

In metallically doped n-InSb an effect of the
nuclear spin on the resistivity has been measured
in quantizing magnetic fields. Inversion of nuclear
polarization by NMR (nuclear magnetic resonance)
was shown to induce a change in the resistance of a
sample [1,2]. Many years later the electron–nuclear
hyperfine interaction could be measured even on a
two-dimensional (2D) metallic system in performing
resistively detected NMR under dynamic polariza-
tion of the nuclear spin system with ESR (electron
spin resonance) [3]. At sufficiently low temperatures,
this technique has been applied without the use of
dynamic polarization for the study of the Quantum
Hall Effect in a high mobility 2D system [4].

ESR investigations in bulk InSb show that in a
magnetic field the electronic energy levels are split-

1In honour of Professor Michael Tinkham’s 75th Birthday.
2Grenoble High Magnetic Field Laboratory, Max-Planck-Institut
für Festkörperforschung and Centre National de la Recherche
Scientifique, BP 166, 38042, Grenoble Cedex 9, France.

3Present address: Carl Zeiss AG, Carl-Zeiss-Strasse 22, 73447
Oberkochen, Germany.

4Service de Physique Statistique, Magnétisme, et Supraconduc-
tivité, Département de Recherche Fondamentale sur la Matiére
Condensée, CEA-Grenoble, 38054 Grenoble Cedex 9, France.

ted in spin by the electronic Zeeman effect and
that the magnetic hyperfine interaction between elec-
trons and nuclei produces a measurable effect on the
energy splitting of the spin levels [5–7]. The hyper-
fine interaction is known to consist of three con-
tributions: A dipolar part which reflects the poten-
tial energy of the magnetic moment of the electron
in the magnetic field created by a nuclear magnetic
dipole, a contact part due to the local interaction of
electronic and nuclear spin moment (Fermi-contact
interaction), and an orbital part given by the inter-
action of the nuclear magnetic moment with an elec-
tronic orbital current on an atomic scale whose origin
lies in a slightly non s-wave character of electronic
wavefunctions [8].

Conduction electrons are delocalized within the
solid, so that for them only the ensemble average of
the interaction with nuclear spins is retained [9,10].
The spatial means of a magnetic dipole field of nu-
clear origin is zero. There also is an orbital part of
the nuclear hyperfine interaction which is due to a
slight p-wave character of electrons in the conduc-
tion band [8,11]. As for InSb the ratio of the energies
of the orbital hyperfine interaction to the Fermi con-
tact interaction can be estimated to 0.4% [5,11], the
dominating contribution to the hyperfine interaction
is the Fermi-contact interaction.
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The effective spin Hamiltonian of a conduction
electron in an external field applied in the z-direction
is given by the static part of the averaged hyperfine
interaction and reads [9]:

HS = gµBBSz +
∑

i

aiAi < Iz >i Sz. (1)

g ≈ −50 is the effective g-factor of the conduction
band electrons in InSb [12], µB is the Bohrmagneton,
〈Iz〉i denotes the spin polarization of different nuclear
isotopes of abundance ai with the hyperfine coupling
constant

Ai = 8π

3
µ0

4π
g0µBhγi|�i(0)|2, (2)

where g0 = 2.002310 denotes the g-factor of the free
electron, γi the gyromagnetic ratio and |�i(0)|2 the
probability density of the conduction electron at the
site of a nucleus of species i. Introducing a nuclear
hyperfine field BHF, Eq. (1) can be formally rewritten
in terms of an effective Zeeman interaction

HS = gµB(B + BHF)Sz. (3)

BHF is expected to have no effect on the degeneracy
of Landau levels and represents only an additional
term in the electronic Zeeman spin splitting.

At low temperatures, the transverse magnetore-
sistivity ρxx in pure crystalline 3D metallic systems as
e.g. InSb is characterized by magnetoquantum oscil-
lations due to Landau quantization of the electron
system (Shubnikov–de Haas effect). This is under-
stood by that the resistivity ρxx is determined by the
magnetic field-dependent electronic density of states
at the Fermi level DB(EF) via its influence on the
electronic scattering, while the Hall resistivity ρxy is
given by its classical value ρcl

xy = B/ne and is indepen-
dent of scattering [13,14]. Although excellent agree-
ment between theory based on a lowest order scatter-
ing approach and experimental data of ρxx is found
for n-InSb and n-InAs [15], magnetoquantum oscil-
lations are also observed in ρxy in these metallically
doped semiconductors in the extreme quantum limit
where only the lowest spin-split Landau levels are oc-
cupied [16–22]. These oscillations have been ascribed
to higher-order scattering [17]. More recently they
are related to the presence of disorder-induced local-
ized electronic states in the tails of the lowest spin-
split Landau levels (0− and 0+) [23].

Assuming that electronic Zeeman spin splitting
is at the origin of a decoupling of the 0+- and 0−-
levels such that the transport in these states is inde-
pendent from each other, localized 0−- and extended

(free) 0+-states can coexist in the same energy range.
In a first approximation this explains magnetoquan-
tum oscillations in the Hall resistivity ρxy by a domi-
nating mechanism of disorder-induced localization of
charge carriers with minority spin. This mechanism
leads to a reduced density of free carriers with the
corresponding variation in the Hall resistivity at mag-
netic fields where localized minority spin states and
extended majority spin states coexist. Experimental
investigations of magnetoquantum oscillations in ρxy

on InSb and InAs point to the presence of localized
states in the lower energy tail of a broadened spin
split Landau level [22,24].

For metallic InSb, we have measured and anal-
ysed the NMR induced change in both ρxx and ρxy

in the extreme quantum limit where only the lowest
spin splitted Landau levels 0+ and 0− are occupied
[25]. Quantitative analysis of the change in ρxx shows
that in this way the role of electronic spin splitting in
transport can be studied while keeping the external
magnetic field B fixed. This is of interest for investi-
gating the magnetoquantum oscillations in the Hall
resistivity ρxy at the extreme quantum limit, because
different from the external field B, the nuclear hy-
perfine field BHF is expected to play no role in the
localization mechanism for charge carriers.

2. EXPERIMENT

Our InSb samples (MCP wafer technology,
U.K.) were spark cut from Te-doped single crys-
tal wafers into the standard Hall-bar geometry with
four lateral contact legs and a size of about 9.0 ×
1.5 × 1.0 mm3. For electrical contact fine gold wires
were attached with molten indium after surface etch-
ing in a brome-methanol solution. For three sam-
ples with different metallic doping concentrations the
transverse magneto-transport data were measured at
liquid helium temperatures down to 1.2 K in super-
conducting solenoids or Bitter magnets up to 20 T.
Transverse magnetoresistivity ρxx and Hall resistiv-
ity ρxy were derived from the corresponding resis-
tances Rxx and Rxy in the classical way. Dingle tem-
perature TD and carrier concentration n determined
from low-field magneto-transport data are presented
in Table I. According to the Mott-criterium na3

B ≥
0.027 as a measure for a metallic system with suf-
ficient overlap of the donor wavefunctions [26,27],
where aB = 64 nm is the electronic Bohr radius in
InSb, all samples are found to be well in the metal-
lic regime. In Fig. 1, we show the low-temperature
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Table I. Parameters of the Measured Samples: n was Derived
from the Low-Field Slope in ρxy. TD was Determined from
Shubnikov–de Haas Oscillations in ρxx at Fields Far Below the
Extreme Quantum Limit in the Classical Way. BMI, the Field
of a B-Induced Metal-Insulator Transition, was Estimated from
the Magnetic Field Dependent Mott Criterium. In the Bottom
Row the Magnetic Field Dependent Mott Criterium has been Ap-
plied on the Population n0− of the 0− Landau Level (see Text for

Explanation)

Sample 1 Sample 2 Sample 3

n (cm−3) 1.54 × 1015 1.50 × 1016 1.97 × 1016

na3
B 0.39 3.93 5.24

TD (0K) 3.0 4.7 5.4
BMI (T) 3.30 17.24 21.19

(n0−
loca‖a2

⊥)
1
3 0.29 0.26 0.27

magneto-transport characteristics of sample 1. All
the samples show well-resolved spin-splitting of the
lower Landau levels in ρxx (see Landau level quan-
tum numbers indicated in Fig. 1) while ρxy is charac-
terized by a pronounced cusp in this field region. The
latter is clearly separated from a steep nonlinear rise
of ρxy at higher fields which sets in for sample 1 at
B ≈ 2.9 T and which may be ascribed to the onset of
a magnetic-field induced MI-transition [28].

To study the NMR-induced change in magneto-
transport ρxx and ρxy were measured in an rf coil
at 1.95 ± 0.02 K with a resistance bridge providing
up to 1 : 106 resolution. By leaving the samples in a
strong magnetic field (B = 8.64 T) for a long time (up
to 20 h) at low temperature (T = 1.95 K) a nuclear
polarization was generated. Since the nuclear spin-
lattice relaxation time T1 in InSb is known to be in

Fig. 1. Transverse magnetoresistivity ρxx and Hall resistivity ρxy

at T = 1.95 K of sample 1 showing magnetoquantum oscillations
with Zeeman spin splitted structure. The quantum numbers of the
Landau levels which correspond to the local maxima of ρxx are
indicated in the figure.

