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at Second-Order Phase Transitions
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‘We point out that in systems exhibiting a second-order phase transition, the chemical potential
has a jump in slope at the critical temperature, provided that T, depends on particle density. We
derive a generally valid thermodynamic relation between the specific heat jump, the jump in dup/dT,
and dInT./dn, with 4 the chemical potential and n the density of the particles causing the tran-
sition. This relation is similar, but not equivalent, to the more familiar Ehrenfest relation between
expansivity, specific heat, and dInT./dp, with p the externally applied pressure.

PACS numbers: 74.30.Ek, 05.70.Fh, 75.40.Cx

In a number of papers [1-5] it has been shown that a
jump in slope occurs in the temperature dependence of
the chemical potential of narrow band superconductors.
The earliest paper where this effect is displayed is to our
best knowledge by Robaszkiewicz, Micnas, and Chao on
the Hartree approximation of the negative-U' Hubbard
model [1]. One of us analyzed this effect [2] using differ-
ent approximations to the retarded interaction, mainly
to draw attention to the fact that this kind of shift in
the chemical potential can be observed experimentally,
and may give important information about the nature of
high-T¢ superconductivity. Khomskii and Kusmartsev [3]
showed that if there is more than one band involved, the
change of i could be partly screened due to an annomalous
charge transfer between the bands.

In a quite different model of bosons exhibiting a phase
transition to a paired state due to an effective attractive
interaction, Rice and Wang [4] predicted a temperature
dependence of i very similar to the case of fermions. No
discontinuity in slope of p(T"} occurs for noninteracting
bosons in 3D, while in 2D and 1D T is zero. If one as-
sumes, without specifying the physical origin, that the
boson density of states has an algebraic energy depen-
dence p(E) o< E%, a jump in du/dT can occur at the
phase transition provided that o > 1 [5].

Although derived so far for specific models of super-
conductivity, this behavior of u is a generic property of
second-order phase transitions, with a direct link to the
specific heat and the dependence of the critical tempera-
ture on particle density. In this paper we will derive this
relation from general thermodynamic considerations, as
well as from the Ginzburg-Landau expression for the free
energy.

The order parameter 1 is solved from the Ginzburg-
Landau expression for the difference in free energy den-
sity [6] between the ordered (index ¢) and normal state
(index n) fy(n,T,1) — fn, which is given by a(T/T, —
1)J)? + bj#p]*. The order parameter has a nontriv-

ial solution for T" < T, with a free energy difference

—a?(4b)~Y(1 — T/T:)?. As we want to determine the
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“has a discontinuity in d?u/dT?.

chemical potential (x = 0f/dn), it is important to re-
alize that the n dependence of f enters through the pa-
rameters a, b, and T,. The expression for the chemical
potential becomes

B o®T dInT, | T \
T T T T, A\ T
d(a2/4b) T\?
—_——t 1) .

dn ( Tc> W

Clearly the first term gives rise to discontinuous behavior
of du/dT’ at the phase transition, while the second term
We can combine the
expression for the jump in du/dT with the expression for
the jump in the specific heat [cn — ¢y = —a?(2bTe) ] to
obtain the central equation

Pp)
e — Cy

o (1 — _dlnT,

dn

T=T.

Alternatively this relation can be derived from general
thermodynamic considerations [7]. The temperature
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2)

derivative of the chemical potential and the specific heat

can both be expressed as derivatives of the entropy den-~
sity: du/dT = —ds/dn, and ¢y = T'ds/dT. Inthe T vs n
phase diagram (Fig. 1) the second-order phase transition
is indicated as the curve T,(n) separating the two phases.
As the entropy is continuous at the transition, s; = sa
and s3 = 84 if the pairs (1,2) and (3,4) are infinitesimally
close to the T,(n) curve. Using an expansion for small

6n and 6T we can write

8sn, Osn o _
— 6T ———6n + - -
aT 't Bn

and a similar expression connecting s4 to s2. Employing
the property of continuity of s at a second-order phase
transition, and using the fact that T is varied along the
Te(n) curve, we obtain

asn 8_s1ﬁ (asn 65¢> dT,

On " n \OT 9T ) dn

83 = 81 + —

®3)
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FIG. 1. Phase diagram in the temperature vs particle-
density plane. Solid curve: T; as a function of n, separat-
ing the low-temperature (7)) from the high-temperature (n)
phase.

which is equivalent to Eq. (2).
So far the expressions were derived for a system at con-
stant volume. If we want to describe a solid held at con-

stant pressure, small modifications enter because the den- .

sity » now also depends on temperature. The expansiv-
ity coefficient is @ = V~1dV/dT = —n~dn/dT, so that
corrections of the type —an(dy/dn) and —onT(ds/dn)
occur in the expressions for du/dT and ¢. As « behaves
discontinuously at the phase transition [8] the jump at
T, is altered for both ¢ and du/dT. However, because of
the smallness of «_and the jump therein the corrections
are negligible in a solid.