Fig. 2. BHF-induced change in ρxx at T = 1.95 K measured in an
adiabatic rf-signal passage over the resonance frequency of 115In
isotopes at B = 0.85 T with rf-field B1 ≈ 1 G and d

dt νrf ≈ 6.7 kHz/s.
The inset shows the amplitudes for successive resonance passages
causing a signal change of alternating sign.

the range of several hours for the investigated dop-
ing concentration [29], nuclear magnetization is ex-
pected to be conserved on the timescale of several
minutes while B is cycled to a value where trans-
port is measured. The sample was exposed to a rf-
field B1 (B1 ∼ 1 G), which could be estimated with a
pick-up mechanism. In sweeping the radio frequency
fast over the nuclear resonance (adiabatic rf-signal
passage) the collective magnetization of the nuclei
can be inverted [30,31]. This procedure changes the
sign of BHF at the nuclear resonance frequency. As
shown in Fig. 2 this triggers a change in resistiv-
ity [1]. Although passing the rf-signal several times
over the resonance line, the signal amplitude de-
cayed exponentially with the number of frequency-
sweeps carried out. This may be due to nuclear spin–
spin interaction. We account for this effect by ex-
trapolating our measured data to the “zero sweep”
value in a logarithmic plot as shown in the inset of
Fig. 2.

3. NMR-INDUCED CHANGE IN ρxx

In Fig. 3a, we show �ρxx, i.e. the BHF-induced
change in ρxx measured on sample 1 in an adia-
batic rf-signal passage over the resonance frequency
of the 115In, 121Sb, and 123Sb isotopes at different
magnetic fields. Nuclear polarization was generated
by leaving the sample for 2.5 h in Bpol = 8.64 T at
T = 1.95 K. Then B was cycled to a value of in-
terest at which first four frequency sweeps over the
resonance of the 115In-, then of the 121Sb-, and at
last of the 123Sb nuclei were carried out. By linear
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Fig. 3. Graph a: Data points for the BHF-induced change in trans-
verse magnetoresistivity �ρxx after 2.5 h of thermal polarization in
Bpol = 8.65 T at T = 1.95 K for three different nuclear subsystems.
Graph b: The transverse magnetoresistivity ρxx with the Landau
levels indicated for comparison.

extrapolation in a logarithmic representation of the
data, �ρxx was determined out of this series of four
adiabatic resonance frequency sweeps. Before cy-
cling B back to 8.64 T for thermal polarization, the re-
maining nuclear magnetization was destroyed in ex-
posing each nuclear isotope to resonant rf-radiation.
The NMR-induced change �ρxx is also characterized
by magnetoquantum oscillations. However the oscil-
lations are shifted in phase with respect to the oscil-
lations in the transverse magnetoresistivity ρxx shown
in Fig. 3b and �ρxx is about four orders of magnitude
smaller than ρxx. �ρxx for the 121Sb and 123Sb nuclei
was more difficult to measure than for the 115In nu-
clei because of a higher signal loss with each rf-signal
passage.

The nuclear hyperfine field related to electron
nuclear hyperfine interaction acts only on the spin
of the electrons [9] and can be deduced from known
parameters of the InSb-sample:

BHF = 2
3
µ0

g0

g
h

∑
i

aiγih〈Iz〉i|�i(0)|2, (4)

with g0 = 2.002310 being the g-factor of the free elec-
tron, g = −50 the effective g-factor in InSb [12], γi

the gyromagnetic ratio, and |�i(0)|2 the probability
density of the conduction electron at the site of a nu-
cleus of species i, ai their relative abundance within

Fig. 4. Saturation behavior of the BHF-induced change in ρxx as a
function of thermal polarisation of nuclei at T = 1.95 K in Bpol =
8.64 T and Bpol = 4 T. A fit of the data points allows to estimate
ρxx(∞) using Eq. (5).

the solid, and 〈Iz〉i the expectation value of their
angular momentum in z-direction.

BHF of different nuclear isotopes for our experi-
mental conditions can be estimated based on Eq. (4),
as |ψ (0)|2In and |ψ (0)|2Sb are known from the measure-
ment of the Overhauser-shift in ESR-experiments
[5–7]. The equilibrium nuclear spin polarization 〈Iz〉i

at B = 8.64 T and T = 1.95 K has to be determined
from the situation of thermal polarization of nuclei
during only 2.5 h. We, therefore, measured �ρxx in
the extreme quantum limit at Bmeas = 0.85 T for po-
larization times tpol varying from 1 to 20 h at Bpol =
8.64 and Bpol = 4 T. As shown in Fig. 4, �ρxx is char-
acterized by an exponential saturation behavior for
all nuclear subsystems which is more pronounced for
the 121Sb and 123Sb isotopes than for the 115In nuclei.
�ρxx(∞), i.e. the NMR-induced change in ρxx caused
by inversion of a completely thermalized nuclear sub-
system and the nuclear spin-lattice relaxation rate T1

can be estimated in a two-parameter fit of the data to
the following equation:

�ρxx(tpol) = �ρxx(∞)(1 − e−tpol/T1 ). (5)

T1 was found to be of the order of 5 to 20 h de-
pending on the nuclear isotope. It varied significantly
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with the magnitude of the polarizing magnetic field
Bpol. Thermal polarization of nuclei at B = 4 T leads
to a reduction in ρxx(∞) as compared to polariza-
tion at Bpol = 8.64 T by a factor which coincides with
the ratio of 8.64 to 4 T for the 121Sb–and which
is close to it for the 115In- and 123Sb nuclei. From
this measurement we deduce that the degree of po-
larization of the 121Sb (115In, 123Sb) subsystem af-
ter 2.5 h of thermal polarization at B = 8.64 T cor-
responds to 47% (25.5%, 53%) of the equilibrium
value.

The nuclear-spin polarization in thermal equi-
librium is determined by the Boltzmann distribution
of magnetic energy levels and in our temperature
regime given by the Curie law:

〈Iz〉i = hγi BIi(Ii + 1)
3kT

. (6)

For the 121Sb (115In, 123Sb) nucleus with
I121In = 5

2 (I115In = 9
2 , I123Sb = 7

2 ) in B = 8.64 T at
T = 1.95 K, one finds for the expectation value of
the z-component of angular momentum 〈Iz〉121Sb =
6.25·10−3(〈Iz〉115In = 1.53·10−2, 〈Iz〉123Sb = 6.67·10−3).
With the natural abundance a121Sb = 57.25% (a115In =
95.72%, a123Sb = 47.75%) and γ115In/2π = 0.93285
KHz/G (γ121Sb/2π = 1.0189 KHz/G, γ123Sb/2π =
0.55175 KHz/G) from [32], taking the value of
|�(0)|2121Sb = 1.1 ± 0.1 × 1032m−3 (|�(0))|2151In = 6.8 ±
0.7 × 1031 m−3, |�(0)|2123Sb = |�(0)|2123Sb) as deter-
mined in an Overhauser shift experiment in [7], we
calculate the nuclear hyperfine field of the 121Sb
(115In, 123Sb) subsystem generated by thermal po-
larization of nuclei at Bpol = 8.64 T in T = 1.95 K
for 2.5 h to B

121Sb
HF = −0.42 G (B

115In
HF = −0.55 G,

B
123Sb
HF = −0.23 G). Due to its smallness in amplitude

and a bigger signal loss with every adiabatic reso-
nance passage compared to the other isotopes, ρxx of
the 121Sb-nuclei was most difficult to measure. The
consistency of the fit according to Eq. (5) is best for
the 121Sb-isotopes where one reaches saturation for
both polarizing magnetic fields.

We, therefore, estimate B
115In
HF and B

123Sb
HF gen-

erated by thermal polarization of nuclei at Bpol =
8.64 T in T = 1.95 K for 2.5 h from the corre-
sponding resistivity ratios assuming �ρ

115In
xx /�ρ

121Sb
xx =

B
115In
HF /B

121Sb
HF and �ρ

123Sb
xx /�ρ

121Sb
xx = B

123Sb
HF /B

121Sb
HF , i.e.

B
115In
HF = −0.58 G and B

123Sb
HF = −0.28 G. Within our

experimental error both ways of estimating BHF give
the same results.

4. NMR-INDUCED CHANGE INρxy

�ρxy, i.e. the NMR-induced change in ρxy after
polarizing nuclei at Bpol = 8.64 T for 2.5 h at T =
1.95 K could be measured in the same way as for ρxx

although the signal was by a factor of 2 to 5 smaller
in absolute voltage drop. Due to its smallness in ab-
solute voltage drop, quantitative evaluation of the B-
independence of �ρxy was only possible for adiabatic
resonance passages over the resonance frequencies
of 115In and 121Sb nuclei. �ρxy shows a pronounced
quantum oscillation in the magnetic field region of
the extreme quantum limit where ρxy is characterized
by a cusp. The sign of �ρxy depends on the direction
of B in the same way as ρxy, i.e. the observed signal
is odd in magnetic field. The amplitude of the quan-
tum oscillation in �ρxy is about the same as for �ρxx,
however �ρxy is shifted in phase with respect to �ρxx.

As shown in Fig. 5 we observe on sample 1 that
the change of the Hall constant RH = ρxy/B with an
increment in the external field of �B = 1 G is about
proportional to the BHF-induced change �RH|�BHF =
�ρxy/B, i.e. the following relation holds:

�RH|�B ∝ �RH|�BHF . (7)

5. DISCUSSION OF NMR-INDUCED
CHANGE INρxx

We discuss the effect of nuclear field on ρxx

by a theoretical calculation of the NMR-induced
change �ρxx. In the case of a white noise scattering

Fig. 5. The data points of the BHF-induced change �RH = �ρxy/B
in the Hall constant both for the 115In- and 121Sb isotopes after
thermal polarisation for 2.5 h at Bpol = 8.64 T and at 1.95 K. For
comparison the dotted line represents the change in the Hall con-
stant RH with an external field increment of �B = 1 G.
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potential without taking into account electronic spin
Adams and Holstein obtain an exact expression for
the relative change in the transverse magnetoresis-
tivity ρxx [13]. Assuming independence between +/−
spin states this expression can be easily generalized
to the case of finite electronic Zeeman spin splitting
as follows:

ρxx(B)/ρ0

=
∑
±

D±
B(EF)

[(
EF ∓ 1

2 gµBB
)

D±
B(EF) − 1

2 n±]
n 1

2 D0(EF)
.

(8)

The sum is taken over the two electronic spin-up (+)
and spin down (−) subsystems. D±

B(E) denotes the
density of states and n± the concentration of carriers
in the + (−) spin-state. g is the effective electronic g-
factor, µB the Bohr magneton, D0(EF ) the zero-field
density of states at the Fermi level, ρ0 the resistivity
at zero field, and n = n+ + n− the total concentration
of free charge carriers.

Calculation of transverse magnetoresistivity ac-
cording to Eq. (8) requires the knowledge of the zero
field density of states D0(EF) and the magnetic field-
dependent electronic density of states DB(EF) at the
Fermi energy EF. Since, according to Table I, the ex-
periments were carried out below the Dingle Tem-
perature TD, we neglect the effect of finite tempera-
ture in the following.

At B = 0 the density of states of a 3D free elec-
tron gas reads:

D0(E) = 1
2π2

{
2m

h2

} 3
2 √

E. (9)

Application of a finite magnetic field leads to Landau
quantization combined with electronic Zeeman spin
splitting so that the electronic density of states is:

DB(E) = D+
B(E) + D−

B(E)

=
∑
±

1

2
√

2

1
π2

{
m

h2

} 3
2

hωc

∑
n

× 1√
E − (n + 1

2 )hωc ± gµB(B + BHF)
.

(10)

The hyperfine coupling is included as the BHF-term in
the electronic Zeeman spin splitting and has no effect
on the degeneracy of Landau levels.

Unfortunately standard oscillatory formula de-
rived from Eq. (8) in the limit of large Landau level

quantum numbers (n ≥ 2) as given e.g. in [15] are no
longer valid in the field region of the extreme quan-
tum limit. Therefore, to calculate transport by means
of Eq. (8) a broadening mechanism has to be as-
sumed, because DB(E) in Eq. (10) is singular at the
bottom of each Landau level.

In doped semiconductors the donor ions are sta-
tistically spread all over the solid. This causes spatial
fluctuations in the mean energy of conduction band
electrons. In the case of heavy doping this leads to
a broadening of energy levels which may be shown
to be Gaussian [33], so that the effective density of
states D	

0 is found to be the convolution of the den-
sity of states of the free electron gas D0(E) given
by Eq. (9) with a Gaussian distribution function of
broadening parameter 	:

D	
0 (E) =

∫ ∞

0
dE0 D0(E0)

e− (E−E0)2

	2

	
√

π
. (11)

Similarly, in a magnetic field the density of states
DB(E) in Eq. (10) has to be convoluted with a
Gaussian.

For given 	 both at B = 0 and at finite B the
magnetic field-dependent Fermi energy EF is deter-
mined by the integral equation∫ EF

−∞
dE D	

B(E) = n, (12)

for a fixed concentration n of charge carriers. Using a
numerical procedure (for details see [37]) for the so-
lution of this integral equation gives us the Fermi en-
ergy for arbitrary B in the expression for the density
of states. From the density of states the transverse
magnetoresistivity can be calculated using Eq. (8). To
see the influence of the hyperfine field, these calcula-
tions were performed both for positive and negative
BHF.

For the parameters of sample 1, i.e. n = 1.54 ×
1021 m−3, g = −50 [12], mInSb

eff = 0.0145 [34], εInSb
r =

17.7 [34] and 	 = kBTD with TD = 3.0 K, the thick
lines in Fig. 6a show the calculated B-dependent rel-
ative change in the transverse magnetoresistivity due
to inversion of the polarisation of different nuclear
subsystems according to the equation:

�ρxx(B)
ρ0

= ρBHF
xx (B) − ρ−BHF

xx (B)
ρ0

, (13)

while using the estimated BHF-values given in
Section 3. Both relative position and order of mag-
nitude of the calculated �ρxx(B)/ρ0 with respect to
the oscillatory field dependence of the calculated
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Fig. 6. Graph a: ρxx/ρ0 as function of B for a free electron gas with
the material parameters of InSb-sample 1 and Gaussian Landau
level broadening calculated according to Eq. (8). The solid lines
correspond to the difference ρxx/ρ0 in the transverse magnetore-
sistivity due to an inversion of BHF with the BHF-values taken from
section 3. Inset: Dotted curve: D	

B(EF) as function of B. The solid
lines show the corresponding BHF-induced change in the density
of states at the Fermi level �D	

B(EF) due to an inversion of BHF-
Graph b: Dotted curve: Fermi energy EF as function of B. The
solid lines present the BHF-induced change in the Fermi energy
�EF.

ρxx(B)/ρ0 may be well compared with the corre-
sponding measured data shown in Fig. 3.

The oscillatory magnetic-field dependence of
the density of states calculated is shown in the in-
set of Fig. 6a. The magnetoquantum oscillations in
DB(EF) and in �ρxx(B)/ρ0 coincide but slightly dif-
fer in shape. Comparing the BHF-induced change in
DB(EF) with the BHF-induced change in the magne-
toresistivity, it can be seen that �ρxx(B)/ρ0 reflects
the BHF-induced change in the density of states at the
Fermi level.

The magnetic field dependence of the Fermi en-
ergy EF and its change due to inversion of BHF is
presented in Fig. 6b. In the extreme quantum limit,
EF shows a pronounced magnetic field dependence
which has been taken into account in our calculation
of magneto-transport and cannot be neglected. How-
ever, the BHF-induced change in EF does play no role
for the BHF-induced change in ρxx.

The inversion of BHF in InSb changes the elec-
tronic Zeeman spin splitting leading to a BHF-
induced rearrangement of the population of Landau
levels. Our simulation of the transverse resistivity
shows that the NMR-induced change of ρxx can be
described satisfactorily by only including BHF in the
Zeeman term of the Hamiltonian.

6. DISCUSSION OF NMR-INDUCED
CHANGE IN ρxy

In Fig. 7 we plot the normalized Hall-constant
RN

H(B) = RH(B)/RH(0) of sample 1 over a wide range
in B : RN

H is constant at low-magnetic fields, it shows
magnetoquantum oscillations at moderate fields for
B ≥ 0.3 T, and it has a pronounced cusp in the ex-
treme quantum limit which peaks at Bcusp = 0.75 T as
indicated by arrow 2 in Fig. 7. Before this cusp RN

H is
having a local minimum marked by arrow 3 in Fig. 1
where it is slightly smaller than its classical low mag-
netic field value. At higher fields RN

H is characterized
by a wide dip as indicated by arrow 1 in Fig. 7 and
a sharp rise of RN

H beyond B = 2.5 T. All these struc-
tures were observed on sample 2 and 3 as well and are
reported elsewhere [17,19,20,22,35]. In the following
we will concentrate on the cusp-like structure which
for an increasing Hall constant would correspond to
a decrease in the density of free charge carriers.

Interestingly the structures in the field-depen-
dent Hall constant go hand in hand with critical

Fig. 7. Normalized Hall constant RN
H(B) = RH(B)/RH(0) of the

metallic InSb-sample 1 as a function of the magnetic field. The ar-
rows 1, 2 and 3 serve as a reference for features discussed in the
text. In the inset RN

H(B) of sample 1, 2 and 3 is shown as a func-
tion of (na‖a2

⊥)−1 which is inversely proportional to the magnetic
field-dependent volume of the rotationally symmetric ellipsoidal
donor-wavefunction.
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relations between the donor-wavefunction overlap
and the doping concentration of the material. In a
magnetic field the spatial extension of the donor
ground-state wavefunction is given by the shape of
a rotationally symmetric ellipsoid of half-axes a‖ and
a⊥ with [36]:

a‖ = aB

√
EB

E0

for lBaB−→ aB

ln[(aB/lB)2]
, (14)

a⊥ = 2lB, (15)

where EB is the magnetic-field dependent binding
energy of the s-like groundstate found by a direct
variational calculation with an ellipsoidal trial wave-
function [36] and lB = √

h/eB is the magnetic length.
Extending the Mott-criterium for the critical rela-
tion for metallic transport between the donor con-
centration nc and the Bohr-radius aB of donor-
wavefunctions [26,27,38,39] on finite magnetic fields
yields [28]:

na‖a2
⊥ = δ3. (16)

Experimental findings of δ = 0.26 [28] and δ = 0.34
[35] in InSb are in reasonable agreement with the
prediction of Mott [38] that a MI-transition will oc-
cur at a critical concentration of donor centers given
by Eq. (16) while n is determined from the zero-
field value of the Hall-constant RH. In the inset of
Fig. 7 we plot RN