It is interesting to compare our central result Eq. (2)
to the more common Ehrenfest relation [§]

Qp, — Oy, _ 4InT,
Cn —Cy |, dp

L= @

Although this relation looks similar to Eq. (2), there is an
important difference: Equation (4) links three quantities,
each of which can be measured separately. Hence this
relation can be used to check the validity of the thermo-
dynamic relations and the assumption of a second-order
phase transition. In Eq. (2) only the temperature de-
pendence of the chemical potential and the specific heat
can be measured directly, but the particle density is an
intrinsic property of a material, which is usually difficult
to control.

In many cases one expects a strong dependence of T, on
7, especially if the interactions between particles leading
to the phase transition affect a large fraction of the states
out of which the many-body wave function is formed.
To give an example, let us briefly discuss the supercon-
ducting critical temperature in a 2D negative-U Hubbard
model, treated in the Hartree approximation. In the
low density limit 7}, is proportional to Wanl/2e(~1/9),
where a is the lattice constant, W is the bandwidth, n is
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the density of electrons, and g is the attractive electron-
electron coupling constant [9]. If we change the exter-
nal hydrostatic pressure with an amount §p, the volume
changes by an amount §V = —Vép/B, where B is the
bulk modulus. Both n and the lattice constant change,
but as the total number of electrons is conserved, the
product na? is a constant. W and g also have a pressure
dependence, so that '

dinT,/dp = —B HdInW/dInV + g ldlng/dIn V).

The pressure derivative differs strongly from the
derivative with respect to n, for which we obtain
dInT,/dn = (2n)~!. This model can easily be shown
to be in agreement with the thermodynamic relation
Eq. (2). Using the fact that within the framework of
this model the specific heat ¢, — ¢y = p|A(T)|?/dT,
with p the density of states, while the carrier density
is given by n = 2pp,, we obtain the familiar equation
(2, 3] py = pn — |A(T) /410 '

Hence Eq. (2) gives us access to a quantity which is
otherwise difficult to determine, namely, the density de-
pendence of the critical temperature. Recently a suc-
cessful series of measurements of the jump in slope of y
at T, have been performed on high-T, cuprates [10], and
the value obtained for d1nT./dn was compared to micro-
scopic models of the density dependence of T,. Other ex-
amples where strong renormalizations of the many-body
wave function occur at a second-order phase transition
are ferro- and antiferromagnetic phase transitions and
charge density waves. Experiments aimed at the deter-
mination of du/dT could, in combination with specific
heat data, provide new and valuable information about
the microscopic nature of these phase transitions.

As it is now possible to measure dT./dn experimen-
tally, there is a way to predict from a set of data on a
single material in which direction doping levels have to
be changed in order to reach an optimal transition tem-
perature. In combination with studies of the pressure
dependence it is possible to disentangle, at least in part,
the contributions of the various microscopic parameters
to the pressure dependence. This way one can supply
relevant experimental information in, e.g., the quest for
the mechanism of high-temperature superconductivity.

In conclusion we have demonstrated from an analysis
of thermodynamic relations valid for second-order phase
transitions, that the availability of a new type of experi-
mental data, namely, the temperature dependence of the
chemical potential, can provide information on the den-

_ sity dependence of the critical temperature. It is par-

ticularly interesting to analyze this type of experimen-
tal information together with specific heat data, thermal
expansivity, and the pressure dependence of the criti-
cal temperature. From such an analysis one can decide
to which extent pressure dependencies of T, are due to
changes of particle density or changes of other micro-
scopic parameters. Also the size and sign of the experi-
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mental value of dT;/dn can be used as a guide to develop
materials with higher (or, if required, lower) transition
temperatures.

We gratefully acknowledge G. M. Eliashberg for inspir-
ing comments, and J. M. J. van Leeuwen for illuminating
discussions.
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