H of all three samples as a function of
(na‖a2

⊥)−1. For sample 1 the low-field approximation
of a‖ according to Eq. (14) is used. a‖ for samples 2
and 3 was calculated taking the high-field expression
of Eq. (14) while correcting the effective Bohr-radius
aB for a B-independent effective mass according to a
two-band model [41]:

m(B) = mInSb
0

√
1 + 4EF(B)

Egap
, (17)

with Egap = 230 meV and mInSb
0 = 0.0145 [34]. The

magnetic field dependent Fermi energy EF(B) while
neglecting energy level broadening for the magnetic
field regime where only the lowest 0+ Landau level is
occupied is estimated by [40]:

EF(B) = 16
9

E3
F0

(hωc)2
+ hωc

2
(1 − ν), (18)

where

ν = 2gµBm
he

(19)

denotes the electronic spin splitting and

EF0 = h2

2m
(3π2n)

2
3 (20)

is the zero-field Fermi energy EF0 . From the inset of
Fig. 7 it is readily seen that RN

H in all samples rises
abruptly for (na‖a2

⊥)−1 > 25 as the field BMI of a B-
induced MI-transition is approached. BMI in sample 1
according to Eq. (16) taking δ = 0.3 is estimated to
BMI = 3.30 T. BMI for samples 2 and 3 is much higher
as their carrier concentration n, given in Table I, is
by one order of magnitude bigger than compared to
n of sample 1. A self-consistent estimation with δ =
0.3 based on the high-field expression of Eq. (14) and
Eqs. (15)–(20) taking into account the magnetic field
dependence of the effective mass implies BMI = 17 T
(21 T) for sample 2 (sample 3).

The inset of Fig. 7 shows that the normalized
Hall constant RN

H of all three samples is character-
ized by a pronounced cusp at Bcusp between 4 <

(na‖a2
⊥)−1 < 5. On all samples this corresponds to

the magnetic field regime of the extreme quantum
limit where only the 0− and 0+ Landau levels are
occupied. The variation of RH which would be con-
stant equal to 1/ne in the high-field limit has been ex-
plained in terms of localization effects in the tail of
the 0− Landau level of the carriers with minority spin
[23], since the Mott criterium also holds for the con-
centration n0−

loc of localized states in the 0− Landau
level derived on the basis of Eq. (16) [22]. Estimating
the concentration n0−

loc of localized carriers in the 0−

Landau level from the Hall-constant by:

n0−
loc

n
= n − n0+

free

n
= 1 − RH(0)

RH(Bcusp)
, (21)

one finds that the value of (n0−
loca‖a2

⊥)
1
3 for all three

samples at the magnetic field where the cusp of RH

is peaked, as given in Table I, is close to 0.3. Thus,
with reference to Fig. 7, the cusplike structure in RH

around B = 0.75 T may be explained by the localiza-
tion of the 0−-states while the 0+-levels are still ex-
tended [23,42].

In a picture of independent transport in spin-
sublevels an inversion of the two-band model con-
ductivity tensor for the 0+ and 0− levels around B =
0.75 T gives, neglecting terms of order of at most
(ρxx/ρxy)2 (in our case smaller than 2 to 4%),

ρxy = (
σ0+

xy + σ0−
xy

)−1
. (22)

In this approximation, with σ0+
xy given by its classical

high field limit n0+
e/B, the deviation of ρxy from ρcl

xy
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is determined by the deviation of σ0−
xy from n0−

e/B,
where n0−

denotes the 0−-population [23].
To explain the observed relation between the

change of the Hall-constant RH = ρxy/B with an in-
crement in the external field of �B = 1 G and the
BHF-induced change �RH|�BHF = �ρxy/B we define
the quantity �0−

n (n0−
, B) as a measure of the devi-

ation of σ0−
xy from its first order perturbation theory

value n0−
e/B for the minority-spin band 0− by

e
B

{
n0− + �0−

n (n0−
, B)

} = σ0−
xy (n0−

, B). (23)

Eqs. (22) and (23) imply RH = 1/e(n + �0−
n ), while

using that the total population of the respective spin
states n0+ + n0− = n is a constant. Writing

d
dB

�0−
n (n0−

, B) =
(

∂

∂n0− �0−
n

) {
d

dB
n0−

}
+ ∂

∂B
�0−

n

≈
(

∂

∂n0− �0−
n

) {
d

dB
n0−

}
, (24)

i.e. neglecting the explicit dependence of �0−
n on B,

one obtains for the magnetic-field induced change of
RH due to a variation �B in the magnetic field after
successive partial differentiations

�RH|�B ≡
(

d
dB

RH

)
�B

= −eR2
H

(
∂

∂n0− �0−
n

)
�n0−

�B, (25)

where �n0−
�B ≡ { d

dBn0−}�B is the �B-induced change
in the 0−-population. With the inversion of BHF ex-
clusively causing a change �n0−

�BHF
, the BHF-induced

change of the Hall constant is

�RH|�BHF = −eR2
H

(
∂

∂n0− �0−
n

)
�n0−

�BHF
. (26)

Hence in the extreme quantum limit the observed
change in the Hall constant RH both by increment-
ing the external magnetic field B and by inverting the
hypefine field BHF is determined by the correspond-
ing changes in population �n0−

�B and �n0−
�BHF

of the
0− Landau level.

This makes us conclude that the cusp-like struc-
ture showing up with rising magnetic field B in the
Hall constant RH at the extreme quantum limit is
due to the change in population of the minority-spin
Landau level corresponding to an electron transfer
between localized states at the 0

−
Landau level and

extended states at the 0
+

Landau level.

7. CONCLUSION

We have observed NMR-induced changes in
both ρxx and ρxy around the magnetic field regime of
the extreme quantum limit. Due to the Fermi-contact
hyperfine contribution to the electronic Zeeman spin
splitting, inversion of the nuclear hyperfine field BHF

by NMR acts on the electronic density of states at
the Fermi level D(EF) thus inducing a change in the
transverse magnetoresistivity ρxx. Both inversion of
the nuclear hyperfine field BHF and rise in the ex-
ternal magnetic field B by �B = 2|BHF| cause a sim-
ilar change of the Hall constant RH = ρxy/B in the
magnetic field range where only the two lowest spin
splitted Landau levels are occupied. This makes us
explain the cusp-like structure of RH in the extreme
quantum limit by the redistribution of the occupation
between extended and localized spin-states. On two-
dimensional samples, the spin-part of the influence
of an external magnetic field can be separated from
the orbital part by tilting the magnetic field. These in-
vestigations on bulk n-InSb show that the technique
of NMR-induced magneto-transport can be used to
separate spin and orbital term in the Hamiltonian for
a three-dimensional sample.
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him.
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Nonidealities of real superconductors in the form of residual rf losses and conductance be-
low the superconducting energy gap in tunneling Josephson junctions are discussed as pos-
sible sources of decoherence in Josehphson junction flux qubits. The purpose of the paper
is pedagogical and aimed at taking a first step in a unified view of the quantum behavior of
superconducting qubits and the realities of the materials out of which they are constructed.
The need for a dialog between the quantum physicist and the materials physicist is stressed.
Residual rf losses and localized states in junction barriers are identified as important subjects
for this dialog.

KEY WORDS: superconducting qubits; decoherence; localized states; rf residual losses.

1. INTRODUCTION

Clearly one of the major developments in super-
conductivity in the past few decades has been the
demonstration that the superconducting pair wave
function must be fully quantized under appropri-
ate circumstances [1]. In the conventional descrip-
tions (e.g., the GL theory and the RSJ model of
Josephson junctions), it is taken as a classical vari-
able. The understanding of this quantum regime is
now sufficiently advanced that applications in the
form of quantum computing are center stage in the
field [2]. At the same time, the superconductor/
insulator transition in two-dimensional disordered
superconductors is thought to be a quantum phase
transition [3].

Of course, in any quantum system that consists
of a macroscopic number of particles, the issue of
quantum decoherence comes to the fore. Specifically,
the system must be decoupled from any continuum of
states that could decohere its quantum behavior. Su-
perconductors are attractive macroscopic quantum
systems in this regard because they exhibit an en-
ergy gap in their single-particle excitation spectrum
that serves in principle to decouple the macroscopic

1Department of Applied Physics, Stanford University, Stanford,
California.

quantum degrees of freedom from the continuum
of single-particle (normal electron) states above the
gap. In particular, theoretically, the number of nor-
mal excitations decreases as e−�/kT as the tempera-
ture goes to zero, where � is the superconducting en-
ergy gap and T is the temperature.

And now we come to the crux of this paper.
In real superconductors, material non-idealities foil
this complete freezing out of the normal excitations
through mechanisms that are at best poorly under-
stood. It is here that quantum physics meets materi-
als physics, and, concomitantly, quantum and mate-
rial physicists must join forces. The purpose of this
paper is to foster the needed dialog.

Our specific goal at this early stage is pedagog-
ical. We discuss a typical Josephson junction flux
qubit and introduce appropriate dissipative elements
as sources of decoherence. Dissipative elements are
not the only conceivable sources of decoherence, nor
a priori necessarily the most important, but they are
the natural place to start. We will return to this point
later in this paper. Also, see [2] for a broader discus-
sion of possible sources of decoherence.

Two non-ideal sources of dissipation in real
superconducting qubits are residual rf losses in
the superconducting wires that make up the cir-
cuit and conductance below the gap in the tun-
neling Josephson junction. The latter has received
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considerable attention, the former almost none. To
gauge their relative importance, we consider a typi-
cal Josephson junction flux qubit and apply a simple
model of decoherence suitable for order of magni-
tude estimates of decoherence times due to dissipa-
tion. We also review in a preliminary fashion what is
known and not known about these non-ideal sources
of dissipation from a materials physics point of view.
We make no pretense of being either definitive or
complete. Our objective is simply to take a useful first
step in the dialog advocated above.

2. A JOSEPHSON JUNCTION FLUX QUBIT

Figure 1a shows the circuit of a typical
Josephson junction flux qubit It consists of a sin-
gle Josephson junction, including its shunt capaci-
tance, in parallel along with an inductance to form
overall a superconducting loop. The capacitance is
included explicitly at this stage because it is the
source of the “mass” of the system in the quantum
limit. To keep things simple, we assume a lumped
parameter description is sufficient at all relevant
frequencies. We also assume for definiteness that
the loop is biased by an external applied flux at a
value near half a flux quantum to create a two-well
potential [4].

Fig. 1. Figure 1(a) shows a typical Josephson junction flux qubit.
Figure 1(b) shows the same circuit including the dissipative ele-
ments that can produce decoherence in the two-fluid model of
superconductivity and the RSJ model of Josephson junctions.
Fig. 1(c) shows the simplified circuit actually analyzed in this paper
in which the geometric inductance of the circuit is neglected. See
discussion in the text.

Figure lb, shows the same circuit with the ap-
propriate lumped parameter dissipative elements in-
cluded. Here, Rn is the resistance of the normal
channel in the two-fluid model, Ls is the induc-
tance (kinetic and magnetic) associated with the cur-
rents and fields inside the superconductor, and Lg

is the purely geometric inductance associated with
the fields outside the superconductor. Ideally both Rn

and RJ increase as e�/kT with decreasing temperature
as the density of thermally activated normal electrons
freezes out.

To greatly simplify the circuit analysis, we
henceforth neglect Lg. This would be true for a strip
line inductor for which d < λ, where d is the thick-
ness of the dielectric and λ is the superconducting
penetration depth. Under this (only fair) assump-
tion, the circuit of Fig. 1b reduces to that shown
in Fig. 1c, in which Reff = 1/(R−1

n + R−1
J ) and Leff =

1/(L−1
s + L−1

j ) where LJ, is the Josephson inductance
of the Josephson junction. Associated with Reff is a
noise source with spectral density 〈δIδI〉ω that is the
source of decoherence in this model. We also as-
sume that all external sources of decoherence are un-
der control and can be neglected. Our focus is on
those effects that cannot be avoided without mate-
rials optimization.

3. ESTIMATION OF THE DECOHERENCE
TIMES

Given this simplified circuit, it is straightforward
to derive expressions for the decoherence times of
the system. Here, we follow the derivation developed
by Dale [5] based on the earlier formulation pre-
sented by van der Wal [6]. In these treatments, the
decoherence times due to relaxation and dephasing
are given in terms of the spectral density of energy
fluctuations by

τ−1
r = 1

2

(
�

ν

)2

J (ω)coth
(

hω

2kT

)

τ−1
φ = 1

2τr
+ 1

2

(ε

ν

)2
α2π

kT
h

where J (ω) coth( hω
2kT ) = 〈δεδε〉ω

h , and α = lim
ω−→0( J (ω)

2πω
) is a

dimensionless parameter, determined by the slope of
J(ω) at low frequencies. The factors in front of these
two equations involve the quantum tunnel splitting
� of (in our example) the degenerate states of the
two-well potential formed by flux biased loop of
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Fig. 1, and the energy bias ε, which is related to the
level separation ν by ν2 = �2 + ε2. For details, see
[6]. From these equations, we see that it is sufficient
to determine 〈δεδε〉ω to determine the decoherence
times for the circuit in Fig. 1.

Using the fluctuation–dissipation theorem and
elementary circuit theory, it is straightforward to
show (see [5]) that for the simplified circuit (Fig. 1c)
being considered here

J (ω) = 4I2

hωReff
|Z|2

where

Z = 1
1

Reff
+ iωC + 1

iωLeff

After some straightforward algebra, one finds the
decoherence rate

�r = τ−1
r = 1

2

(
�

ν

)2 4I2

hωReff
|Z|2 coth

(
hω

2kT

)

where I is the circulating current in the loop due to
the bias ε. Note that in the low frequency limit rel-
evant to practical circuits, |Z|2 ≈ ω2Leff

2. Note also
that as the effective resistance Reff increases, the
decoherence rate �r decreases—a physically obvi-
ous result of general qualitative applicability for any
superconducting qubit.

4. EMPIRICAL VALUES OF Rn AND RJ

Empirical values of Rn can be readily deter-
mined from measurements of the rf surface resis-
tance of a superconductor. Note that although the
surface resistance typically goes as ω2, the resistance
of the normal channel is independent of frequency
[7]. Of interest to us here is the residual value as
T goes to zero. Values of Rj can be estimated directly
from the I–V curve of a Josephson junction.

The materials of greatest interest currently for
Josephson junction qubits are Al and Nb. To our
knowledge, there are no good measurements of the
residual surface resistance of Al thin films. For Nb
thin films, two recent measurements yield residual
values of Rn (expressed as a sheet resistance for a film
1000 Å thick) in the range of 102 to 103 ohms/square
[8,9]. Assuming the thin-film strip-line inductor L is
roughly 10 squares long, the actual value of Rn would
be 103 to 104 ohms. Further, as shown by Dale [5] us-
ing the expressions above, for the relaxation rate, for
Rn = 104 ohms and taking the circuit parameters and

operating conditions used in the very early experi-
ments by Friedman et al. [4], �−1

r is of order 100 ns.
Much more is known about the magnitude of

the sub-gap resistance RJ. Early on it was recog-
nized as a potential source of decohering dissipa-
tion in Josepshson circuits and therefore concerted
efforts to determine its magnitude were undertaken.
Kirtley et al. determined the sub-gap resistance in
Nb–PbAuIn edge junctions by means of measure-
ments of the return current (switching current to the
zero-resistance state) of the hysteretic I–V character-
istic of under damped Josephson junctions. The the-
ory of this process is well developed and can be used
to extract RJ. They found that RJ > 1 M� for junc-
tion with a normal resistance of 7.3 K� yielding a
ratio of sub-gap to normal resistance >100. Later,
Johnson et al. showed that in their Sn/Sn-oxide/Sn
junctions the effective sub-gap resistance saturated
as temperature was reduced due to a shunting ef-
fect of the measurement leads at high frequencies.
Their data put a lower limit of the ratio of sub-gap
to normal resistance >104 for a junction with a nor-
mal resistance of 8.3 K�. As noted in [2], these are
favorable values from the point of view of decoher-
ence. Apparently, a similarly favorable situation per-
tains to Al/Al-oxide/Al junctions [10]. Assuming that
these limits on the ratio of the sub-gap to normal
resistance are typical and that the current measure-
ments or residual rf losses are valid in the context of
Josephson junction flux qubits, we conclude that for
a typical junction normal resistance of 1 k�, residual
rf losses should dominate the decoherence.

To our knowledge, this point has not previously
been appreciated. But, of course, this analysis is far
too simple to draw definitive conclusions. Also, it
is possible to greatly reduce the problem of resid-
ual rf losses by using the Josephson inductance of
a second Josephson junction to provide the needed
loop inductance. Then, only the junction sub-gap re-
sistances are relevant, and they appear to be more
favorable.

5. SOME THOUGHTS ON THE RELEVANT
MATERIALS PHYSICS

The residual rf losses in superconductors is a dif-
ficult, messy business. There is little specific theoret-
ical guidance beyond the notion of avoiding trapped
vortices or ugly geometries with large demagneti-
zation factors that might permit premature vortex
penetration. Much work has been done to improve
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the rf performance of bulk high power Nb cavities
for high-energy physics applications. But essentially
no work has been carried out to minimize residual
rf losses in thin-film superconductors for electronic
applications.

From a materials point of view, Nb is notorious
for having normally conducting suboxides near its
surface. Indeed, the great utility of using a thin layer
of oxidized Al to form the tunnel barrier in the Nb
SIS Josephson junctions is in part due to the chemical
reduction of these surface suboxides by the Al layer.
Similarly in our laboratory, we found years ago that
Nb–Ti alloy thin films make very much better tunnel
junctions than do pure Nb films [11]. Tc is higher as
well. These facts suggest that creative use of surface
layers and/or chemical substitution in Nb could have
a positive effect on the residual rf losses.

Another oft suggested source of problems are
the grain boundaries in Nb films. Here scanning
probe studies would be interesting, and again the use
of chemical substitutions might have beneficial ef-
fects. We certainly know that this is true in the case
of the infamous weak-link grain boundaries in 123
YBCO [12]. The use of epitaxial Nb films could also
be interesting.

Returning to trapped vortices and premature
vortex penetration, scanning Hall probes are now
available with single-vortex resolution and wide-area
scanning capabilities [13]. These new tools should
be ideal for studying vortex processes at the single-
vortex level. The point of this discussion is to em-
phasize that systematic attempts to reduce residual
rf losses in superconducting thin films is a virtu-
ally unexplored field and that progress can reason-
ably be expected. Moreover, there are some clearly
defined ways to proceed. Such studies might also
prove beneficial for applications of superconduc-
tors in rf filters for telecommunications applications
where residual rf nonlinearities in 123 YBCO thin
films limit performance.

The possible role of non-idealities on the con-
ductance below the gap in superconducting tunnel
junctions is an equally murky subject. Speculations
usually invoke some kind of alternative transport
channel, ranging from simple nanoshorts to trans-
port via localized states. At least in the latter case,
a great deal is known about the transport processes,
thanks to a thorough study of amorphous Si barri-
ers as a model system [14]. The localized states in
amorphous Si are known to have a positive on-site
Coulomb repulsion U, and therefore the states near
the Fermi energy are singly occupied and carry an un-

compensated spin. A very successful theory of these
experiments has been worked out by Glazman and
coworkers [15].

The upshot of this work is that coherent reso-
nant tunneling and incoherent hopping via localized
states both certainly occur, but their contribution rel-
ative to direct tunneling decreases exponentially as
the barrier is made thinner. The statistical nature of
the position and energy of these localized states leads
to a novel dependence on temperature and applied
voltage bias. At low bias, resonant tunneling and
hopping can be made to dominate but only in very
thick barriers of overall conductance too low to sus-
tain Josephson coupling in the presence of thermal
fluctuations. Interestingly, the junctions formed due
to this resonant tunneling are π-junctions, due to pe-
culiarities of coupling through a singly occupied state
[16]. Thus, resonant tunneling via localized states is
unlikely to contribute substantially to conductance
through tunnel junctions in the thin barrier limit rel-
evant to the very small tunnel junctions needed for
qubits.

On the other hand, even in the case of very thin
amorphous Si tunnel barriers, a substantial conduc-
tance below the gap in SIS Nb tunnel junctions was
observed that is not understood [17]. Peculiar zero-
bias anomalies were also observed. One thing seems
clear, however. These anomalies are not due to trans-
port through the junction via localized states. Much
more likely is that they are due to an interaction of
localized states near the electrode/barrier interface
with the conduction electrons in the electrodes, pre-
sumably as some manifestation of the Kondo effect.

We should note here that localized states acting
as two-state fluctuators are implicated in critical cur-
rent fluctuations leading to 1/f noise in many con-
texts of superconducting tunnel junctions. The evi-
dence for this is quite compelling although the exact
mechanism by which the fluctuations in the position
of the localized state actually affect the critical
current is not completely clear [18]. Usually, it is
assumed that charge fluctuations of the state are
involved leading to a local modification of the barrier
for direct tunneling.

Recently, Simmonds et al. have proposed very
subtle way by which localized states can affect
Josephson junction qubits [19]. They propose that
some localized states in their barriers form two-state
fluctuators (quantum mechanically coherent motion
between sited in the barrier) that hybridize quan-
tum mechanically with the Josephson coupling it-
self, thereby increasing the dimension of the relevant
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Hilbert space of the qubit. They further propose that
these localized states may be associated with grain
boundaries in the aluminum oxide barrier.

From a materials physics point of view, sev-
eral ideas stand out. Clearly the modern arsenal of
scanning probes should be brought to bear on Al-
oxide barriers [20]. Such work would be relevant
to both superconducting Al and Nb qubits. More
work on model systems might also be useful. If lo-
calized states play a role, then chemical substitutions
to “passivate” these states might be brought to bear,
as in the use of H to passivate the localized states
in amorphous Si. Because Al-oxide is generally be-
lieved to be amorphous, it is not clear what defects
or macroscopic structure they might have that could
provide localized conductance paths. One source of
the latter might be grain boundaries in the underlying
superconducting electrode.

Clearly there is much that could and probably
should be done to investigate non-idealities in the
materials used to construct superconducting qubits.
The preliminary analysis presented here suggests
that consideration of residual rf losses and the role of
localized states need more detailed study. The stakes
are high for superconducting quantum computing.
The necessary work will not be easy and will require
knowledge of the physics of superconductors and the
materials science of real materials. Collaboration will
be essential. Let’s hope that the needed dialog will
proceed productively.
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High Tc cuprates are characterized by three characteristic energy scales: Tc, T∗
c , and T∗. The

lowest scale, Tc, corresponds to the usual transition to the dissipationless state (R = 0) with
a macroscopic phase coherence. The higher energy scale, T∗

c , describes the diamagnetic tran-
sition. The region T∗

c > T > Tc is characterized by the presence of superconducting regions
embedded in a normal metallic matrix. The highest energy scale (T∗) corresponds to the for-
mation of the structure, phase separation, and to the opening of the CDW gap.

KEY WORDS: inhomogeneity; diamagnetism; characteristic temperatures.

1. INTRODUCTION

The study of the “pseudogap” state (PS) in novel
superconducting systems has attracted a lot of atten-
tion. This state corresponds to temperatures T > Tc

(up to some characteristic temperature, T∗). Indeed,
a number of unusual features have been observed for
the high Tc cuprates in the region T∗ > T > Tc, es-
pecially for the underdoped compounds. It is inter-
esting that there are contradictory reports about the
value of T∗. The aim of this paper is to demonstrate
that the real picture is more complicated and we are
dealing with three different energy scales and, cor-
respondingly, with three characteristic temperatures
(we denote them Tc, T∗

c , and T∗). The analysis de-
scribed below is based on various experimental data
and our theoretical studies [1–4].

The “pseudogap” state is characterized by the
following fundamental features. First of all, one
should mention the presence of an energy gap in
the spectrum; the energy gap persists above Tc

despite the finite resistance and the absence of
macroscopic phase coherence. One should note that

1Lawrence Berkeley Laboratory, University of California,
Berkeley, California, 94720.

2Department of Materials Science, University of Virginia,
Charlottesville, Virginia 22903.

3Landau Institute for Theoretical Physics, Moscow, Russia 117332.

the name (“pseudogap” state) is misleading, because
a real energy gap structure has been observed, that is
a dip in the density of states. This gap was observed
with use of infrared spectroscopy: this method was
pioneered by M. Tinkham and his collaborators
[5], see also the book [6]. This method was used
for the cuprates in [7]. In addition, the presence of
the energy gap above Tc was observed by tunneling
spectroscopy which is a direct probe of the density
of states (see, e.g., study of Bi2212 in [8]). The
presence of the gap was also detected by NMR [9]
and photoemission [10] spectroscopies, heat capacity
measurements [11], etc. (see also the review [12]).

One should stress that just the presence of the
energy gap does not allow us to explain the nature of
the PS. Indeed, in addition to the pairing, there are
many reasons for an appearance of a gap structure
(CDW, SDW, band gap, Coulomb disorder, etc.),
and such factors can be present in such complex sys-
tems as the cuprates.

Another feature observed in the cuprates above
Tc is their diamagnetism. This phenomenon has been
observed in many studies. For example, for the un-
derdoped La----Sr----Cu----O compound (Tc ≈ 20 K)
diamagnetism was observed up to T ≈ 80 K [13].
We think that this is a fundamental property of the
“pseudogap” state. As we know, the energy gap
is an important parameter of the superconducting
state, but diamagnetism (Meissner effect) is a more
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fundamental feature (it is enough to recall that there
is the phenomenon of gapless (!) superconductiv-
ity [14]). We think that a similar situation occurs
for the PS. Therefore, an understanding of diamag-
netism observed above Tc is a serious challenge.
Diamagnetism above Tc was reported in [15] for
YBCO and also in [16] for the T1-based cuprate. It
was observed even in other complex systems, like
doped bronze [17], and, recently in borocarbides
[18].

There are two different transitions which occur
at temperatures above Tc (“pseudogap” state). They
are the structural (T∗) and diamagnetic (T∗

c ) transi-
tions. They will be discussed below.

2. ENERGY SCALES

2.1. Highest Energy Scale (T∗)

The highest energy scale (>5 × 102 K) corre-
sponds to the formation of the crystal structure which
is characteristic for the compounds of interest. For
example, for YBCO, the formation of the chain
structure occurs at T∗.

An energy gap could be open in the region be-
low T∗. Of course, this gap is not related to the pair-
ing, but, as was mentioned above, there are many
sources for the appearance of a gap. For example,
the presence of chains in YBCO leads to a charge
density wave and, correspondingly, to a gap on the
part of the Fermi surface. Nesting of states might
lead to a CDW instability in other compounds as
well.

Another important property of the compound
below T∗ is its intrinsic inhomogeneity; this is due to
statistical nature of doping and is manifested in the
so-called phase separation. This concept was intro-
duced in [19] and then studied in many papers (see,
e.g., [20]). This property implies the coexistence of
metallic and insulating phases. Note that the metallic
phase itself appears to be inhomogeneous (see be-
low). The periodic stripe structure [21] also appears
below T∗.

2.2. Diamagnetic Transition (Tc
∗)

If the compound is cooled down below T∗,
then at some characteristic temperature dubbed Tc

∗

(Tc
∗ ≈ 2 × 102 K) one can observe the transition into

a diamagnetic state.

Fig. 1. Inhomogeneous metallic phase at T∗
c > T > Tc. “Islands” S

have higher critical temperatures than the normal matrix.

We focus below on the metallic phase only.
The origin of diamagnetism was discussed in our pa-
pers [1]. The metallic phase is inhomogeneous and,
as a result, the superconducting critical temperature
is spacially dependent: Tc ≡ Tc(r). The characteris-
tic temperature T∗

c corresponds to an appearance
of superconducting regions embedded in the normal
metallic matrix (Fig. 1). The presence of such su-
perconducting clusters (“islands”) leads to a diamag-
netic moment, whereas the resistance remains finite,
because of the normal matrix. It is remarkable that
the superconducting state appears at temperature T∗

c
which is much higher than the resistive Tc, but it is
manifested, at first, as a set of “isolated” islands.

There are various sources of inhomogeneites
(see [2]). The main one is connected with pair-
breaking [14]. For example, the localized magnetic
moments act as pair-breakers. For D-wave symmetry
even the nonmagnetic impurities are pair-breakers.
Therefore, doping inevitably leads to pair-breaking
and, correspondingly, to inhomogeneity. It is essen-
tial that the pair-breaking leads also to a depres-
sion in the value of Tc. Therefore, the dependence
Tc(r) is caused by a nonuniform distribution of pair-
breakers. The region containing a small concentra-
tion of pair-breakers is characterized by a higher
value of local critical temperature. As a result, at
some value of temperature in the region T∗

c > T > Tc

we have a picture as illustrated in Fig. 1. Note that
the minimum size of the superconducting clusters is
determined by the proximity effect between the clus-
ter and normal metallic matrix. This size should be
large than ξ, where ξ is the pairing coherence length.

As was noted above, diamagnetism has been
reported in many papers [13,15–17]. A remarkable
study [13] which combines STM and magnetic imag-
ing directly demonstrates the presence of the diamag-
netic “islands.” This study [13] provides direct exper-
imental support for the picture proposed by us in [1].
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One should also add that the contribution to
the diamagnetism may come also from fluctuations
of the order parameter above Tc. However, such a
large temperature range, such as, e.g., observed in
[13] for the LSCO compound with Tc ≈ 20 K (dia-
magnetism was observed up to T ≡ T∗

c ≈ 80 K) can
not be due to this factor. The authors of [15] analyz-
ing the data in YBCO also come to conclusion that
fluctuations make a contribution, especially near Tc,
but their presence is insufficient to explain the ob-
served phenomenon.

2.3. Resistive Transition (Tc)

As temperature is lowered below T∗
c , new super-

conducting clusters form (Fig. 1) and existing clus-
ters form larger “islands.” This description is a typical
percolation scenario. At some characteristic temper-
ature (Tc), the macroscopic superconducting phase is
formed (“infinite” cluster in terms of the percolation
theory, see, e.g. [23]). A similar picture was described
by Gor’kov and one of the authors for the transition
at the Curie temperature for manganites [24]. The
formation of the macroscopic phase at Tc leads to the
appearance of a dissipationless state (R = 0).

It is important also to stress, that in the region
T∗

c > T > Tc each “island” has its own phase, so that
there is no phase coherence for a whole sample.
Macroscopic phase coherence appears below Tc.

2.4. Experimental Data. “Giant” Josephson Effect

The concept, described above (Fig. 2), has
strong experimental support. First of all, one should
note that the inhomogeneous structure of the com-
pounds was directly demonstrated by STM mea-
surements [25], inelastic neutron scattering [26], and
NMR [27]. It is essential that, contrary to the op-
timum doping region, the underdoped samples pos-
sess an intrinsic inhomogeneity which correlates with
the appearance of the pseudogap phenomenon. We
mentioned above the data describing the energy
gap in the normal region and observations of the
diamagnetism. Paper [13] directly demonstrates the
presence of “diamagnetic” clusters above Tc.

The aforementioned picture allows us to ex-
plain a recently observed phenomenon called “giant”
Josephson effect [28]. The experiment was per-
formed with an S----N----S junction formed with
LaSCO superconducting electrodes with Tc ≡ Ts

c ≈

Fig. 2. Characteristic temperatures T∗, T∗
c , Tc for the structural,

diamagnetic, and resistive transitions, correspondingly. The transi-
tions lead to an appearance of the additional features listed under
corresponding lines.

45 K. The barrier was made of the same, but un-
derdoped compound with its Tc ≡ TB

c ≈ 20 K (such
a combination avoids undesirable interface effects).
The measurements were performed above TB

c . The
barrier was grown in the c direction, so that its layers
were parallel to the electrodes. It is known that for
an S----N----S junction the amplitude of the Josephson
current j ∝

o exp(−d/ξN), where d is the thickness of
the barrier, and ξN is its coherence length. As we
know, ξc ≈ 3 A, it is remarkable that a Joseph-
son current has been observed in [28] for d up to
200A (!).

Such a “giant” effect is observable because the
barrier is in the “pseudogap” state and contains su-
perconducting “islands” which are present in the bar-
rier layers in the region T∗

c > T > Tc, T∗
c ≈ 80 K [13]

which includes the interval TS
c > T > TB

c correspond-
ing to the measurements [28]. As a result, the Joseph-
son current is transferred through the path formed
by superconducting “islands.” A detailed calculation
[4] is in a very good agreement with the data in [28].

3. CONCLUSION

Diamagnetism above Tc and the presence of
an energy gap in this region are the most funda-
mental features of the “pseudogap” state. Contrary
to conventional superconductors, the resistive and
diamagnetic transitions are separated. The lowest
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energy scale (Tc) corresponds to the transition to
the dissipationless state (R = 0) with macroscopic
phase coherence. The diamagnetic transition occurs
at higher temperature (we denote it as T∗

c ) and the
pairing gap persists up to this second characteristic
energy scale. The region T∗

c > T > Tc is characterized
by the presence of superconducting regions embed-
ded in a normal metallic matrix. The depression of Tc

relative to T∗
c is caused, mainly, by pair-breaking, so

that T∗
c can be called an “intrinsic” critical tempera-

ture. Above T∗
c (in the region up to third character-

istic energy scale, T∗), one can observe phase separa-
tion, formation of stripes, and the energy gap struc-
ture not related to the pairing, e.g. CDW. Below T∗

c ,
there is a coexistence of the pairing and CDW gaps.

We are pleased that this paper is a part of the
Special issue honoring Michael Tinkham who has
made key contributions in the field of supercon-
ductivity and other areas of the condensed matter
physics.
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Recollections

Michael Tinkham: The Early Years

Donald M. Ginsberg1

I am happy to have been invited to help cele-
brate Michael Tinkham’s 75th birthday by compos-
ing a brief memoir about his teaching and research at
the University of California at Berkeley in the late
1950s. He was a major source of ideas for seminal
experiments and for methods of applying theoretical
principles of physics to the data to help gain a deep
understanding of superconductivity. He also worked
intensively on problems related to magnetic ordering
and other subjects, but this memoir must concentrate
on the area of physics in which I worked with him.

I was one of his first three PhD students.
(The others were Robert C. Ohlmann and Paul L.
Richards). Ultimately there were to be 57 PhDs
earned with his guidance at Berkeley (1955–1966) or
at Harvard (1966 to now). He has also had many
postdoctoral people working in the group, but they
are difficult to count, since they came and went at
random times and frequently worked simultaneously
on more than one project, affiliated with more than
one group.

Mike, as we all called him, set the group’s hard-
working style by example; he seemed to be working
all of the time except for our daily group coffee hour,
which lasted about 20 min. He took a lot of work
home with him for late night sessions. Occasionally
he gave one further hints about hard work. For ex-
ample, he once told me that the best research is done
on national holidays.

We used the latest technology of the day, and the
results were compared in depth with current theoret-
ical ideas, some of which Mike helped to formulate.

His initial research efforts at Berkeley were
paramagnetic resonance studies of molecules, liq-
uids, and crystals. These provided a natural evolution

1University of Illinois at Urbana-Champaign Department of
Physics 1110 West Green Street, Urbana, Illinois 61801.

of his PhD work with M. W. P. Strandberg at MIT
and his postdoctoral research at Oxford University.
In his early days at Berkeley, he collaborated with A.
F. Kip, who used cyclotron resonance to determine
the Fermi-surface of various semiconductors and
metals. The analysis of the data was backed up by
theoretical help from the renowned Berkeley solid
state theorist Charles Kittel. Solid state physics was
thriving at Berkeley, and famous physicists were fre-
quently seen passing through or visiting for a while.
Even the legendary Wolfgang Pauli was there for one
semester near the end of his life. Graduate students
as well as more senior investigators gave seminars,
speaking to a large roomful of impressive people who
were free to ask the toughest questions they could de-
vise. Thus did one learn to control one’s nervousness.

In Michael Tinkham’s first days at Berkeley, be-
fore he was on the tenure-track faculty, he met an-
other postdoc there, Rolfe E. Glover, III, who had
worked in the group of R. Hilsch at the University
of Göttingen, fabricating and investigating thin-film
samples. Using a cryostat designed by Rolfe, with far-
infrared gratings and mirrors designed by Mike and
made in the Berkeley Physics Department’s machine
shop, and a commercially available infrared detec-
tor called a Golay cell, Tinkham and Glover mea-
sured the transmission of far-infrared radiation by
superconducting films. They obtained the first spec-
troscopic evidence of a superconducting energy gap
before the 1957 appearance of the BCS theory of su-
perconductivity. Mike’s analysis of the spectroscopic
data was a brilliant example of theoretical interpre-
tation. He relied only on the idea of a supercon-
ducting energy gap (which had been suggested by
B. B. Goodman and a few other groups, to account
for thermodynamic and transport data) and general
principles of physics: Maxwell’s equations, causal-
ity (in the form of the Kramers-Kronig relations),
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energy conservation, and Einstein’s application of
the Planck relation (E = hν) to photons.

With Mike’s daily guidance, Paul Richards and
I continued to develop the apparatus. In place of
the Golay cell, we made and used low-temperature
bolometer detectors of far-infrared radiation that
were invented at the Bell Telephone Laboratory in
the mid-1950s by W. S. Boyle and K. F. Rodgers.
We made our own detectors. The new techniques im-
proved the precision of the measurements by roughly
a factor of 50. Paul measured far-infrared reflec-
tion from bulk samples, and I measured transmission
through thin films. The two experiments had differ-
ent limitations, and comparing the two types of data
was instructive, as Mike had foreseen. The quantita-
tive fit to the BCS theory was good. An unexpected
small dip in the absorption just below the energy gap
edge was observed, however. It diminished in size
when Tinkham and a later student, L. H. Palmer, im-
proved the spectral purity of the radiation incident
on the film.

A few words about Michael Tinkham’s early de-
velopment will describe how “just a country boy, try-
ing to do well,” (to quote his own words in a message
to me), climbed the first steps ascending to a life in
science.

Mike was born in rural Wisconsin. He grew up
on a dairy farm in that state, attended a one-room
school house, and moved at age 11 with his family
to the town of Ripon, Wisconsin. He attended
Ripon College for his undergraduate work, majoring
in Physics and Mathematics and earning the AB
degree. His parents and several uncles preceded
him there, studying chemistry and/or physics. Two
of his uncles taught chemistry at Marietta College;
they helped to stimulate Mike’s early interest in
science. In his senior year in high school, he was
a winner of the prestigious national Westinghouse
Science Talent Search, and was rewarded with a trip
to Washington, DC. This experience helped to con-
vince him that he could be a successful scientist, even
with his “small-town background,” as he has said.

Serving in the U.S. Navy for about the last year
of World War II, Mike learned the electronics tech-
niques of that time. He also learned electronics as
an amateur radio operator both before and after
his days in the Navy. This knowledge served him
well in his postwar life as a physicist. In the 1950s,
low-temperature physicists still designed their own
cryostats, to be built in a machine shop, and they

designed and built their own lock-in amplifiers and
most of their other electronics, using vacuum tubes as
the active elements, of course. (Physicists no longer
had to make their own vacuum tubes.) Calculations
were performed by an electrically powered mechani-
cal calculator or on a slide rule.

Mike’s lecturing, both at scientific meetings and
in the class room, had (and still have) an infor-
mal style, with occasional humorous parenthetical re-
marks to help keep the audience’s attention. Like all
good speakers, he made it look easy.

Michael Tinkham’s progress from a one-room
Wisconsin school house to Ripon College, to MIT
to earn his PhD, to Oxford University and then
Berkeley were followed by major achievements at
Harvard. This is not the place to describe in detail
his 38 years (so far) at Harvard, except to note
that his recent work centers on the properties of
superconducting and normal circuits made of parts
so small that the flow of a single electron can be
detected, and the wave nature of the electron has a
major effect on the devices being investigated.

Berkeley’s Charles Kittel, a “walking ency-
clopaedia” and guru of solid state physics, once
commented that, of the many physics research
groups he had visited, the most effective were those
having a question in mind, for which they sought an
answer by doing their research. Mike’s group has
always had this type of motivation. How fortunate
are we, his students and postdocs, to have had him as
our teacher and mentor. His unfailing good humor
and constructive remarks, even when confronted
with minor catastrophes in the lab, taught us how to
meet the challenges of a physicist.

For his pioneering research, Michael Tinkham
won the 1974 Oliver E. Buckley Condensed Mat-
ter Physics Prize of the American Physical Society.
His other honors are too numerous to list here, ex-
cept to say that he is both the Rumford Professor of
Physics and the Gordon McKay Professor of Applied
Physics at Harvard. His success encourages others to
avail themselves of the intellectual cross-fertilization
and mutual aid between fundamental and applied
physics.

Michael Tinkham has written two widely used
books, Introduction to Superconductivity and Group
Theory and Quantum Mechanics. They are still avail-
able; the publisher is Dover. Those who read these
books become Professor Tinkham’s students, along
with hundreds of other fortunate people.
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My 14 years in the Tinkham Group

Chris Lobb

I started working as a beginning graduate stu-
dent in Mike Tinkham’s lab in the summer of 1975.
Even with my limited perspective, it was clear that
the Tinkham lab was an extraordinary place. The
range of research projects was very broad, with each
student working on something very different from
the other students. There were projects on point
contacts exposed to far-infrared radiation, phase-
slip centers in one-dimensional superconductors, nio-
bium nitride, intercalated layered compounds, tun-
nel junctions, and in situ composites. This could have
seemed like an assortment of disconnected topics,
but it was not: Mike’s broad understanding and en-
thusiasm were contagious, making it possible, for ex-
ample, to view the composites (which were being
studied as a possible replacement for conventional
multifilamentary composite magnet wire) as arrays
of Josephson junctions. His weekly group seminars
were an extraordinary opportunity to learn about a
wide range of topics—they were an informal ongoing
course in superconductivity.

I was very fortunate to stay at Harvard after re-
ceiving my PhD, so I witnessed the exciting things
that came from his group for many years. It is hard
to single out specific topics, given how many excit-
ing things were going on, but certainly the famous
work on Andreev reflection should be mentioned. At
time the work was done, Mike said that it was the

last nail in the coffin, because he, Teun Klapwijk, and
Greg Blonder had done so much; even Mike could
not foresee how important the work would become
years later when applied to the high-Tc superconduc-
tors. His group’s work on ultra-small tunnel junc-
tions, and his effort to understand their behavior as
macroscopic quantum phenomena, have also taken
on renewed importance because of their connec-
tion to quantum computing. And, to mention a topic
of special interest to me, the work on Josephson-
junction arrays provided important experiments in
two-dimensional phase transitions. It still seems won-
derful to me that one can study statistical mechanics
by making integrated circuits which undergo phase
transitions.

I worked directly with Mike for 14 years,
joining his group as a graduate student in 1975,
and leaving Harvard as an associate professor in
1989. The opportunity to work with Mike for so
long was one of the greatest experiences of my
life. As a researcher, Mike’s rare combination of
experimental and theoretical ability has kept him at
the top of the field for decades. As a teacher, Mike
worked constantly to make things understandable,
and did so with enthusiasm and wit. Any success
I’ve had since leaving his group is largely due to
what I learned from him during those extraordinary
14 years.
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Selected Publications

M. Tinkham and Group

BOOKS

Superconductivity: M. Tinkham, Chapter in Low
Temperature Physics, ed. by C. deWitt, B. Dreyfus,
and P.G. deGennes, Gordon and Breach, New
York, 1962; also published separately.

Group Theory and Quantum Mechanics:
M. Tinkham, McGraw-Hill Book Co., New
York (1964); reprinted by Dover Publications.

Introduction to Superconductivity: M. Tinkham,
McGraw-Hill Book Co., New York, (1975); 2nd
Edition, (1996); reprinted by Dover Publications.

Physical Properties of the New Superconductors:
M. Tinkham and CJ. Lobb, Chapter in Solid State
Physics 42, pp. 91–134, Academic Press, San Diego
(1989).

JOURNAL ARTICLES

Paramagnetic resonance in liquids: M. Tinkham, R.
Weinstein, and A.F. Kip, Phys. Rev. 84, 848–849
(1951).

Interaction of molecular oxygen with a magnetic
field: M. Tinkham and M.W.P. Strandberg, Phys.
Rev. 97, 951–966 (1955).

Paramagnetic resonance in dilute iron group fluo-
rides: I. Fluorine h.f.s., M. Tinkham, Proc. Roy.
Soc. (London) A236, 535–548 (1956).

Transmission of superconducting films at millimeter-
microwave and far infrared frequencies: R.E.
Glover IE and M. Tinkham, Phys. Rev. 104, 844–
845 (1956).

Energy gap interpretation of experiments on infrared
transmission through superconducting films: M.
Tinkham, Phys. Rev. 104, 845–846 (1956).

Determination of the superconducting skin depth
from the energy gap and sum rule: M. Tinkham
and R.A. Ferrell, Phys. Rev. Lett. 2, 331–333
(1959).

Far infrared transmission through superconducting
films: D.M. Ginsberg and M. Tinkham, Phys. Rev.
118, 990–1000 (1960).

Far infrared energy gap measurements in bulk su-
perconducting in, Sn, Hg, Ta, V, Pb, and Nb: P.L.
Richards and M. Tinkham, Phys. Rev. 119, 575–
590 (1960).

Antiferromagnetic resonance in FeF2 at far infrared
frequencies: R.C. Ohlmann and M. Tinkham,
Phys. Rev. 123, 425–434 (1961).

Far infrared exchange resonance in ytterbium iron
garnet: A.J. Sievers, and M. Tinkham, Phys. Rev.
124, 321–325 (1961).

Effect of fluxoid quantization on transitions of su-
perconducting films: M. Tinkham, Phys. Rev. 129,
2413–2422 (1963).

Tunneling into superconducting films in a magnetic
held: J. Millstein and M. Tinkham, Phys. Rev. 158,
325–332 (1967).

Far infrared absorption in thin superconducting lead
films: L.H. Palmer and M. Tinkham, Phys. Rev.
165, 588–595 (1968).

Observation of enhanced diamagnetism above tc

in indium due to thermodynamic fluctuations:
J.P. Gollub, M.R. Beasley, R.S. Newbower and
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